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UNCONSTRAINED METHODS 1N NOMLINEAR PROGRAMMING

0. L. Mangasarianl
ABSTRACT

Optimality conditions and algorithms that are free from inequalities
are given for inewuality constrained optimization problems. It is shown
that stationary points of nonlinear programs which invelve n variables
and m constraints can be obtained by solving a system of n + m equations
in n + m unknowns. Algorithms are presented which exploit the structure
of these equations in such a way that,at each iteration, only n equations
in n  unknowns are solved or an unconstrained function of n variables is
minimized. It is shown that these algorithms are parametrically super-
linearly convergent, that is the error at the ith iterationis proportional

-1 . . s
to « where o is a finite penalty parameter that can be made large.

A fundamental problem in nonlinear programming is to

minimize f(x)

¥ (1
subject to g(x) 5 0
m

where f:R"™ = R and g:R" » R That is find an X% in R such that

g({x) £ 0. 1In general

g(x) £ 0 and f(x) z £({x) for all x satisfying

one cannot even compute numerically a solution to this problem, but,

. - - . N .
assuming that f and g are differentiable on R, one looks for x in

™ the following

R® such that topether with a Lagrange multiplier u in R
Karush-Kuhn-Tucker necessary optimality conditions [17,18,20] are satisfied

VE(x) + u¥Vg(x) = 0, ug(x) = 0, gx) 5 0, u 2z O (2)

AMS(MOS) subject classifications (1970). Primary 90C30; Secondary
65H10.

lResearch supported by National Science Foundation under grants
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where Vf(x) is the 1 * n gradient Vector1 of f at x, Yg(x) is
the m x n Jacobian of g at x , and ug(x) denotes the scalar product
m
) uﬁgﬂ(r\. Tn terms of the classical Lagrangian
je1 0
Lo(x,u) = f(x) + ug(x) (3)

the Karush-Kuhn-Tucker conditions (2) are equivalent to

VlLO(x?u) = 0, VZLO(x,u)u = 0, VQLO(x,u) < 0, uzd (4)

where VlL(x,u) and VQL(x,u) denote gradients with respect to the first
argument x and the second argument u, respectively.

Both the original minimization problem (1) and the optimality con-
ditions (2) or (4) involve inequalities. An inequality constrained problem
is inherently different and often more difficult then one that involves

equalities only. Inequalities introduce boundaries and combinatorial

features which are absent when dealing with equalities alone. Unconstrained

methods in nonlinear programming are those which convert an ineguality

constrained optimization problem (1) or its optimality conditions (2) to &

problem involving equalities only. There are many ways for doing this.

In 1937 Valentine [33] proposed replacing (1) by

minimize f£(x) sﬁbject to gi(x) + zi2 = 0, 1= 1,...,m

X527
Unfortunately this transformation is not useful computationally and
furthermore it destroys any convexity the original problem may have. In

1943 Courant [931 proposed an exterior penalty method for equality constraints.

For the inequality constrained problem (1) this method becomes [11]

?
l(gi(x))+

e~ 3g

minimize f(x) + -‘2-‘-
X i

where & is a positive number that must approach infinity, and

(gi(x))+ = maximum{o,gi(x)]. The main difficulty with this approach is

that as « approaches infninity the Hessian of the penalty function becomes
ill-conditioned and it becomes increasingly difficult to minimize it [19].

To overcome this difficultly exact penalty methods have been considered by

1o . . . . . .
To simplify notation all vectors, except pradients, are either row
or column vectors depending on the context. However gradicnt vectors such

. T
as Vf(x) are row vectors unless transposed to a column VE(x) ™.
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Ablow and Bgigham in 1955, Zangwill in 1967 and Pietrzykowski in 1969
[1,35,27] in which the penalty parameter o vremains finite and problem
(1) 1s replaced by
m
minimize f(x) + a J (g,(x)),
X i=1
where o is a positive number that must be sufficiently large but finite.
The main difficulty here is that the penalty function is not differentiable.
A method which avoids most of the difficulties associated with the uncon-
strained methods described so far was introduced by Rockafellar in 1970

{301 under the name of the augmented Lagrangian method, where a function

that serves both as a Lagrangian and as an exterior penalty function is
used. This method originally introduced, independently of each other, by
Hestenes and Powell in 1969 [29,14] for equality constrained minimization
problems, %as been intensely investigated recently [2,3,4,5,7,12,13,21,23,
24,28,30,31,32,341 and is known under a variety of names such as: method

of multipliers, shifted penalty method, penalty Lagrangian method, and
unconstrained Lagrangian method. We shall use the name augmented Lagrangian

method here. In this method problem (1) is replaced by

Fl(x,y,a)
Fix,y,a) = = 0 (5)
FQ(x,y’az
+m+ + + + .
where F:rR" m+l o, R m, Fl:Rn+m 1, Rn, FQ:Rn mlo, Rm, vy 1s a one-to-one

map of the Lagrange multiplier u, and « ’is a sufficiently large, but
finite positive number. We shall give later below some specific choices
for the function F. Some of the key properties of (§) are

(a) F is locally or globally differentiable

(b) x and y are not constrained by inequalities

(c) The penalty parameter o remains finite

(d) TFor large but finite values of «a, V]Fl(§,§,a) is (6)
positive definite at appropriate stationary points
(%,9).
(e) The system (5) can be solved by algorithms with a con-

vergence rate factor which is inversely proportional t

to the penalty parameter o, .
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A typical augmented Lagrangian algorithm associated with (5) is the

following. Given (xi,yi) determine (xi+l,yi+1) as follows
1 ALGORITHM
Step i: Fl(xi+l,yi,u) =0
Step 2: yi+1 = yi + aFZ(xi+1,yi,a)
Sometimes it is also happens that
Fl(x,y,a) VlL(x,y,a)T
F(x,y,0) = - = TLOx,y,a) (7
LFQ(xyy,a) \72L(x,y,a)T
where L:RDPMFL o R then L{x,y,a) is called the augmented Legrangian
and the algorithm takes the form
2 ALGORITHM
Step 1: L(xi+l,yi,a) = min L(x,yi,a)
X
Step 2: yi+1 = yi-+aV2L(xi+1,yi,a)

The simplest such augmented Lagrangian is due to Rockafellar {311 and
is given by

n u
L{x,y,a) = £(x) + %& jgl((agj(x)+yj)z~yj?) (8)

and for this specific choice of L(x,y,a) we have that

—

T T T
VE(x)™ + ] (ag. (x)+y.) Vg, (x)
e 374783

F(xayﬂ]) = VL(x,y,a)T = (9)
1 .
&((ng(>:)+yj)+_yj), j = l""’m—J

Ln

In the rest of this paper we shall try to justify the use of

Rockafellar's augmented Lagrangian (8) by establishing for it and for a
wider class of functions F(x,y,a) the key properties (0) stated above.

We begin by going back to the Karush-Kuhn-Tucker conditions (2), and
attempting to replace the 1 + 2m conditions: ug(x) = 0, g(x) g 0O,
u z 0, by an equivalent system of m equations without an increase in the
number of variables. If we can do this, then by maintaining the m

equations Vf(x) + uVg{x) = 0 we can replace the Karush-Kuhn-Tucker

conditions by a system of n + m equations in n + m unknowns. That this
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can be done follows from the following simple but key lemma which can be

obtained by symmetrizing the key Lemma 2.7 of [23] or from Lemma 3 of [21].

3 LEMMA
Let h,z and y be real numbers, let 8 be a strictly increasing
function from R into R , that is 8(a) < 6(b) = a < b, and let

86(0) = 0. Then

O |h-v]) - 8(h) - O(y) = o> == <hy =0, hz0,y 20 (10)
or equivalently
o(lg+y]) - 0(-g) - 6(y)=0> o= <gy =0, g <0,y 20 (11)
Proof
The equivalence of (10) and (11) is evident once we set g = =h.

We establish (10) now. The backward implication of (10) is trivial because

either h = 0, vy 2 0 or hz 0, vy = 0; in the first case we have

1

8Cih-y|) -~ 8(h) - 6(y) = 8{y) - 6(y) 0 and in the second case we have

1

e(|lh-y]> ~ 86(h) - @Cy) = 8(h) - 0Ch) 0. We prove now the forward impli-

cation of (10) by looking at two cases.

Case I: h-yz20 86(h-y) = 06{h) + 8(y)
y >0 = 8(h-y) > 6(h) = h~y >h =1y < (Contradiction)
y <0 = 6(h-y) < 8(h) = h -y <h=y>0 {Contradiction)

Hence we must have that
y =0, h 0 and hy = 0.
Case II: - h 2z 0

By symmetry we obtain from case T that

h =0, v z 0 and hy = 0.

Hence in either case we have that h 2 0, y 2 0 and hy = 0. 0

The simplest choices for @ are 6(z) = z and §(z) = z|z]. The
first choice 6(z) = z which also underlies Rockafellar's Lagrangian (8)
leads to equations such as |h-y|] - h -~ y = 0 which are not differentiable

globally. The second choice 8(z) = z|z| however leads to globally

differentiable equations such as (h—y)’2 -~ hln|-yly}l = 0. As an aside we
note that by using 0(z) = z|z| in Lemma 3 above it follows immediately
that the classical complementarity problem [8,15] of finding an x ¢ R
such that G(x) z 0, » z 0, xG(x) = 0, wherc iR Rn, or its equivalent

variational inequality formulation of finding an % z 0 such that
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(y-x)G(x) 2 0 for all y z 0 [16,25], are both completely equivalent to

gsolving the following system of n equations in n unknowns

(Gj(x)~xj)2 - 6500165 G xg eyl = 00§ = 1hn (12)
Note that in the system (12) x is not constrained by any inequalities and
that the equations are globally differentiable if G is globally dif-
ferentiable. Furthermore, it can be shown [22] that the Jacobian of (12) is
nonsingular at scliutions x for which the nondegeneracy condition
% + @(x%) > 0 holds and VG(x) has nonsingular principal minors.

Going back to the Karush-Kuhn-Tucker conditions (2) we can immediately
establish the following equivalence between (2) and a system of n + m

equations in n + m unknowns.

Y THEOREM

VE(x) + uvVg(x) = 0 (VE GO +uvg (x0T
<> 5 = 0
ug(x) = 0, g(x)g0, uz0 F(x,u) = (gj(x)+uj) +gj(x) gj(x)[—ujluﬂ

J o= 1,...,m

(13)
Furthermore the Jacobian VF(%,u) is nonsingular at any solution (x,u)
which satisfies the Jacobian nonsingularity conditions
(a) Gj >0 for J eI = {jlgj(§) = 0} (Strict complementarity)
(b) ng(i), 4 ¢ T, are linearly independent
(¢) £ and g are twice differentiable at X and
Vggizx = 0, x ¥ 0 = xvllLO(i,G)x > 0 where (1w)
Jer
Vllho(i,ﬁ) is the Hessian of the classical Lagrangian (3)

with respect to x (Second order sufficiency)

Proof.
The equivalence (13) follows from Lemma 3 by setting 0(z) = zlz]|,
y = uj, j = 1,...,m in (11). To establish the nonsingularity of
YF(X,y) under (14) note that
¥, Lo (7, 0) vg GOT v ("
VF(x,u) = 20 Vg (%) 0 0
0 0 2g5(x)

where J = {j gj(§)<0}, GI is a diagonal matrix with elements u. and

Jel
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Vgl(ﬁ) and VgJ(i) are matrices with rows ng(i), j ¢ I and ng(i),

j ¢ J respectively. Evidently the Jacobian VF(x,u) is nonsingular if

V]lLO(i,G) VgI(i)T is nonsingular. This latter fact follows from
QUIVEI(A) 0
the implications
B - - ST - - T, .
vllLO(X’U) VgI(A) X Vllbo(k,u)x + VgI(x) v = 0
= 0 &=
. — 1 -

. " = !

L_‘2\11\7;31(><) 0 MJ Lv Vgl(x)x 0 (By (1lua))

= xvllho(x,u)x = 0, Vgl(x)x = 0

= x = 0, Vg (3)v = 0 (By (lue))
== x = 0, v = 0 (By (Aub)). [}

Note that in the equivalence (13) all inequalities have disappeared
from the system TF(x,u) = 0. In addition F is globally differentiable if
f and g are twice differentiable globally. Furthermore at isolated
local minima of (1) satisfying (14), YF(x,u) is nonsingular and hence
locally superlinearly convergent quasi-Newton methods [6] and other methods
for solving nonlinear equations [26] can be used for finding points that
satisfy the Karush-Kuhn-Tucker conditions (2). DNote also that there is
no parameter in the equations F(x,u) = 0 of (13). There are certain
disadvantages however to solving F(x,u) = 0 directly. The main dis-
advantage is that n + m may be much larger than n, which is the case
when there are many gj(Q) < 0, and hence in solving F(x,u) = 0 we are
working in a hiéh dimensional space pnm when it is preferable to work in
a lower dimensional space such as R".  Also LD(X,G) may not be convew
with respect to x near x , even if (1u4) is satisfied. This convexity
is useful in solving VlLO(x,u) = 0, the first n equations of (13). To
avoid these difficulties we give another equivalence between the Karush-
Kuhn-Tucker conditions (2) and another system of n + m equations which
is the underlying relation for all augmented Lagrangian methods.

5 THEORLM

Let ® and ¢ Dbe strictly increasing functions from R into R

with 06(0) = 4(0) = 0 and let ¢ be surjective (that is ¢ maps R onto

R). Then for any o > 0
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VE(x) + uVg({x) = 0

<S>
ug(x) = 0, glx) £ 0, u 2z 0
- ' m X
/ FGehy 500 (VEGO+ T olags () +y.), g (x0T
3570 SRS
F(X’y:’a) = = =0
F,(x,y,0) O(]agj(x)+yj])—6(—ugj(xb—0(yj)
jo= 1,...,m
(1%)
¢(z) if =z =z 0

where u.= ¢(y.), 3 = 1,...,m, and ¢)(z)+ =
J J 6 if =z <0

Proof

The equivalence (15) follows from Lemma 3 and

i
3]

¢(cxgj(x)+yj)+ ¢(yj)+ = ¢(yj) uj for gj(x) = 0

H
t

d)(dgj(x)nyj)+ ¢(ugj(x))+ = 0 ¢(yj) = uj for gj(x) < 0 0

REMARKS

(a) The equivalence of (15) holds for any positive value of o no matter
how small.

(b) F(x,y,a) is globally differentiable as a function of (x,y) provided
that f and g are twice globally differentiable, € and ¢
differcntiable on R, and 6'(0) = ¢'(0) = 0.

(¢) The simplest choice of 206(z) = ¢(z) = z leads to F(x,y,a) =
VL(x,y,a)T where L(x,y,o0) is Rockafellar's augmented Lagrangian (8).
Note however that VL{(x,y,a) is not differentiable globally, and in
pavticularuit is not differentiable wﬁenever agj(x) + vy = 0, for some
j = 1,...,m. However if strict complementarity (1lha) holds at (x,u)
then agj(ﬁ) + §j £ 0 for Gj = ¢(§j), and VL(x,y,a) is differentiable
at (%,y). We shall give below TF(x,y,a) which is globally differ-
entiable.

We proceed now to the other key properties (6c) and (6d) mentioned
aboved by means of the following theorem.

6 THEOREM
(Positive definiteness of Vlfl(i,Q,a)) Let F,0 and ¢ be as in

Theorem 5, let 0 and ¢ be differentiable on R, let ¢'(z) » 0 for

2 > 0, let (x,u) satisfy the Karush-Kuhn-Tucker conditions (2), and

conditions (1l4a) and (ltc). Then VlFl(i,Q,a) is positive definite for
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o x @& for some O z 0, where Gj = ¢(§j), 3= 1,...,m.

Proof

By (1l4a) we have that

- _ - - -7 -
VP Gy, a) = VllLO(x,u) + jEloub'(yj)ng(x) ng(x)

where Gj = ¢(§.), i = 1,...,m, and by (luc) we have have

¢ (y )¢ Vﬁj (x)x = 0, x # E> = <i L (%,W)x > 0

Hence by Debreu's theorem [10) which states that for my X n and n x n

xln_,

matrices M and N

<%x = 0, x £ 0 = xNx:}>¢::>

it follows that V1F1(§,§,a) is positive definite for all o z o for some

N + aMTM is positive definite

for all o 2z o for some a 3 O

a z 0. 0
We finally establish the key property (6e) under the following
simplifying assumption.

7 ASSUMPTION

Let the assumptions of Theorem B hold. For each o 2 o let
F(x,y,e) = 0 have a unique solution x for each y in some open neilghbor-
hood of y

Although this assumption is not essential and can be gotten around

[23, Theorem 4.10], without it one must append to step 1 of Algorithms 1
i+l
x

.

and 2, the additional computational procedure of finding a closest

i . . . i+l . . . .
to X in some norm. In practice hecause x 1s obtained by an iterative

subprocedure from xi, it is not an unrealistic supposition that a closest
xi+l will be obtained as a matter of course.
8 THEOREM

(Param;tric superlinear convergence of Algorithms 1 and 2) Let the
assumptions of Theorem & hold, let a\g o, let (1lub) and hence (14) hold,
let Assumption 7 hold, let ¢ and 0 be continuously differentiable
on R and let f and g be twice continuously differentiable on an open
neighborhood of % . Then for suflficiently large but finite « +there

exists an open neighborhood N(y) of ¥ such that for yO in  N(y) there
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exists XO such that Fl(xo,yo,a) = 0, and the iterates (xl,yl) generated
by Algorithms 1 and 2 exist and converge to (x,y) at the root rate

i

l|x*-%,y*-31l s (5  for izi (16)
for some integer i and some positive constant c, where || || is the %,
norm, provided that 8 satisfies one of the two following conditions

a(B8'(z2)+6'(0)) = 1 for all =z > 0 (17)

or

1t

a(d'(z)+6'(0)) 1 for all =z :z %

and (18)

1
Z

a 2 max{§§i1, (—ngJ(i)) }

Proof
By Theorem 6, V1F1(§,§,a) is positive definite for a z & . Hence
by the implicit function theorem there exists a continuously differentiable

function e:R"™ - R™ on an open neighborhood of y such that

Fl(e(y),y,a) = g for all vy e N(¥) (19)
It follows that Algorithms 1 and 2 are equivalent to
‘y . . :
yl 1. yl + an(e(yl),y“,a) (20)

Consider now the mapping
G(y,a) = y + an(e(y),y,a) (21)
underlying the iteration (20). From (19) we have that

vlFl(§,§,a)Ve<§) + V2F1(§,§,a) = 0

and so
VG(y,a) = I + avlFQ(i,Q,a)Ve<§) + av2r2<§,§,a)
= I - a<v1F2(§,§,a>vlrl(§,§,a>’1v2rl(§,§,a) -V, F (7,5 ,0))
By making use now of -
[V, Lo (E@ T agt (5. ve 0en Gy 0
Jel GeD
-.T -
vg. Vg .
gj(x) gj(x)]
VF(X,y,0) = a(e'(§j)+e'(0))ng(§> 0 0
(je1)
0 0 «6'(—agj(§))w0'(0)

(jed)

2,
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where Gj = ¢(§j), j £ 1,...,m, we obtain
a(e'(§1)+e'<o>>VgI<§)[vllL0<§,G>+ 0
Ve(§,0) = I - a Ve GO T (ad (508 ()] g () Te (5)
Y &y RS RS s I Y1

L 0 81 (~ag ()48 (0)

where 6'(§I) + 8'(0) denotes a diagonal matrix with diagonal elements
8'(§j) +0'(0), 7 ¢ I. Similarly w'(?l) and 0‘(-agJ(§)) + 0'(0) are
also diagonal matrices with elements ¢'(§j), 3¢ I, and 0'(~ang§)) +
8'(0), j ¢ J, respectively. The matrix VgI(Q) has as its rows,
ng(i), jJ ¢ I. We now make use of the following extremely useful lemma
which can be considered a key lemma [or obtaining convergence rate results
for augmented Lagrangians. In [29] Powell proved a related result by using
determinants. |
S LEMMA

-1.T

Let C(a) = B(A+BTQ(G)B) B where B is a given m * n matrix of

rank m , A is an n x n matrix, Q(a) is a differentiable m x m

v
R

matrix function on R and A + BqQ(a)B is positive definite for o 2

1 -
for all o z a for some m »x m

for some @o. Then Cla) = (Q{u)+K)~
matrix K wvhich is independent of «¢«.
Proof

Recall that the formula for differentiating the inverse of a matrix

-1
is given by Qﬁég> = - C(a)_l ggéﬁl C(a)m1 Hence from the definition
of C(a) we have that
dC(a) T -1,.T dQ(a) T ~1.T a0 a) .
—559— = —B(AB Q(a)B) D ‘jm“ B(A+B Q(a)B) "B = _C(a)—%éi«C(u>
, -1 ~
Hence d€(a) - 490 and C(a) 1. Qlad) + K. 1
do da

By using this lemma in the last expression for VG(y,x) we obtain

.

3 a0 (F1)487 €00 (ot ' (54K H9 " (5 ) 0
V6(y,a) = I -n B
0 6" (~ag ; ())+0'(0)
e —l -
_ ' (5K
T-o (0 (§1)40" (0)) (TH—e) 0
[#3
0 1 - (!(O'(vu;‘,y(;z))*'()'(0))
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which upon using condition (17) or (18) gives

¢ Tk
I - (I + - ) 0
VG y,a) = 0 0
By choosinz « large enough such that - H@’(§I)"1K!l < % , it follows that
IS
& (yT) K) 9 -
- a2 2 g

Hence the spectral radius p(VG(y,a)) of VG(y,a) satisfies the inequality

(22)

Q101

p(V6(y,a)) =

lK[[. It follows from (22) and Ostrowski's point of

where ¢ = 2 [[¢'(y )"
attraction theorem [26, Theorem 10.1.3]1 and [26, Theorem 10.1.4] that the

sequence {yl} is locally convergent to y and the root convergence

1
factor Rl{yl} = lim sup Hyl—§]|l satisfies the inequality
i-rc0
o
lim sup Hyl~§![l s <
i+ a
and hence for some 1
i 2g, %
ly™=yll =5, 121
o
Since x* = e(y') and e is continuously differentiable on N(y) it
follows that for some constant & 21
iy i - TOEE ~ 28t 28¢ -
Ix"=x|| = JletyD-e || sclly-yll el = (57, i z1
and hence
ii- wga b et L
[x =%,y =y || = (=) = () iz1. N

We call the convergence rate (16) parametricaly superlinear, because
by increasing « it can be made better than any linear root rate
convergence: Hxi-i,yi—9H S (Y)i, where y 1is some fixed number less than
one.

We remark also that the choice 2a8(z) = ¢(z) = z which leads to

Rockafellar's Lagrangian (8) satisfies (17) and hence the root rate

convergence (16) holds for Alporithm 2 with L{x,v,a) given by (8).
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Bertsekas [3,4,5] has given a parametricaly superlinear quotient rate for
this algorithm also. As noted earlier for this choice of L(x,y,a),
Fix,y,a) = VL(x,y,a)T is not globally differentiable. To avoid possible
converge .ce difficulties that may arise from such nondifferentiability, we
propose here another choice of F(x,y,a) which is globally differentiable
but which satisfies assumption (18) in Theorem 8 instead 5f (17), and
hence the convergence rate result (16) holds for it also. In particular

we propose

zy 4 if z g L
o 2 = o
a
.1 - 1 . 1
6(z) = =¢(2) = 72]2[ if  lz| <= (23)
z L if 2z 2z L
a 2 o
20
For the choice of 6 and ¢ we have that
L if =z = L
o a
8'(z) = %@'(Z) = |z | if |z <% (2u)
L if oz 2z i
a o
Hence for =z 2 %, a(B'(z)+0'(0)) = a(%+0) = 1, and (18) is satisfied. Thus

the convergence rate result (16) holds for Algorithm 1 with F(x,v,0) given

by (15) and (23). HNote that T(x,y,a) as defined by (15) and (23) iz

globally differentiable on gntm if £ and g are twice globally
differentiable on R™. This is true because 8'(0) = $'(0) = 0. But, our
function T(x,y,a) as defined by (15) and (23) is not the gradient of

. T
some augmented Lagrangian. However, Fl(x,y,u) = Vlb(x,v,a) where

m
L(x,y,a) = f(x) + 7} w(agj(x)+yj)+ and

3=1

+ '——1'5 Jf Z = "—i;

Go
if |z <L
a
+ 2 if z z L
3 o

6a

But F2(x,y,a) # VZL(x,y,a)T. It is interesting then to pose the
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following proposal for further investigation.
10 PROPOSAL
Find an F(x,y,a) which satisfies the assumptions of Theorem 8, which

n*Mm o ond such that Fix,y,a) = VL(x,y,a)T

is globaliy differehtiable on R
for some L{x,y,a).

ACKNOWLEDGEMENT

T am indebted to my colleagues R. R. Meyer and S. M. Robinson for

valuable comments on this paper and G. P. McCormick for reference [1].

REFERENCES

1. C. M. Ablow & G. Brigham: "An analog solution of programming problems",
Operations Research, 3, 1955, 388-39u.

2. K. J. Arrow, F. J. Gould & S. M. Howe: "A general saddle point result
for constrained optimization", Mathematical Programming 5, 1973,
225-234.

3. D. P. Bertsekas: "Convergence rate of penalty and multiplier methods,"

Proceedings of 1973 IEEE Conference on Decision and Control, San Diego,
California, December 1973, 260-264.

4. D. P. Bertsekas: "Combined primal dual and penalty methods for

constrained minimization," SIAM J. Control, 13(3), 1975.

5. D. P. Bertsekas: "On penalty and multiplier methods for constirained
optimization", in "Nonlinear Programming 2", 0. L. Mangasarian,
R. R. Meyer and S. M. Robinson (eds), Academic Press, New York, 1975,
165-191.

6. C. G. Broyden, J. E. Dennis & J. J. Moré: "On the local and super-
linear convergence of quasi-Newton methods," J. Inst. Math. Applics.
12, 1973, 223-245.

7. J. D. Buys: "Dual algorithms for constrained optimization problems",

Doctorate Dissertation, University of Leiden, June 1972.

8. R. W. Cottle: "Nonlinear programs with positively bounded Jacobians",
SIAM J. Appl. Math. 12, 1964, 663-665.

9. R. Courant: "Variational methods for the solution of problems of

equilibrium and vibrations"”, Bull. Amer. Math. Soc. 49, 1943, 1-23.

10. G. Debreu: "Definite and semidefinite quadratic forms,” Econometrica

20, 1852, 295-300.

11. A. V. Fiacco & G. P. McCormick: "Nonlinear programming: sequential

unconstrained minimization techniques', Wiley, New York, 1968.




12.

13.

1u.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24 .

25.

26.

UNCONSTRAINED METHODS IN ROMNLINEAR PROGRAMMING 15

R. Fletcher: "An ideal penalty function for constrained optimization",
in Nonlinear Programming 2", 0. L. Mangasarian, R. R. Meyer §&

S. M. Robinson (eds), Academic Press, New York, 1875, 121-163.

E. G. Golshtein &€ N. V. Tretyakov: "Modified Lagrangian functionsg",
(Russian) fconomic and Mathematical Methods 10(3), 1374,
£68-591.

M. R. Hestenes: "Multiplier and gradient methods,” J. Optimization
Theory Appl. 4, 1969, 303-320.

S. Karamardian: "The nonlinear complementarity problem with
applications' parts 1 and 2, J. Optimization Theory Appl. 4, 1969,
87-98, 167-181.

S. Xaramardian: "The complementarity problem", Math. Programming 2,
1872, 107-129.

W. Xarush: "Minima of functions of several variables with inequalities
as side conditions", Master of Science Dissertation, Dept. Math.,

Univ. Chicago, Dec. 1939.

H. W. Kuhn & A. W. Tucker: "Nonlinear programming", Proc. 2nd
Berkeley Symp. on Math. Statist. & Probability, J. Neyman (ed), Univ.
Calif. Press, Berkeley, 1851, 481-u492,

F. A. Lootsma: "A survey of methods for solving constrained minimiza-
tion problems via unconstrained minimization", in Numerical Methods
for Nonlinear Optimization, F. A. Lootsma (ed), Academic Press,

New York, 1972, 313-347.

0. L. Mangasarian: "Nonlinear programming", McGraw-Hill, New York,
1969. !

0. L. Mangasarian: "Unconstrained optimization methods" in
Proceedings Twelfth Annual Allerton Conferénce on Circuit and System
Theory, Oct. 2-4, 1874, University of'Illinois, Urbana-Champaign,

163-160.

0. L. Mangasarian: "Equivalence of the complementarity problem to a
system of nonlinear equations", Univ. Wisconsin, Comp. Sci. Report
227, Nov. 1974,

0. L. Mangasarian: "Unconstrained lagrangians in nonlinear programming"

SIAM J. Control, 13{(u) 1875.

A. Miele, P. E. Moseley & E. E. Cragg: "A modification of the method
of multipliers for mathematical programming problems," in "Technigues
of optimization," A. V. Balakrishnan (ed.), Academic Press, New York,
1972, 247-260.

J. J. Moré: "Coercivity conditions in nonlinear complementarity
problemg", SIAM Review 16, 1974, 1-16.

J. M. Ortepa & W. C. Rheinboldt: "Iterative solution of nonlinear

equations in several variables," Academic Press, New York, 1970.



16

27.

28.

29.

30.

31.

32.

33.

34,

35.

0. L. MANGASARIAN

T. Pietrzykowski: "An exact potential method for constrained maxima",
SIAM J. Numer. Anal. 6, 1969, 299-304.

B. T. Polyak & N. V. Tretyakov: "Penalty method rate for constrained
optimization problems", (Russian), USSR Computational Math. &
Mathematical Physics, 13 (1), 1973, 34-46.

M. J. D. Powell: "A method for nonlinear constraints in minimization
problems", in "Optimization", R. Fletcher, ed., Academic Press,
New York, 1969, 283-298.

R. T. Rockafellar: "New applications of duality in convex
programming", Seventh International Symposium on Mathematical
Programming, The Hague 1970, published in Proceedings of the Fourth

Conference on Probability, Brasov, Romania, 1971.

R. T. Rockafellar: '"Augmented Lagrange multiplier functions and
duality in nonconvex programming,"” SIAM J. Control 12, 197u,
268-285.

N. V. Tretyakov: "Penalty method rate for convex programming problems",
(Russian) Economic and Mathematical Methods, 9(3), 1973, 526-540,

F. A. Valentine: "The problem of Lagrange with differential in-
equalities as added side conditions", in Contributions to the Calculus
of Variations 1933-37, Univ. Chicago Press, Chicago, 1937, 407-448,

A. P. Wierzbicki: "A penalty function shifting method in constrained
static optimization and its convergence properties'", Archiwum

Automatyki i Telemechaniki 16, 1971, 395-416.

W. I. Zangwill: "Nonlinear programming via penalty functions",

Management Science, 13, 1967, 344-358.

UNIVERSITY OF WISCONSIN - MADISON




