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ABSTRACT

In order to study the problems of synchronization between con-
current processes, a distinction is made between the level of the
formal models, the level of programming tools, and the level of the
implementation practicalities. The model is seen as the semantics
of the programming tools, and the implementation as the realization
of the semantics at a lower level of abstraction.

Different classes of problems of synchronization are distinguished
(e.g. exclusions, cooperations) and formal rules are defined to
characterize them (the rules of dependence). The different classes
are defined upon a common root of basic concepts and hypotheses,
in order to be able to draw comparisons between them.

An important part of the work is dedicated to a formal treat-
ment of the deadlock problem for the class of problems of exclusions
between critical sections.

An attempt is made to give an answer to the question of under-
standing what characterizes a problem of synchronization, how it
is related to the choice of programming primitives, and what are

the effects of the implementation design.

This work was submitted in fulfillment of the requirements for the
degree of "Docteur en Sciences Appliquées" at the Université Catholique

de Louvain, Belgium.
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Finally, the moral of this set of morals is : If you want to live happily, learn the tricks
of the trade , put out plenty of sclid uncontroversial (if possible dull) stuff, and avoid

the qualms and pangs that accompany the search for depth - because this search is unending,
for physics is bottomless : its foundations are temporary.

Mario Bunge, Foundations of physics.
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1. PRELIMINARIES. :

1.1 Introduction.

There has been in the past ten years a considerable amount of research carried out on
the principles of synchronization: how they can be formalized, how synchronization problems
coul be programmed, and how they should be implemented. The present work goes in the lines
of these researches.

It is divided into four major parts. The first of them {2}" examines what are the basic
concepts involved in synchronization problems and investigates the possibilities of defining
a formal model of synchronization between parallel processes.

The second part {3} presents such a model for application to the class of problems of
"oxclusions" between accesses to critical sections, and to the problems of "cooperation"
between processes. Both terms, "exclusions” and "cooperation", refer to well known problems
described in the literature and they will be introduced in more details further in the text.

The third part {4,5,6} discusses the proper programming aspects of the problems of
synchronization. Definitions of primitives (i.e. basic programming tools) end their implementation
are given together with examples of their applications.

These developments are meant to explore the possibilities of integrating the three aspects
of a comprehensive view of any computing problem : the theoretical model, the set of
programming tools, and the implementation of these tools. Our aim is to use a coherent
theoretical framework to define with precision the programming tools and to ensure the
correctness of both their implementation and their utilization. As such , for the class
of problems investigated here, we give an answer to the question of understanding what
caracterizes a problem of synchronization, how it is related to the choice of primitives
in some programming lang age, and what are the effects of the implementation design.

The last part of our work deals with deadlock problems. The classical way of handling
desdlocks is to view them as resource allocation errors and therefore to study strategies of
allocation that prevent these errors (e.g. [10,17,23,27] ). The standpoint that we adopt
here is to consider deadlocks as intrinsic properties of synchronization effects : i.e. a
problem of synchronization will be deadlock-free, or not, because of its own characteristics
independently of any resources allocation strategy. There are obviously possible relations
between both approaches. This thesis brings a contribution to the second apnroach
in the form of & necessary and sufficient condition of deadlock for general critical
sections exclusions. This problem encompasses a wide class of synchronization problems
(although not as large as the class studied by Devillers[17] as allocation problems).{T}.

Finally, conclusions and proposals for future research are presented.

1.2. Related work.

Most of the work on synchronization and communication between parallel processes
can be divided into four categories

1. The study of mathematical representations (models) of parallel computations.
2. The research in programming tools and techniques.

3. Experiments with the implementation of Operating Systems.

4. Deadlock problems.

+Throughout this text, figures between braces refer to particular sections of the thesis, and
numbers between brackets refer to the bibliography.



1.2.1. Models of parallel computations.

Most of the work in this area is dedicated to investigations about the ocutput functionality
of parallel programs (i.e. how the final results of some parallel computation depends on the
initial conditions). This led to a variety of interpreted and uninterpreted (program schemata)
models.

These models are basically defined by a set of memory elements (having a value) and a set
of computing elements (transformations upon these values). In the interpreted models, a meaning
is assigned to the values and to the transformations (e.g. addition of integers). In the
uninterpreted models no such meaning is associated to these elements ; only an algebraic relation
is assumed to hold between them. Within such models, it is possible to focus the attention on
the parallel control structures and to derive properties which hold under any interpretation.
Properties of functionality, determinacy, and equivalence are examined under various constraints
(hypothesis) on the model. Examples of such studies can be found in [30,31,L2,47] .

The results achieved by these researches are not of direct application in this thesis,
however the study of such theoretical questions proved to be very useful to gain more insight
in the properties of parallel processes.

1.2.2. Programming Techniques.

The research in programming languages for parallel processes was founded several years ago
by the introduction of Dijkstre's semaphores primitives [18,19,20] . Such approaches are
motivated by a strict software engineering point of view : which tools does a programmer need
to indicate the sections of a program to be executed in parallel, and to describe, with
appropriate primitives, the needed synchronization among processes ¢

Basically, the questions that have been investigated are

1. A given problem being defined (most of them are unfortunatel  too simplistic), what are the
programming primitives needed to draw an elegant solution to this problem, and is there any
solution at all 7 [5,13,20,22,49,51]

2. Which are the programming tools that can enhance if not the correctness at least an
informal verification of parallel programs ? And particularly what kind of errors could be
hopefully detected ? [5,6,12,1,2,20,22,52]

Most of the problems considered in these papers were in the fiels of "communication" between
processes (e.g. the buffer problem) and of data shared ("shared data") by prdcesses (e.g. mutual
exclusions ,Readers-Writers).

Because we have taken these programming problems for application of some theoretical
principles ,these works are closely related to our purpose. However it would be erroneous to
think that we only want to propose "still another tool" emong the many existing ones. Our claim
is that answers to the practical questions stated hereabove can have several consequences that
g0 beyond the simple definition of a new primitive. Indeed the imperatives of both conciseness
and correctness verification can be better satisfied by the use of a new primitive rather than
by intricate manipulations of existing ones. For this reason an important part of our thesis
will be dedicated to these questions.

1.2.3. Operating Systems.

This third area of research is an example of practical applications of the implications of
parallel processes research,

The notion of process is now universally used as a tool in the implementation of operating
systems. Starting with Dijkstra's T.H.E. system, every modern operating system is presented
as an hierarchical organization of parallel processes sharing resources and/or competing for
them concurrently. Synchronization and communication problems are innumerable in the design
of operating systems. Furthermore their complexity requires a stepwise approach to their
understanding and to their (hopefully correct) design. This led to the development of the concept
of level of sabstraction and of hierarchical structures (cf. e.g.{37]).
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Unfortunately, the many details of implementation proper to a particular system obscure
the abstract properties of processes. It is therefore difficult to derive general principles
from & close examination of Operating Systems. However two notable attempts to keep the
design of a system to its essentials without being sunk into implementation details are due
to Parnas and Price [34,35,36,40],and to Brinch Hansen [3,4].

Parnas's method is to use a system of definition for software modules. The specifications
of the modules are done by means of the functions they realize and are independent of any
implementation. Criteria to divide the system into modules are based on overall design decisions.
Modules can be parametrized in order to fit a variety of computers and a variety of abstract
properties (hence the name of "family" of operating systems).

Brinch Hansen's method is to design a programming language providing for the needed

features for system design : concurrent processes, monitors, classes ,synchronization tools.

A systematic effort is done in order to facilitate complle-time checking of the communication
between processes and to enhance a hierarchical structure ’

"j hierarchical operating system written in concurrent Pascal will be tested component by
component, bottom up (but could, of course, have been conceived top down or by iteration).
When an incomplete operating system has been shown to work correctly (by proof or testing), a
compiler can ensure that this part of the system will continue to work correctly when new
untested program components are added on top of it. In a hierarchical operating system
consisting of monitors and processes, programming errors within new components cannot cause
0ld components to fail because old components do not call new components, and new components
only call old components through well-defined procedures that have already been tested." [4].

i.2.4. Deadlocks.

The discussion of previous works on this matter is reported in section 7.

1.2.5.

The present work is related to these four areas of research although it never attempts
to solve a decisive question of any of them. Its originality resides in an investigation
of the relations between the four domains rather than of the properties valid within one of
these domains.

It is an integrated approach wherein the theoretical principles are put in relation with
practically relevant concepts and where the proposed programming features have a straightforwvard
interpretation in the theoretical model. The ambition of such a large project is obviously limited
by the scope of a thesis work, and also by our choice to study only the problems of synchronization.
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2. PROCESSES AND EVENTS.

2.1. An example.

To jptroduce OUr purpose, we choose in the literature a typical example of what was at a time
& basic issue of concurrent programming : to find solutions to problems stated in an informal
manner ( by "solutions'" we mean *he usual acceptation in the programming jargon : the solution
of a problem consists of the description of this problem by means of some given programming tools.

In the present case the statement is taken from [13]

"The processes of the first class, named writers, must have exclusive access as in the original
problem [the one defined by Dijkstra], but the processes of ithe second class, the readers, may share
the resource with an unlimited number of other readers.”

"je demand of our solution that no reader be kept waiting unless a writer has already obtained
permission to use the resource ; i.e.no reader should wait simply because a writer is waiting for
other readers to finish."

The solution should use the primitives introduced by Dijkstra, whose definitions are taken from [18]:

"Definition. The P-operation is an operation with one argument, which must be the identification

of a semaphore. (If "S1" and "S2" denote semaphores we can write "P(S1)" and "P(82)".) Its function
is to decrease the value of its azrgument by 1 as soon as the resulting value would be non-negative.
The completion of the P-operation - i.e. the decision that this is the appropriate moment to
effectuate the decrease and the subsequent decrease itself - is to be regarded as an indivisible
operation.”

"Definition. The V-operation is an operation with one argument, which must be the identification
of a semaphore. (If "S1" and "S2" denote semavhores we can write "V(51)" and "V(82)".) Its function

is to increase its value by 1 ; this increase is to be regarded as an indivisible operation.”

(Dijkstra himself has given a different definition of the P-V-operation [19] but it
does not matter which definition is used in this example.)

The solution given in [13] is
integer readcount ; (initial value = 0)

semaphore mutex, w ; (initial value for both = 1)

READER WRITER

P{mutex) ;

readcount := readcount + 1 ;

if readcount = 1 then P(w) ;

V(mutex) ; P(w) 3

reading is performed writing is performed
P(mutex) ; vi{w) 3

readcount := readcount - 1 ;

if readcount = 0 then V(w) ;

V{mutex) ;

This solution has its own merit as it was found at a time (1970) when it was believed that no
solutions in terms of P and V was possible for this problem. :

It is however clear that it presents several drawbacks
1. Its complexity is disproportionate to the problem statement.
2, For this reason its understandability is limited and its correctness 1s far from obvious.
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Why do so simple problems draw so complex solutions ? When a P-operation appears at the head
of a critical section in a class A of processes, it prevents all classes of processes from
entering the sections at the head of which the same P on the same semaphore occurs, including
class A itself. Actually, one encounters these troubles every time that the synchronizing effect
( i.i. closing the door) should be separated from the conditional waiting effect (i.e. passing the
door ).

To avoid such inconveniences, when using the P-V prinitives, one needs to program intricate
manipulations of variebles of synchronization within mutually exclusive criticel sections(the sections
between P(mutex) and V(mutex) in this case). Considering the processes as belonging to some level
of abstraction, the manipulation of the variables of synchronization belongs to a lower level of
abstraction and therefore, should not appear explicitly in this program level.

This led us to start from a more elementary level, independently from the primitive operations,
and to define the concepts of events and of relations of dependences between events. Then we propose
new synchronization primitives that describe the needed - and only the needed - effect of some event
upon some others. (Some of these results were published in [1,2] ).

The basic questions studied in this thesis are related to the previous discussion. They are
1. How to devise a theoretical framework within which relations between the problem statement
and the solution can be established ?
2. Is it possible to classify the different problems of synchronization ?

3. What are the other primitives than P and V that one can consider and how to implement them ?

To give a flavour of what will follows this introductory example, we can introduce a very simple
"formal" model of the preceding example.

Let a, (ask to write), a, (perform the writing), and a, (terminate the writing) be three actions
performed il sequence by the writers. Let bl’ b2, and b3 be the corresponding actions for the readers.

Let n(&i,t) be the number of processes having performed the action &y prior to time L .

It is easy to define the three synchronizing rules(that we shall in the future call dependence rules),
that are underlying the informal statement given hereabove

n(al,t) - n(aB,t) > 0 -+ a; and by cannot be executed;
n(bl,t) - n(b3,t) > 0 -+ a; cannot be executed.
The three-‘rules are of the same type :

If some processes are executing one section (called critical section) of the program
then no processes can start to execute another given critical section.

Such a "standard" rule will be called an exclusion and can be represented on a graph. For the three
above exclusions this gives (see section {3} for more details)

Writing :; W ILA 4‘_“;IE§> Reading

Now if we define some primitives to represent an arbitrary exclusion, it will be possible to
program any problem of this type in a straightforward manner. (ef. {4} ana {5} .).

The advantages of the method is essentially that the statement of the problem is given by the
graph of exclusions, which is very simple (comparable to the simplicity of the problem) and then an
expression in terms of some primitives is devised. The latter step can be almost automatic and,
as a matter of fact, the kind of primitives used is not really important anymore provided that
such correspondances between the primitives and the statement of the problem can be given.
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2.2. Processes and events.

2.2.1. Motivation.

To proceed in our work, we need some basic formal definitions of the notions of process and
of event. The aim of this ssction is to provide a Justification of the way we have neglected parts of
these widely used notions in order to focus our attention on the essential elements of these concepts
that will be needed for the rest of this thesis.

It is important to notice that the model defined here is not intended either to give a perfect
or complete image of the concretr problems of parallel process structures, or to give a large
theoretical context within which decisive properties can be proven.

The ideas governing our choice are

1. If one considers the concepts of process and of process structure (organization) currently in
usage, what are the components one needs to retain into a model intended to represent only the
synchronization among processes without oversimplifying the general concepts.

2. Which are the mathematical structures one should adopt to deal with problems of synchronization
and how are these structures related to other mathematical models ?

2.2.2. Static and dynamic coordination of events.

A system of parallel processes will usually be defined as a partial ordering on a set of actions.
Each individual process can be designated by a lahelling (naming) of parts of the partial oreering

structure
e S
lProcess #1 - ,//1Process #%]

Tt has been conjectured by Patil [39] (and illustrated on a particular example)  that a partial
ordering among actions cannot model all synchronizations (coordinations in his terms)' among
processes. This conjecture is presented as the principal reason to use Coordination Nets (e.g.

Petri Nets [26,39]). In these models actions are seen as events that can occur following certain
rules (see {2.h.3_} ). The conjecture is based on the idea that a partial ordering can only represent
static (i.e. the rule does not depend on cccurremces, although it specifies occurrences )

coordinations among events. In some problems however, the coordination rule can change with the
occurrences of particular events and therefore other structures than partial orderings are needed.

Continuing with conjectures, it seems reasonable to state that the Coordination Nets cannot
models all types of synchronization. More evidence in favour of this statement will be given further.
The model that we propose in this work is not a Coordinatuon Net model ; it is based on more general
assumptions about the dynamic relations among events. For our present purpose, we will limit
ourselves to a particular case of the general formulation ; the Petri Nets are an example of another
perticular case. Tt is dubious that one case can be reduced to the other({2.4.}).

It is evident that in practice the partial ordering among actions and events constitutes a
primary notion of the static process organization (it corresponds to the "one instruction after the
other" notion). For this reamson, it appears explicitly in our model. An argument in favour of this
decision is that Coordination Nets (that do not have an explicit partisl ordering) are most suitgble
to represent hardware parallelism (in what is called asynchronous networks) but they are rather
cumbersome for the representation of software parallelism (parallel processes and programs ).

The fact of keeping the static coordination as an explicit partial ordering diminishes the importance
of this difficulty.

+ In the rest of thsi thesis, coordination and synchronization will be used with the same meaning.
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2.2.3. Processes and Programs.

The models of parallel processes are meant to represent computing activities as they occur
dynamically. However, the programmer's view of the system is somewhat restricted to the program text
itself and the comprehension of the system must be induced from the examination of the programs.

A program is a mere description of what the processes and the coordinations among processes will be.

Moreover, from a theoretical point of view, it is of interest to be able to deduce properties
of the system from the structures of the programs. These properties should be valid for any
execution and therefore could be verified once forever. This is particularly interesting if several
processes (possibly e large number) are executing the same piece of code. It is easier to prove
some properites (e.g. the absence of deadlocks )by examining the structure of the program rather
than by writing a model of each process executing the program.

The relation between & process and a program describing it is well understood and was outlined
for the first time in a paper by Dennis and Van Horn [16]

"A process is a locus of control within an instruction sequence. That is a process is that abstract
entity which moves through the instructions of a procedure as the procedure is executed by a
processor.”

The standpoint adopted here is that programs should describe explicitly and in a simple way
the coordination (synchronization) as represented in the theoretical model. At this condition only
an easy comprehension of the problem can arise from a mere lecture of the program, and a straightforward
relation can be established between programs and processes models. In our model, the partial ordering
between actions is in a one-to-one correspondance with the sequence of instructions of a program, and
to each synchronization - coordination action corresponds a primitive of the programming language.

2.2.h.Processes and Data Structures.

To obbain a complete representation of the process structures, one should make a distinction
between the active part of a process (the operations seen as effectively performed) and the passive
part of the same process (the memory elements whose values are transformed by this process ).

In practice, the distinction appears already in the classical parameters passing for the call
of a procedure in an algorithmic programming language ; the parameters being the passive elements
and the procedural body being the active element. This mechanism can be extended to define dynamic
binding of processes with data structures by means of "extended calling mechanisms" within operating
systems ( [bo,b5]).

The theoretical aspects of such problems have been very little investigated, although almost
every model of parallel processes includes a representation for the active part (sometimes called
the control network or structure) and a representation for data organization (data flow network).
The reason why these attempts have been very little productive is that only a poor model of data
structures is usually proposed {most of the time a heap of memory cells), and moreover, the
problem of binding and calling mechanism is ignored.

If one examines this problem in the perspective of synchronization, one could assume a priori
that the synchronization effect can be altogether dependent on the occurrences of the actions and
on the resulting values of the performed operations. (In the same way as the execution of an
if-then-else statement depends on the tested condition.).

There are example of process synchronization where such an interaction can occur : the decision
to perform again the reading of some values when a parity error occurs.

A general model should therefore include the representation of such mechanisms. It will imply
the formal detinition of data structures and of the operations that a process can pertorm upon them,
i.e, the model would have to be interpreted (e.y. by defining arithmetic operations, assignations, types ).
This is a problem whose solution is not known even for the pure sequential processes. Ultimately, the
task must be done if one wants to provide an accurate model. It however falls beyond the possibilities
of this thesis.
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2.2.5. Summary.
It is now appropriate to summarize the discussion of this section.
A model of processes, in order to be complete, should consist of ;

1. A static structure of the actions of the processes, that will specify sequencing relations
among the actions (e.g. a partial ordering).

2. A dynamic structure of coordination between the actions (e.g. a Petri Net).

3. For each process an active part (the control structure) and a passive part (the data
structure).

k., In general the sequencing structure and the coordination structure can depend on the values
of the data structure.

5. A model of relation between the processes and the programs that describe the structure of the
processes.

Our model will involve only the items #1, #2, and #5 of this summery.

2.3. Basic definitions.

2.3.1. Programs.

The only thing that -~hould be present in the model is the sequential control of the program.
We are not interested, for the reason explained earlier, in giving a wmodel which takes into
account all the particularities of a program (if statement, loops, recursion...). The assumption is
that & program can always be represented at first approximation as the description of some
operations to be performed in a sequential order. The model can be refined if needed, and there
is no contradiction between this formulation and other theoretical models. Moreover the operations
of the programs are uninterpreted and they do not refer to explicit variables or values.

Since we consider only sequential programs, from now on the term "program" will be used for
"sequential program". A program is defined by a sequence of instances of some operations

S : the set of operations.
n € S* : a program. S* is the free monoid defined on 8.
2.3.2. Processes.
We consider sequential processes only, and we call them processes. They are seen as executions

of programs (one execution of a program is one process). They are defined as sequences of instances
of actions

A : a set of actions.
p € A* : a process.

A program describes a process and each operation describes a corresponding action. Ve therefore assume a
one-to-one mapping between S and A.

A + S ¢ 1s the relation of execution.

It is frequent that several processes execute the same progranm (in this case they form a class of
processes). The representation given here does not allow for a distinction between them. The
only way to distinguish processes within a class of processes is to name them differently.

{This corresponds to some practical reality although a more sophisticated model, including data
structures,could solve this problem.).
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2.3.3. Events.
It is clear that a representation of the evolution in time of the processes is needed.

To introduce it we define two sets :
T : a set whose elements are called instants (T is the time).

T is a totally ordered set 1.e. for any two instants ty, t, either ty < t, or ty 2ty .
E : a set whose elements are called events.

An event can occur at some inmstant of time. We represent the occurrence of an event by a couple :
(e, t)€ EXT

Note that in this formalism an event can have several occurrences.

It is possible at the price of some additional complexity to define events as occurring during
a certain lapse of time. Then an occurrence will be a couple :

(e, ) where 1 is an interval of T.

This will not be needed in this thesis.

The beginning and the end of an action in a process could be defined as events. However

this would introduce some internal structure for the actions, since, if we consider a beginning and
an end, there must be something in the middle. This level of detail is not needed for our purpose
and we define the actions themcelves to be events

All instances of actions in & process are events (elements of E)

ILet us now consider a process ¢
* =
p € A%, p ay a, ag... a,
An evolution in time of p is a sequence of occurrences of actions (actions are events) :

(al’ tl) (32, tZ) aee (3n’ tn)

Two clauses are assumed to hold for any evolution in time of a process and for any set of evolutions
of processes :

Clause of sequentiality. , If p is a process and P an evolution in time of this process :

P=a ...a, P, = (ays tl) ce (an,tn)

then we have : £y <ty Seaaes S, %

Clause of non simultaneity. =« Let 1 be a set of processes and Ty the set of evolutions in

time of these processes. For any two occurrences (a, t) and (a', t') of T we have : t #t' %

It is not necessary to have a clause of non simultaneity for any pair of events. It is
1ntrpduced here for the sake of simplicity, and, anyway, it does not influence the validity of the
results that we obtain. (about this, see the problem of indivisibility in section 4.2.3.).

2.3.4. Example.
Let py, Py Py be three processes defined on A =(al, 8y, 34, a,s a5}

Py =2 8 333 P2 = 85 8, a3 ) P3 = a3 83 a3 ag



An admissible evolution of these processes on the time T = N (the positive integers) is :
(aj, y) (al, 5) (ap, 6) (a3, 10)
(as, 0) (a,, 2) (a3, 7) (ap, 20)
(a3, 3) (az, 40) (a3, 41) (ag, 50)

2.4. Possibility and dependence.

2.4.1. The event possibility.
Let Et be the set of occurrences of events prior to time ¢t :
(e, t"Y€ E, 1f t' <t
To any event e of E we attach a magnitude called the possibility of this event. This magnitude
varies in time and the possibility of an event e at time t can be either possibleor not~possible.

Because the possibility is a two-valued magnitude, we can represent it as a predicate Pe(t) whose
truth value determines whether an event is possible or not at time t

(the possibility of the event e is possible at time t ) <+ Pe(t)
We say that the possibility of an event becomes possible at time t if :
NPe(t“) and Pe(t) , where t~ is the instant immediately preceding t (or the limit of such
instants).
Furthermore, the following rule applies to the possibilities of events :
If (e, t") € E then Pe(t') (i.e. an event can occur only if its possibility is possible).
Thus an event can occur v1ly if it is possible, but it does not have to occur. This corresponds
to the usual sentence that says that, whenever an event becomes possiple, it occurs within a finite
time. An example of this can be found in the fact that when a semaphore passes from the closed
state to the open state (e.g. its value goes from O to 1 in a P(s) operation), then the processes
waiting in front of the semaphore can execute the operation within a finite time.
An example of application of the concept of possibility :
Let p be a process and pt its evolution in time :
P =23 8 a3 ...a P = (al, tl) (az, t2) e (an, tn)
We know that the clause of sequentiality requires that :
for every i between 1 and (n-1), by < tygg

This rule, which does not use the concept of possibility, can be given an equivalent formulation
in terms of possibility :

Let Pi(t) be the possibility of a; at time ¢t :
Py(t) o ( (g, t; DEE, A (a, t)d E )

i.e. a, can occur only if 1. it has not yet occurred, and 2. ai 1 has occurred.
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2.4.2. Rules of dependences.

In principles, the predicate P (t) can depend on arbitrary values or variables (e.g. a
random variable). Because we decided ( for the reasons explained earlier {2.2.4.} ) that the
coordination among events must depend only on occurrences of events ( not on the results of operations
performed when the events occur), it is natural to define Pe(t) as a predicate on the set Et
of occurrences of events :

Pe(t) : B, » {true, false}

Within the possibility of an event, we want to precisely distinguish the part that only specifies
the sequencing rule (which is of no interest since it is merely another expression of the sequential
structure of the processes) and the part that will specify the coordination among the events.

Let Xe(t) be the sequencing rule and Ae(t) a predicate such that :

Po(t) = Lo(t) A Bg(t)

Ae(t) will represent the coordination. It is called the rule of dependence.

If we consider a set of processes, it is possible to define the rules of dependence among the
actions of the processes. (Actions are defined to be events).

Let @I be a set of processes :

- ol 1
Py = &8 & ... any

- 2 2 2
Pp = a7 a2 e an2

= G .M m
pm &1 a2 cees anm

and let Ht be the evolution in time of this set of processes

= (1 41 1 .1
p1(t) (al> £7) «vene (anl, tnl)

- m 4+ m m
Py (t) (al, t7) ... (anm, tnm)

The possibility of an action a? at time t is defined to be :

i i i
P}(t) ZJ(t) A Aj(t)

where :

i}

Iy(t) ((ad ), thpem ) n (Gaded) £ B

i . c as i
Zd(t) is the clause of sequentiality. A;(t) is called the rule of dependence (or dependence rule)

of the action a§ upon the other actions of this set of processes. It is an arbitrary predicate on Et .

The rules of dependence are taken as the formal definition of the coordination ( or synchronization)
among actions of processes. From a theoretical point of view there is no reason to meke a distinction
between i and Al . This is justified only by practical considerations. We want to be able to
represent Jin a comprehensive way the synchronization problems and to separate them from the pure
sequential structure of the processes.

2.4.3. The Petri Nets as particular rules of dependence.

Petri Nets are defined in [26]and [39]. To show how they are only & particular case of rule
of dependence we give briefly the definitions hereafter,
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A Petri Net is a graph G with two kinds of nodes
C ' the set of conditions A the set of events
AC a set of edges going from events to conditions
CA a set of edges going from conditions to events

A state of the net is represented by a number of markers placed in some conditions. We therefore
define a condition to be an integer :

c, 20 c, €C
1 1

Transitions from one state to ancther are called firing of events. Let a; be an event and

Cil, Cie, e g cin and dil, die, cense s dim
the conditions such that (cik’ ai) € cA  and (g, dik) € AC .
The event a; can be fired if for every k, 1 < k < n, Cik > 0 . When the firing occurs, each

Ciy is decreased by one and each dik is increased by one. Only one event can occur at a time.

A trivial Petri Net is : O—+—O——A—O——0O

S T R 8 3 a3 Y

It represents the sequencing rule of the actions of a process.
In the general case, the possibility of an event in a Petri Net is defined by :

Pi\t) = (for every k, cik(t) >0 ) cik(t) is the velue of c;, at time t.
This is not an acceptable dependence rule since it does not relate the possibility to occurrences of

other events. We can do so in the following way. An event a; is said to have a negative effect on
s condition ¢, if (e,, a;) is an edge of the net. It is Said to have & positive effect if

(ai, CJ) is andedge. e conditions
cil, e ,cin and dil’ e ’dim
defined earlier are the conditions upon which a; has 2 negative and (resp.) positive effect.

We certainly have, if cu(t) is the value of some condition at time t

0
u

e, (t) = ] (ot (ayse,) = o (a ,0,)) ny(6) + ¢

v
n,(t) is the number of occurrences of &, prior to time t (This is defined on E.).

a+(av,cu) = 1 if au has a positive effect on ¢ it is zero otherwise.

ui

u—(av,cu) =1 if 8y has a negative effect on ey it is zero otherwise.
cﬁ is a constant giving the initial value of cu .

If we put this last relation in the expression of the possibility, we obtain a relation between
the possibility and the number of past occurrences of some events. This is clearly a rule of
dependence. It is actually & particular case of the general rules of dependence (more exactly
a class of particular cases). The Petri Nets are a simple notation to revresent problems of
this eclass.
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It is easy to prove that for any condition at any time we have e, (t) >0 . Indeed, to become
negative a condition must first vanish in some state, and second, in that state an event having

a negative effect on the condition must be fired. But this 1s a contradiction because, if a condition
vanishes, no event having a negative effect upon it is possible.

Said otherwise, ‘f a condition cik determines the possibility of an event a; then necessarily
a‘(ai, Cik) = 1.

Another particularity of Petri Nets is that the sequencing rule is not separated from the
dependence rule. If one wants to decompose a Petri Net in several sequential processes, one has
to make a choice between several possibilities(there is always one (trivial) decomposition where
each event is a one-event process).

2.4.4. The conjunction law.

We define now another example of dependence rule that will be used in section 3. The conjunction
law is easily defined in the following terms

Let A be a set of events 815 Bgs veve a8y

For each pair a,, a, of events, ve define a integer valued condition Ci1(t)

J
: = + - n7. + n..
cij(t) nij(t) niJ(t) gy
n;j(t) = “Ij ny (t) is the number of positive effects of a; on ay
a;i =1 if a; has positive effects on aj ; n;(t) 1is the number of occurrences of a; before t.
nz:(t) = “Ii n; (t) is defined in the samn way but for negative effects.
2 ] i

ny 4 is a constant.
The possibility of aJ is defined :

Pj(t) = Zj(t) A (for each i, 1 <1 g m, cij(t) >0 )

One can verify that there is no Petri Net that can be equivalent to a general case of conjunction
law. Indeed we do not have here a restriction on the events that can have negative effects on the
conditions, and in particular, it is possible, for some conditions at some time t, that

cij(t) <0

2.4.5. The majority law.

The majority law is the most important rule of dependence defined in this work. It will be used
thoroughly for the definition of the d-operation ({ 4 }) and for their implementation.

Using the notations of the preceding section ({2.4.L.}) we cen write the possibility of an event
8y :
= + - -
P, (t) o) A Enij(t) § nj(0) + nyp 2 0)

ny is & constant proper to ay -

The general Petri Nets coordination is a combination of both the conjunction and the majority
laws ,with some restrictions on the terms of the summation.

The cholce to use either one or the other law in practical problems cannot be made in an
absolute theoretical manner. It will depends on practical considerations on the programming tools
and on their implementation. ’
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2.4.6. Possibility and necessity.

The possibility. Pe(t) of an event e at time t is used in'a statement of the form :
"1f Pe(t) is possible then the event e can occur at time t
or within a finite time after t."
This statement involves a logical modality bearing on the occurrence of e. 1In the present case

this modality is the possibility. It is conceivable however to define other modalities, in
particular the necessity :

"re Pe(t) beccmes necessary at time t then the event e must
occur at the instant t* (the instant following t)."

In this case Pe(t) is the necessity and it can have the value necessary or not-necessary.

The latter modality involves completely different synchronization problems than the ones
studied in this thesis. As a remark, we can say that synchronizing tools such as interrupts
involve the modality of necessity. This is why usual synchronizing primitives are not suitable
to program real-time systems where responses to some occurrences of events must be necessary
and not simply possible.

It is important to note that the necessity for an event to occur does not override the
clause of non-simultaneity. In any case two events cannot occur at the same time. I1f one event
must oceur, its occurrence will be delayed if needed till a "free' instant is available for its
oceurrence. This situation arises in practice whenever several interrupts occur at the same
time but only one of them is granted.
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3. EXCLUSIONS AND COOPERATIONS.

3.1. Exclusions.
3.1.1. Critical sections.

In the literature critical sections are perts of programs, that are subject to some kind of
special rules of execution. In our formalism, we can give the following definition of critical
sections.

Let us consider a program on a set of operations S :

#®
T€ S T = by b2 . bn the by are instances of overations of S

If several processes are executing the program n the number of times that any particular instance
of an operation would have been executed prior to an instant t is given by the number of occurrences
of the action corresponding to that particular instance prior to time t . If we call a; = (bi)
the action corresponding to by , the number of executions of bi prior to time t will be

ni(t) as defined in section 2.4.3.. T

We define now [ai]t as the nuwber of processes having executed by but not yet byy; &t
time t :
[ai]t = n;(t) - niw"l(t)

We define now an interval of the program 1 (or of the processes executing ™ ) as

[ail, ai2] = ail &il+l vee aie with 51 i,
The population of an interval is
iz
[ail’ aizjt = Zil CaE 2410 2] = [ath

A eritical section of a program is an interval of that program.

3.1.2. Relations of exclusions.

We consider now a set of programs

= = gl g1 i
it {"l’ Tps evn s nn} LN 8] 85 ---- ani
and & set of critical sections of this programs
= . orik ik - ik
I = (I3, I, vee 5 Ip} I, = [ajk, aﬂ'k] IJkLk

a}t is the initiation of the critical section Iy, i.e. upon execution of the operation, a process

will be "in" the critical section.
A relation of exclusions on I is a binary relation :

We will use a graph notation to represent the relations of exclusions.

In the rest of this work, actions will be the only events that we consider. We therefore use without
confusion the expression "possibility of actions” and "occurrences of actions'". Furthermore the actions
are in one to one correspondance with the operations and we use the same notation for both actions
and operations.
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Intuitively, an exclusion (i.e. an element of the relation of exclusions R,, = (Iu, Iv) ) means that
no process is allowed to enter the critical section 1I,, whenever there are some processes in the
section I, . Teo define this rule formally we assoclate to each exclusion a rule of dependence :

. i = i i
{Iu]t >0 <> (the initiation of I, is excluded at time t ) <= NAjX(t) , if I, = {?jz’ anz]

This is an equivalenc~ between three predicates. The second one is an informal sentence that we use
to designate the formal rule. The first and the third ones can be written :

i .
" Ajz(t) = [:1u]t >0
A%V(t) is the rule of dependence determining the possibility of alv | Said otherwise, this rule

V ( and therefore the exclusion Ruv) states that the possibility V oof a%g is not-possible when
the population of Iu is positive.

This rule of dependence is defined on the set E_ of the occurrences of past events because the population

t

of any interval is defined on the set E,

3.1.3. Exclusions and the majority law.

It is easy to show that the rule of dependence defining the exclusions is a particular case of
the majority law.
w’ IV) & R . As done in section 2.4., we can assign to the action a%ﬂ a negative effect
iy

on the possibility of aj
v

Let (I

, and to a%“+1 a positive effect on the same possibility. Then :
u

" &= - -3 - - +

[I‘u—]t = nu(t) n\,(t) nup(t) n\)p(t)

if we define yu = (%3) s v = (%3+1) 5 p = (}X) to simplify the notations.

Since the exclusion on Iv is determined by all Iu such that R,y€ R, we have
(there si a u, [I]. >0) + maév(t)
? uit Iv

or equivalently, because [Iy]y 2 0 for all u and t :

Z {Iu]t >0 mA%X(t) , the sum 1is made on all u such that R,€R
a ;

From this and from the above relations we obtain easily :

P [tde < 0 « ] uf,(©) = I np(0) 20
u u u

This 1s a majority law on the possibility of a%v . Because the population of an interval is always

greater or equal to zero, it is possible to defitle the exclusions in terms of the conjunction law.
The interest of defining them by a majority law is that there is an efficient implementation for the
operations that will be used to program the majority law. This is an example where practical
considerations determine the choice between two equivalent theoretical representations.
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3.1.4. Example.

_ 1.1 .1 _ 2 2 2
'ﬂl' = 8.1 a2 5.3 1T2 = 8.1 a2 8.3
= 711 _ .2
Il = 112 12 = 112

The relation of exclusions is

Gommoy

This a formal expression of the mutual exclusion betwwen Il and 12 . Indeed it is easy to prove

that only one process can be executing I1 or 12 at eny time. If [Il] > 0 then no process can

enter I2 i.e. [Ié] cannot increase. The same is true for [Il]' Initially, [Il] = [12] =0 .

As soon as one population , say [11]’ becomes equal to one, neither [Ilj nor [12] can increase. Thus

[12] stays equal to zero and [11] cannot become equal to two.

3.2. Cooperations.

3.2.1. Relations of cooperations.

Another practical example of special rule of execution between critical sections is the relation
of cooperations. It is used in practice to solve problems where processes are producing and consuming
(consumable) resources. A classical example is the finite buffer problem ({5.6.}). In this class of
problems, the coordination does not depend on the number of current executions of some critical
sections, but on the total number of past and present executions of the critical sections. It is
therefore conceptually different from the exclusions. Formally we have :

Let I I, be two critical sections. We know that :

i
Llu]t = n(t) - n(v), if I, = Iiﬁlu’ u o= (%g) , and v = (%3+1)

u?

and a similar relation holds for I,.
A cooperation of I, with I, is a condition on the number of past executions of a%z (the initiation of Iv),

and of a%3+1 (the termination of Iu), This condition must hold at all time :
for all £, ny(t) < n,(t) +ny, , wherep = dn (321-1)
n,, is an integer comstant. Intuitively, this relation can be interpreted as :

The number of terminations (completed executions) of I, cannot exceed the number of
initiations (current or completed executions) of Iu augmented by a constant.

Such cooperations can be defined on a set of critical sections. We obtain a relation of cooperations,
It can also be represented on a graph (cf. {5.6.}).

3,2.2. Cooperations and the conjunction law,
The relation (321-1) defines a limit on the number of executions of aiz . This can be

expressed by a rule of dependence on the possibility of a§§. If we assign to a%“+1 a positive
- u

effect on the possibility of aiz , and to a;z a negative effect on its own possibility, the relation

(321-1) 1is written :



—
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+ —
for all t , nvp(t) - npp(t) + n, 2 0
+ - Iv
: = = . f . £ H
because ny, (t) nv(t) and npp(t) np(t) The possibility o aJv is now defined
- = (v
Pp(t) Xp(t) A By (t) since »p (jv)
Bp(®) - (nb (8) - 0 (©) + > 0)
uv “up Pop Tay 2
If a relation of cooperations R is defined on a set of critical sections, the possibility of agz

is defined :
pp(t) = Zp(t) A (for all u such that R, € R, Auv(t) )

This is a particular case of conjunction law. The relation of cooperations can therefore be expressed
as a conjunction law on the possibility of the initiations of the critical sections.

3.2.3. Interpretation of the cooperatiou.

1f we replace "completed executions of I " by '"portioms consumed by process p," and
"eurrent or completed executions of I ' by 'portions being currently produced or already produced

by process pu", we have a new statement of the copperation :

The number of portions consumed by p, cannot exceed the number of portions being currently
produced or already produced by process P, augmented by a constant.

This is a statement of the cooperation through an infinite buffer [18]. The constant is the number
of initially available portions. Note that the statement allows process p to consume a portion
not yet completely produced. This suggests that the relation of cooperation is not sufficient to
guarantee a proper coordination between p, and P,- Indeed, in practice, the access to the

buffer will be made mutually exclusive by some relation of exclusions between I, and I

This example shows how the formalism can reveal details that are intuitively left implicit.
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4., THE D-OPERATIONS.

4.1, Motivation.

4.1.1. Models vs. Programming Languages.

An abstract model of synchronization, even if it is not used as a deductive system, can be
useful both as a definitional tool and as an abstract semantic interpretation. As a definitjional
tool it has the advantages of conciseness and of formal character ; as a semantic interpretation, it
is a clearly delimited subset of the natural language in which our comprehension of the problem is
defined. A model of some phenomenon can be seen as a language in which the semantics of the
considered phenomenon is expressed.

Usually a model cannot be used as a programming language. Not only due to technological reasons
(e.g. no compiler is available) but also due to more fundamental reasons. A programming language is
used to build descriptions of what processes are to execute while the model is usually a representation
of the execution itself. There are concepts represented in the model which are not present in the

programming language e.g. states, transitions, events, occurrences... Moreover a programming
language usually requires features that facilitate the task of the programmers and match some
operational objectives : implementation, error detection... These features are absent of the model.

In the area of synchronization, a typical "model" without programming counterpart is the
Petri-nets formalism[26,39]. And a programming language without corresponding "model" comsists of
the critical regions and monitors of Brinch Hansen and Hoare[},S,Zj]. An effort to present both
aspects comprehensively can be found in [43].

4.1.2. Defining primitives.

The theoretical model developed hereabove {2.3} can be considered as a model in which problem
of synchronization can be defined and understood. It is however very impractical as a programming
language and we need to define programming tools that will verify the characteristics of a programming
language. This procedure is not unlike the problem of defining ALGOL 60 assuming that it must be
suitable for numerical computations.

Usually, in the literature, synchronizing primitives are defined as some manipulations of
variables (i.e. a pure operational definition, and sometimes only an implementation). Their semantics
is only suggested by an example. The d-operations are defined syntactically ( as a structured
notation) and semantically (as corresponding to some rule of dependence) .

A simple problem must have a simple representation in terms of the rules of dependences (otherwise
the model would be inadequate) and, if the rules of dependences have a simple programming counterpart,
the program corresponding to a simple problem should be simple as well. We will see in section 5.
that this is indeed the case. Sometimes in the literature simple problems were giving birth to
intricate solutions. Therefore this result should not be underestimated.

4.1.3. Further requirements.

Only recently (cf. e.g. [5]), the problem of designing synchronizing primitives enhancing the
possibility of detecting programming errors was investigated seriously. This problems is analog
to the detection of programming errors at compile-time by introducing some redundancy in the language.
It is a well-known problem in "sequential" programming that has been little investigated in concurrent
programming. This work is not oriented toward these researches.
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L.2. Definitions.

4.2.1. Notations.
The operations that are defined here are extensions of the primitives defined by Dijkstra [18,19,20] .

They are meant to desecribe rules of dependence and for this reason we call them d-operations.
The general definition proceeds as follows

Let X sXgse e o¥y

be a vector x of n integer variables that we call semaphores.+
A d-operation is defined by :

1. A predicate p(x) on the variables Xj,...,X,

2. A function f(x) on the same variables. The domain of f is therefore Z" and its co-domain
is defined to be 20 as well. (% is the set of integers).
The notation for the operation is : tt

plx):x + £(x)

L.2.2. Execution of the operation.

The execution of the operation is an event and its possibility is defined by a sequencing rule
and a dependence rule

P(t) = {t) A A(t) with A(t) = { p(x) is true at time t )
Whenever the execution oc:urs, its effect is to compute f(ﬁ) and to assign the result to x
An example of a d~operation is the P(s) of Dijkstra (do not confuse with P(t), the possibility)
P(s) = (s> 0):(s « s=1)
Another (irrealistic) example might be
({xq+x, < x3+xh) A (x5 is odd)):((xl,xe,xB,xh,xs) « if x%q< x5 then (xs,xh,x3,x2,xl)
else (0,0,0,0,0) fi)
L.2.3. Indivisibility.
When executed an operation becomes an event whose occurrence is seen as instantaneous
and non-simultaneous with any other event {3} . This theoretical assumption is sufficient to
guarantee that no undefined behavior will arise from concurrent accesses to the variables x. In
practice however, this property must be verified by the implementation of the operation. This

requirement is called the indivisibility of the operation (inseparability in [50] ). Its operational
function is to prevent all interferences between accesses to te same variables by different processes,

at the level of the implementation.

t

The name "semaphore" was originally used to designate both the varisbles and the operations performed
upon them. We use it only for the variables.

The varisbles x have no meaning whatsoever in this definition. The predicate p(g) will express

the possibility of some event and therefore the variables x will be related to some varisbles

defined on the set of occurrences of events ( E, in our notation ). In simple cases they are actual
values of the number of past occurrences of somé events ("counters"). One may argue that they should
not appear if one wants to respect the principles of definitions {k.1.2.} . It is indeed possible to

do so in simple cases. The theoretical status of these so-called "econtrol varisbles" is guite intriguing
and they are a subject of interest for ameteurs of philosophical discussions.
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This notion of indivisibility was introduced for the definition of the P and V [lB]and it is
acknowledged to be sufficient for a correct implementation of the operations. It is not known
to which extent it is necessary (i.e. whether parts of the execution of the operation can be
interleaved or made truly concurrent). All the operations used in this work are assumed to be

. indivisible.

h.2.4, Particular d-operations.

The operations that are mostly used in this thesis, for which examples are given together with an
implementation and for which the theorems of deadlocks are proven, are particular cases of
d-operations, defined as follows

Their general form is

893857018 doWn ty,ee sty UD Vp,ee ey with n>0 ,m>0 ,k>0 (k2ok-1)
Some of the variables sl,..,sn,tl,..,tm,ul,..uk cen be identical.

This is a notation for the operation :
(Js; 20 )it « £-(1,0,.00,1) 3w« u+ (1,1,..1) ) T
i
This definition includes the three following elementary d-operations (introduced by Wodon [51]) :
s: the passage, down t the closing, up u the opening

The general operation {(L2k-1) can be formed by & rule of composition on the three elementary
operations. This rule is purely syntactical, exactly as the syntactic rule producing a program.

The semantic of the operation (42kh.1) is defined in our theoretical model by a majority law.
Let

81580504058y

be N actions to be coordinated by a majority law determining their possibilities.

If ag1 has a negative effect on the possibility of a; 5 ve define aj as a d-operation involving
ph

a semaphore Sji as closing operand :

down. sy (h2h-2)
end a; involves sji as a passage operand :

SJi:

In the same way, if 8 has a positive effect on a; the d-operation of & will involve an
opening operand

E Sy (h2k-3)
And a; a passage operand :
Bpqt

The operation corresponding to the action 8 will have the form :

skli:skei:skBi:...:skni:down vre UR eee

i

+Cases like (s,8) + (s+l, s+l) are defined to be equivalent to 8 + s+2 ,
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Its possibility is defined by :

85(t) = (Esk“i 2n; )

wvhere Skyi = n+(&i’aku’t) or Skui © n—(ai’aku’t)

it (42L-3) or (42Li-2) is applicable (resp.).

The constant n, is proper to each operation a; and determines the initial possibility.
These values are attributed to a sum of terms. To deduce from them the initial values of each
semaphore varisble we need to solve a system of linear equations on the integers. In the simple
cases, this system is trivial {5, Appendix}.

4.2.5. Adequacy and Relisbility.{k.1.2., 4.1.3.}.

Tt is importaent to notice that the elementary operations together with their law of composition
form a progremming language with its primitives and its syntax. The semanties of this language is
defined by an interpretstion in terms of dependence rules between the executions of the overations
(which sre events). This language is so far very elementary but the possibility of defining more
complex structures exists.(In particular meaningless or incorrect operations can be constructed. ).

This fact has several important consequences in regard to the programming of dependences between
parallel processes
1. The problem of the adequacy of the language must be studied. The choice of the primitives
{elementary operations), of the control structures (laws of composition), and of the data structures
(semaphores) can be discussed in regard to their ability to provide elegant solutions to programming
problems. This has been the subject of several proposals for new primitives { [1,5,49,52] ).
2. The problem of the definiticn of both its syntax and its semantics is relevant. This is the
object of this research (for other approaches, see e.g. [h3] ).
3., As said before, the problem of its reliability (errors detection) is debatable as well.
4, The synchronizing aspect of the language is separated from its algorithmic aspect. Both
aspects can be seen as sublanguages with different syntaxes and semantics, that are merged to form
a tool for programming parallel processes. This aspect of the problem appears very clearly in the
research on Concurrent Pascal {3} . .

4.2.6. Other operations.
As & consequence of the preceding discussion, it is possible to define an enormous variety
of synchronizing primitives. As an example, we suggest here another law of composition for the three

elementary operations defined hereabove. It is a representation for the conjunction law that will be
used later on an example of programming problem.

The notation is
51*32*"‘*Sn:§933-tl""’tm UP Ugse ..Uy
Some of the varisbles can be identical. This is a notation for the operation :
plg) : (£« t-(1,..,1) s u+ u+ (1,..,1) ) ¢
vhere :
p(z) = ((s20) a(s,2 0) A ... Afsg 2 0))

The semantics of the operation as interpreted in the model of dependences rules is & conjunction law.

+ Cases like (s, 8) <« (s+l, s+l) are defined to be equivalent to 8 + s+2
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h.2.7. P(s) and V(s).

Most of the operations defined in the literature are particular cases of the general form defined
here {4.2.1.} . For instance, we can define the P~V operations of Dijkstra ( [18,20] but not [29] ).

P(s) = (s > 0): (s « s-71)
vis; = (P) : (s « s + 1)

(T) is the tautology (always true predicate).

4.,2.8. P(n,s,) and V(n,s).
These operations are defined in [h9] :

P(n,s) (s 2 n):(s « s-n)

Ht

V(n,s)

H

(T) : (s « s + n)
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5. EXAMPLES.

5.1. The first problem of readers-writers [13} .

This problem was introduced earlier {2,3} . The definition proceeds as follows.
The exclusions are

1. If a reader is reading then no writer can begin to write.
2., If a writer is writing,then no reader can begin to read.
3. If a writer is writing then no other writer can begin to write.

The critical sections, the relation of exclusions, and the graph of exclusions are respectively

5= {Sr’sw} R = {RrW’RWr’wa} <:::)j:::::::jui:::::;z:::§i:::>

The program written with the d-operations is obtained by using a down on some semaphore to program a
negative effect on some possibility, and a up to program a positive effect. A detailed procedure is
given in [1]. It is a systematic application of the definitions given in sections 2.4.5., 3.1.3. and
4.2.4..

(readers) sy .:down s, 3 (writers) s, s, cdown Su..Syy
reading ; writing ;
Up Sy 3 Up SyrsSyw

Every semaphore is initialized to zero (because the possibility is initially possible).

This program can be simplified ; the semaphores s, end sy, are equivalent (in some sense
{Appendix} ). Indeed their values are always equal because
1. as opening and closing operand they always appear together ;
2. they are initialized to the same value.

The above program can thus be reduced to

sww:down'srw H sww:srw:dov_m.‘sww 5
reading ; writing ;
P Sry 2P Sy

5.2. The second problem of readers-writers [13].

This problem is the same as the first one except that the third exclusion is replaced by :
3', If a writer is asking to write then no reader can begin to read.

Thus we have a third critical section surrounding Sw and beginning with the write request.

S = {5,,54,5,} R = {Ryy R R )

The program is

(Readers) (writers)
g_..:down s H 8,,.,:8 -gg:g :ar ?
ar’ ’ WY IW ——— ’
resding ; . writingw;
up, 8, Up 8o 3

up Sgp
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At this stage, we can apply a reduction rule that is the dual of the one used for the first
problem { 5.1} .This rule is developed in the Appendix. Its application gives the program :

down Sap

sar:dcwn‘sww H s.__:down S
reading ; writing ;
Up Sy Up Sy 3
Up Sgr
Remark : One can see in the two preceding examples that,by using the d-operations, we avoid the mutual

exclusion sections usually found in solutions with P-V (e.g. the P(mutex)...V{mutex) in [13,20] and
in {2.1.} ). We find these mutex-sections troublesome for two reasons. Pirst, they are irrelevant
to the definition of the problems to solve, and therefore, they introduce some additional
complexity to the solutions. Second, the synchronizing effect of the P{mutex)...V{mutex) belongs
to another level of abstraction than the synchronization required by the definition of the problems.

5.3. Concurrent control with n priority classes [h9].

There are n classes of processes with one critical section for each class : A; , 1 < i gn.
There is an arbitrary relation of exclusions between the A., represented by some graph of exclusions.
To concretize the problem, we take an example of mutual exciusion with three classes of processes

There are additional rules of execution of the critical sections, establishing priorities between
the classes of processes

When a process of the class J 1is asking to execute Aj ,then no process of any class i, 1>}

can ask to execute Ai

Thus we must add n critical sections Di with each Dg surrounding the corresponding Ai . The
relation of exclusions is

R={Ryy=(D;,Dy) [ 1si<Jsn}

This relation establishes a total ordering on the D; and the graph of exclusions can be abbreviated by :

Now the program for the class # i can be written :

(Priority class # i)
51 :80WN 854335540500 38, 3

Critical—section-Ai H

UP Bj4qse+saSy

Remark : When we apply the preceding construct to the second problem of Readers-Writers, we obtain

a solution different from the one given hereabove. However we could accept the solution as & "correct"
solution depending on our comprehension of the intuitive statement {2.1.} of the problem.

This shows the possibility of confusion arising from the usage of high level intuitive statements and
11lustrates the need for precise definitions and representations of exclusions. The second problem
of Readers~Writers can be generalized to give a different definition of a problem of priority classes.
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The program obtained in this case 1s :
(readers)
=P
2 *3%
8idown s 3

reading ;

w sy

(writers)
down sy ;
*1%
ww:srw:down Sy
writing ;
*2%
Up Syy 3

Lp 82

It is the first problem of readers and writers plus a priority rule of the writers on the readers.
There is a phenomenon (that we called "sneaking in") which can happen in this solutien and not in

the one given in section 5.2.. If the process ¥%2%
*3% can enter the "reading" critical section before

exits the "writing' critical section, the process
*1* can enter the'writing' critical section.

The priority rule is not a priority of access to the critical sections but a priority of demand of

access.

5.4, The problem of the five dining philosophers [20]

From this comes the difference between the two solutions.

There are five classes, each containing one cyclic process (i.e. one "philosopher"), and ten exclusions

If philosopher # i
can begin to eat. (i =0,1,2,3,4).

Fating is a critical sec*ion for each philosopher.

R =

S = (80,8;.50,53,5),}

The graph of exclusions is

is eating then neither philosopher (i-1)mod 5

We have :

nor philosopher (i+l)mod 5

,(i-1)mod 5 » Ri,(i+1)mod 5 li =0,..4}

The reduced solution, according to the second rule of equivalence is shown on Figure 1, and the
Figure 2 gives the solution obtained by application of the first rule {Appendix}

(philosopher # i)
do begin think ;
$3:dOVn S(5_1)mod 5° S(i+1l)mod 5 °
eat
YR S(5_1)mod 5° ®(i+l)mod 5

end

Fig. 1

(philosopher # i)

do begin think ;
$(i-1)mod 5 °°(i+1)mod 5°9¥M S5
eat 3
up sy
end

Fig. 2

Both programs may lead to different implementation but anyway, the net synchronizing effect is

identical for both solutions.
are identical and the synchronizations are identical.
are only a representation of the intended synchronization.

Indeed the exclusions are identical and therefore the rules of dependences
This shows how the synchronizing primitives




.33.

5.5. The starvation of the philosophers.

It is well known that two philosophers (# i~1 and # i+l) can provoke the starvation of the
philosopher between them (# 1). If they are never at the same time in the "think" section of the
program, philosopher #i can never enter its "eat' critical section. Any solution which forces any
pair of non-adjacent philosopher to be together in the "think" section within a finite time after
the philosopher between them is waiting to enter the "eat" critical section will be a solution to
the starvation problc:. It is sufficient that each philosopher, when waiting to enter the "eat"
critical section, prevents the philosopher on his right to leave the "think" critical section.

To do this, we surround each "eat" section S; by a section Ay and we-define the following
relation of exclusions :
When a philosopher # i is asking to eat, philosopher # (i+1)mod 5 cannot ask to eat.

The graph of exclusions is given on figure 3 and the program is on Figure L

(philosopher # i)

do begin think ;
a,:down a,, H
i == " (i+1l)mod 5

critical-section—-si 3

2P 8541 )mod 5

Fig. 3 Fig. 4

5.6. A finite buffer problem.

In this problem, there are two types of dependence rules. First, both classes of consumer and
producer processes (the number of processes is not limited in this example)involve one critical
section each : add to buffer and take from buffer. The critical sections of both classes are
mutually exclusive

The relation of exclusions can be expressed by the d-operations as on Figure 5

Sta’SgedOWR S .5, 3 sat:stt:down SigaeSgy > Sy :down sy 3 sy, :down s,
add~to-buffer ; take~from-buffer ; add-to-buffer ; teke~from-buffer ,
Up Sgq:Sat Up BigsSty up sy 1R Sy
Fig. 5 Fig. 6

Figure 6 shows the solution after reduction. It is obviously the P~V solution of the mutual
exclusion problem.

Second, we have two rules of cooperation between the consumer processes and the producer
processes. We assume that the producers (consumers) add (take) one portion to (from) the buffer
for each execution of their critical section. Furthermore, we require that : 1. the number of
portions taken f:om the buffer can never exceed the number of portions added to the buffer, augmented
by the number q_, of initially filled places in the buffer, and 2. the number of portions added to
the buffer can never exceed the number of portions teken from it, augmented by the number gq of
initielly empty places. This gives the graph of cooperation of Figure 7. ¢
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qf 8e:down sg; sgidown s¢ ;
@.e add--to-buffer ; take-from-buffer ;
de up sf up s,
Fig. 7 Fig. 8

We know that the initiation of S, has a negative effect on its own possibility. This is programmed
by using a semaphore as a closing operand and as a passage operand at the beginning of S;. This
gives the operation sg:down sg. The termination of S, has a positive effect on the same possibility
and therefore involves the operation up sg. Since the number of initially filled portions is gqgf,
the semaphore sg is initialized to gqg~1 . A similar construct is used to program the other

cooperation. This gives the program on Figure 8.

The mutual exclusion must be applied to the same critical sectlons, and to achieve this, we
combine the operations involved in the critical sections into one indivisible operation
by means of the conjunction law. This gives the following program :

(producers) (consumers)

sb*se:down Sy Se 3 sb*sf:down SpsS§ 3

add~to-buffer ; take-from-buffer ;

22 SpoSg Up SpsSe

Since we do not have an implementation for the conjunction law (cf. (6}), we can separate
the exclusion and the cooperation as on Figure 9 or as on Figure 10,

(producers) (consumers) (producers) (consumers)
%2k
:d . : . - . . -
se own se H Sp down sf H sb.down sb H sb.t?:1sb H
sb:down Sy 3 sbzgggg_sb H se:down Se H sf:down sf H
sdd-to-buffer ; take~from-buffer ; add-to-buffer ; take-from-buffer ;
p 8 3 &%3 PP_Sf5 B£5e3
u .
_.P_Sf P.P.Se Up 5y up Sy

Fig. 9 Fig. 10

The solution of Figure 9 is intuitively satisfactory and is often used in practice
The solution of Figure 10 seems to be satisfactory as well but it contains an 1nconspicuous

possibility of deadlock.
If the buffer is empty (i.e. sg = ~1 ) process *]% cannot proceed until process *2%
adds something to the buffer. But *2* is prevented to do so because process %1% has set the value

of 8y, to ~1 as well.

When one defines methods and tools for programming problems of dependences between parallel
processes, the least one should require from such methods is that they do not introduce deadlocks
into problems which are free of them at the level of the statenent of the problem. The method that
we used to obtain the solution of this problem by means of the conjunction rule is satisfactory and
verifies such requirenents. The way the programs of Figure 9 and 10 were obtained is unacceptable
since the second program contains a deadlock whenever the original problem has none. However such

programs are efficient and could be useful if one is able to detect when parasitic deadlocks occur

(e.g. for simple programs).
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6. IMPLEMENTATIONS.

6.1. Bssic issues.

Implementations of synchronizing tools should be examined in the context of computing systems
design (mostly operating systems and networks). The question could not be fully understood if it
was presented merely as a problem of writing a piece of code that will "make the thing work”" on a
particular machine. Henceforth one cannot compare it with the problem of writing a compiler for
a new language or of designing a software package for some particular application (e.g. graphics).

The implementation of synchronizing primitives has its own specific characteristics, for example
the forms of waiting or the methods of queuing and releasing processes, but these aspects are subject
to criteria of efficiency and applicability which could only be defined as design goals for a system
as a whole. For example the forms of waiting can be classified in order of efficiency but this factor can
only be appraised by defining the interactions between processes {loose or strong connections) and
the usage of the resources (light or heavy load). Both of these factors are meaningful only
as parameters of a whole system.

Basically, the implementation problems can be divided into three categories

1. The semantic aspects : what to implement and what for ?
2. The scheduling problems : the algorithms for queuing and releasing processes.
3. The forms of waiting : active (busy) or passive (idle) waiting ?

Design decisions should be taken in function of two essential criteria :

1. The operational characteristics of the system : what should the proéesses be able to do, how do
they use the resources, how sophisticated should be the synchronizing tools ?
2. The performance charwcteristics : available resources, timing coastraints.

The semantic aspects are closely related to the problem of defining primitives as discussed
in the preceding sections. It will therefore not be detailed here.

The scheduling aspects can be summarized as follows. When a process is waiting for an event possi-
bility to become possible, the corresponding effect in the implementation will be to put on some
queue the process representation (i.e. the data structure representing a vrocess in the particular
implementation). When the event possibility becomes possible again, the process should be released.
This can be done in several ways, first in -first out, priority system, or simply chance.
These decisions are properly decisions about the choice of an algorithm, made with the intention of
guaranteeing some properties (e.g. it should avoid starvation). It is also known that some
scheduling properties (e.g. priorities [lh,h9] and {5.3.} ) can be enhanced by the processes themselves
independently of any implementation. This is to say that synchronizing tools can be used for
scheduling purposes. Restrictions on the built-in scheduling of the implementation can be achieved
by a suitable programming of the processes. An interesting question is to study what kind of restrictions
can be explicitly programmed and what kind should be included in the implementation. (About this
ef. also {T.1.} ). The example of implementation given further makes no definite decision about
the scheduling. Actually the algorithm can be modified rather easily to fit different needs.

Only the problem of the waiting forms, out of the three aspects of implementation design, is
discussed in details in the next section. It is indeed a contribution of this work to have
proposed an implementation for a general primitives system without any form of busy waiting. Until
recently, it was believed that this was possible only for very elementary(such as P-V) systems
of synchronizing primitives.
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6.2. The waiting forms.

6.2.1. Some definitions.

The best way to give a clear definition of the waiting phenomenon is to assume the different
processes to compete for a common resource called processor. This resource can exist in several
units and each process will therefore compete for one of them.

The processes (which are theoretical entities) need a processor to realize their activity.
At different instants of time a process is either associated with a processor (it is "running")
or not (if no one is available ; the process is "idle"). We thus have for each process two states
and the transitions between the states are governed by the competition for the resource.

Whenever a process attempts to execute a not-possible action, it is not allowed to proceed and
it becomes"waiting" until the event becomes possible. We introduce a third state

6.2.2. Busy form of waiting.

In the busy form of waiting, the W state is not distinguished from the R and I state ; i.e. =
process can be "running” while "waiting"or "idle" while "waiting". This solution is known to be most
unefficient because a process "running" while "waiting" retains a processor that could be used by
another process.

6.2.4, Idle form of waiting.

In the idle form of waiting, no process can be in more than one state at a time ; i.e. if it
is "waiting", it cannot be "running” or "idle". It accomplishes the transition R-W as soon as a
not-possible event is encountered and the transition W-I as soon as this event becomes possible.
The transitions R-I and I-R are resource competing transitions.

6.2.4. Controlled busy form of waiting.

If, for instance, process p is waiting for an event & to become possible, when this event
becomes possible, p will go from state W to state I. But the event a did not occur yet
(it can occur only during a "running'state for p) and it is possible that a becomes not-possible
again due to some action of another process while p is in state 1I. When p goes eventually
to R, it will be to attempt to execute a which is not~possible and p must go back to W. The
vhole cycle of p through I,R, and W was done for nothing.

This phenomenon should be avoided if one wants to keep the efficiency of the implementation.
When it is deliberately left to chance, one has the controlled busy form of waiting. It is said
to be controlled because the number of occurrences of such a phenomenon for one process p and one
event a 1is bounded by the number of processes competing for the processors.

It is worthwhile to note that the claim of efficiency for the idle form of waiting is valid
only within limits. If the activity of the processes is low, e.g. if there are few processes in the
system, the possibility of events is almost always possible and there is a small probability to
have processes in W state. In this case, it might be less costly to implement a busy form of
waiting rather thean a (time consuming) implementation of the switching between states. This remark
was made by P. Brinch Hansen [5,6] .
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A solution to the problem of the controlled busy form of waiting resides in a simple idea :
no process should transit from W state to T state if the event that is now possible has not
occurred. This gives the following transitions

The process stops over in the R state to realize the action (it forces the_event to ocecur) and
then it goes to state I.

For some primitives, it is possible to deduce in principle that the event will remain possible
under certain conditions while the process is in I state. Therefore no controlled busy form of
weiting can occur if these conditions are verified at all time. This 1s used in the implementation
of the P-V primitives.

6.3. The complexity of the implementaticn.

Another difficulty in optimizing implementations is that one should be able to calculate in an
efficient way the new values of the possibilities after each event occurrence. This is not always
an obvious task ; for instance with the d-operation

i x « £(x)

p(x)

The variations of the value of p(x) should be computed from the variations of the variables x .
The effective computation of all the p's would be much wnefficient because they can be arbitrarily
complex, and other means should be used to achieve these calculations.

Although the implementation presented here brings a solution to this problem in a particular
caese, no general solution is known. (About this problem see [h3j ).

6.4 Monitors.

In regard to the problem of implementation, a proposal of interest has been made with the
concept of "monitors". { [3,25] ).

A monitor is seen as a program component (module) that contrcls communications and synchronizations
between parallel processes. It is defined by a set of restricted operations (accesses) on global
data structures (resources) performed concurrently by processes. By restricted, it is meant that
processes can only access the resources through the specified operations.

This concept of a modular well specified and protected "secretary" is presented as a reliable
and efficient method to implement a variety of communicetion and allocation problems. In particular
it is proposed as a tool for implementing synchronizing primitives and, somewhat beyond this
operational use, it is argued to be able to replace the primitives themselves (cf. e.g. the problem
of Readers-Writers in [25] and compare it with our solution {5.1.}).

It is somewhat suspicious that an implementation tool can suppress all the conceptual (semantic)
problems related to synchronization. This confusion arises probably from another confusion between two
levels of abstraction : the level of the primitives (i.e. in other words the level of the calls to
the monitor services) and the level of the monitor itself (i.e. the implementation of the calls).

The fact that the synchronizing primitives do not appear explicitly anymore at one level does not
mean that the problem has vanished.

The implementation given furﬁher can be seen as a monitor that implements the d-operations.
But we will at all time maintain a strict distinction between the levels of abstraction. This
was tsken as a foundation for all our research.



.38.

6.5. An implementation of the d-operations (with majority law).

We assume that all the operations implemented are d-operations with majority law and that they
have only one single paasage operand. We have proven that it is always possible to transferm any
set of d-operations into another equivalent set where all the passege operands are single { Appendix} .

Two d-operations are different if their syntactic structures are different. The general notation
used in this section is

si:down 831’532’“”’Slm up Skl’skz"""skp

A difference is made between a d-operation, an instance of a d-operation in the program text, and
an execution of a d-operation. To any operation corresponds a data structure implementing a
representation of the syntactic structure of the operation. To any instance of a d-operation
corresponds one call of the procedure 'exec' that implements the synchronizing effects. To an
execution of a d-operation corresponds an actual execution of the procedure 'exec'.

For simplicity we assume that the number of processes is N. The state of a process is either
"running" or "waiting".

The program is written in PASCAL, except for the generation of the pointers variables for which
we diverge from the Report. The method we use 1s self explanatory and avoids some complicatioms.

{TYPE DEFINITIONS}

type semaphore = record s : integer ; refqueue : tqueue end

type queue = sequence of process {the type sequence is not a PASCAL type. It is introduced in [8]}
type process = record state : {running,waiting) ; refdoperation : tdoperation end

type doperation = record nc, no : integer ; passage : tsemaphore ;
closing , opening ; arrax[integer] of +semaphore end

{VARIABLE DECLARATION}
var asemaphore : array El..n] of semaphore ; yvar squeue : array [l..n] of queue ;
var aprocess : array [1..N] of process ; var XXX : doperation {for every d-operation, a similar

declaration must be generated with a different identifier}

{VARIABLES INITIALIZATIONS}

for i:=1 to n do with asemaphore [1] do begin si=0 ; refqueuet := squeue[i] end ;
for i:=1 to N do with aprocess[i] do begin state := running ; refdoperation := nil end ;

{XXX = OWD S, ,e+5S, UD S ,..,8 1}
— dn = k7 T kp

with XXX do begin nc := 'm' ; no := 'p' ; passage := nil
closing 1]+ := gsemaphore ['Jl'] 3 eee closing[nc]+ := agemaphore [',jm'] 5
opening l]+ := asemaphore [‘kl'J 5 ++. 3 Opening [no]* 1= asemaphore ['kp'] end

{Xxxx = s, :down sdl’“’st up skl,..,s }

k
1%
with XXX do begin nc := 'm' ; no := 'p' ; passaget := asemaphore['i'];
closing[l] := agsemaphore ['jl'] 3 eee 3 closing[nc := asemaphore ['Jm'] H
opening[l] := asemaphore ['kl'_] ; ++« 3 opening[no] := asemaphore Ekp‘] end

{One of the two last initializations must be generated for each d-operation, and the identifiers
between quotes must be replaced by the corresponding actual values.}




The following figure gives a picture of the data structure after the initializations.

s refqueue

. squeue[l]
—] ne ‘m!

asemaphore[l] 0

no
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| squeue [n

asemaphore [n] ) e . closing[1] _‘"“\~:::::\‘

\ to
state refdoperation .
dpﬂng@ﬂ ~m—m—t> gsemaphore [ ]
aprocesstﬂ running nil s W
l l opening[1] —
| i %
[
aprocessﬁﬂ running nil openingDuﬂ ,,//’//

Every time a process needs to execute a d-operation, it calls the procedure 'exec' and it gives
as parameters its name and the name of the operation to execute.

The procedure is divided into four parts

1. passage. The actual value of the passage operand is checked. If it exists and if it is negative,
the process is put on the gueue associated with the semaphore ; it becomes "waiting".

2. closing. The closing cperands are decreased by one.

3. opening. The opening operands are increased by one.

4, wake up. If the values of the opening operands are positive, some processes must be waken up.

When a process is waken up, the operation upon which it was "waiting" is executed. Then the program
checks whether it is necessary to wake up some other processes or the semaphore value is negative again.
Thus the procedure 'exec' is recursive.

The indivisibility of a call of 'exec' is ensured by the operating system. However this does
not guarantee the indivisibility of the d-operations because the procedure 'exec' is recursive.
Yet one can see that the indivisibility holds in this case.  Indeed the parts 'passage'~'closing'-
'opening' of the procedure are always executed together (i.e. without interleaving with any
recursive call) and only the part 'wake up' can call 'exec' recursively. This shows that the
different executions of 'passage'-'closing'~'opening' are done without any interaction between them,
whatever is the degree of recursiveness. This is & sufficient condition for indivisibility.
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{PROCEDURE FOR THE EXECUTION OF THE D-OPERATIONS}

procedure exec (ggg_refprocess : tprocess ; var refdoperation : tdoperation) ;
var pp : tprocess ;
begin with refdoperationt do
{passage} if (passage # nil) A {passaget.s < 0)
then begin refprocesst.refdoperation := refdoperation ;
refprocesst.state := waiting ;
put (refprocess, passaget.refqueuet)
end

else begin if nc > 0

{closing} then for i := 1 to ne gg_yiﬁg_closing[i]f do g = 5.1

if no > 0
{opening} then begin for i := 1 to no do with opening[i]t do ¢ .o g41 .
{wake up} for i := 1 to no do with opening[i]+ do

begin get(pp, refqueuet) ;
ppt.state := running
exec(pp, ppt.refdoperation) ;
ppt.refdoperation := nil

end

end

end
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T. DEADLOCKS.

T.1. Introduction.

T.1.1. Origin of the - roblem.

From an historical point of view, deadlocks were found within operating systems in a empirical
manner. They were due to the lack of coordination between processes competing for reusable but of
exclusive access resources. They were believed to be errors of operating systems and algorithms
were designed to avoid these errors. Most of these algorithms were scheduling and allocation
algorithms for the accesses to the resources.

T.1.2. A problem of duality.

It is well known that competing for resources can be interpreted as the synchronization of the
executions of critical sections delimiting the accesses to these resources : e.g. owning a resource
in a exclusive way (e.g. a magnetic tape’ is equivalent to executing in a exclusive way the critical
sections where all the accesses (e.g. read and write) to the resource are performed.

A deadlock prevention algorithm can thus be seen as a scheduling of the allocation of resources or
as a scheduling within the implementation of synchronizing primitives.

As it was pointed out earlier, it is difficult to differentiate the scheduling aspects and the
pure synchronizing effects of a system of synchronizing primitives (cf. e.g. the priority problem
{5.3.} and the starvation{5.5}). And very often, a given scheduling requirement can be programmed
by synchronization or a synchronization problem can be implemented by scheduling [33]

Because of this simple observation, we can reasonably state the following assertions

1. Given a particular deadlock prevention scheduling, it is always possible to design a program
whose deadlock problem will not be solved by the algorithm.

2. Given a particular scheduling that does not prevent deadlocks (except in trivial cases), it is
always possible to increase the synchronization requirements of any program to make it deadlock
free (i.e. given a scheduling, it is possible to define the class of deadlock free programs ).

Neither of these questions has been investigated seriously and, a fortiori, neither has been proven
true.

T.1.3. The game of deadlock.

All the studies, as far as we know, on deadlocks were oriented toward the design_of prevention
algorithms for the allocation of reusable resources (e.g. [10,11,17,21,23,27,28,38,&8] ).
One of the best ways to summarize the different approaches has been introduced by Devillers 17] H
it is an interpretation in terms of the theory of games.

Within such an interpretation, the two players of the game are

1. The scheduling algorithm {SA) which detains all the resources and whose moves in the game are
to sllocate these resources to processes.

2. A group of processes which use the resources and whose moves in the game are to ask for
resources or to release resources they have been allocated by prior moves of the SA.

The beginning of the game is usually defined by an initial state where the SA has all the
available resources and the processes have none of them. The first move is therefore for the
processes to make a request for some resources. The succession of possible moves defines the
states of the game, each state giving the move to either the processes or the 5A.

If the number of processes is finite and if 5o is the number of their moves, then there is at
least one state where there is no move to be made by the processes anymore. If the game reaches
this state, it is a winning game for the SA (i.e. the deadlocks were prevented).
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If the game does not reach a final state, we have a winning game for the processes. For reasons
not developed here (cf. Erﬂ ), this can happen only if there is a state which defines impossible
moves for the SA (i.e. in which a move cannct be made without allocating more resources than the
number available). Such a state is a completely blocked state.

If between a given state and the final state there are no other paths than paths going through
one or several completely blocked states then this given state is a deadlock.

The strategy of the SA will be to keep the game in states where it is always possible to
find a path to the final (winning !) state. Such states are called safe states.

We can now characterize the different approaches to the problem in a dual way {7.1.2.}

1. Assuming a strategy of the processes (i.e. the (future) history of their resources utilization),
what is a winning strategy for the SA ? The strategy of the processes can be specified in different
ways : - by a maximum need of resources during the whole game LQi], or - by a complete history

(task step model) [17,23] with or without possibility of abortion. These are the problems most
widely studied in the literature.

2. Given a strategy of the SA(a scheduling algorithm which can be trivial e.g. pick up any move at
random), what is the class of winning strategies for the processes ? This is the object of our
work.

In an infinite game (i.e. if the number of processes and/or their number of moves are
infinite) there is a possibility of an infinite number of states(although there are possible
definltions of a finite number of final states). In this case a game that will not reach the final
state is a winning game for the processes. This can be due to a deadlock (as in the finite case),
to an effective deadlock [26], or to starvation.

T.1l.4. The present work.

Our work will deal with a special case of game where the nuber of processes is infinite. They
are however divided into classes of processes ; all processes of the same class have only a finite
number of possible moves. A necessary and sufficient condition is given, that specifies the winning
strategies for the processes. The problem of effective deadlock is not investigated ; it is a
possible extension to this research.

The strategy of the SA is assumed to be based on the following prineciple

If a process requests a resource then the SA acknowledges the request within a finite bounded time.+

The winning strategies of the processes are represented by relations of exclusions between
critical sections. The exclusions can be seen as equivalent to requests of accesses to re-usable
resources. Each graph of exclusions will specify rules of accesses to one resource of one type.
These conditions are altogether less general (there is only one resource of each type) and less
particular (accesses are more general than exclusive accesses) than the classical problem studied
in the literature.

The theorems given here define a constructive way of defining a priori whether a given system of
processes can generate deadlocks.

T7.1.5. Deadlocks and Correctness.

The problem of the characterization of deadlocks is a typical semantic problem of parallel
processes programming. It can be compared to a correctness problem in sequential programming
(e.g. does a program terminate ?). It falls within the scope of this research as an example of the
possibilities of a sound theoretical model for defining and proving properties of programs. The
class of problems of deadlocks studied here is limited but non trivial, and of a wide application
in practice.

+ Obviously, this condition is verified only if the game is not in a completely blocked state. It is
a strong condition that, in particuler, avolds effective deadlocks and starvation.

’
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7.2. The theorems : the general case.

T.2.1. Basic definitions.

The framework of definitions that we need to proceed to the demonstration of the theorems were,
for the essential,introduced earlier. They are briefly recalled hereafter,

DEFINITION 1.

¥ A set of programs is defined by a set A of integer variables called places. FEach place corresponds
N to one operation of the program and
Ty = oAy ... aéi to one action of the processes executing it.

e , 1sis¥, 1<9:<W,
¥ The relation ag < a%{ holds between two places if J <k

DEFINITION 2.

# An interval 13}: is defined in the following way : I%k = [a.%,a.f;] = {ay |J 52 2 x}

I = ai i - i
# 13k =ay fﬁ& = g
#* [ag‘] is a one place interval noted a}
DEFINITION 3.
¥ A state s 1is & set of values for the a’j : [s%]s 2 0, 11V 1<Js N
¥ o, = X [%]s is the population of the state s .

> I .
* The population of an interval is : [Tyl =1 [aj]g Jsozk
2

# A state s' is a sub-state of a state s if : for all i,J [a%]s, < [a?]s

DEFINITION L.
# A transition r% s 1 g3 = ni+1, holds between two states 5y and S5 in one of the followimg cases
« - S TR O & a Y = [ for all (2,k i
If J=1 then [a.j]s? [aJ]Sl. 1 ean [&k]sz [e'l{]sl or (2,k) # (1,3)
# If g=N;+1 then [a}]sz = [_aj]sl- 1 and [a}%]se = ['_al%]sl for all (2,k) # (1,3)
® If 1< <y then [ai]s = [31%131 for all (2,k) # (i,j) and all (2,k) # (i,3-1)
' 2

i = [Ri i
[B',j]sQ = [aJ]Sl + 1 and [aj—l]s [J Hsq ~

Intuitively, the value attached to a place in a given state represents the number of processes
present in this place (i.e. having executed the operation al but not yet the following one}.
The definition of & transition specifies formally the fact gf going from one place to the next one,
and the fact of entering the system (an initial transition) and of leaving the system.

DEFINITION 5.

# C is defined as a set of intervals called critical sections.

# GE is a relation on C called the relation of exclusions.

# Valid notations for GE are :

A graph notation (the graph of exclusions).

If C),0, € C, (Cl,Cz) € GE is equivalent to C_Z (22 (Cl excludes Cp).

1
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DEFINITION 6.
® A trensition tj is admissible in state s if either J =1 or [a3 Jg” 0
s i, : . .
# A transition TJ is not-possible in state s 1if there are two critical sections C1 and 02

such that : 1. C.EC, , 2. [Cl]s >0 , and 3. 5; = aj . Otherwise it is possible.

# A transition is enabled if it is both admissible and possible.

DEFINITION 7.

# A derivation is a sequence of states : 515253“"'Sk such that :
for a11 J, 1 < J <k , oy is an enabled transition in the state 53-1 and it puts the
o
system in state Sy - We use the notations Sy-1 > 8y and 54 X sy .
DEFINITION 8.
% The initiasl state of a system of processes is noted a and is defined by : 7, =0

# A state s is realizable if : a %> s for some derivation.

These definitions specify under which conditions a system can go from one state to another one.
This is done by moving a process from one place to another {a transitioun). In order to do that,
we must be sure that the place the process is coming from is "inhsbited" (the transition is admissible),
and that no holding exclusion forbids this transition (the transition is possible).

The system is assumed to start from an initial state (when there is no process in the system).
The only states that can be reached from the initial state are called realizsble states.
DEFINITION 9.
# The critical graph CG is defined on the set C of critical sections :

(C1,C,) is en directed edge of CG if there is a third critical section C3 such that

2 : 1)
1. Cl: 03 , and 2. if 02 = IJ

i
= 3 i =1 -
ok, and 03 IJ3k3 we have 1g=1, and 32 < j3 < k2+l

This is a formal (and unfortunately complicated) way of defining a simple situation described in

the following figure :
€ [: =~ Ca
[e5

The beginning of C, cannot be the beginning of 02 but it can be any other place including the one
right after the end of Coe

T.2.2. The single~process postulate.

We give now a property of the system that we will assume to hold in all the systems that we shall
study. This postulate expresses that a system which contains at any instant exactly one process has
only realizeble states. This is equivalent to say that no single process requests more resources
than available. We then give a necessary and sufficient condition for this postulate to be satisfied.
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POSTULATE. (Single-process postulate).

# All states s sucp that o= 1 are realizable. *#*

THEOREM 1. (Necessary and sufficient condition (N.S.C.) for the single-process postulate).
¥ A N.8.C. for the single-process postulate is that the criticel graph CG be loop-free.*

We define the hypothesis H to be the single-process postulate and the thesis T to be the absence
of loops in the critical graph. The proof is as follows

V1. H-> T . We prove "ad absurdum" i.e. we prove AT A H - ~H .

Assume that the critical section C is a loop of the graph CG ; we certainly have by definition of
CG (Def. 9) a critical section €' such that

i
jvkv

It is easy to see that no state s such that Bﬂ]s= 1 and r, = 1 is realizable. Indeed there must be

1. CEC', and 2. if C = 13p and C' = I then J < J' < k'+1

a state s' such that r ,=1 and [a}._i]s'=l in order to obtain the state s . But the transition

rj. is never enabled in s'. Hence s is not realizable., V

V2., T+H.Timplies that in each state s , 7 =1 and [a}]s = 1, the transition r3+1 is enabled.

Then we have at least one derivation from the initial state to any such s state :

td i 1
1 2 3
U.—-——-———#-Sl-—-hszm-....—b Sjl————-a-s .

T.2.3. Incompatible places.

In this section, we define a property of a set of places. Then v+e prove a theorem that gives
necessary wnd sufficient conditions for that propsrty. This property is a key concept ol our study

of the deadlocks problems. Indeed a system of processes will be deadlock free if the statea

of that system that are deadlocks are non realizable states. These states are divided into classes,
each class corresponding to a set of places. If the states are realizable then there will be at least
one process occupying each of the places. If they are not realizable this cannot occur and we

say that the set of places is incompatible.

Actually, the incompatibility will be defined on instances of places (not on places).
Instances of places can have values in a state s of the system. The value of the place is
the sum of the values of its instances. Intuitively, we identify a process being in a place

for some state s, as an instance of this place with the value 1 in s. These concepts
are purely formal but they are much helpful in the proof of the theorems.

DEFINITION 10.
# A set of instances of places {ﬁ%%, é%%, cranes é%n}+ is incompatible if there is no

realizable state s such that : for every J, 1 < J <n [&ig >0
s

Note that, because we deal with instances of places, it is possible that for some j and k @

Pe i - A1kt
ay;] .=, a
3 '

DEFINITION 11,
. 17 . io
# The notation aJi z an is for : There are two critical sections C1 and C2 such that
iy iz . & =
((adlg c) A (a‘12 =Cy) A (c) = Ce))
i.e. aj% is in a critical section that "closes the door" asg . The inclusion is defined as usually

between intervals,and a place is a single place interval.

+ We use the circumflex to indicate that these are instances.

41 We use the equality .=. to avoid confusions. The two symbols must be equal, not their values.
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LEMMA 1. (Sub-states lemma).

# Every sub-state s' of a realizable state s is realizable. ¥ i1 ip 1
T T T
V. Let s be a realizable state. We have for some derivation : a-———dl~>-sl .___Q34» [ n s =5
9 9 a
We define : La' & sé PN ~JLS£ = g'
i i
where : o, = 1.k if a K > 0 ;3 o, =¢ no transition) otherwise .
k Jx I Jk]si >k (
We first prove the following : If si is a sub state of 5y then Sﬁ—l is a sub-state of Sp.1
First, if Gk = £ we consider the three possible cases
. . : i _r.i - i i
(1,3) # (iy,d)) and # (53,4, -1) [ajjsi_l = [ajjsﬁ < [eflgy = [ﬂdjsk_l
. s i . i - i
(1 )J) = (1k’Jk) Eajjsﬁ—l = [ajjsllc =0 <2 EaJ]Sk..l
. (s _ i - i i I _ i
N L e L
Second, if o, = % :
econd, if o = Tdk : .
(1,3) # (4,4, ) and # (i, -1)  [a? = [e4 , <[] = [&]
? k’“k ‘R’Jk o J]sl't—l [J‘]s}'( < L J]sk [J]sk—l
. - (s i - i “ A - 1
(1,3) = (1,,3,) [aJ]Si~l = [aj]sk -1z Laj]sk -1= [aJ]5k~1
. . i i =t i
= -1 = + 1 < + 1 =
(1,3) (lk"jk ) [aJ:ISI':—l [aj]sf{ =z [aj]sk [ajjsk—l
Hence, since s' is a sub-state of s , &' is a sub-state of o and a' = o .V

THEOREM 2.
# A N.S.C. for a set of instances of places

{aj%,a}%, ceeee s 532} , n>1

to be incompatible is : For every u, 1 £ u £ n one of the following case holds

Hl. There is a v, 1 < v < n, v # u such that aiz E a§3 T

H2. If §j-1+#0, {aji, ces agﬁnl, e aﬁg} is incompatible T+

H3. If §-1=0andif n>2 {éﬁ%, - a}iﬁzig, aiEﬁ:i%, e agﬁ} is incompatible 1T

V1. Sufficient condition : Yu(H1(u) v H1(u) V H3(u)) + T . Ve proceed "ad sbsurdum”" and we prove :

AT A Yu(HL(u) Vv H2(u) v H3(u)) » Ju(~Hi(u) A ~H2(u) A AH3(u))

Because we have T (and by application of the sub-states lemma) there is a state s such that

for every u, 1 s u <n [a/Y] 1 and 7_=n
- Ju's s

Therefore there is a state s' and a v, 1 £ v <n such that

v
v-l st
This because s 1is realizable and there must be a last process to "enter" s from s'.

But the transition from s' to s certainly contradiects H1 , and s' itself contradicts H2 and
(if applicable) H3.

1 -
for every u, 1<u<n,u# v [gjg]s' =1 and [ﬁ; =land m, =n
- u

+ Removing the circumflex represents the place whose instance was represented by the symbol with the circumflex.

A o
++ 4.e. an instance of the place preceding the place whose instance is aJP, replaces aj“ in the set.
u u

i

J} is incompatible, it

+++ There is no third case if n = 2. It would lead to an absurdity because if {a
contradicts the single~process postulate.
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V2. Necessary condition. T + Wu(Hi(u) V H2(u) V H3(u)) We proceed "ad sbsurdum" and we prove
T A u(vHL(u) A ~H2(u) A AH3(u)) + AT

If H3 is not applicable this gives us a state s and a u such that

i
for every v, 1 < v <n, v#u [ﬁ and [éju g =1 endw =nm
- u’ 8

Jv's
But we have H1(u) and therefore the transition Tgu is enabled in s and produces a state s'
u
#
such that : for every v, 1 <v <n Eﬁ ot =1 and LIRS and g b= 5!
v

This contradiects T . If H3 is applicable the proof is similar. If n=2 and if H3 is applicable,
we obtain the state s by application of the single process postulate, and then the proof is similar
to the other cases.V

Remark. If we want to use this theorem to prove on a concrete example that some set of instances

is incompatible, we need to apply the theorem recursively. Because the number of places is finite
and because the number of instances cannot increase from one application to another, the theorem has
a "fixed point", i.e. the example will be proven after a finite number of recursive applications

of the theorem. Ultimately, by application of the theorem, the existence of some incompatibility is
reduced to the existence of exclusions between places, This reduces a dynamic property (dependent
on the evolution of the system) to a static property (dependent on the stucture of the processes and
on the exclusions).

7.2.4%. The definitions of deadlocks.

In this section we give definitions of deadlocks and of completely blocked states together with
equivalence properties between them. Intuitively, a completely blocked state is (if we speak
now in terms of resources) a state where all processes are in demand of resources while no resources
are available. In our model, it means a state where no transition is enabled. A deadlock is
a state for which there is no derivation leading to other states than completely blocked states.

DEFINITION 12.
¥ A completely blocked state s 1is a realizable state such that
1. s # o, and 2. no non-initial transitions are enabled in s
DEFINITION 13.
# A deadlock is a realizable state s for which there is no derivation such that
#

S ——tm O (o is the initial but also the final state.)

We now prove a preliminary theorem. This theorem is important because it states the equivalence
between an infinite class of derivations and a finite one.

THEOREM 3.
#
# For any realizable state s , if there is a derivation § : S ——e then
§
there is a derivation &' without initial transition such that : §mtog JF
6'
V. We have by hypothesis i
i1 A2 in
Jl J2 . Jn
8 s S, m——— S )
0 1 2
oy L2 , %,
: ? ¢ i e [OOSR S VS
We define so s sl 32 a
vhere : 1. o, = ¢ if rji is an initial transition (i.e. jk=1)
ik
2. 0, = if and 3. g =1 otherwise.
k€ [ Jk-lJS(k 1) K Jx

We prove now that if si_l is a sub-state of sk—l then sé is & sub-state of Sk .
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There are three cases to consider :
ik . s s
1. Tjk is an initial.transition :

[ i

. . i . i i =
for a1l (i,§) # (i),1) [aj]s},{ = [?3]513:—1 < [aé]s}cwl = o, .
. - (s a i - [at ik = Tatk - ik
for (i,3) = (i,7) [alk]Sl.( [alkls}.{_ls [a1JSk_1 [e] ]Sk 1< ey ]Sk
iy o o iv i i i o Tui
2. lajk!sk_l 0 . (i:J) (11{’31{) [ajjslv{ [a‘j]s}'{_lf [aj]sk_]_ f [aJ]Sk-.l + 1 [&J]sk

. _ . K] _ . _ < K] ~ - i
(1 s'j) = (1}{ a«jk"'l) [ag]sf( - [83] S]'i—l =0 - [‘a?jlsk—l 1 [aj] Sk
for all (i,3) # (ik,Jk) and # (ik,dk~1)

i1 o oreil i [t
[, = B s B = B

S PV : 7 .t i = Tad
3o = Tk (1) = () [aj]is}.{ [aJJSI,{_1+ 1s [%“],sk_l* 1 [agsk
. g — 1 - 1
(1k,jk~l) [&J]sk = [a -1 < [aj}sk—l - 1= [éjjsk
for all (i,3) # (i},J,) : i . i

A i - 1 i I

it I 1 R C R

This shows that a' is a sub-state of o and thus o' = a .V

(i,i) 315i~1

A

We now prove that the existence of a deadlock is equivalent to the existence of a completely
blocked state.

LEMMA 2.

# A completely blocked state is a deadlock. ¥

V. Trivial.V

LEMMA 3.

# If there is a deadlock in a system then there is a completely blocked state in that system. *

V. We proceed "ad ebsurdum” . Assume s 1is a deadlock. Since there is no completely blocked state
there is at least one non initial transition enabled in s,that leads to a state s, .

By a similar argument we conclude that there is a potentially infinite derivation of non initial
[} g
s 1 2
transitions : g slf—_ﬁr 32

But the finiteness of the system implies that for some n , bounded, s = a . Hence s is not a
deadlock.V n

THEOREM L.
# In a system, there is no deadlock if and only if there is no completely blocked state. *

V. Trivial by application of Lemma 2 and Lemma 3 V

7.2.5. Theorems of existence.

We establish a relation between the existence of completely blocked states and the incompatibility
of some set of instances of places in the system. This sets the missing link between the existence
of deadlocks and the existence of some structural properties of the relations of exclusions.
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DEFINITION 1k.

# A critical embrace corresponding to a cycle of the critical graph CG

Cl, C2, C3, caen Cn
is & set of instances of places : (a1l gi2 ... . &'} such that
. J1 Jo Jn
for all 2, 1 < & < n, CQ = I; a,’ there is a critical section K and the following holds ;
=L

i — T [~ 1 e - =
ej 41 =K end C o EX andp, < J+1 < qptl (if 2=1 then 2-1 = n)

By definition of the critical graph there is at least one critical embrace for each cycle of CG.

The intuitive notion of the critical embrace is close to the notion of critical graph

For each cycle of the graph each critical section of the cycle "closes" something inside the next one.
There is thus a possibility for processes executing this cycle to block each other. If this happens,
they will be blocked in a critical embrace.

LEMMA L.

# A set of instances of places {é;i, éég, ee a}g} such that for each k, 1 <k <n,

i - in 7z .1 . .
41 and a5, © ajl+1, is a critical embrace. ¥

i
a Eoa
37 )
V. Proof by application of the definition.V

We prove now the fundamental theorem of existence.
THEOREM 5.
¥ 1In a system, there is no completely blocked state if and only if all critical embraces are
incompatible, ¥

We define H as the incompatibility of the critical embraces and T as the absence of completely
blocked states.

1. H+ T . We proceed "ad absurdum" : ~T A H -+ ~H .

Assume that s 1is a completely blocked state. Let {all, alg, cen aim} be the set of places
J17 e Im

= iy i ; .
such that T = E [ajk s and for all k, 1 < k ¢ m, [ajijs > 0, i.e. there is no processes anywhere

else than in these places. None of the following transitions is possible

iq ij im

T T R ¢

J1tl Jorl I+l ] )

This implies that for 81l k, 1 £ k < m, there is & u, 1 < u < m, u # k such that aju z alk*l
. u k

If we now represent these exclusions as a graph whose nodes are the agi end where (333, av)

v

is an (directed) edge if a} 3 a3V+l , then this graph is cycliec. {This is a property of directed
u v
graphs, If x is a node of a graph X and if for every x there is an edge going from one node

of X - {x} to x, then the graph is ecyclic.)

i 1

u i +

Hence, by lemma 4, there is a critical embrace : {a, I, aJUE’ ven ajun} 1wy $mlsksn
: duy up up

Uk

> 0. This contradicts H.
Juk 8

such that for each w [é

+ A set of places is a set of instances of places.
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V2. T+ H . We proceed "ad absurdum” : T A ~H » AT .
If there is a non inéompatible critical embrace {é;i, éig, vee éig}

then by the sub-state lemma there is a state s such that
i
= ' K =
=n and for all k, 1 <k < n, [éjk s 1

In s no non initial transitions are possible.

T7.3. Example.

We treat an example that illustrates all the theorems proven in Section T.2.. We have two classes
of processes

B ai ai The critical sections :
T 1 2 _ .1 .2
& [ & Ay =138 By = 113
1 2 .1 _ .2
[ °3 %3 Ay = Iz B, =8
I R
aﬁ A3 = ay
1 1
[ 8.5 Al} = Ih?
1 _ o1
8.6 AS = IS
al
-
1
» 8
The graph of exclusions :
The critical graph :
The cycles of the critical graph : (Az’Bl) (AQ’BI’Ah)
The critical embraces : (aﬁ, ai} {a%, ai, ai}

It is obvious that {a& s ai} is not incompatible because ai ? ai . Thus there is a completely

Tl Tl R T
1273k 1
We prove for illustration that {ag, ai, ai} is incompatible.

blocked state. It is realized by the derivation

To do so we have to prove that the following ones are incompatible :

i .2 1 1 1 1 2 1
{&1, ;s ah} {a2, aj,} {aa, als a3}
These are reduced to the following by application of the theorem (and because a% z ai)

H

11 1 2 .1 ! 1 2 1
{ay, 8y} (atl, als a3} (a3, a3} {8‘2’ a7, a2}
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By new applications of the theorem on the preceding ones and because ai E ai and a% Z ai »

we have to prove the following ones to be incompatible :
1 1
{al, 33} {al, al, al} {a%, a%) {ag, a2}
1. .1 1: .1 11 1

Then, because ay £ ey and a2 £ a] , we have to prove that {al, al} and {al,ai, a%} are
incompatible. This r=duces to the proof of {ai, ai} to be incompatible, which is true because
ai 2 a% . Hence {a;, ai, ai} is incompatible.

T.4. The theorems for nested critical sections.

When one restricts the structures of the processes and accepts only nested critical sections,
the proofs of absence of deadlocks are simplified in a dramatic manner. The aim of this section
is to provide the needed theorems to achieve these results. The principles of the proofs are
similar to the ones encountered earlier.

DEFINITION 15.
¥ Let Iil and I12 be two intervals, we write :
Jaky Joko ’ )

i ip : i ip .
I, C T2, if Jp < ik <ky end h, € T2y, i Jpsiisk sk

DEFINITION 16.

# A set of critical sections defines nested critical sections if for any pair Cl,C2 of critical

sections : (Clc C2) Y (02C Cl) v (Cl{'} c2 = ¢) )
DEFINITION 17.

#  Let Cys Chy s+ 5 C_ Dbe a cycle of the critical graph CG and
1 2 n

1
AL x%, cee xi
2 2 2
Al’ Al’ ces An
. . . Its corresponding critical embraces.
m m
ERCCR \
. _— 2 it}
We define for each k, 1 < k <n I = [bk’ max(kk, Ags w0 s Akk)]
The set of instances of intervals {Il, I, IB’ P is called the critical embracing
n

intervals of the cycle of CG .

THEOREM 6.

# In a system with nested critical sections, there is no completely blocked states if and only if
the critical embracing intervals of each cycle of CG are incompatible .#

V1. The sufficient condition is proven in the same way as the sufficient condition of Theorem 5 was
proven.

V2. Necessary condition. T = H . We proceed "ad absurdum" : ~HA T » AT

We assume that there is a non incompatible set of critical embracing intervals

i
I={1_,... I} I =1
1° ) 2 k Jklk
There is a state s in which T, =N and for each k, 1< k ¢ n, [Ig]s =

i
The definition of the XJ, 1<J<n,1<dig mJ implies that the only transitions that are not-possible

inside the Ik are the ones corresnonding to the Aj that is :



.52,

) u i
if Al = g% then is not possible. Let assume that in Ik . [guﬁjs= 1 (Jk < uk < zk)

J v v+l
i .
then Tuk+1 is enabled and from s the system can go to a state s'. This is possible iteratively
k ;
i
until a K = Ak for some w, 1 <w < m - This derivation is possible for each I, .
ugt Vi w - - k

Starting with Il, we can now write a derivation :
% # 3% #
s....-.-an.sl-———c-se—-—— — S

and S, is a completely blocked state. Hence T .V

We need to give now the theorems giving necessary and sufficient conditions for a set of
instances of intervals to be incompatible. But we need first a (1ast !) definition. 1y

DEFINITION 18.

# Let I=1{I, ... I} bea set of instances of intervals, I =1 n >
1 n -u Juky
We define for each u,v, u # v
C I, I
H{I _,I1 ) = (there is a critical section C_ and a pl iv h t v v
s place &,V such that
ul vy W Ly
IC A (e < A z alv) )
( (1,€¢ ¢c,) v S 3) A (G Eagy) ) Fig. 1

This defines the Figure 1.

We now consider the set of instances of places such that: For all u, u 4 v, H(Iu,Iv) is true and
i

we call 0 the maximum of this set for the relation < . We define Ku = [wu. aku] s 1 <usgn.
u

If Wy, does not exist then Ku is not defined .

THEOREM 7.~I~
# In a system with nested critical sections, a N.S.C. for a set of instances of intervals to be
incompatible is : for all u, 1 £ u < n one of the following cases holds

Hl., if K _ is defined then K =1
u u u

H2. if K, is defined then (I I

1o I oKL T
H3. if K, is not defined and if n >2 then {1

s ere s In} is incompatible.

PEREER Iu—l’ Iu+l’ ves Un} is incompatible. #

V1. The sufficient condition is trivial.V

V2. Necessary condition. T - Yu(r1(u) Vv H2(u) V H3(u)0 . We proceed”ad asbsurdum " and we prove :
Ju(vHi(u) A ~H2(u) A AH3(u) A T -+ AT

If Ku is defined and if n> 2 then there is a state such that : n_ = n and for all v, v# u

(1), =1 end K] =1.

+ We keep the same notations as in Definition 18.
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and therefore there is & derivation

It is obvious that no transitions are not-possible in K -I
from s to a state s' where : 4u
For allu, 1< u<n 1] =1
us'
I1r Ku is not defined then there is a state s where for all v, v # u, [I;]s = 1. Ws = n-1
Since there is no not-possible transitions between alu and a Y (1nclud1ng the initial tran51t10n),

u
otherwise K would be defined, there is & derivation from s to a state s' where
u

forallu, l<wusn, [I] =1 n 6 =n
gt s

If n = 2 then Ku must be defined. By using the single process postulate we find easily a

state that contradiets T .V

T.5. Example with nested critical sections.

The structure of the processes is

A B
1 1
A \* B"‘\N
2 1 2 >————
1 e
Aq ‘ Bs ¢,
Ay \\\\\—E‘h\‘ c,

The graph of exclusions

The critical graph :




The cycles of the critical graph are :

The critical embracing intervals and the

Il = [ L ASJ
1 —n
K o= [Aps A

2

Kl - g{ 2 A‘S]
3 2

Kl Kl

We have to prove that

I,

N

=~

{Il, I, 13}

intervals defined upon them by definition 16.

i

is incompatible.

i

55 &)

it

€3, €]

is not defined

This gives the following ones to be incompatible by application of the theorem :

) 1
{1y, ks I3}
Then we obtain :
1 .01
1’ KE
{1y, 12}

{K s 13}

2 1
{Kl, Kys

1
1 12}

13}

{K

3, 15, K3}

And :
2 1
&7, L }

. 1
{Il, 12, K3}

1

1
{Il, Kg, K3}

)
{Kl, 12, 13}

1 ‘
1 K3 K1)

Ky, Ky K3

1 l}

{Kl, 5

The last set is incompatible because Ki =

1 1
{x3, I,» K3}

1

1
{Il, K2, K3}

. Thus this example has no deadlocks.
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8. CONCLUSIONS.

If we had to conclude these pages by one phrase, we could appropriately write
By using & semantic method whose foundation is a distinction between the level of the formal models,
the level of the programming tools, and the level of the implementation practicalities, we have
made possible a synthesis of the problems of synchronization.

The method is of a semantic nature because it attempts to represent intuitive concepts and

to fit practical situations. It attains to a synthesis because it encompasses a large variety of
problems and because it provides means of comparing them. It also separates the theoretical issues
from the practical problems. Ideally, facing a problem of synchronization, one should first devise
an appropriate theoretical sbstraction, and then proceed by examining the needed programming tools
and by tackling the problems of implementation. With this method, a given problem is characterized
by its statement, preferably formal, and its transcription into some programming language end into
some implementation can be done almost automatically.

One of the most helpful theoretical constructs of this thesis was to distinguish classes of
problems of synchronization (e.g. exclusions, cooverations) and to define formal rules to
characterize them (the rules of dependence). Different classes are defined upon a common root
of basic concepts and hypotheses. In this way, we vere able to show how analog problems can be
handled in an analog way and how different problems can be fundamentally difflerent.

The traditional emphasis on the definition of new synchronizing primitives becomes a secondary
preoccupation. It is now much ekin to the definition of programming languages : it has its proper
issues (e.g. syntax, error detection) but it does not suffice to solve general questions.

The main unanswered question of this thesis resides in a comprehernsive understanding of the
implementation. Partial results have improved the current state of the art but one fundamental
question remains : vhat 13 an implementation ? Or more exactly : how should one define the interface
between the implementation and the abstract semantlc level 7 This is definitely a promising area
for future research.

Another unanswered question is the duality between synchronization and scheduling. The way
events oceur when they become possible is specified only by the "within a finite time" rule.
For some problems other specifications are needed (e.g. priorities, scheduling in general).
Tt is therefore conceivable to define a d-operation without scheduling (the order in which the
processes are Treed is "immaterial") end a d-operation with scheduling. What are the implications
of this question is also an interesting area of research.

The problem of deadlocks arose as a finger exercise on a given theme : the exclusions between
critical sections. The results obtained are important as they provide strong theorems on the
problem. Furthermore, they raise a deeper question : are deadlocks only pathological behaviours
of the allocation of resources, or are they intrinsic characteristics of concurrent progreams.

The research pursued for this thesis suggests that part of the truth lies in the second alternative
problems of synchronization can generate deadlocks whatever is the way they are programmed.

Finally the conclusion of these conclusions is : Beyond the many answers that we have
found along our route, either in the works of other researchers or in our own efforts, there
are still many unknown areas, and at the end of these pages we cannot but write, modestly,

a question mark.



9. APPENDIX.

It is evident that different primitives can describe the same synchronizing effect. This
was illustrated on the examples of section 5. In some sense, certain structures of primitives
can be defined equivalent if they program the same synchronization. The purpose of this
Appendix is to give a formal treatment of these equivalences for the d-operations with majority
law.

The two theorems given here can be used to transform a set of d-operations into an equivalent
set where all the passage (resp. closing and opening) operands are single. The equivalences are
defined as linear transformations on the semaphore variables. In the definitions, one must
handle carefully all the particular cases, and this obscures the simplicity of the method.

If we teke the d-operations with majority law, their general form can be defined :

plx) : x « £{x) p(x) = [ alxi > 0 al  {0,1} (i is an index for al)
i
flx) = x~-d+u
x = [xq ¢4 =1]d uo= fuy the di and the u; are positive integers.
X, dn u,
We can define the a; by the vector a = [?l .. an] and p(x) = @ > 0
We can now define Np passage conditions
i

’ X = a, X. 1< < N

py(x) E FES 3N
by the matrix P = gi

- of order (Np,n)

and similarly, Nd closing operands vectors and Nu opening operands vectors by the matrices
D of order (n,Nd) and U of order (n,Nu)

A set 8 of d-operations defined on P, D, and U is represented by a set of N triples T :

(1, 1, K) 0<sisgNy, 05N, 0skshy

The operation (i, j, k) is written :
Pix < 0:xex-a +u

where 5i is the i-th row of P, g; the j~th column of D, and EF the k-th column of U. If one index

is zero (say 1 = 0), the corresponding operand is absent ( in this case the passage operand) .
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Definition. # Two sets of d-operations

8= <X, n, N, Np, Ng» Ny» P, D, U, T> and S' = <y, m, M, Mp. Mg>» Mu’ Q, E, V. R>
are linearly equivalent if :
1. M =N, Mp =.Np, Md = Nd’ Mu = Np, and R=1T
2. There are linear transformations : Lx =y and/or x = Ry
such that : P = QL and/or Q = PR
E = LD and/or D = FR
V=1LU and/or U = VR *

i i i i i igbles x and y are in
This means that two sets of d-operations are linearly equivalent if t?e varia ; ]
linear relation by R and L (including their initial values) and if the net effect of synchronization

is identical since :

PRy = Px = Qy = Qlx

Theorem 1.
5 = <z,n,N,Np,Nd,Nu,P,D,U,T> and st = <X,NP,N,NP,Nd,Nu,Q,E,T>
where Q = lN are linearly equivalent with : L =P, E=PD, V =PV
D

Proof. Immediate since P = QL = QP = 1N P=P
P

This means that S is equivalent to a set of d-operations S8' where all the passage operands are single
passage operands.

Theorem 2.

s = <§,n,N,Np,Nd,Nu,P,D,U,T> and s' = <x,Nd,N,N ,Nd,Nu,Q,E,V,T>

D
where E = lNd s U=VR , §=PR , R =D, are linearly equivalent.

Proof. Immediate since D = ER = ED = lNdD =D

This means that S is equivalent to S' where there are only single closing operands.

Remarks.

1. From a constructive point of view, if we assume P, D, U given, E and Q can be computed
lmmediately, and V is an arbitrary matrix {with positive integer elements) such that U = VD

2. IfU=D (and Ny =N_) then : §' = <1,Nd,N,Np,N

N,0,1y,1 , T >
In 8' all closing and opening operands are single. ara 4" Ng

As an example of application of the second theorem, we can take the first problem of Readers-Writers {5.1.}.
The programs were :

: : d s __:down s H s, 18 idown s H
8, :down s H s8_ :s _:down 8.r28 an o - ot Srw e
wr readingw; W writing ; reading ; writing ;

. s up 8__ ; Up Sene 3
Up 8y _\_IE_BW,SW, --P—rw’ '_BW



-t

For the first program, the set of d-operations is defined by (using the notations of theorem 2)

X = I8, n=3 P=[100 N =2
Spw 011 P
SW

T = {(1,1,0), (0,0,1), (2,2,0), (0,0,2)}

For the second program, we have :

y=1s m=Ny,=2 E=V=1,=][10
[srw] d Ng 01
ww

This gives, for the second program,the operations :

s :down s
— "rw

u : :
- - up S Srw' S down s__

Iw

[ ]
— O
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