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ABSTRACT

We present a graph-based hierarchical clustering method for chaining edges
together into boundaries. The notion of edge employed is quite general, viz.,
directed line segment with associated probability. Edges are treated as
vertices in an arc-weighted directed graph, EG. The weight of any arc,

e; ej, in EG is a value between 1 and = representing the degree to
which the edge ey continues e; , lower values corresponding to better con-
tinuations. The measure of continuation from one edge to another is a function
of their probabilities, lengths, and locations. EG is initially partitioned
into simple chains by deleting any arc e; ~ ej unless it is both the lowest
weighted arc leaving e; and the lowest weighted arc terminating at e, .
Further subdivision of these chains leads to a tree structure of subgraphs,
each of which corresponds directly to a boundary. A probability for each
subgraph/boundary is then computed, based on the number of its vertices (edges)
and the weight of its highest weighted arc (weakest edge continuation) relative
to values of the same characteristics for its ancestors and descendants in the
tree.

Xl. Introduction

This paper describes a parallel model for the formation of boundaries from
individual edges. For our purposes (and as described more fully in Lester [1])
an edge is defined to be a directed line segment with associated probability;
its intented interpretation is not as a 'divider' between two regions, but
rather as a fragment of the outline or contour of a single region. Informally,
boundaries are sequences of edges, as suggested in Figure 1, which also
illustrates the figure-ground convention for edges and boundaries. Boundaries
inherit the 'semantics' of their component edges: that is, they are descrip-

tions of the shape of a single region.

The method used is a clustering technique based on a graph-theoretical
model of the fuzzy set [2] of edges for a scene. An arc-weighted directed graph

is derived from this set using a measure of continuation between pairs of edges.
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Fig. 1. An edge is a ¢irected line segment (with associated
zrobsbility and descriptive information, not shown) with "figure"
side to the right and "ground" to the left facing in the direction
of the edge, &s shown for €y A sequence of edges (more precisely,
edzes azlternating with connecting segments; see sedion 2.1) forms
a boundary, for example the closed boundary €14€21€32€,9€54€q -

A point P is on the figure side of a boundary when a straight line
can be drawn from P to the figure side of any edge in the boundary
without intersecting any other component edge.
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Fig. 2. (&)A set of edges and connectors (dotted lines). The
sequence mw‘mm.omw,mw.owF,m#.mm (the connectors owm and oﬁw are
of zero length and not represented -~ in this case we assume that
they begin and end at the point of intersection of the edges
concerned) is a boundary whose interpretation as a contour or
outline is given in (b). Note that sections of e, and e that
extend beyond the intersection with the preceding or following
segment have been discarded.
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Local properties of the graph are then used to delete arcs. The pruned graph
determines a tree structure of subgraphs -- each corresponding to a boundary --

for which probabilities are computed.

The perception of form has been a problem of longstanding interest in the
fields of psychology and automatic scene analysis, and the approach described
here to this problem has been influenced by research in both fields. Thus,
in broad outline this model resembles that of O'Gorman and Clowes [3], who
use clustering of edges to find straight lines in a scene. Zahn [4] has made
effective use of a graph-theoretical clustering technique for the perception
of scenes of identical disks (as in Fig. 6(a)) directly, that is, without the
intervening process of edge detection. Wertheimer's ideas on the basic
organizing principles of perception [5] have also influenced the ideas (and

terminology) of this paper.
A brief outline of the paper follows:

In section 2 the graph model is defined and the pruning technique
described.

In section 3 the transformation from graph to hierarchically structured
set of clusters is described.

In section 4 several complete examples of boundary formation are presented.
These are based on output from BNDRY, a program embodying the principles
set forth below.

2. Edge Graphs

2.1 Continuation of edges

In this section we define COND, a numerical measure of continuation
between two edges. Intuitively, this measure should meet the following
requirements:

(a) If e and e, are edges, then e, continues e "perfectly" if the
start of e, coincides with the end of ey s both edges point in the
same direction, and both are of high probability.

(b) As the edges move apart the continuation becomes weaker.

(c) As the edges point more in different directions the continuation becomes

weaker.

{(d) As e,
the area behind e, the continuation becomes weaker.

moves away from the area ahead of e and e, moves away from
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{e} The more improbable the edges, the weaker the continuation.

'.

o)

{f} The measure musit be scalie in epandent,

The definition involves the construction of a connecting segment or
connector, C , betwaen points of each edge. In addition to its function
in the definition cf COND, this connector supplements the interpretation of
a sequence of edges ags a boundary by, in effect, redefining the edge length
ané f£illing possible gaps between edges, as shown in Figure 2. With the

help of this notion we can now define boundary more formally:

(1) A directed line segment beginning at a point of boundary bﬁ and
terminating at a point of boundary bk (possibly of zero léngth if bj
and bk

1
to by .

have a non-null intersection) is a connector, Cjk . from bj

An edge is a boundary,

A sequence of boundaries alternating with connectors,

b = bl’ClZ’b2'C23"’°’cn—111’bn' is a boundary. This sequence may

not contain any repetitions -- with the exception of bl = bn' in which

case b 1is said to be closed.

As a step towards defining COND we introduce an auxiliary function, CD,
which for a given eys €5y and C12 takes on a value between 1 and « ,
smaller values corresponding to better continuatiens; the value of COND for
e and e, is the least of these valués for all possible C12 . CD is
composed of a number of factors, each making precise one of (b), (¢}, (a),
or {e) above (see Figure 3)}:

The distance between edges:
(2) DIC(el,ez) = l.ﬁ-+(2,gXlen(C)}/{len(el‘)‘+len(e2')} where len gives

the length of its segment argument, e,' is the segment beginning at the

start of ey and ending at the start gf C, and e2' is the segment

beginning at the terminus of € and ending at the terminus of e, .

The angle:
{3) ANG.(e,.e,) =cosz({01+821/2.ﬂ) if len(C) * &
=cos?(0/2.5) if len(C) = g
where el is the angle made by C with ey 62 is the angle made by

e, with € , and 6 is the angle made by e, with e, -
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The sacrifice of part of one or of both edges:

) = max(g,1.4~
[ (PROB (e

(4) SACC(el,e2
l)X[len(el)—len(el')]-i-PROB(ez)X[len(ez)—len(ez')])/
min(PROB(el)Xlen(el),PROB(eZ)Xlen(e2))])

where PROB is the probability of an edge.

(SAC is zero when the total probability-weighted length sacrificed is equal to

or exceeds the probability-weighted length of the shorter edge.)

The combined probabilities:

(5) PRB(el,eZ)==[2.¢xPROB(el)xPROB(ez)]/[PROB(el)+PROB(e2)]

An additional factor, the affinity, is highly dependent on the particular manner
of generating edges. It may, for example, have values close to l.¢ for two
edges which border regions of similar intensity, color, and/or texture, and
lower values for edges which border regions differing in these qualities,
provided that the edge detecting procedure produces such descriptive informa-
tion. Although we later (in section 4) present an example of boundary forma-
tion in this "richer" edge environment, for the sake of clarity we temporarily

assumes:

(6) AFF(e = 1.0

llez)
COND and CD (for a given C) can be thought of as the inverse probability of

one edge continuing another:
(7) CDC(el,ez) =DIC(el,e2)/[ANGC(el,e2)XSACC(el,ez)XPRB(el,ez)XAFF(el,eZ)]
= o if above expression undefined (by division by zero)

(8) COND(el,e

2) = min(CDC 2(el,ez))

1
for all C

i

12

Figure 4 gives values of COND (approximate in some cases) for a variety of edge

pairs.

2.2 Definition of the edge graph

A set of edges and their continuations can be described as an arc-weighted
directed graph, EG, in which each vertex corresponds to an edge, and each arc
from vertex e, to e. (for convenience we name vertices as we do their

i
corresponding edges) is labelled with the value COND(ei,ej). Figure 5 (a)




(a)

(b)

(e)

Fig. 5. (a)A set of edges (all probabilities assumed
equal to unity). (b)The edge graph for these edges.,
Every arc eyey is labelled with COND(ei,eJ); arcs with
welghts of oo (for example el»es) are not shown. (c)The
graph pruned according to (9).
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and (b) display a small set of edges along with its edge graph.

In terms of the edge graph, boundaries correspond to simple paths or

chains (i.e., without repetitions, with the obvious exception made for closed
boundaries). The connectors associated with the arcs of EG* are not
repraesented in the graph because they do not enter into the determination

and assessment of significant boundaries as described below. However, we
note that in order to reinterpret any path as a boundary the associated
connector must be known (and, therefore, as a practical matter not dis-

carded after the calculation of COND).

2.3 Pruning the edge graph

The strategy for pruning EG is based on the following simple rules:
(a) An edge can be a part of only one boundary; equivalently, two boundaries

cannot have any edges in common.

(b) If ej immediately follows e; in a boundary, then of all edges in
the scene ej must be the best continuation (in the sense of having
a minimal value of COND) for e and e, the edge having the best

continuation to ej .

The first of these is justified directly by the 'semantics' of edges and
boundaries, that is, their intended interpretation as (partial) outlines of
shapes: any such outline must be a simple curve, without branches. On the
other hand, (b) (which, of course, implies (a)) is a heuristic designed to
eliminate as many spurious boundaries as possible, including those made up
of very improbable edges or a mixture of 'good' and 'bad' edges, and those
made up of good edges from more than one actual shape or from a single
contour with edges missing or improperly sequenced. The effect of (b), then,
is to retain boundaries generally faithful to the actual contours, but in
practice, for scenes of some complexity and with edges generated on the basis
of local evidence -- composed of relatively few edges and falling short of
‘ideal' closed boundaries. (A partial solution to the problem of completing

boundaries is described below in section 4.2)

* * .

The connector yielding the lowest value of COND for some edge pair is not
necessarily unique. We assume, in this event, some uniform method for
choosing a single optimal connector.
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The pruning procedure:

i
the lowest weighted arc leaving es and the lowest weighted arc termi-

(9) For every arc, e, = ej, in EG, prune it if and only if it is not both

nating at ej . Arcs with weights of « are also deleted. All vertices
isolated by these deletions are discarded.

Figure 5(c) shows the result of applying (9) to the graph of Figure 5(b).

In Figure 6 we present a scene composed of identical disks, the edges
produced by an edge detecting program (EDGE [1]), and the graph produced by
(9). This simple example makes it clear that more remains to be done. First,
some of the chains are perceptually inconsequential; second, in spite of the
conservatism of the pruning strategy, some sub-chains correspond to more
reasonable boundaries than the complete chains of which they are parts. In
the next section we introduce a method for segmenting and evaluating chains
that resolves these problems.

3. Hierarchical Clustering of Edges

3.1 Structuring chains

In the previous section we used a graph to represent a set of edges and
their continuations. In this section we derive a tree representation for the
chains formed by (9) with the following procedure:

(10) (a) Create a tree node for each chain, and attach them as sons to a root

node, R.

(b) Divide each chain into sub-chains by deleting from each the highest-
weighted arc(s).

(¢) Attach to each chainnode one son node for each sub-chain formed in
{(b).

(d) Continue (b) and (c) until no further subdivision is possible.

Every non-terminal in the tree except R corresponds to a boundary; every
terminal corresponds to an edge. Figure 7 shows the hierarchical (tree)

structure imposed on the chains of Figure 6 by this procedure.

3.2 Evaluation of subtrees

Any non~-terminal S , except R , can be characterized by the largest
weignt on any arc in its corresponding path, DF , and the number of vertices
in same (equal to the number of terminals in the subtree whose root is 8 )},



(a)

"PROB( )=  PROB( )=

e, .1H6 e
el .20 e 10
2 11
e .2l e
3 12
&5 .22 e
4 13
@ .22 e
5 14
el .22 e
6 15
() el .25 e
e8 24 e17
- Q9 ° 18
e19
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€21

Fig. 6. (a)Scene of identical disks, (b)The edges and
probabilities for this scene (produced by EDGE([1l).
(¢)The pruned graph - consisting of four chainsg — for
the edges of (b). Note that four of the original twenty-
one edges have been isolated and deleted.
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CNT. Any S will have strictly lower values of both DF and CNT than

any ancestor of S.

We now assign probability values to each non-terminal § (except R) of
the tree based entirely on CNT and DF values of the node and their relation-
ship to values of these characteristics for ancestors and descendants of 8.
Thus in this evaluation the directed or ordered nature of the original edge
sequences has been lost, and boundaries are now treated simply as clusters

or groups of edges with particular CNT and DF values.

Probabilities are computed from three interrelated measures, all with
values in the range f.8 to 1l.8:

The absolute strength of a cluster:

(11) ABS(S) =1.f/[1.4+(DF(S)-1.8)//{CNT(S)-1.0)]

The strength based on descendants:

(12) DESC(S) = min(l.@~[CNT(D)/CNT(S)]x[(DF(8)-DF(D))/DF(8)1])
for all D that are non-terminal descendants of S

]

1.0 if there are no descendant non-terminals

The strength based on ancestry:

(13) ANC(S)

il

[DF(F)~-DF (8) ] /DF (F)

=1.4 if ¥ = R
where F 1is the father of S

ABS takes on values closest to 1.8 for groups consisting of a large number
of edges close together; DESC scores low only if there is a large and compact
sub-zluster; ANC scores low only if the father of the cluster has a DF value
close to that of S itself.

The complete probability function, Q , combines these measures multi-
plicatively:

(14) Q(8) = ABS(8)xDESC(S)*ANC(S)

Figure 8 gives values of (11) - (14) for the non-terminals of Figure 7.

4, Experimental Results

4.1 Two examples

We now present two complete examples of boundary formation. 1In both,

the initial scene is far more complex than that of Figure 6, and,



Sy f (38..2) Szh (38.,2)

(DF,CNT)

—————a—C——

Fig. 7. Hierarchical clusters produced by (10) for the

cheins shown in the preceding figure.

CET are given beside each of the eleven non-terminal nodes

corresponding to possible boundaries.

Values of DF and

Sp(38+43)

/1IN

°11

QHN e

Fig. 8,
clusters of Fig. 7 (with the convention that UH corresponds

to muu.

The values of Q ==

bg k\\&\&\l&&

4

b10

s b1y

Boundaries corresponding to the non~terminals/

given below along with ABS,

DESC, and ANC -—= show cm‘ dm, and dwo to be the most
probable of these.

bmmAmwv = 12
DESC(S;) = .72
Q(s,) = .086
ABS(S,) = .026
Q(s,) = .026
ABS(S3) = .026
Q(85) = ,026

ABS(Sy) = 037
Q(8y) = 037

ABS(Sg) = .24
DESC(S5) = .92
ANC(Sg) = .76
QSg) = 17
>mmmmmv = 14
DESC(Sg) = .61
bzommmv = -UW
Q(8g) = .032
»wmmmnv = ,21
PZOAmﬂv = ,13
sy) = L027

bwmmmmv = 430
ARC(Sg) = .69
@Ammv = ,21
Pwmﬁmmv = 24
bZQAmmv = .56
umwOAmwv = 725
onmov = .097
PWMAMHOV = QWHW
»zkoHoV = ,38
DESC(S;4) = .99
DAMHOV = .12

ABS(Sy4) = .25
ARG(Sqy) = .OC
Q(Sy9) = .002¢
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consequently, the sets of edges for these scenes -- produced in each case
by the same program, EDGE (described in Lester [1]1) =-- are much larger and

must less neat in comparison. Although the results have been transcribed
from line printer output for the sake of clarity, the entire process of
boundary formation, from the calculation of continuations through the
assessment of probabilities, has been carried out automatically by BNDRY,
a FORTRAN program running on the University of Wisconsin's Univac 1110

computer.

The first example, Figure 9, is a scene of identical disks, roughly
square in overall shape and with a clear "g" ghowing in the center, Figure
9(c) demonstrates the appropriate perception of this scene, in spite of the
large number of spurious edges and a very intricate edge graph: (and the
continued restrictioﬁ that AFF = 1.0; we do use a non-constant AFF for

Figure 10, which could have been employed here as well to some advantage).

This example was originally devised to buttress an argument for an
edge/boundary -- as opposed to a regional (for example, Brice and Fennema
[6], Zahn [4] or Tomita [7]) —-- approach to figure extraction. Briefly, the
argument is that boundaries aremore general, in the s2nse that every region
has a corresponding closed boundary, but boundaries which are not closed
have no corresponding regions. This observation would be trivial were it
not for the fact that non-closed boundaries are quite definitely perceivable

and potentially significant, as shown by Figure 9.

Figure 10 (a) is a line printer representation of a digitized T.V.
image, produced in the Systems Laboratory of the Computer Sciences Department,
University of Wisconsin. Such images are normally characterized by a good
deal of noise, a fact which is obscured somewhat by the "thresholding” effect
of this representation (seven levels of gray are used). A cross section
through the major (disk) contour of the edges produced from the raw data --
displayed in Figure 10 (b) --suggests more accurately the difficulties faced
by BNDRY: principally, this thick band of edges -- but with an additional
complication presented by edges scattered about the two apparently homogeneous

)

regions (not shown).

In this example, the following function was used to measure the affinity

between edges:



(a)

Fig. 9. (a)Scene of identical disks,




(b)

(e)

(b)The one hundred most probable edges (produced by EDGEI1l ) for this
scene., (c¢)The five most probable boundaries found by BNDRY (based on
these edges). The values of Q given alongside each boundary clearly
indicate two major contours: a closed outer '"square" and a non-closed
"S", (The vertical boundary along the right hand margin of the scene
is & sub-~boundary of the "square" boundary.)
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(15) AFF(el,ez) = min[len(e‘),len(e Y1/ (max[len (e ),len(ez)] X
[1.0+|AVINT (e ) -AVINT (e DD

where AVINT(e) is an estimate of the average intensity of

the area on the figure side of and close to the edge e .

A thorough explanation and justification of this particular function is
impossible here since so much depends on the mechanisms of EDGE (again the
reader is referred to [l]). The net effect for this example, however, is
to produce large values of COND between edges bordering regions differing

greatly in intensity.

it follows from the semantics of boundaries (as we use this concept)
that, ideally, we would like to find two closed boundaries for this scene:
a clockwise circular boundary for the light disk, and a counterclockwise
circular boundary for the darker background. The actual set of boundaries
found, the best of which are shown in Figure 10(c), are indeed fragments of

these ideal boundaries.

4.2 An extension and a conclusion

It seems natural to suggest that the boundaries of Figure 10{(c) be
treated as edges and grouped into larger clusters until closed boundaries
are formed. 1In fact, this suggestion is implicit in the recursive defini-
tion of boundary, (1), given previously. To apply the methods already
developed for edges is actually straightforward, with one exception: the
measure of continuation between edges, COND, must be generalized to handle
boundaries that are not straight. Work is now in progress on this generaliza-

tion and its realization in program form.

In summary of this paper and present accomplishments: We have described
a model of boundary formation for visual perception suitable for highly
parallel implementation and employing a graphical representation of the
(fuzzy or probabilistic) set of edges derived from a scene and a hierarchical
clustering technique. Boundaries are seen as following the outlines of
particular figures -- not as separating two regions -- and may be either
straight or curved (i.e., jagged), closed or not closed. The model is embodled
in a program which provides examples illustrating the capabilities and

potential of the model in complex and noisy environments.
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(o)

Fig. 10. (8)Iine printor representation of a digitized T.V. plcture. (b)The
edges (produced by EDGE({1]) 4in the outlined asrea of (a). (¢)The twenty most
probable boundaries as determined by BNDRY (based on the two hundred fifty
most probable edges in the socene).
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