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Strong Duality for a Class of Integer Programs

R. R. Meyer and J. M. Fleisher

It is well-known [1,2] that primal-dual formulations for integer
and mixed-integer programming problems generally exhibit a so-called
duality gap: i.e., the optimal value of the primal and dual problems
need not be equal. The purpose of this note is to exhibit a class
of non-trivial integer programs that have the property that for each
"primal" problem in the class there exists a corresponding "dual"
problem whose optimal value always coincides with the optimal value

of the primal problem. Furthermore, the integrality constraints are
crucial to the duality results in the sense that deletion of the inte-
grality constraints leads to an infinite duality gap for the resulting
problems.

Consider the following two problems:

(P) Maximize X
subject to cj/x = yj(j = 1,2,...,n)
Yj integér (J = 1,2,...,n)
n
(D) Minimize Y oc.z
j:" J \]
n
subject to ) c.z. >0
27 9%

z. integer (j = 1,2,...,n)

When the cj's are integers not all zero, it is easily seen that the
optimal objective value of (P) ds the greatest common divisor of

the cj's .- Thus, (P) may be considered as a generalization of the
concept of greatest common divisor to non-integer data sets. When



the cj's are all integers and c # 0 , it is noted by Greenberg

[3] that the greatest common divisor of the cj's is the minimum

of ¢z subject to cz >1 and z integer. However, the generaliz-

ations to non-integer data presented here and their characterizations

as duality theorems do not appear to have been previously described.
Before establishing the main result (a "strong duality" theorem),

we will first prove that "weak duality" holds for the pair (P) - (D) .

Note that (D) will have a feasible solution if and only if c # 0 ,

and (P) will have a feasible solution of ¢ is a rational vector,

but (P) may or may not have a feasible solution otherwise.

Lemma: (Weak Duality)
If (x.,y) is feasible for (P) and 2z 1is feasible for (D)
then Kx = cz , where K is a non-zero integer, so that X < cz .

Proof:

Using the feasibility of (X.y) we have 0 < cz = (Xy)z =
x(yz) = Kx , where K =yz . Since cz >0 , it follows that K # 0
and thus, by the integrality of K , x <cz . [

Theorem 1: (Strong Duality)

If (P) and (D) both have feasible solutions, then (P) and
(D) both have optimal solutions and the optimal values of (P) and
(D) are equal.

Proof:

Suppose that (P) has a feasible solution pair (x,y) . Since
(-x,-y) s also feasible, we can assume without loss of generality
that x > 0 . Since (D) is feasible, note that c # 0 . It is
easily seen that the optimal value of the problem




(P") Maximize X
subject to cj/x =Yy (3 = 1,25....n)
Y5 integer (j = 1,2,...,n)
X < X < min {|c119|02|9,9.,[cnl}

4
Cj70

must exist (since the feasible region of (P') 1s compact) and is

equal to the optimal value of (P) . Moreover, if (P) has (x*,y*)

as an optimal solution, then the integers YT=V§s--°syﬁ must be rela-
tively prime (otherwise they would have a common factor > 2 and
(ux*gu“1y*) would be feasible for (P) , contradicting the fact that
the optimal value of (P) 1is x*). Thus, there exists an integer
vector z* such that y*z* =1 (this may be established constructively
via the Euciidean algorithm, see [6]). Now note that z* 1is feasible
for (D) , since cz* = (x*y*)z* = x*(y*z*) = x* > 0 . Since the
objective function value for 2z* 1in (D) coincides with the objec-
tive function value for {x*,y*) in (P) , it follows from the pre-
ceding lTemma that z* s an optimal solution of (D) and that the
optimal values of the two problems coincide. [

Theorem 2:
If ¢ s a vational vector and ¢ # 0 , then (P) and (D)
have optimal solutions with equal optimal values.

Proof:
When ¢ # 0 and rational, (P) and (D) both have feasible

solutions, so the previcus theorem applies. [

If the hypothesis of the preceding theorem does not hold, then
either (P) is infeasible or (D) 1is infeasible. Both cannot be
infeasible because (D) 1is infeasible if and only if ¢ = 0 1in which
case (P) 1is feasible. The following theorem describes the properties
of the pair (P) - (D) 1in these cases.



Theorem 3: (Infeasible Cases) .
If (P) is infeasible, then there exists a sequence {2(1)}
such that each 2(1) is feasible for (D) and 1im cz(1) =0,
70
hence (D) has no optimal solution. If (D) is infeasible, then
c =0 and (P) s an unbounded problem.

Proof:
If (P) 1is infeasible, we will show that there exist indices
r and s such that Cr/cs is irrational. Suppose this is not the
case. Since (P) s infeasible, ¢ # 0 , and there exists an s
such that Cg #0 . If cr/cS is rational for all r = 1,2,...,n ,
there would be a rational number X such that cr/(csi) is integer
for r=1,2,...,n , contradicting the infeasibility of (P) . As
noted in Meyer [5], it follows from the irrationality of cr/cS and
an approximation result from number theory [6] that there exists a
sequence of integer pairs (Ei1 . 2§1)) such that }iﬂ (cr/cs)2£1) =
zéi) =0 . F(om this sequence, we may construct a corresponding se-
quence of z(]) feasible for (D) such that Tim cz(l) =0 (namely,
->00
2§i) sgn{crfii) + csgﬁi)} if j=rss ,and 0 if j # r,s).
The proof of the second part of the theorem is an obvious conse-
quence of the fact that (x,0) is feasible for (P) for all Xx # 0.

(1)

The following table, where m denotes the optimal value of (D)
(if (D) is infeasible, m = += by convention) and Mdenotes the
optimal value of (P) (if (P) is infeasible, M = - by convention),

summarizes Theorems 1 and 3:




(PY/(D) Feasible Infeasible

(c=0)

easib o= Me (0,0) m=M= +o
Infeasibie Moo= e Cannot occur

From this table,

Thegrem 4:

(P) has an optimal

solution, in which case the optimal values are equal.

Finally, it is interesting to note that this approach suggests

that the tuclidean algovrithm, which has been called "the grandaddy

of all algorithms" by Knuth [4], should be considered a "dual®

method. since it computes the greatest common divisor by generating

feasible solutions for the "dual® problem (D) rather than for the

"natural" formulation (P) of the greatest common divisor problem.

The Euclidean algorithm is thus not only the "oldest non-trivial

atgorithm" {41, but also the oldest dual a’igorithm.
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