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ABSTRACT

The linear complementarity problem is that of finding an n x 1

vector 2z such thatl

Mz + gz 0, z 2 0, zT(Mz+q) = 0

where M 1is a.given n x n real matrix and q is a given n x 1
vector. In this paper the class of matrices M for which this

problem is solvable by a single linear program is enlarged to include
matrices other than those that are Z-matrices or those that have an
inverse which is a Z-matrix. (A Z-matrix is real square matrix with
nonpositive offdiagonal elements.) Included in this class are other
matrices such as nonnegative matrices with a strictly dominant diagonal
and matrices that are the sum of a Z-matrix having a nonnegative inverse

and the tensor product of any two positive vectors in rR" .

1. INTRODUCTION

We consider the linear complementarity problem of finding a =z
in R" such that

(1) Mz + q2 0, z 20, 2" (Mz+q) = 0

where M 1is a given real n xn matrix and g is a given vector in
rR™, Many problems of mathematical programming such as linear pro-

gramming problems, quadratic programming problems and bimatrix games
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can be reduced to the above problem [4]. In addition some free boundary

problems of fluid mechanics can be reduced to the solution of a linear
complementarity problem [5,6,7]. The purpose of this paper is to extend
the class of the matrices M for which the linear complementarity

problem (1) can be solved by solving the single linear program

(2) minimize pTz subject to Mz + gz 0, z 0

[\

for an easily determined p in R™. 1In [10] it was shown that for

cases including those when M or its inverse is a Z-matrix, that is a
real square matrix with nonpositive offdiagonal elements, the linear
complementarity problem (1) can be solved by solving the linear program
(2) for a certain p. In Section 2 of this paper we sharpen the main
result of [10] by giving in Theorem 1 a characterization for the key
condition which insures the solvability of the linear complementarity
problem (1) by the linear program (2). Theorem 2 is a specific realiza-
tion of Theorem 1 which has been given previously [10] in a slightly
different form.

In Section 3 of the paper we extend further the class of linear
complementarity problems solvable by a single linear program by considering
an equivalent linear complementarity problem (7) with slack variables
and by employing the results of Section 2. We obtain extensions which
include cases such as when M 1is a nonnegative matrix with a strictly
dominant diagonal or when M is the sum of a K-matrix, that is a
Z-matrix having a nonnegative inverse, and the tensor product of any two
positive vectors in R™. A tabular summary of some of the linear com-
plementarity problems solvable by a linear program is given at the end
of the paper.

2. SOLUTION OF LINEAR COMPLEMENTARITY PROBLEMS
BY LINEAR PROGRAMMING

In this section we shall characterize classes of matrices for which

the linear complementarity problem (1) can be solved by solving the

linear program (2). We begin by stating the dual to problem (2)
(3) maximize -qu subject to —MTy + pz20, y=z20

and establishing the following key lemma [10] which insures that,
under suitable conditions, any solution of the linear program (2) also

solves the linear complementarity problem (1).

Lemma 1 If 2z solves the linear program (2) and if an

optimal dual variable y satisfies

¥ T
(4) (I-M7)y + p >0
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where I is the identity matrix, then 2z solves the linear comple-
mentarity problem (1).
Proof: yT(Mz+q) + zT(—MTy+p) = qu + sz =0 .
Since y 2 0, Mz + g 20, z 2 0 and —MTy + pz2 0 it follows that
T .
yi(Mz+q)i = 0, zi(—M y+p)i =0 1=1,...,n

where subscripted quantities denote the ith element of a vector. But

y; t (--MTy+p)i >0, i =1,...,n, hence either y; > 0 or

(—MTy+p)i >0, i=1,...,n, and consequently (Mz+q)i =0 or z, = 0,

izl,e-o,no D

We give now a necessary and sufficient condition for the satis-

faction of the key inequality (4) of Lemma 1.

Theorem 1 Let the set {z|Mz+g20,z20} be nonempty. A necessary and

sufficient condition that the linear program (2) have a solution z

with each optimal dual variable y satisfying (4) is that M, g and

p satisfy
_ T

Mz, = 7, + qc
(5) M'x g pol

T T

pZzZ;>aX

Xz 0, ¢ 20, (Zl'ZZ) € 24

and
(6) p=r1x+ MTs, r 20, sz20

. . n
where X,Zl,Z are n X n matrices, c¢,r,s are vectors in R, and 2

2
is the set of square matrices with nonpositive offdiagonal elements. If
conditions (5) and (6) are satisfied then there exists at least one
solution of the linear program (2), and each such solution solves the

linear complementarity problem.

Proof: The existence of (r,s) z 0 satisfying (6) is a necessary and
sufficient condition for dual feasibility, which in turn is a necessary
and sufficient condition that the feasible linear program (2) possess
a solution. That each optimal dual variable y must satisfy (4), is

equivalent to the system
T T T
Mz + gq; 20, z 20, -My+pr20,y20,pz+qgys=20,2¢>0

T -
(M —I)iy pic =0 ‘
not having a solution (z,y,z) in R2n+l for each i1 =1,...,n, where
(MT--I)i denotes the ith row of M-1 . By Motzkin's transposition

theorem [9] this in turn is equivalent to the existence of n-vectors
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c and d , and n X n matrices X,Y,U,V and D,where D is diagonal,
satisfying |
MTX + U - ch = 0
~-MY + V - ch + (M-I)D = 0
X + piY +df - p'p =0

x,¥,0,Vv)

[\
(e
~
Q
v

20,4 >0

By defining 2y =D -Y,2,=D-V these conditions become conditions

(5).
The last statement of the theorem follows from Lemma 1. [

By taking X = 0, and ¢ = 0 in (5) we obtain the following

theorem which is equivalent to Theorem 1 of [10].

Tneorem 2. Let the set {z|Mz+gz0, z20} be nonempty, and let M and
p satisfy

: 3 T
MZ, = Z,, P 2, > 0, (2,,2,) € Z

p=rxr+ MTs, r 20, s 0

liv

Then the linear complementarity problem (1) has a solution which can be

obtained by solving the linear program (2).

Useful special cases are obtained by setting Zl = I, p=e and
22 =1, p= MTe, where e 1is any positive vector and in particular it
may be a vector of ones. 1In the first case we have that M = Z2 e 2,
p = e, and in the second case that M—l = Zl € 2, p = MTe. Other methods

for solving (l) for Z-matrices and other related matrices are given in
{1,2,3,6,11,12,13,14].

In order to enlarge further the class of matrices for which the
linear complementarity problem can be solved by a linear program we
consider a complementarity problem with slack variables which is
equivalent to problem 1.

3. SOLUTION OF SLACK LINEAR COMPLEMENTARITY
PROBLEMS BY LINEAR PROGRAMMING

We consider the following linear complementarity problem with a

slack variable Zg in Rm
\Y M A z q z T T

(7) 1= 1 z 0, [ 20, z2w+ zgwy =0
o 0 Bfl% o 0

where A 1s an n x m matrix and B is an m x m matrix.
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Lemmq_g; Let B be a strictly copositive or conegative matrix, that is
xTMx # 0 whenever 0 £ x # 0. Then =z solves the linear complementarity
problem (1) if and only if (z,z

0=0) solves the slack linear complemen-
tarity problem (7).

Proof: Obviously if =2z solves (1) then (z,z.=0) solves (7). If

0
(Z'ZO) solves (7) then since 0 = z’gwO = ngzo, Z, > 0, and’ B is
strictly copositive or conegative, then =z, = 0 and =z solves (1). [

0
By combining this lemma with Theorem 2 we can extend the class of

matrices for which a linear program solves the linear complementarity
problem.,

Theorem 3. Let the set {z|Mz+g20,z20} be nonempty, and suppose there

exist Zl,Zz,ZB,A,G,H,p and pO satisfying

(8) Mz, = Z, + AG, MH > AZ, (zl,zz,z3) e 72, (G,H) 2 0
7. =H
T T 1
(9) (p po) > 0 (p,po) z 0
-G Zy

where the dimgnsionalities of Zl’ZZ’ZB’A’G'H' and Pg are respectively,
nxXxn,nxn,mxm, nxm,mXx*n, nxm and m x 1. Then the linear
complementarity problem (1) has a solution which can be obtained by

solving the linear program (2).

Proof: Set B = I in problem (7) and apply Theorem 2 to it. 1In
particular we have from (8) and (9) that

~

M Ajf 2z, -H _ z, -H
0 I||-6 2z, -Gz,
7. -H
1
(PT pg) > 0

-G Z,

where H is an n x m nonnegative matrix and

p r
= 2 0 Py € Rm, r
Py Lo

OeRm
Hence by Theorem 2 the slack linear complementarity problem (7) has a

solution which can be obtained by solving the linear program
minimize pTz + pgz0 subject.to Mz + Az0 + g2 0, (z,zo) 2 0

But since each solution of this linear program solves (7) it follows
that 2g = 0 at each solution of this linear program and hence we can
set 2y = 0 which reduces this linear program to (2). 0



o
We observe that a sufficient condition for the inequality (9) to
z, -H -1
to hold is that 2 0. In fact this condition is also
-G Z
3
necessary for (9) to hold because the nonnegativity of the inverse
i_l of a Z-matrix Z is equivalent to the existence of p 2 0 such
that pTZ > 0 [8, Theorem 4,3]. Z-matrices with nonnegative inverses
are called K-matrices [8] and sometimes M-matrices. The set of all
K-matrices is denoted by K. By making use of these facts we can obtain

the following consequence of Theorem 3.

Theorem 4. Let the set {z|Mz+g20,2z20} be nonempty, and let M
satisfy

(10) M = (22+AG)le, MH 2 AZy, (Zy,%,,2,) € %, (G,H) 2z 0

-1 .
(11) Z,7 z 0, (Z3--GZl H)

Then there exists (Prpo) e RO satisfying (9) and the linear com-

1

v

0

plementarity problem (1) has a solution which can be obtained by solving

the linear program (2).

Proof: We wiil show that the conditions of Theorem 3 hold and hence

(1) has a solution and is solvable by the linear program (2). We have
that '
-1
-1 -1.,-1 -1..~1
Zl ~H _ Zl (I+HC GZl ) Zl~HC
- -1.,-1 -1
G Z3 C GZl C
-1 -1 -1
where C = Z3 - GZl H. It follows from Zl 2 0, C 2 0, H=2 0 and
Z, -H - T T ol S -
G =z 0 that 2 0 and that (p po) = e 2 0,
-G 4 -G Z3

where e is any positive vector in Rn+m, satisfies (9). Conditions

(8) follows from (10). O

By setting z, =1 in the above theorem and defining Z4 = 23 - GH ~

we obtain the following theorem.

Theorem 5. Let the set {z|Mz+g20,z20} be nonempty, and let M satisfy

(12) M= Z2 + AG, MH = AZ3 GH = Z3 - Z4 2 0
(13) (ZZ’ZB) e Z, Zy € K, (G,H) 20
then there exists (p,po)e g satisfying (9) with Z; =1 and the

linear complementarity problem (1) has a solution which can be obtained

by solving the linear program (2).
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Note that since Z3 = Z, + GH 2 Z, and Z, is a K-matrix, it

follows by Theorem 4,6 of [8] that Z3 is also a K-matrix.
We conclude by giving some specific realizations of Theorem 5.

Theorem 6. Let the set {z[Mz+q§0,z§0} ﬂbe>nonempty and let M satisfy
any of the conditions below. Then the linear complementarity problem
(1) has a solution which can be obtained by solving the linear problem
(2) with the p indicated below:

(a) M = 22 + abT, 22 e K, a ¢ Rn, b € Rn, 0#a320,b >0, p=hb.

(b) M = Z2 + A(ZB—Z4), (Z2,Z3) € 2, 2, ¢ K, 2, =z %

4
T T T 1
pOZ4 > 0, po >0, p- = pO(Z3 224)

T T T
() M= 2z2,-z,, Zy €%, %y K, 2,2 2,, PyZy > 0, Py > 0, P~ = pBM
2 T _ T T n
(a) M =2 o0, ij > ) Mij’ j=1l...yn,p =e M, e = (1,...,1) ¢ R™.
i=1
1#7
o T T T
(e) M 2z 0, Mo jgl Mij’ i=1,...,n, p- = PoM where p oz, > 0,
j#i
Py > 0 and Z4 = -M + 2(diagonal of M)
Proof: (a} Since Z., € K, there exists an h in Rn, h > 06, such
— 2
that 2Z,h > 0 [8, Theorem 4,3]. Set in Theorem 5 above: A = a,
2
T 1 (Z,h) T
G =Db", H=h, Z4 = imi —~<_J >0 and z. = b h + Z,. Note that
. a.>0 3 4
J J
here Z3 and Z4 are real numbers. We now have that
. T _ T _ _
MH - A23 = (Zz+ab )h a(b h¥Z4) = Zzh aZ4 > 0
To satify inequality (9), which in this case is pT > p bt and
Y g 0 o
pTZ > pTh, set p = Db and take p satisfying 1 > p, > b'h .
073 “ 0 0 23

Application of Theorem 5 gives the desired result.
(b) Set in Theorem 5, H = I. Conditions (12) and (13) are satisfied.
Inequality (9) requires that

" pg) [z -1

That is we require that
>

T T T
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T
Now we have that pOZ4 > 0, Py > 0, Z3 - Z4 2z 0 and hence
T T

PgZ3 > Po(z3‘z4) z2 0
But since pT = p0(23 2 4) > 0 is the average of the first two terms
in the above inequalities, it follows that the desired inequality

T T T 1 T

PoZ3 > P = Pg(23732,) > py(23-3,)
holds.
(¢c) Set A =1I and 22 = Z3 in part (b) of this theorem, and take
T T T 1

P = pyM instead of p~ = 2ng since this change does affect the

solution of (2).
(d) Take part (c¢) of this theorem and set
(22)ij =0, 1 # 7, (Z2)jj = M,., i,j = 1l,.v.,n

J3J
(Z4)ij = —Mij,l%j, (Z4)jj = ij, i,j=1,...,n
n
The matrix Z4 is a K-matrix because, for j=1,...,n, ij - X Mij > 0.
i=1 -~
i#]j
Hence pg = eT = (1,...,1) ¢ R® satisfies pgz4 > 0. Take
pT = p%M = eTM .
(e) We again apply part (c) of this theorem and define
(Zz)ij =0, 1 # 3, (Zz)ii = Miil 1,35 =1,...,n
The matrix Z4 is a K-matrix because, for i - l,e.,n, M,. - Z M.. > 0.
ii 2 ij
J#l
Hence there exists a Py > 0 such that pgz4 > 0. Take pT = ng. 0

Note that in both cases (d) and (e) above, that is when M is a

nonnegative strictly diagonally dominant matrix, pT = ng, where

Pg > 0 is determined from the matrix Z4 obtained from M by

reversing the sign of the offdiagonal elements of M and requiring
T

that pOZ4 > 0.

We close with a summary given in Table 1 below which gives the
required assumptions on M and the corresponding vector p used in
the linear program to obtain a solution of the linear complementarity

problem. It is hoped that furtner research will substantially enlarge
this table.

s’
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TABLE 1

Linear Complementarity Problems Solvable
by Linear Programming

Matrix M of (1) Conditions on M Vector p of (2) Conditions on p
-1 T
M= ZZZl Zl e K, Z2 € 2 P Eﬁgo, P Zy > 0
M= 7271 Z Z, 7 K = M's >0, s°z, > 0
! 291 1 € “4r 4y € P = SzVs S 24,
M Me 2 p p >0
M M-_1 € Z p = MTe e > 0
— T -
M= 22 + ab Z2 € K p =5
0#az=20, b >0
T
M= 2z, -2, Z, e Z, %, K p = Mipo Py >0, Pz, > O
Zy 2 2y
= MT T
M M=z0 p = Me e = (l,...,1)
n

M.. .
J3J i=1 1J

=

=
Y

o
o)
i

=

=3
®]
o

T
Po>0r PpZy > 0

1 1Y | Z,=-M+2diag M
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