WIS-CS-75-241

COMPUTER SCIENCES DEPARTMENT
University of Wisconsin

1210 West Dayton Street
Madison, Wisconsin 53706

Received February 20, 1975

ON THE COMPLEXITY OF GRAMMAR AND RELATED PROBLEMS

H. B. Hunt, III
University of Wisconsin - Madison

and

T. G. Szymanski
Princeton University

Technical Report #241
February 1975

ON THE COMPLEXITY OF GRAMMAR AND RELATED PROBLEMS

H. 8. tunt, 111"
University of Wisconsin - Madison

T. 6. Szymanskit
Princeton University

1. Introduction

In {17 and 2] a complexity theory for formal
languages and automata was developed. This theory
implies most of the previously known results and
yields many new results as well. Here we develop
an analogous theory for several classes of more
practically motivated problems. Two such classes,
both closely related to formal language and au-
tomata theory, suggest themselves - grammar prob-
Tems and program scheme problems. Here, our
primary emphasis is on grammar problems of inter-
est in parsing and compiling. Other problems
considered include -

(1) possible techniques for proving non-trivial
tower complexity bounds for prohlems .n P ;

(2) the relationship of the complexity of’
tree automaton equivalence, structural equiva-
Jence, and grammatical covering; and

(3) the complexjty of the equivalence problem
for schemes.

In each case we relate the computational complex-
jty of a problem to its underlying combinatorial
structure. The remainder of the paper is divided
into four sections.

In Section 2 we consider context-free gram-
mar problems. In 2.1 we show that most of the
known undecidability results about context-free
granmar problems follow from one simple idea.
Roughly, any class of grammars that contains

+The research of the first author was supported
in part by NSF Grant GJ-35570 and by U.S. Army
Contract No. DA-31-124-ARD-D-462.

*The research of the second author was supported
in part by NSF Grant GJ-35570.

the intersection of the strong LL , and

SLR grammars and is contained in'any reason-
able proper subclass of the context-free grammars
(e.qg. the unanbiguous context-free gramnars)

is undecidable. Thus there is no need for the
special constructions, such as the partial Post
Correspondence Problem [3] or the iterated par-
tial Post Corvespondence Problem [4], used in
the literature. Morcover, all of the known non-
trivial lower bounds for decidable grammar prob-
Jems in [5] also follow from our theory. In

2.2 we present relativizations of the results

in 2.1. A general complexity theorem for non-
canonical parsing ([6] or [7], pp. 485-487) is
also presented.

In Section 3 we consider the problem of
proving nontrivial lower complexity bounds (both
time and space) for problems in P . Several
partial results are obtained. In 3.1 the follow-
ing is shown - for all integers ko > 1, for
all classes of context-free grammars [such
that the LL(kO) grammars < I' ¢ the LR(kO) gram-
mars, and for arbitrary context-free grammar
G , the predicate “Gel' requires as much time
and space as the predicate "G is an LL(kO) gram-
mar'. In 3.2 results about stack automata in
[27 are extended to multi-head finite and push-
down automata as well. Our results reveal two
simple ideas that underlie many of the results
in [23, [8), [9], {101, (111, (121, (131, D04],
and [15]. One interesting corollary is - all
nontrivial predicates on the context-free langu-
ages and many nontrivial predicates on the de-
terministic context-free languages, when applied
to the pushdown and deterministic pushdown au-
tomata, respectively, require as much time and

space as the recoynition of any 2-way pushdown
automaton language. The best known algorithms
for 2-way pushdown automaton recognition require
O(n3) operations on RAM's{[15] and Section 3.2
below). In 3.3 the results in [2] and the rest
of Sections 2 and 3 of this paper are extended
to automata and grammars on trees rather than
strings. In Section 4 we consider the complex-
ity of several decidable problems about program
schemes.

We 1ist several abbreviations, definitions,
and lemmas used in the remainder of this paper.
We assume that the reader +is familiar with the
basic definitions and results concerning context-
free grammars and languages, otherwise see [7].
We use A to denote the empty string. The lan-
guage generated (accepted) by a grammar (automa-
ton) G is denoted by L(G) .

The following abbreviations are used through-
out the remainder of this paper.

DSA - deterministic stack automaton

RAM - random access machine

10. BC - bounded context grammars

11. BCP - bounded coantext parsable grammars [16]
12. BRC - bounded right context grammars

13. SLR - simple LR grammars

14. 1i.0. - infinitely often

15. a.e. - almost everywhere, when applied to

the nonnegative integers almost every-
where means except for a finite set

of nonnegative integers.

1. c¢fg - context-free grammar

2. ¢fl - context-free language

3. PDA - pushdown automaton

4. DFA - deterministic finite automaton

5. NDFA - nondeterministic finite automaton
6. Tm - Turing machine

7. SA - stack automaton

8.

9.

Def. 1.1: A c¢fg 6 1is said to be ambiguous if
some string xel{G) has two distinct left-most
derivations, or equivalently, two distinct right-
most derivations, or equivalently, two distinct
derivation trees. G 1is said to be inherently
ambiguous if all cfg's generating L{G) are
ambiguous. B

Def. 1.2: Let k be a positive integer. A
cfg G is said to be ambiquous of degree k
if each string xel{G) has at most k distinct

derivation trees and some string xrlL(G6) has
at least k distinct derivation trees. G issaid
to be inherently ambiquous of degree k 1if every
grammar generating L(G) is ambiguous of degree
>k and some grammar generating L(G) is ambiguous

of degree k .

G is said to be infinitely awbiquous if
for each positive integer 2 , there exists a
string xeL(G) such that x has at least &
distinct derivation trees. G is said to be
infinitely inherently ambiquous if each grammar

generating L(G) is infinitely ambiquous. It
is known Lhat for all k = 2 there exists an
inherently ambiguous c¢fy of degree k . Sim-
itarly it is known that there exist infinitely
inherently ambiguous c¢fg's [17]

Inherently_awbiguous _cfl's , inherently

ambiguous ¢fl's_of degree ¥ , and infinitely

inherently ambiguous cfl's arc defined analo-
gously. Thus a c¢fl L is infinitely inherently
anbiguous if every c¢fg generating L is in-
finitely inherently ambiguous. A cfl that

is not inherently ambiguous is said to be unam-
biguous.

Def. 1.3: P{NP) 1is the class of all languages

over (0,1} accepted by some deterministic (non-
deterministic) polynomially time-bounded Tm .
PSPACE is the class of all languages over (0,1}
accepted by some polynomially space-bounded

Tm . B

Def. 1.4: Let ¥,A be finite nonempty alpha-

bets. Let L ¢ I* and M < A* . We say that

L is p-reducible to M, written L <M,
ptime

if there exists a function f : I* - A* comput-

able by a deterministic polynomially time-bounded

Tm such that for all xei* , xel iff f(x)eM .

If L is p-reducible to M and M is p-

reducible to L , then L and M are said to

be p-equivalent. L issaidtobeNP-hard(PSPACE-

hard) 1f all languages in NP{PSPACL) are p-reducible

to L. L issaidtobe NP-complete(PSPACE-complete)

if it is NP-hard{PSPACE-hard) and is accepted by
some nondeterministic polynomially time-bounded
(polynomially space-bounded) Tm . 4]

Def. 1.5: A log-space transducer M is a de-
terministic Tm with a 2-way read-only input
tape, a l-way output tape, and several 2-way
read-write work tapes such that M given input
x always halts with some string y on its out-
put tape and such that M never uses more than
0(loglx|) tape cells on its work tapes. Let
i,4 be finite nonempty alphabets. A function
f : L% > A* s said to be log-space computable
if 31 a log-space transducer M such that
M , when given input xei* , eventually halts
with output f(x) . For L = &* and N c A%
we say that L s log-space reducible to N ,
written L < N, if 1 a Tog-space computable
lo
function f such that for all xer* , xel iff
f(x) e N . [If in addition [f(x)] < t{|x])
and some 1o?vspace transducer that computes

f is 0(t{]x]))time-bounded, we denote this by
L <N.

Tog

t{n)(space+time)

Let Ndtape{log n) denote the class of
all languages over {0,1} accepted by some non-
deterministic log n tape-bounded Tm . A langu-
age N is said to be log-complete in Ndtape
{log n) if for all LeNdtape(log n) , L < N; and

log

N is accepted by some nondeterministic log n
tape~bounded Tm . Similarly N 1is said to
be log-complete in P if for all LeP , L <N
Jog

and N is accepted by some deterministic poly-
nomially time-bounded Tm . 2]

The reader should note that every loy-space trans~-

ducer is polynomially time-bounded. Thus L <N
log
implies L < N .
ptime

The following proposition lists some of the
well-known properties of NP-complete languages,
PSPACE—complete languages, etc.
Prop. 1.6:
Y P =n0p iff 1 an NP-complete language

L0 such that LOEP
(2) P(NP) = PSPACE iff 1 a PSPACE-complete

language Ly such that LOEP(NP) .
(3) Dtape(log n) = Ndtape(log n) iff 1 a langu-

age LO such that LO is log-complete in

Ndtape{log n) and LosDtape(log ny .
(4) tet k> 1. P btape([log n)¥) iff 3
a language LO such that %9 is log-complete
in P and Lothape([logn] . 8
Def. 1.7: A language L c I* 1is said to be
bounded iff 31 strings w],.n.,wkcx* such that
*

*
L E,W]’WZ'---’Wk . A language that is not bounded

is said to be unbounded. #

prop. 1.8 [18]: A regular set R over {0,1}*

Ts unbounded iff 3 strings r,s,x, and ye{0,1}*
such that r-{0x + ly)*s < R . B

Def. 1.9: Llet A,Bci* . AB = {y|]ixeA and
x-yeBY . A/B = {x|3yeB and x-yeA} . A\B(A/B)
is called the left quotient of B with respect
to A)(the right quotient of A with respect
to B).]

2. Grammar Problems

Grammar analogues of the general complexity
results for formal languages and automata in
[13 and [2] are presented. Most known undecid-
ability and subrecursive results about grammar
problems follow from our general theorems. The
reader should note that there is a difference
between problems about the cfl's such as -
"for arbitrary cfg 6 is L{G) regular?”, which
is undecidable, and problems about cfg's such
as - "for arbitrary cfg G is G a regular
grammar?", which is decidable deterministically
in linear time.
2.1 Grammar Complexity Metatheory

First we state and prove a powerful complex-
ity theorem for context-free language problems.

Thm. 2.1: Let 5 be any subset of the finitely
inherently ambiguous cfl's over {0,1} such

+We sometimes use "+" to denote union. Thus
AMB = AuB .

that iLtpU , where Lt has an unbounded regular

subset. Then for arbitrary c¢fy G, the predicate
"L{G)es" is undecidable. <]

Proof: As the reader can verify, the finitely
inherently ambiguous c¢fl's over (0,1} are
closed under quotient with single strings on both
the left and the right, and under all inverse

homomor phisms h'1 , where h is defined by
h(0) = 0x and h{(1) = 1y for some Xx,y.{0,1}*

By assumption JLtcﬁ such that Lt has an

unbounded regular subset. From Prop. 1.8 this
implies that 1 strings r,s,x,yc{0,1}* such
that re(Oxtly)*-s ¢l Let h],h2:{0,l)*>(0,1]*

be the 1-1 homomorphisms defined by h3{(0) =
0x, h](l) = 1y, hZ(O) = 0x0x, and hz(]) = Oxly .

Let Lf be some infinitely inherently ambiguous

cfl over {0,1} . For all cfg's G a cfgH
can be constructed effectively such that -

L{H) = Ltn~r-(Ox0x+0x1y)*-1y0x-(Ox+1y)*-s +

r-[hz(L(G))-1y0x-(Ox+1y)*+(0x0x+0x1y)*~1y0x-h1(Lf)}-s.

But L(H)es iff L(G) = {0,1}* . Thus the exis-

tence of a decision procedure for "L(G)eS" im-
plies the existence of a decision procedure for
“L(G) = {0,1}*" , a predicate well-known to be
undecidable.

There are two cases to consider.
Case 1: Llet L{G) = {0,1}* . Then
L(H) = Ltn~r-(0x0x+0xly)*-1y0x-(0x+1y)*-s +
re (0x0x+0x1y)*+ 1y0xs (Ox+1y)*s

+o...00= Lt . Thus by assumntion L(H)eS .
Case 2: Let L(G) ;4{0,1}* . Then hz(L(G))
(0x0x+0x1y)* . Let we(OxOx+0x1y)* - hz(L(G)) .

Let z=hy'(w) . Since h, is 1 -1, z4L(6) .
Thus, r-hz(z)'1y0x\[L(H)/s] = h](Lf) + I , where
L= {a[r-hz(z)-]yOx-a-seLtn~r-

[(0x0x+0x1y)*-0x1y* (Ox+1y)*J-s} . Since h]

is also 1- 1. b (h (L) = Lp + 0y (E)

But geh; (1) implies that a = hy(8)e(Ox+ly)*
This implies that -
r-h2(2)~1y0x-u~ser-[(0x0x+0xly)*-1y0x-(0x+1y)*}-s ,
a contradiction. Thus L;](L) = ¢ ; and

b1 (rehy(2) 1O [L(H)/5D) = Ly . But noting

the closure properties of the finitely inherently
ambiguous cfl's mentioned above, this implies
that L(H) s infinitely inherently ambiguous.
Thus L(H)¢S .

Thm. 2.1 shows that one simple idea under-
lies the undecidability of most of the classes
of c¢fl's studied in the Titerature. The fol-
Jowing corollary of 2.1 illustrates its power and
applicability.

Thm. 2.2: The following classes of cfl's sat- Prop, 2.3: Let M, T{n), ¢, and x be as described
1sfy the conditions of Theorem 2.1: above. Let k = c-[T(|xI)]Z Then in time

1. regular sets; < c]-lx[cfg's Gl’ 62 and G3 cach of size

2. simple precedence languagess . oy

3. operator precedence languages; 6 + [x] , where 4 and Cp are constants

4. s-languages; depending only upon M not x , can be constructed
5. for all k > 1 the LL(k) languages; such that the following are equivalent:

6. LL Tanguages; . y .

7. real-time strict deterministic languages; (1) M accepts x 3

8. strict deterministic languages;) L(G)”L(GZ) 2o

9. for all k > 0 the ELC(k) Tanguages;

10. ELC languages; Gq is inherently ambiguous;

(2

(3)
11. LR(0) languages; (4) Gq is ambiguous;
12. deterministic cfl's; . .
13. LR Regular languages; (8) G3 is not strong LL(K) 3
14. RP? Janguages; (6) 6, not SLR(k) ; and
15. LR{1,=) languages;
16. BCP languages; (7) G3 is not LALR(k) . n
17. FPFAP languages; .
18. full SPM parsable languages; Proof: Gl and GZ are equal to Gl[M’XJ and
19. unambiguous cfl's; GZ[M,x] , respectively. G3 is the cfg whose
20. for all k > 2 the inherently ambiguous cfl's : : .

of degree equal to (less than or equal to) productions consist of

ky and] (a) all productions of 6, and G, 3
21. finitely inherently ambiguous cfl's. (b) S » AS]$S3|B¢52$S4 , vihere Sl and 52 are
Tous Lovtitg 1, Semote = of he sbove classes the start sybols of & and G respec-
cidable for arbitrary cfg G . B tively; :
Thm. 2.2 follows immediately from Thm. 2.1 and (e} A~ ¢¢
known properties of language classes 1-20. Def- (d) B+ ¢ 3
initions of these classes may be found in [7] (e) S4 -+ aTbel ;
(1-6,11,12); [19] (7.8); [20] (9,10); [21] (13); (f) T~ aTblab ;
[61 (14-17); and [22] (18). {g) U+ cl]c ;

Let M be any deterministic Tm that al- (h) 54 -+ aVbWe ;
ways halts on the right end of its tape. Then (i) v - aV]a ; and
M is 0(T(n)) time-bounded for some strictly (j) W -+ blcjbe .
increasing recursive function T(n) . Given We assume that {S,A,S3,B,S4,T,U,V,N} is dis-
an input string x to M, two cfg's G][M,x] joint from the union of the nonterminal alpha-
and G2[M,x] can be constructed effectively bets of G] and GZ :)
in linear time on a mu]ti—ﬁape Tm such that - wel (G I§nL?G ?C?ED%ﬁUSX L%gz?n¢g.w?$?§1129
L] = L(G][M,x]) = fo{yefirz «#ly, z are i.d.'s Chowe $ [{a Bhe]n,m 3A2}u{anbmcm[n,m > 217 .

of M and ylz}*-§ and Since the unamb1guous ¢fl's are closed under

intersection with regular sets, this shows that

I, = 2[M x]) = #+ oyt {foyTeteyly is an i.d. G3 1is inherently ambiguous. Hence a fortiori

of M}*e{f-z -#[z is an accepting i.d. Gy is ambiguous and is not strong LL(2) , SLR(%) ,

of M}+$, where % is the initial i.d. or LALR(2) for any choice of & . If M does-

not accept x , then L(G])nL(GZ) = ¢ and no
pair of words in L(G]) and L(Gz) have a com-

mon prefix of size k . By inspection of the
productions of G, , this implies that G3 is

prefix of length > ¢ [T(]x]|)]" for some posi- strong LL{k), SLR{k), and LALR(k) . f
tive integer ¢ depending only on M not x .
Moreover, G][M,x] and GZ[M,x] are strong

of M or x.
For sufficiently fast increasing functions T(n) ,
no pair of words in L] and L2 has a common

In what follows (denotes the intersection
of the strong LL and SLR granmars.* Our

LL and SLR grammars. first major result follows from Prop. 2.3.

JrA more complex construction in Prop. 2.3 allows

1Fweaker versions of Thm.'s 2.1 and 2.2 appear (1) of 2.4 to be replaced by the intersection
in [2]. of the BRC, stronglL , and SLR grammars < I

Thm. 2.4: Let T be any class of cfg's such
that

(i) ¢ < 1 and
(ii) I' © the class of cfg's that are not in-
herently ambiguous.

Then for arbitrary cfg G , the predicates
My = "G and My = BLLG) L) = (UL = L{g)

with gul')" are undecidable. B
Proof: Suppose H] is decidable. Then there

exists a strictly increasing recursive function
£ that bounds the time required to decide H] .

tet M be any 0(T{(n)) time-bounded Tm with
T(n) » n strictly increasing. From 2.3 L(M)
is recognizable by some ¢y°n * f(c2+n) time-

bounded Tm # , where c] and ¢, are constants
depending only upon M not x and n = Ix] .
¥ operates as follows.

1. Given input x , M constructs G3 of Prop.
2.3.
2. M tests if H](G3) is true. If so then

xtL(M) . If not then xel (M) .
Clearly, step 1 requires at most ¢qen time;
and step 2 requires at most f(c2+n) time.
By Prop. 2.3 if xgL(M) , then G3ea§r ; and
if xel(M) , then G3 is inherently ambiguous
and, hence, G3¢F .
Finally for all positive integers a,b,

the recursive function F(n) = n“ + f(2n) is
strictly greater than aen + f{b+n) , a.e. Thus
if H] is decidable, then every recursive set

is accepted by some F(n) time-bounued Tm .

But it is well-know. that for every recursive

function r{n) , there exists a recursive set

R that is not recognizable within time r{n)

a.e. on any Tm [23]. B
Thm. 2.4 shows that one simple idea and

construction also underlies the undecidability

of most of the classes of cfg's studied in

the literature. The following corollary illus-

trates Thm. 2.4's power and applicability.

Thm. 2.5: The following classes of cfg's sat-
isfy the conditions of Theorem 2.4:

1. strong LL 3

2. LL 3

3. strong LC 3

4. LC 3

5. ELC 3

6. k-Transformable for some k ;
7

8

. SLR 3
. LALR 3
9. LR 3
10. Floyd-Evans parsable;
11. LR Regular;
12. FPFAP 3
13. SLR{k,=) , LR(k,») for some k ;
14. RPP ;
15. basic SPM parsable ;
16. full SPM parsable ;

17. unambiguous cfg's ; and
18. the class of cfg's that are not inherently

anbiguous.
Thus letting 1" denote any of the above cfg
classes, the predicates "Gei™ and "L(G)r (L]L =

t{g) and gef'}" are undecidable for arbitraryx
cfg G . -]
Definitions of these grammar classes may be found
in [7] (1-4, 7-10, 17, 18); [61 (12-14); [20]
(5); [21] (11); and [22] (15,16).

Subrecursive analogues of Thm. 2.4 also
hold. Let ¢(k) = the intersection of the strong
LL{k) , SLR(k) , and BC{k,k} grammars.

Thm. 2.6: lLet I' = ¥ r, be any class of pa-

rameterized cfg's such that for all k21,
c(k) s the class of c¢fg's that are not

inherently anbiguous. Then
(i) Ly = {(6,v)|G s a cfg, v is a unary
numeral for the positive integer n , and
64T} > NP and
log
(i) L, = {(6,v)|6 is a cfg, v fis a binary
numeral for the positive integer n , and
G¢Fn} > NDEXP .
log
n(timet+space) B
The proof of 2.6 is closely related to proofs
in [5] and the proof of 2.4 and will not be pre-
sented here.

Cor. 2.7: For all classes of cfg's I' satis-
fying the conditions of Thm. 2.6,

(1) Iy is NP-hard; and

(ii) Ja constant c > 0 such that any nonde-
terministic Tm that accepts Iy requires

time > 2°" , 1.0,]

Thm. 2.8: The following classes of cfg's sat-
isfy the conditions of Thm. 2.6.

BC

BRC ;

strong LL ;

. LL s

strong LC ;

LC

ELC ;

k-Transformable for some Kk ;

SLR

LLALR ; and

1. LR . 5]

Noting results in [5] the uniform lower time
bounds of Thm. 2.8 are fairly tight.

Prop. 2.9: for each of the classes 1-7, 9, and
17 of Thm. 2.8,

p—
SOwD~NIOTT S W

[T

JrThe undecidability of classes 15 and 16 was
not previously known.

(i) 2 is in NP ; and

(ii) 1
recognizable by some nondeterministic O(Zdn)
time-bounded Tm . a

2.2 PRelative Decision Problems

a constant d - 0 such that L2 is

Next we consider relative decision problems.
LR(2) , is it
LL grammar?

For example, if a grammar G 1is
decidable if G
much time is required?

is an If so how
Qur first results are

described in the following table

TARGET CLASS

Scource
Class LR _LALR SLR LL strongLlL
LR{k) T Tk=0 Tk=0 D[32] D kzl
U k>l U k>l U k>2
LALR(k) T T Tk=0 D D k2
U k>l U k>2
SLR(k) TOT T 0 D k<1
U k>2
LL(k) T Tkel Tkl T T k<l
U k>2 U k>2 U k>2
stronglL(k) T T k<l Tkel 7 T
Uk>2 Uk»2

Here, T denotes trivial; D denotes decidable;
and U denotes undecidable.
Typical results include -
(i) For arbitrary LALR(kO) grammar G with
k0 > 2, it is undecidable if G 1s strong
LL(k)

(i1) In the decidable cases a maximal possible
k exists. Moreover, the magnitude of
k -~ kO depends only upon the size of G ,

the grammar in question. Thus, an LR(kO)

for some Kk .

grammar is an LL grammar iff it is
LL(fa)l81+2 4 ko) -
Bounds for the other pairs of classes will appear
in [31].
A noncanonical parsing analogue ([6] or
{77 pp. 485-487) of Thm. 2.4 also holds.

Thm. 2.10: Llet T be any class of cfg's such
that the SLR{1,») grammars [6] < T ¢ the un-
ambiguous cfg's . Then for arbitrary cfg G,
the predicates "GeI'" and "L{G)eL(I)" are
undecidablie.

Other relativizations will appear in [31]
3. Lower Bounds for Problems in P

We consider the problem of proving nontriv-
ial lower time and/or space complexity bounds,
especially for problems in P . Several partial
results are obtained. The "efficient" reduci-
bilities defined in Section 1 are shown to yield

insights into the relative complexities of prob-
Tems in P .
3.1 Lower Bounds for Grammay Problews

Recent results [24] have shown that the
strong LL{k) , LL(k) , SLR(k) , and LR{k) prop-
erties can all be tested deterministically in
is fixed in advance. In

polynomial time if k
fact the bounds in [24] have been improved to

O(nk42) operations in each of these cases [5].
Our intuition suggests that many if not most of
the O(nk+]) LR(k) items must be considered

to decide the LR(k)
suggests that the amount of time required for
LR{k)
ever using results in [9] and 5], we show that

implies that

property, and thus strongly
testing grows exponentially in k . How-

such exponential dependence upon Kk
P # NP . This suggests that the relative time
complexities of strong LL(k) , LL(k) , SLR(k) ,
and LR(k) and the rela~
tionship between the time complexity for LR(k)
and LR(k+1) testing merit investigation.

Thm. 3.1 [9]: P = NP iff there exists a recur-

sive translation ¢ and a positive integer k ,
such that for every nondeterministic Tm Mi R

which uses time Ti(n) >N, Mc(i) is an equiv-
alent deterministic Tm working in time
o (m1* . g

Thm. 3.2 [5]: Let c¢(k) represent one of the
Tollowing grammar classes: the LL{k), LC(k),
LR(k), strong LL{k), strong LC(k), or SLR(k)
grammars. Then there exists a nondeterministic
Tm M and constants a,b,c such that

(a) L{M) = {{G,k)|G is not c(k)} and

(b) M performs at most a-|G b-kc moves on any
input (G,k) . 1

Combining these theorems we have the follow-
ing -
Thm. 3.3: If for all integers £ > 1 there ex-
Jsts an integer k > 1 such that LL{k) , LC(k) ,
LR(k) , strong LL(k} , strong LC(k) , or SLR{k)

testing requires time > O(ng) j.o., then
P#NP. B

Proof: From 3.1 P = NP implies that o3 @
constant d > 0 such that LeNd time(n™) im-

plies that LeD time(ndl) for all integers

2 >0. Thus P = NP, 3.1, and 3.2 imply for
all k> 1, that LL(k) , LC{(k) , ... , and
SLR(k) testing require time at most

0([a~[G|bkc]d) < O(de]Glbd) on some determin-
istic Tm , where b,c,d are constants independ-
ent of k . [
Thus a proof that the time required for LR(k)

testing grows exponentially in k would repre-
sent a major breakthrough in theoretical computer
science.

testing for fixed k

Using the "efficient” reducibilities in-
troduced in Section 1 we can, however, discuss
the relative complexities of LL{k) and LR(K)
testing.

Thm. 3.4: Let I' be any class of cfg's for

vihich
i} Jk, > 1 such that the LL{k,) grammars

0 - 0
<l e LR(kO)

an LL(k,) grammar} < {G]Get)
log
nlogn{spacettime)

(i) 3k0 > 1 such that the strong LL(kO) gram-

grammars. Then {G|G is

mars n SLR(kO) grammars ¢ I' ¢ the strong
LL(kO) gramnars v SLR(kO) grammars. Then

{G]G 1is a strong LL(kO) grammar} < {G}Gei'} .

log
nlogn{space+time)

Proof of (i): Brosgol [20] has shown that for
each cfg G, a c¢fg G' can be constructed
"efficiently" such that G' s LR(kO) iff

G is LL(kO) . Moreover, one can easily ver-
ify that G' 1is also LL(kO) if it is LR(kO) .
Thus G'el' iff G is LL(kO) ; and the con-

struction of G' from G requires at most
0(nlogn) space and time on a log-space trans-
ducer.

Informally every class I of cfg's satisfying
the conditions of (i) or (ii) of 3.4 is as hard
to test for as LL(kO) or strong LL(kO) test-
ing, respectively. frammar classes satisfying
(i) include the LC(kO) s ELC(kO) s k0~transw
formable, and LR(kO) grammars.

Thm. 3.5: For all integers kO >1,

(i) {G]6 is a strong LL(kO) grammar} < {G|G
Tog
nlogn(space+time)
is a strong LL(k0+1) grammar}

(i1) {G]6 s an LL(kO) grammar} < {G|G is an

log
nlogn{space+time)
LL(k0+T) grammar} ; <
(iii) {G|G is an SLR(kO) grammar}1og {G|G is
nlogn{spacettime)

an §LR(k0+1) grammar} ; and _

(iv) {G|G is an LR(k,) grammar} log {G|G is an
) nlogn(spacet+time)
LR(kO+1) grammar} . B

Thus, informally, increasing k does not de-
crease the complexity of LR(k) testing.

3.2 Multi-head Finite, Pushdown, and
Stack Automata

One simple idea that underlies and unifies
much of the recent work on the relationship of
time and space complexity classes is presented.

This idea unifies and extends many of the results
in [23, (81, [9], D101, [11], [12], [13], [val,
[15], etc. Many new hardest time and/or space
languages for Ndtape (logn), P , the 2-way PDA
languages, etc. are presented. We also present
strong evidence for the nonlinearity in time of
every nontrivial predicate on the cfl's , when
applied to the PDA .

Thm. 3.6: Let ' be any nontrivial predicate

(1) on the regular sets over {0,1} such that
(¢) is false, then {M|M dis an NDFA
(reguiar grammar) with A-moves (A-produc-
tions) and (L(M)) ds true) » Ndtape {logn);
log

(2) on the deterministic cfl's over (0,1}
such that Pr(¢) 1is false, then {(M|M is
a deterministic PDA and P(L(M)) is true}
>
tog

(3) on the strict deterministic languages over
{0,1} such that #£{o) is false, then {G|G
is a strict deterministic grammar and P(L(G))
is true} > P .

log
(4) on the cfl's over {0,1} such that P(¢)

is false, then {M|M is a PDA or cfg and
P(L(M)) is true} > P and (MM is a

*

log
PDA and P(L(M)) is true} > 2-way
log
nlogn(space+time)

PDA languages;

(5) on the 1-way DSA languages over {0,1} ,
then 3 ¢ >0 such tht (MM is a l-way
DSA and P(L(M)) 1is true} requires at least

O(ZC") time i.0. on any deterministic Tm ;

(6) on the l-way SA languages over {0,1} , then
3c¢>0 such that {M/M is a T-way SA
and P(L{M)) is true} requires at least
0(2cn2/[1ogn]2)
tic Tm

(7) on the indexed languages over {0,1} , then

3r >0 such that {G{G is an indexed or
0l-macro grammar and P(L(G)) 1is true}

time i.0. on any determinis-

r
requires at least 0(2n) time i.0. on any
deterministic Tm ; and

(8) on the recursively enumerable sets over
{0,1} such that P(¢) is true, then (MM
is a Tm or type 0 grammar and P(L(M))
is true} is not recursively enumerable. B

Proof sketch: Detailed proofs can be found in
T257.

(1) It is well-known that the class of languages
accepted by 2-way NDFA equals Ndtape(logn) .
Let » be any nontrivial predicate on the requ-
lar sets such that r($) is false. Since 7

is nontrivial there exists an NDFA MO such that

P(L(MO)) is true. let Ly = L(MO) . Clearly
Ly ? o

Let Mi be an arbitrary 2-way k-head NOFA

with k = 1 . For all xc{0,1}* , an NOFA
Mi M with A-moves can be constructed such thatl
d if x4L(Mi) ,
L(Mi,x) =
Ly if xeb(My)
For each input x = XXy to Mi , Mi,x

is constructed as follows:

(a) A1l input tape configurations of Mi on
x are embedded in Mi 's finite state con-
trol. o X

(b) 1My) < cqo1xI*Toa(Ix]) , where ¢

only upon M, and My noton x .

(c) Mi,x simulates Mi on x . If Mi accepts
X , then Mi,x simulates My on its (Mi,)'s
input. If Mi
L(Mi,x) =4

(d) For fixed 1 , the construction of Mi,x

from Mi and x can be accomplished on a

deterministic log |x| space-bounded trans-

depends

X
does not accept x , then

ducer.
Mi X's simulation of Mi on input x only
s
involves X-moves. Mi x's state set includes

states of the form (p:v],...,vk) , where p
denotes a state of Mi and Vireeaay o are binary
numerals for positive integers Nyseeesly re-
spectively, with nys....ny <]x| = n . State
(p,v],...,vk) signifies that M; 1is in state

p and'that its first input tape head is scanning

n]EEA character of x , its second input tape

head is scanning the n2§£ character of x ,
etc. The construction of Mi,
x can be accomplished within 0(]x[k-log[xl)
time and with 0(logn) intermediate storage.

But P(L(Mi,x)) is true iff xeL(Mi) .
This follows since x¢L(Mi) implies that
L(Mi,x) = ¢ and P(L(Mi,x)) is false by assump-
tion. Otherwise L(Mi,x) = L. and P(L(M, _))
is true by assumption.

(2) Cook [26] has shown that the class of
anguages accepted by 2-way multi-head determin-
istic PDA equals P . The proof is analogous
to that of (1) of this theorem and is left to
the reader.

(3) The proof of (3) is essentially the same

as that of (2) noting the following fact about
strict deterministic grammars - for every dpda
M with a single final state, the canonical gram-

?ar; Gy of M is a strict deterministic grammar
19].

from Mi and

0 i,x

Tsee [197] for the definition of canonical grammar.

(4) Cook [26] has also shown that the class of
languages daccepted by 2-way mulli-head PDA
equals P . The theorvem holds for the c<fg's
as well as the PDA since there exists a de-
terministic log space transducer M such that
M, when given a PDA as input, outputs an
equivalent c¢fg G

(5) The class of languages accepted by l-way
DSA equals the class of languages accepted by

O(2L”]09n) time-bounded deterministic Tm's
[26]. This, together with known time hierarchy
results and a construction like that used in the
proof of (1), implies (4).

(6) The class of languages accepted by 1-way

SA equals the class of languages accepted by

2
0(2°") time-bounded deterministic Tm's [26].
This, together with known time hierarchy results,
and a construction like that used in the proof
of (1), implies (5).

(7) The algorithms in [27], (28] for convert-
ing an arbitrary l-way nested SA into an equiv-
alent indexed grammar, for converting an arbi-
trary indexed grammar into an equivalent OI-
macro grammar, respectively, can be seen to be
executable deterministically in polynomial time.

(8) tet M; be any arbitrary Tm . For all
xe{0,1}* , a Tm Mi 5 can be constructed ef-

fectively such that, L(Mi,x) =lo if x¢L(Mi),
L0 otherwise.

Here LO is some nonempty reset for which

B(Ly) s false. Thus {M[M is a Tm and

M diverges on empty input} 1is effectively
reducible to {M|M is a Tm and P(L{M))
is true} .

Theorem 3.6 shows that every nontrivial
predicate on the 1-way 1-head NDFA , determin-
istic PDA, PDA, DSA , and SA requires as much
time and/or space as any language recognizable
by a 2-way l1-head NDFA , deterministic PDA,
PDA, DSA , and SA , respectively. We present
a partial converse.

Thm. 3.7:

(1) Ly = MM is an NDFA with X-moves and L(M) #
¢} is the accepted language of some 2-way
2-head NDFA.

(2) L, = (MM is a PDA and L(M) 7 ¢} is the
accepted language of some 2-way 1-head PDA.

(3) Iy = (MM is a 1-way SA and L(M) # ¢} is
the accepted language of some 2-way 2-head
SA.

(4) 14 = (MM is a J-way deterministic PDA and
AL{M)} is the accepted language of some
2-way 1-head POA.

(5) by = {M|M {s a 1-way DSA and ArL(M)} is the
accepted language of some 2-way 2-head DSA. @

For a proof see [25].

Theorems 3.6 and 3.7 have many corollaries.
Here we mention a few of them.
Cor. 3.8 [11]: There exists a language L

accepted by some 2-way 2-head NDFA such that
L is accepted by some 2-way multi-head DFA
iff Dtape(logn) = idtape{logn) . B

I is one such language; in fact, Iy is log-
complete in Ndtape(logn) .
ness problem for NDFA is nothing more than

Since the empti-

the reachability problem for directed graphs,
another immediate corollary is -

Cor. 3.9: (1) GAP = {G|G is a directed graph
on {1,...,n} for some n , which has a path
from vertex 1 to vertex n} is accepted by some

2-way 2-head NDFA .'
(ii) [10] GAP is log-complete in Ndtape(logn). B

Cor. 3.10: The language LZ is log-complete
in P . ’ g

Noting Thm.'s 3.6 and 3.7, L, is a time and
space hardest 2-way PDA language. In fact
LZEDtime(nr) jmplies that the 2-way PDA langu-
ages gthime(nr[]ogn]r) for all r > 1 . This
strongly suggests that L, requires non-linear
time!

Cor. 3.11 [12]: The languages Lg = (GG s

a cfg and L(G) # ¢} and Ly = {G]G is a cfg

and L{G) 1is finite} are log-complete in P. ®
Cor. 3.12: The language L4 is log-complete

in P.

Cor. 3.12 should be compared with the theorem
due to Lewis, Stearns, and Hartmanis [29] that
every c¢f) e Dtape([logn]z) .

Cor. 3.13: 3c],c2 > 0 such that the recogni-

c]n2/(1ogn)2
tion of Ly requires time > 2 s

i.0. on any deterministic Tm . Moreover,

con
L3 is recognizable by some 2 2 determin-
jstic time-bounded Tm . B

Cor. 3.14: 3c1,c2 > 0 such that the recogni-

tion of L5 requires time Zc]n i.0. on any
deterministic Tm . Moreover, L5 is recag-
. cznzlogn o
nizable by some 2 deterministic time-
bounded Tm . B8
Cor. 3.15: 3r],r2 > 0 such that the recogni-

tion of L = {G|G is an indexed [0I-macro] grammar

1'Graphs are presented by adjacency lists with
vertices denoted by binary numerals.

i

and L(G) 7 &) requires time - 27 i.0. on

any deterministic Tm ., Mourcover, [/ is rec-
v

. n Ce s :
ognizable by some 2 deterministic time-bounded
Tm B

The upper bounds in Cor.'s 3.13 and 3.14 follow
from Thi. 3.6 and results in [30].

Horeover, the empliness problems for the
1-way DFA , deterministic PDA , and DSA (each
without \-moves) have the same lower complexity
bounds as the emptiness problems for the corre-
sponding 1-way nondeterministic automata with
A-moves .

Thm. 3.16: (i) Li = (MM is a DFA and L(M) # ¢}

is log-complete in Ndtape(logn). Moreover,
Li is recognizable by some 2-way 2-head

NDFA. "
Ly = {M|M is a deterministic PDA with no

r-moves and L{M) # ¢} is log-complete in
P, is a 2-way PDA language, and
> 2-way PDA languages.
log
nlogn{spacettime)
iii) icyscp > 0 such that the recognition of
Ly = {M|M is a 1-way DSA with no x-moves
n2/(]ogn

~—

ii

i . “)2
and L(M) # ¢} requires time > 2
i.0. on aEy deterministic multi-tape Tm.
Time 2c2n suffices. B
A proof of 3.16 can be found in [25].
Finally to further illustrate the implica-
tions of tie results in this section, we present
a new and easily understood 0(n3-P01ynomia1(Iogn))
time~-bounded RAM algorithm for arbitrary 2-way
PDA language recognition.

Algorithm 3.17: Llet L be a fixed 2-way PDA

language. lLet M be a fixed 2-way PDA such that

L(M) =L . let x= XyoeaXp be an input to M .

To test if xel{M) = L , the following steps suf-

fice:

(1) Construct a 1-way PDA Mx , as described in
the proof of 3.6 such that L(Mx) F ¢ iff

(2) éghvért Mx into an equiva]ent context~free
grammar Gx

(3) Test 6, for emptiness.

(4) 1f L(G,) # & , then xel . Otherwise
x$L . 8
The time required to execute step 1 is

0(nlogn) . The time required to convert M

into an equivalent CFGG, 1is O(ns(logn)s) .

Finally, the time to test Gx for emptiness is

1'Jones [107 shows that Li is log-complete in
Ndtape(logn).

well-known to be 0{nlogn) on a logarithmic
cost RAM .
3.3 Trees, Structural Equivalence,

and Grammatical Covering

The results of the preceeding sections
hold for grammars and automata on trees as well
as strings. A1l definitions can be found in
[33]-[36]. Our first result extends results
in [34].

Thm. 3.18: The following are p-equivalent:
T7) structural equivalence of cfg's;

(2} structural containment of cfg's;

(3) equivalence of nondeterministic top-down
tree automata;

(4) containment of nondeterministic top-down
tree automata;

(5) equivalence of nondeterministic bottom-up
tree automata;

(6) containment of nondeterministic bottom-up
tree automata;

(7) equivalence of parenthesis grammars; and +

(8) containment of parenthesis grammars. B

Prop. 3.19: There exists a 2p(n) , where P{(n)
is a polynomial, time-bounded algorithm on a
deterministic Tm for solving {1)-(8) of Thm.
3.18. B

Prop. 3.20: If any of the problems (1)-(8)

of Thm. 3.18 is not an element of PSPACE, then
all of these problems are not elements of PSPACE;
and for all positive integers k, P is not

a subset of Dtape([logn]k) . 7]
In [33] we conjectured that structural equiv~-
alence for cfg's requires nonpolynomial space.
Prop. 3.20 illustrates the difficulty of proving
this conjecture.

The yield of a tree t , denoted by y(t) ,
is defined in [34] and [35]. The yield of a

set of trees T is defined by y(T) = U y(t) .
teT
A predicate 1 on a class of tree languages

C is said to be yield-invariant if for all

T, T'eC, y(T) = y(T') dimplies N(T) = M(T') .
We allow are trees to have leaves labeled with
A , the empty string.

Thm. 3.21: Let 1I be any nontrivial yield-

invariant predicate

(i) on the recognizable sets over {0,1} such
that N(¢) is true, then {M|M is a non-
deterministic bottom-up (or top-down) tree
automaton and u(L(M)) is true} > P; and

o9
(i) on the context-free dendro-languages [35]
such that 0(¢) s true, then {G|G is
a context-free dendrogrammar with A-pro-
ductions and Ti(L(G)) 1is true} require

+Top~down and bottom-up tree automata are called
RFA {root-to-fronter automata) and FRA (frontier-
to-root automata), respectively in [34].

-10-

r .
: noo .

time - 2 i.0. on any multi-tape deter-
ministic Tm for some r 0 . B

Thm. 3.22: (i) Grammatical covering for linear

cfg's is PSPACE-complete.
(ii) Grammatical covering for arbitrary cfg's
is undecidable.

A proof of 3.22 can be found in [33] and [36].
Finally, the undecidability results in Sec-

tion 2 can be reformulated in terms of trees

as well.

4. A Uniform Lower Bound on Scheme
Equivalence
In [37] the strong and weak equivalence

problems for single variable program schemes
were shown to be NP-complete. The definitions
of strong equivalence =, weak equivalence =,
and interpretations of schemes can be found in
[38].

Def. 4.1 [38]: A binary relation -~ on schemes

s said to be reasonable if for all schemes
81, 52’ S1 H S2 implies 51 ~ S2 and S1 ~ 52

implies S] = S2 . 5]

Thm. 4.2: For all reasonable rela*ions ~ and

{7} for all fixed non-divergent 2-variable,
single-variable, or loop-free program schemes
s , {S|S is a 2-variable, single variable,
or loop-free program scheme, respectively,
and S # S} is NP-hard; and

(31) for all fixed monadic or linear monadic
recursion schemes 5 , {S|S 1is a monadic
or linear monadic recursion scheme, respec-
tivelv, and S # 5} is NP-hard.]

Proof sketch: We efficiently reduce the well-
known NP-compiete set {f|f is a Dy-Boolean form

and f s not a tautology} to the predicate
S £ 8" . let f be any arbitrary D3—Boo]ean

form with n Tliterals and m clauses. For
each such f a single variable loop-free and
function-free program scheme Sf with two halt

statements labeled A and B , respectively,
can be constructed deterministically in time
bounded by a polynomial in |f| such that the
statement labeled B is executable under some
interpretation iff f is not a tautology. Let
g be a function symbol not appearing in § .
Without loss of generality, we assume for all
03—Boo1ean forms f that the predicate symbols

and the labels appearing in Sf and S5 are
disjoint. "Let S% be the scheme that results

from (a) replacing all occurrences in % of

the label of the initial statement of o by

A ; (b) replacing the statement "A:Halt;" in

S, by the initial statement of the scheme that
r&sulted from & after (a); and (c¢) replacing
the statement "B:Halt" by "B:x « g{x); Halt,"
Then S% ~ & iff f s a tautology. B

Since there are fixed schemes « and reason-
able relations ~ such that {S|S 1is a program

scheme and S # SJelP , our uniform lower bounds
are tight.

One immediate corollary of Thm. 4.2 deals
with the "degrees of translatability" in [39].

Cor. 4.3: Given a single variable program scheme
S, determining S's flowchart degree is an
NP-complete problem. B
5. Conclusion

We have considered the complexity of a va-
riety of problems from parsing, formal languages,
and schemes. In each case we have found close
relationships between complexity and underlying
combinatorial structure. A complexity theory
for grammar problems was presented.

lower bound on the complexity of scheme equiva-

A uniform

lence was also presented.

Bibliography
[1] H. B. Hunt, III, On the time and tape com-
plexity of languages, Ph.D. Thesis, Cornell
University, Aug. 1973.
H. B. Hunt, III, and D. J. Rosenkrantz,
Computational parallels between the regular
and context-free languages, Proc. 6th An.
ACM Symp. on Th. of Comp. (May 1974), 64-73.
D. E. Knuth, On the translation of languages
from left to right, Inf. and Cont. 8, 6
(1965), 607-639.
W. F. Ogden, unpublished note (Dec. 1971).
H. 8. Hunt, III, T. G. Szymanski, and J.
D. Ullman, On the complexity of LR{k) test-
ing, Conf. Rec. 2nd ACM Symp. on Principles
of Programming Languages (Jan. 1975), 130-
136.
T. G. Szymanski, Generalized bottom-up
parsing, Ph.D. Thesis, Cornell University,
May 1973.
A. V. Aho and J. D. Uliman, The Theory of
Parsing, Translation, and Compiling, Vol.'s
T and 2, Prentice-Hall, Englewood Cliffs,
N.Jd., 1972 and 1973.
W. J. Savitch, Relationships between non-
deterministic and deterministic tape com-
plexity, JCSS 4, 2 (1970), 177-192.
J. Hartmanis and H. B. Hunt, III, The lba
problem and its importance in the theory
of computing, SIAM-AMS Proc., Vol. 7, Amer.
Math. Soc., Providence, R.1., 1974.
N. Jones, Preliminary report: reducibility
among combinatorial problems in logn space,
Proc. 7th An. Princeton Conf. on Informa-
tion Sciences and Systems (March 1973},
547-551.
[11] 1. H. Sudborough, On tape-bounded complexity
classes and multi-head finite automata,
Proc. 14th An. IEEE Symp. on Switching and
Automata Th. {Oct. 1973), 138-144.
N. D. Jones and W. T. Laaser, Complete
problems for deterministic polynomial time,
Proc. 6th An. ACM Symp:. on Th. of Comp.
(May 19747, 40-46.
S. A. Cook, An observation on time-storage
tradeoff, Proc. 5th An. ACM Symp. on Th.
of Comp. (May 1973}, 29-33.

{2]

£3]

[s5]

[6]

(71

[8]

f9l

[10]

2]

(133

-11-

[14]

[18]

(6]

(73
[18]
(9]
(20]
(21]

f22]
[23]

{24)

[25]

[26]

f27]
[28]

{29]

[30]

[31]
f32]

[33]

S. A. Cook and R. Sethi, Storage requirements
for deterministic polynomial time recogniz-
able Tanguages, Proc. Gth An. ACM Symp. on
Th. of Comp. (May 1974), 33-39.

KOV Ako, U, £, Hoperoft, and J. D. Ullman,

Time and tape cowplexity of pushdown automa-
ton languages, Inf. and Cont. 13, 3 (1968),
186-206.

Szymanski and J. H,

Williams, Non-
EEE Symp.

k]

T. G.

on Switching_ and Automate

122-129.

W. F. Ogden, A helpful result for proving
inherent ambiguity, Math. Systems Th. 2,
3 (196%), 191-194.

J. E. Hopcroft, On the equivalence and con-
tainment problems for context-free lanquages,
Math. Systems Th. 3, 2 (1969), 119-124.

M. A, Harrison and I. M. Havel, Strict de-
terministic grammars, JCSS 7, 3 (1973), 237-
277.

B. M. Brosgol, Deterministic translation
grammars, Ph.D. thesis, Harvard University,
1974.

K. Culik, Il and R. Cohen, LR-reqular grammars-
an extension of LR(k) grammars, JCSS 7, 1
(1973), 66-96.

C. N. Fischer, Extended abstract - an approach
to parallel parsing, unpublished.

J. Hartmanis and J. E. Hopcroft, An over-

view of the theory of computational complexity,
JACH 18, 13 (1971), 444-475.

H. B. Hunt, III, T. G. Szymanski, and J. D.
Ultman, Operations on sparse relations and
efficient algorithms for grammar problems,
Proc. 15th An. 1EEE Symp. on Switching and
Automata Ih. (Oct. 1974), 127-132.

H. B. Hunt, III, On the complexity of finite,
pushdown, and stack automata, Mathematics
Research Center Technical Summary Report
#1504, University of Wisconsin-Madison,

Oct. 1974 (also submitted for publication).

S. A. Cook, Characterizations of pushdown
machines in terms of time-bounded computers,
JACM 18, 1 (1971), 4-18.

A. V. Aho, Nested stack automata, JACM

16, 3 (1969}, 383-407.

M. J. Fischer, Grammars with macro-like
productions, Conf. Rec. 9th An. IEEE Symp.

on Switching and Automata Th. (Oct. 1968),
131-142.

P. M. Lewis, R. E. Stearns, and J. Hartmanis,
Memory bounds for recognition of context-

free and context-sensitive languages, IEEE
Conf. Rec. on Switching Circuit Th. and
Logical Design (Oct. 1965), 191-202.

0. H. lIbarra, Characterizations of some tape
and time complexity classes of Tm's in terms
of multi-head and auxiliary stack automata,
Jess 5 (1971), 88-117.

H. B. Hunt, III, and T. G. Szymanski, manu-
script in preparation.

D. J. Rosenkrantz and R. E. Stearns, Properties
of deterministic top-down grammars, Inf. and
Con. 17, 3 (1970}, 226-256.

H. B. Hunt, 111, D. J. Rosenkrantz, and T.

G. Szymanski, On the equivalence, contain-
ment, and covering problems for the regular
and context-free languages (submitted for
publication).

{34]

(35}

[36]

[37]

(393

J. M. Thatcher, Treec automata: an informal
survey, in Currents in the Theory of Computing,
A, V. Aho {ed.), Prentice-Hall, Englewood
Cliffs, N.J., 1973, 143-172.

W. C. Rounds, Mappings and grammars on trees,
Math. Systems Th. 4, 3 (1970), 257-28

H B Hunt, 11, D. J. Rosenkrantz, and

T. G. Szymanski, The covering problem for
tinear context-free grammars, Computer
Sciences Laboratory Technical Report (RIGS,
Dept. of Electrical Engineering, Princeton
University.

R. L. Constable, H. B. Hunt, III, and S.
Sahni, On the computational complexity of
scheme equivalence (submitted for publica-
tion.)

0. €. Luckham, D. M. R. Park, and M. S.
paterson, On formalized computer programs,
Jess 4, 3 (1970}, 220-249.

A7K. Chandra, Degrees of translatability
and canonical forms in program schemas:
part 1, Proc. 6th An. ACM Symp, on Th. of

Comp, (May 1974), 1-12.

-12-

