WIS-CS-236-75

COMPUTER SCIENCES DEPARTMENT
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

Received: January 1975

A WHOLISTIC INTEGRATED COGNITIVE
SYSTEM (SEER-TT1) THAT INTERACTS
WITH ITS ENVIRONMENT OVER TIME

by

Leonard Uhr

Technical Report #236

January 1975

A WHOLISTIC INTEGRATED COGNITIVE SYSTEM (SEER-T1) THAT INTERACTS
WITH ITS ENVIRONMENT OVER TIME
Leonard Uhr

University of Wisconsin
Madison, Wisconsin

Abstract

This paper describes, presents and discusses a computer-programmed model for a
wholistic system that performs the variety of functions usually thought of as "cogni-
tive" while interacting with an environment of objects that move about and change over
time. A relatively sophisticated “"recognition cone" system that perceives and describes
scenes of moving and changing objects (Uhr; 1975) is embedded in a larger "SEER" (for
SEmantic learnER, or Sensed Environment Encoder Recognizer and Responder) system that
also associates into memory to respond to queries and access relevant information,
deduces solutions to simple problems, parses and "understands" language utterances,
effects actions upon the external environment, and learns its memory of transforms
and their interconnections.

These functions are kept as simple as possible, and combined in as integrated a
way as possibTe. Each calls upon and helps the others as needed, by implying things,
processes and acts into a small number of common lists to which all have access.

A unified "cognitive memory" is built up using a single general type of transform,
one that is powerful enough to do pattern recognition "feature extraction," scene de-
scription "configurational characterizations," memory "associations," deductive "pro-
ductions,” and language "rewrite rules.”

Embedding this system in time allows for new interesting and natural appearing
interactions among the various processes as they work in parallel and serially call
upon one another over time.

The program is coded in EASEy (Uhr, 1973f) an English-like variant of SNOBOL
" designed to enhance list-processing abilities, and to be easy to read, so that the
program itself can be examined and understood.

Introduction and Background

SEER programs are being developed to explore how a wholistic information proces-
sing system can perform the variety of cognitive functions (perceiving, remembering,
problem-solving, language handling, acting, and learning) that psychologists tradi-
tionally study, and that seem to be the components of human thinking.

Research on the Separate Cognitive Processes, and Attempts to Combine Them

Most research in artificial intelligence and mind/brain modelling has looked at
1

these functions, but separately, in pattern recognition and scene analysis (e.g. Doyle,
1960, Uhr and Vossler, 1961, Andrews et al., 1968, Waltz, 1972, Riseman and Hanson,
1974; see Duda and Hart, 1973, Uhr, 1973a), information retrieval and question-answering
(e.g. Lindsay, 1963, Shapiro and Woodmansee, 1969, Woods, 1968, see Simmons, 1965,
1970, Minsky, 1968), deductive problem-solving (e.g. Newell, Shaw and Simon, 1961,
Gelernter, 1963, Samuel, 1959, 1969, Robinson, 1965; see Nilsson, 1971, Newell and
Simon, 1972), language processing (e.g. Quillian, 1967, Rumelhart and Norman, 1973,
Chomsky, 1965; see Anderson and Bower, 1973, Schank and Colby, 1973), acting (e.g.
Ernst, 1962; Greene, 1960; see Arbib, 1972), and learning (e.g. Uhr and Vossler, 1961,
Samuel, 1959, 1969, Uhr, 1964, Siklossy, 1971, Jordan, 1971, Quillian, 1969, Waterman,
1970, Winston, 1970, Williams, 1974, see Nilsson, 1965, Uhr, 1973a).

There have been a few attempts to combine these separate systems, usually with
a focus on acting, as in the robot research (e.g. Nilsson, 1971, Feldman et al., 1971,
Winston, 1972, Ejiri et al., 1971; see Ernst, 1970, and Uhr and Kochen, 1969, for
critiques). But most of these have built very large and complex systems for each
of the major processes of 1) perception of a static scene (input through a television
camera), 2) "understanding" a verbal command (input through a teletype), 3) deductive
problem-solving, and 4) binding and effecting actions - with very little interaction
between these systems. As a result, they have not been able to explore how one process
can call upon or help another. For examples, perception should serve .2 guide an ac-
tions-sequence that moves to and grasps an object. But the perceptual system is so
rigid that one detailed tv picture is first taken and analyzed, an actions-sequence
deduced and then bound to specific movements, and these movements are made blind, with-
out any intermediate feedback.

Steps Toward Integration of_Processes, and Generality and Flexibility

Similarly, it would be natural and desirable to have the search for solution paths
suggest objects that, if present in the environment, would be useful and in turn focus
the attention of the perceptual mechanism on a search for these objects, with percep-

" tion in turn making use of deductions and memory searches to help guide its search.

To do this kind of thing we need simple well-integrated systems. A few small begin-
nings have been made (e.g. Toda, 1962; Doran, 1968; Uhr and Kochen, 1969). The present
system is the latest in a series (Uhr, 1974a,b) that attempts to make a direct attack
on this issue - what I will call the problem of everyday thinking about i11-formed
problems.

The desire is to achieve systems that are as general, flexible and adaptive as
possible. Rather than striving for specific (usually ad hoc) power at a particular
task like chess, theorem-proving, or character recognition, SEERs are first-step at-
tempts to develop theory/models of general cognitive systems that can do the variety

2

of things that people do, in roughly the same integrated way. By keeping SEERs as
simple as possible we make them accessible to observation, and to revision. Once a
SEER cycles through a variety of simple cognitive tasks, with good interaction and
integration among processes, we can begin to strengthen each, or several, processes,
by plugging in new functions for them, and testing them separately, and also as part
of the thus-augmented system.

I11-Formed Everyday Thinking Vs. Path-Searching to Solve Well-Formed Problems

Most artificial intelligence research has tried to straightjacket all problems
into the paradigm (see Nilsson, 1971) of a search for a path between given(s) (e.g.
the initial board in a game, the axioms of a lTogistic system, the sentence to be parsed)
and goal(s) (e.g. the win-states of the game, the theorem to be proved, the "Sentence"
node to be reached by the application of some sequence of rewrite rules). The robot projects
have similarly tried to decompose the whole cognitive process into separate sub-processes
where given(s) and goal(s) are set up, so that they can then be attacked in this way.

A good deal of analysis and thought has gone into devising specific heuristics or al-
gorithms for particular search spaces (e.g. perceiving cubes, wedges and pyramids;
winning at chess, checkers, or kahlah; answering questions about the weather, troop
dispositions, or parts of the body), and these have led to path-searchers that can
find fairly déep paths in rather large spaces. Thus problems are made +4ell-formed,
and specific techniques are constructed to attack them.

In sharp contrast, most of human thinking has a very different quality. Only rarely
do we find somebody making deep deductive searches between well-defined givens and
goals. The mathematician's most creative work comes when he finds and posits theorems
that appear worthy of proof. It is only because in school we survey a logistic system
by studying proofs that we come to think of this as the stuff of mathematics.

Most everyday thinking is much more shallow and, in important ways, i11-formed.
Consider typical situations, Tike figuring out where to go and what to do on a 2-week
_ vacation, weekend, or evening; how to get there; where to eat; what; how to eat it;
and so on.

We perceive and interact appropriately with extremely complex mixed fields of
words and objects (e.g. the foods, packages, descriptions and prices in a supermarket).
Out of this chaos our interests lead us to notice what's relevant, and to (usually
shallow) associations and deductions (e.g. "this poundcake mix is easier to make,"
“that brand's spongecake was soggy," "this mix needs egg yolks, so get eggs and use
the whites for pudding"). We move around the store in what might justly be called an
ongoing "conversation" where perceived objects and verbiage, memories and deductions
all playaroleinthe constant assessment of relevance that guides our acts and thoughts.

The SEER-T1 System Described

SEER-T1 is the first attempt at an integrated cognitive system that copes with
environments of things (words and objects) that move about and change in Time. It
builds upon, combines, and extends several previous programs:

SEER systems that respond to static environments have been presented in Uhr, 1974a,
1974b. These extend "DECIDER" systems (Uhr, 1973b, 1973d) that handle environments of
mixed objects and words, since in the real world there can be no separate input channels
for words and symbols; rather, one of a cognitive system's key problems is to recognize
the referential import of certain of the things it perceives.

The perceptual capability has been examined in a sequence of "recognition cone"
programs for recognizing and naming (Uhr, 1972) and for describing (Uhr 1973e). A
short-term-memory algorithm has been developed to handle successive inputs over time
(Uhr, 1973c), and incorporated into the dispersed memory of the recognition cone (Uhr,
1975).

SEER-T1 is the first SEER system that interacts with environments of things that
move about and change over Time. Its perceptual abilities are relatively sophisticated,
since it incorporates the parallel-serial probabilistic hierarchical "recognition cone”
system that handles successive 2-dimensional scenes over time. Time now becomes a
major issue for the other cognitive processes as well. The system begins to coordinate
the time needed for each process's transformations with the external time in which
perceived objects move and change.

This leads to interesting effects and surprising simplifications, since the system
can take advantage of continuing time. For example, it is able to mingfe inner-directed
(top-down) and environment-directed (bottom-up) processes in an especially simple way,
by having transforms imply subsequent transforms to apply at any level, but at later
moments of time (since it takes time to effect a transform and to send and merge its
implications into its output buffer).

. Overall Architecture of SEER-TI

A succession of scenes - 2-dimensional arrays, much 1ike the frames of a movie
- are input to SEER's Retinal input Buffer, and successively transformed back through
the converging layers of the "recognition cone,” until all implied things (including
external and internal names of wholes, parts, and qualities) have been passed back to
the cone's apex (see Uhr, 1972, 1973e for fuller descriptions). Each layer of trans-
forms takes one moment of time. Therefore a 6-layer cone will take 6 moments to trans-
form from Retina to Apex, a 10-layer cone 10 moments, an N-layer cone N moments.

Figure 1. Overall Architecture of a SEER System

[}00KFO§]

NEEDS-GOALS

Input
Scene

At each moment each of the Layers is effecting its Transforms onits input Buffer,
and merging its implications into the next output Layer. These Buffers contain things
that have been merged into them at previous moments in time, and thus form a set of
short-term-memories. They are gradually faded away, the weight of each thing being
reduced slightly at each moment, and the thing discarded when its weight goes below
a threshold. ‘Each new thing merged into a Buffer cell is given a relatively high in-
itial weight, and this weight is later increased if the same thing is again implied
into that cell, by some other transforms and/or at some subsequent moment.

Transforms also imply and merge things into several additional lists - a) a list
of things to LOOKFOR, b) a Tist of dynamically implied transforms (called NEWCHARacter-
izerS) to apply next (at the next moments of time, until faded away and discarded),
and c¢) a list of IDEAS, which are Transforms to be applied to the central Apex, and
serve to associate and deduce new nodes, in a search out into the cognitive memory,

d) a list of ACTS that might be effected, and e) a 1ist of NEEDS and GOALS.
At each moment each of these lists is effecting its transforms, in parallel with
" each other and with each of the Layers in the cone. NEEDS-GOALS implies ACTS and things
to LOOKFOR that might satisfy them. Things in LOOKFOR imply NEWCHARacterizerS to apply
that might imply them. NEWCHARS are applied at the relative locations specified, and
their implications merged into the next Layer of the cone.

The single most highly weighted transform on IDEAS is applied to the Apex and,
if it succeeds, its implied things merged back into the Apex, and its implied acts
merged into ACTS and implied things-to-lookfor and characterizers-to-apply merged into
LOOKFOR and NOWCHARS. And the single most highly weighted act is chosen from ACTS.

If it is the same as the previously effected act it continues with the actions-sequence
it is presently executing. If it is different, the system generates and binds a new

5

actions-sequence that it will effect over the next moments of time. This process also
implies new IDEAS and things to LOOKFOR to effect these bindings.

Each of these separate processes thus js effected in parallel, at each moment in
time, but looking at different buffers and merging their implications into different
buffers. The central processes are highly serial, since only the single most highly
weighted IDEA and ACT are applied at each moment in time. In sharp contrast, the trans-
forms on all other Tists are applied in parallel. We can think of this as a narrow
window giving serial central processes, hopefully allowing for more direction as their
search is heuristically guided by the combined weights of implications; in contrast
to a wide parallel window for the perceptual processes.

Actually, a parameter can be set so that 2, 3, or N most highly weighted IDEAs
can be applied in parallel, at the same moment. We will need to test for an optimum
window size, one that uses parallel processes to speed up search but without losing
too much of the directedness given by serial decisions.

Flow of Processes over Time

This quite naturally gives interactions among all the processes. But these inter-
actions take the time needed to effect the required sequence of transforms. For example,
a characterizing transform might imply a top-angle, and also that the system LOOKFOR
a T and for the word THE. The symbol T implies that features of T be coplied, and these
transforms will be effected 2 moments in time later. But they can be effected at any
Layer of the cone. If at the next more central Layer, it will be on the transformed
scene only 1 moment later (plus the short-term memory of still-not-deleted earlier mo-
ments), if at a Layer 2 more peripheral on the transformed scene 4 moments later (but
closer to the raw input, thus giving a top-down direction to processing).

Similarly, THE implies H and E a 1ittle to the right of the T, which in turn imply
their features, etc. At the same time, other things that have been merged into LOOKFOR
(because implied by previous transforms, NEEDS, GOALS, and ACTs being effected) imply
_ transforms to be applied.

Thus there is no need to explicitly decide to "look up" then "look down" with feed-
back loops moving to lower layers. Rather, the general capability to imply things into
any lists, plus the continuing application of implied transforms as time advances,
gives the possibility of any mixture of top-down and bottom-up and 1ista-to—1istb proc-
esses.

Microstructure of the General Configurational Transform

A1l transforms have the same general structure. A transform consists of a set
of conditions {things to look for with optional weights, relative locations and other
attributes, and tests to effect), a threshold for success, and a set of implications

6

(things, transforms, and/or triggers; with optional weights, relative locations and
other attributes). The weights and thresholds give the probabilistic quality that
seems to give the power and robustness to real-world pattern recognizers. But when
the threshold is set to equal the combined weights of all the conditions the transform
becomes deterministic, insisting upon an "anding" of all parts, and can therefore be
used for the typically deterministic syntactic rewrite rules, semantic transformations,
deductive productions, and memory associations.

Weights seem desirable for association and deduction as well for perception, and
this general configurational transform allows us to explore probabilistic searches.

The weights serve to give heuristic guidance to the search, since the system chooses
to effect the most highly weighted transform on IDEAS, and that weight will be a func-
tion of any contextually related transforms, from no matter what source, that implied
that transform.

Rewrite rules and productions, which use the simple relations of concatenation
(left-right connectedness) and order can also be expressed with these transforms, by
using relative locations. But a wider variety of what I think are potentially very
useful "perceptual rewrite rules" are possible, rules that specify less rigid relations
among the parts - the sort of relations we need for real-world language, where noise
and ungrammatical utterances are common.

Demonstration Examples of SEER-T1's Behavior

Uhr, 1974a, 1974b gives examples of SEER's behavior, including recognizing, describ-
ing, answering, deducing, finding and manipulating, in response to single static scenes
of objects and verbal utterances mixed together. SEER-T1 will handle all of these even
if the objects and/or the words appear only parts at a time, in successive scenes.

For example, utterances might come in a word, or a letter or two, or a phoneme or two,
at each moment. An object like a dog might come in snout, face, ears, body, legs,

then tail, as though the perceptual field were smaller than the object. SEER-TT works
so long as the utterance or object comes completely into view before its first parts
and their transforms have been faded and discarded from short-term-memories. This means
that the parameters of the short-term-memory algorithm must be adjusted to handle the
expected speed of arrival and disappearance of external things. That is, internal
processes must be tuned to the same time range as the external processes they attempt
to handle.

Thus SEER-T1, when given the transforms shown in the Appendix, handles the follow-
ing simple example problems, along with many other problems. (When given more trans-
forms, for more words, objects and associations, it will handle more. The expectation
is that these transforms will be learned, rather than pre-programmed. Specific trans-
forms have the same status as do the specific rewrite rules for a specific language's

7

vocabulary and grammar, that are given to a parser.)
The following is an example of a simple movement:

T, TOUCH
T2 THE @APPLE @PAIL
Ty BANANA @APPLE @PAIL
T, @APPLE @PAIL @BANANA
Tg @APPLE BPAIL @BANANA
Output Time: @APPLE @PAIL :GBANANA:
Note that @ indicates an object, as opposed to a word - any arbitrary picture
or symbol could be used; colons (:...:) are used to indicate a thing is touched.
The following examplifies a simple manipulation:
T]. PUT @APPLE @PAIL @BOX @BANANA
T, BANANAIN @APPLE BPAIL @B0X @BANANA
T3 PALL @APPLE @PAIL @BOX @BANANA
6utput Time: G@APPLE (BBANANA -+ @PAIL) @BOX

Note that the things manipulated need not be present until after the command is
completed. ’

An internal need can similarly lead to an action (e.g. HUNGER-NEED implies LOOKFOR
FOOD, impiies LOOKFOR BANANA, implies LOOKFOR @BANANA implies the movement of touching,
as does an external command.

Discussion

Implicit vs. Explicit Indicants of Time

Note that no explicit indication is stored about the time of first merging of a
thing into a cell. It would be quite simple to have a clock advance at each moment,
and to store that clock's time with each newly implied thing, and use relative time
as part of the conditions for success of a transform. This would make the discrimina-
tion of things like D;0;G from G;0;D quite simple and straightforward. But it seems
preferable to explore whether the present simpler mechanism may not be sufficient,
since the relative weights of the parts will be a function of time.

The Size of the Perceptual and Cognitive Windows

Exploration is needed into the optimal balance between large parallel windows and
deep serial processes. In addition to widening their windows, to allow for more paral-
Tel processes in the central IDEAS and ACTS 1lists, we must examine the effects of lim-
iting the number of parallel transforms at each layer. This is ultimately necessary
when we think of the actual physical parallel-serial computer (e.g., a nerve network)
being modelled. Only a limited volume of physical space is available for connections.
And there is a tradeoff between having many transforms in a single layer, and having
more serial layers, each with fewer transforms.

Some Possible Mechanisms for Focussing Attention

It seems likely that associative memory searches should be more parallel than de-
ductive searches for paths. This suggests the possibility of handling them with two
separate IDEASlists, and/or dynamically changing the size of the window as a function
of characteristics of the problem being tackled. ‘

_Alternately, a "line of thought" indicated by a high weight could establish a
new 1ist that temporarily replaces IDEAS, and lets the system in a sense concentrate
on a single much narrowed search.

Summar

This paper describes a wholistic cognitive system that begins to explore the ways
in which the usually separated processes of perception, associative remembering, deduc-
tive problem-solving, language handling and learning can be integrated to handle the
relatively i11-formed kinds of problems encountered in everyday thinking. SEER-T1
interacts with environments that move and change over time. It can perceive moving
and changing environments of words and objects mixed together, and respond to verbal
utterances that are input over time. Its associative and deductive thinking, and its
actions similarly take time to effect.

Some simple examples of the system's behavior are giVen, to show how it handles
the different cognitive processes as a function of sequences of input scenes within
which it must recognize a mixture of words and objects, and also of its own internal
needs, goals and expectations.

A variety of different configurations are now open to exploration, since the inter-
action among the different processes can be varied in a number of ways. Each process
will also be varied and, hopefully, strengthened, and examined in the test-bed of the
whole system. Learning mechanisms will be added, so that as much as possible of the
system's set of transforms, and its overall architecture, can be discovered through
experience in interacting with its environment. Its layered hierarchical parallel-
serial architecture and its single general type of probabilistic confiqurational

9

transform have been designed with flexibility, generality, and learning in mind.
References

Anderson, J. R. and Bower, G. H. Human Associative Memory, Washington: Winston, 1973.

Arbib, M. A. The Metaphorical Brain, New York: Wiley, 1972.

Chomsky, N. Aspects of the Theory of Syntax, Cambridge: MIT Press, 1965.

Doran, J. E. Experiments with a pleasure-seeking automaton, Machine Intelligence 3,
Edinburgh: Univ. of Edinburgh Press, 1968.

Ejiri, M., Uno, T., Yoda, H., Goto, T. and Takeyasu, K. An intelligent robot with
cognition and decision-making ability, Proc. 2d Joint Int. Conf. on Artificial
Intell., 1971, London, 350-358.

Ernst, H. A. MH-1, a computer-operated hand, Proc. SJCC, 1962, 20, 39-45.
Ernst, H. A. Computer-controlled robots, IBM Repart RC 2781, Yorktown Héights, 1970.

Feldman, J. A. et al. The Stanford hand-eye project. Proc. 2nd Int. Joint Conf. on
Artificial Intell., 1971, 521-526.

Gelernter, H. Realization of a geometry-theorem proving machine, In E. Feigenbaum and
J. Feldman, Eds., Computers and Thought, New York: McGraw-Hill, 1963, 134-152.

Greene, P. H. A suggested model for information representation in a computer that
perceives, learns and reasons, Proc. FJCC, 1960, 17, 151-164.

Jordan, S. R. Learning to Use Contextual Patterns in Language Processing. Unpubl.
Ph.D. Diss., Univ. of Wisconsin, 1971.

Lindsay, R. K. Inferential memory as the basis of machines which understand natural
language, In E. Feigenbaum and J. Feldman, Eds., Computers and Thought, New York:
McGraw-Hi11, 1963, 217-233.

Minsky, M. (Ed.) Semantic Information Processing, Cambridge: MIT Press, 1968.

Newell, A., Shaw, C. and Simon, H. A. GPS, a program that simulates human thought,
In: Lennende Automaten, Munich: R. Oldenbourg, 1961. (In Feigenbaum and Feldman.)

Newell, A. and Simon, H. A. Human Problem Solving. Englewood Cliffs, N. J.: Prentice-
Hall, 1972.

Nilsson, N. J. Learning Machines. New York: McGraw-Hill, 1965.

Nilsson, N. J. Problem-Solving Methods in Artificial Intelligence, New York: McGraw-
Hi1l, 1971.

10

Quillian, M. R. Word concepts: a theory and simulation of some basic semantic capa-
bilities, Behav. Sci., 1967, 12, 410-430.

Quillian, M. R. The teachable language comprehender: a simulation program and theory
of language. Comm. ACM, 1969, 12, 459-476.

Riseman, E. M. and Hanson, A. R. Design of a semantically directed vision processor,
COINS Tech Rept. 74-Cl, Univ. of Mass., 1974.

Robinson, J. A. A machine-oriented logic based on the resolution principle, J.ACM,
1965, 12, 23-41.

Rumelhart, D. E. and Norman, D. A. Active semantic networks as a model of human memory,
Proc. 3d Int. Joint Conf. on Artificia] Intell., Palo Alto, 1973, 450-457.

Samuel, A. L. Some studies in machine leafning using the game of checkers. IBM J.
Res. and Devel., 1959, 3, 210-229. (In Feigenbaum and Feldman)

Samuel, A. L. Some studies in machine larning using the game of checkers, II: recent
. progress, IBM J. Res. and Devel., 1969, 11, 601-617.

Schank, R. and Colby, K. M. (Eds.) Computer Models of Thought and Language, San Fran-
¢isco: Freeman, 1973.

Sl apiro, S. C. and Woodmansee, G. H. A net structure based relational question answerer:
description and examples, in Proc. Ist Joint Conf. on Artificial Intell., Wash-
ington, D.C.: 1969, 325-346.

Siklossy, L. A language-learning heuristic program. Cognitive Psychology, 1971, 2,
479-495,

Simmons, R. Answering English questions by computer: a survey, Comm. ACM, 1965, 8,
53-70.

Simmons, R. Natural language question-answering systems: 1969, Comm. ACM, 1970, 13,
15-30.

Toda, M. The design of a fungus eater, Behav. Sci., 1962, 7, 164-183.

Uhr, L. Pattern-string learning programs. Behavioral Science, 1964, 9, 258-270.

Uhr, L. ‘"Recognition cones" that perceive and describe scenes that move and change
over time. Computer Sci. Dept. Tech.Rept., Univ. of Wisconsin, 1975.

Uhr, L. and Kochen, M. MIKROKOSMs and robots. Proc. 1st Int. Joint Conf. on Artificial
Intell., 1969, 541-556.

Waterman, D. A. Generalization techniques for automating the learning of heuristics.
Artificial Intelligence, 1970, 1, 121-170.

1

Williams, H. A Hierarchical Net-Structure Learning System for Pattern Description,
Unpubl. Ph.D. Diss., Univ. of Wisconsin, Madison, 1974.

Winston, P. H. Learning Structural Descriptions from Examples. Unpubl. Ph.D. Diss.,
MIT, 1970.

Woods, W. A. Procedural semantics for a question-answering machine. Proc. Fall Joint
Computer Conf., 1968, 33, 457-471.

Acknowledgements

This research has been partially supported by grants from the National Institute
of Mental Health (MH-12266), the National Science Foundation (GJ-36312), (NGR-50-002-160)
and the University of Wisconsin Graduate School.

12

Appendix: The EASEy Program for SEER-T1

(SEER-T1l, for scenes that change over time,

NLAYERS = 7
FADER = '"F OORCTF v
C = 'CHARSNEXT!®

G = 'GOALS!

I = '"IDEASNEXT'

A = 'ACTSNEXT"

N = 'NEEDS' [IN]

(Moves from central apex toc the peripheral retina

NEXT-TIME MERGE(NEED-CHANGES FLATILS)

MERGE(POINTAT(ABOVE(NEEDS GOALS , 5) EXPECTATIONS LOOKFOR))
MERGE(CHARSNEXT , 'NEVCHARS!')

MERGE(IDEASKEXT , 'IDEAS')

MERGE(ACTSNEXT , tACTS')

erase CHARSNLXT, IDEASNEXT, ACTSNEXT, STEPS

FADE('IDEAS ACTS GOALS CHARS NEWCHARS LOCKFOR EXFECTATIONS !)

(CHOOSE ®nd execute most highly weighted act

ACT
(Test

CHOOSE(ACTS)

whether this choice has a higher TOTAL weight than the ACTIVE act.
is TOTAL lessthan ACTIVEWT ? [+ ACTON]

ACTIVEWT = TOTAL + §

is THING sameas ACTIVE ? [+ ACTON]

ACTIVE = THING

erase ACTIONS

from $THING get TYPE THRESH '#D=' DESCR 'I=' IMPLIEDS %

(Does 3 steps in the chosen act at each moment.

ACTON
ACT

ACTTRIES = 3
is O lessthan ACTTRIES ? yes- ACTTRIES = ACTTRIES -1 [- THINK 1

Ml
M2
M3
M4
M5
M6
M7

N 00w W e

10
11
12
13

from IMPLIEDS get ACTION ARGS ; = [- 0UT]
ACT?2 from HIST get CLASS ARG = [+ $ACTION]
ARG = ARGS [$ACTION]
(OUTputs its actions-sequence

ouT is TOOUT sameas EMPTY ? [+ SEARCH]
output TOoUT
output EXTERNAL [IN]

(Initiates a SEARCH to help in completing the frustrated act.
SEARCH from $ARG get '%I=' IMPLIEDS % [— FAIL]
SEARCHZ from IMPLIEDS get IMPLIED WT ; = [~ FAIL]
from IMPLIED get NEEDED '$’ 2 SEARCH2]
from $NEEDED . '%D=""PARTS %
POINTATIPAR

MERGE(POINTAT({PARTS),N)
RETURNACT on NEWCHARS set CHOOSE [TMORE]
FAIL output 'FAILED' EXTERNAL [IN]
D (Tl
(Names the most highly implied object of class specified in ARGument
T from $(L;0;0) get CHOOSE($(L;0;0),ARG) = [-ACT]

(TOTAL weight must be above 5.
is TOTAL greaterthan 5 ? [-ACT]

on TOOUT list THING [$('AC' ACTION) 1
ACD on TOOUT Set '(WITH '
(Describes the scene
D3 from HISTC get CLASS THINGH = [-D2 3]

from $(L;0;0) get : that THINGH REST = [-D3]

on TOOUT list THINGH ; [D31
D2 on TOOUT set ') (71
(Finds the first THING for each ARGument,

from $(L;0;0) get # that ARG # REST : THING MORE] = [-ACT2]
(F1nds THING only if without variations in EXTERNAL input

from EXTERNAL get that THING = : THING : [-ACT2]

- on TOOUT list 'A ' THING ' IS FOUND- ' [ACTZ

(Moves all Found things as PREPosition (TO or FROM) indicates
M is CLASS sameas 'PREP' ? [-F]

from HIST get CLASS ARGT [-ACT 1

from $(L;0;0) get # that ARGT # REST : TARGET [-SEARCH]

M2 fmmEHEmw_gﬁ THINGA : = [+ $('M' ARG)]

MTO from EXTERNAL get that TARGET = '(' TARGET THINGA ')' (M2]
MFROM from EXTERNAL get LEFT that TARGET RIGHT =

+ THINGA : LEFT RIGHT TARGET [M2]

(Replies. If nothing about ARG, SEARCH associates out some more.
(needs more directed and conscious search
R from $(L;0;0) get CHOOSE($(L;0;0), ARG) = [-SEARCHR]
MAXWT = TOTAL
R2 on TOOUT list THING ; ,
from $(L;0;0) get CHOOSE($(L;0;0),ARG) = [-ACT]
is TOTAL lessthan MAXWT / 2 ? [+ACT - R2]
SEARCHR MERGE($(L30;0), IDEAS) [RETURNACT]
(Computes
o from ARGS get OP CLASSA CLASSB
from $(L;0;0) get # that OP # REST : OP
from $(L;0;0) get # that CLASSA # REST ARGA [- SEARCHC)
from $(L;0;0) get # that CLASSB # REST : ARGB [+ $0P]
SEARCHC MERGE(POINTAT(INTEGE RS) [RETURNACT 1]
(ADD, - ete. are OPS.
ADD on TOOUT 1ist ARGA + ARGB [ACT]
- on TOOUT Tist ARGA - ARGB [ACTI
/ on TOOUT list ARGA / ARGB [ACT]

- (Game move (Needs to look deeper, choose with paraliel heuristics)
G from ARGS get OLD NEW
from $(L;0;0) get # that OLD # REST : OLD [-FAIL 1
from $(L;0;0) get # that NEW # REST - NEW [-FAIL]
from EXTERNAL get that OLD = NEW [ACT]

(Applies the N most highly weighted Transforms on IDEAS to the apex,
THINK N =5
THINKAGAIN is N lessthan 1 ? T+ PERCEIVE 2
N=N=1
from IDEAS get CLASSES : TRANS TOTAL HIST 3 = T + PERCEIVE]
erase LOC
from $TRANS get THRESH '%D=' DESCEK '%I=' IMPLIEDS %
TH1 from DESCR get : CLASSWT DC 3 = [- EVAL 3]
%{ﬁvse%((gLCAS)S Ffogq-?- gc » $(0;0;:;0)) C+THY - TH1Z
TH3 NEAREST(CLASS , 'Z' , $(’'0 . 0.6)) C-Tu1 3 -
TH4 TOTAL = TOTAL + (WT * WTL) _/ DIST
on HIST list CLASS THING L[TH1 3
EVAL is TOTAL lessthan THRESH ? € + THINKAGAIN 3
MERGE(TIMPLIEDS » I, HIST , TOTAL / THRESH) [THINK Y

(Moves through the recognition cone, from apex ($(D 5 0 5 0)) to retina

PERCEIVE L =1

R=1
C=1
TREPEAT TODO = CHARS LAYERS
T6 from TODO get RSTEP CSTEP NOWDO % =" [- TREPEAT 2

erase COUNT, INTENSITY

atr start of NOWDO set ':FADER X I :NORMALIZE ' RSTEP * CSTEP 1 NEWCHARS
T5 from NOWDO £Zet CLASSES : TRANS TOTAL HIST J = C - ITERT

at start of TRANS get : DRT : DCT : = C+7181

erase DRT DCT

T8 from $TRANS get RA CAA RMAX CMAX DO
RA = RA + DRT

7 CA = CAA + DCT
T4 from $DC get TYPE THRESH '¢D=' BESCR '%I=' IMPLIFDS %

erase GOT TOTAL
X=L- 1; (RA/RSTEP) ; (CA / CSTEP)

T3 from DESCR get : CLASS TVAL DR DC1 = [- $(TYPE 2)2
BEFORE = L ; (RA+DR) ; (CA+DC)

(Checks whether BEFORE cell is empty, e.ge outside the cone
is $BEFORE sameas EMPIY ? [+T3 - $(TYPE 2) 3

(TYPE A Transforms that average and difference

Al MERGE($BEFORE , $X , , TVAL , CLASS) [T3 1
(TYPE T Transforms that look for configurations
Tl from $BEFORE get # that CLASS # KEST : THING VAL = [- T3 X

1s TVAL lessthan VAL ? yes- TOTAL = TOTAL + VAL - TVAL
on GOT list CLASS THING [T3 72

T2 1s TOTAL lessthan THRESH ?- [+ A23%
MERGE(IMPLIEDS , $X , GOT) [A21

(TYPE D transforms, that trigger decisions directiy

Dl MERGE(CHOOSE($BEFORE) , $(D ; 0 ;0)) [A21

A2 is CA lessthan $CMAX + DCT ? yes- CA = CA+1 L[+T41

is RA lessthan $RMAX + DRT ?yes=.RA=RA+1 L+7T7 -T41
(FADEs the earlier layer, only one fade per cell
Fl FADE(BEFORE) T A22
ITER is L lessthan NLAYERS ? yes- L =L +1 [- NEXT 1
R = R * RSTEP
€ = C * CSTEP
én STEPS list : L RSTEP CSTEP [T61
(Input the next moment of time
NEXT erase RA
IN input TYPE DESCR 1 £ + $('M' TYPE) - end I

er

MSENSE erase CA
on EXTERNAL lisg DESCR
S1 from DESCR get and call SPOTSIZE symbols SPOT = [- 35271
integer(SPOT) T - 5413
MERGE('BRIGHT QUAL :BRIGHT ' SPOTJ , $(L ; RA ; CA)) [531
(: Stores colors or any other primitiﬁes
g4 from SPOT get PRIM VAL = [- S61
from $PRIM get '%I=t IMPLIEDS '%C=' CLASSES % [- 551
MERGE(IMPLIEDS PRIM CLASSES : PRIM VAL T , $(L ; RA ; CA)) T S42
S5 MERGE(PRIM : PRIMVAL 1 , $('L ; RA ; CA)) LS4

(To handle primitives that are letter-strings, e.g. sentences
S6 ‘is SPOT sapmeas EMPTY ? [+ 85371 .
MERGE(SPOT 'SYMB :SYMB ' SPOT 5 T , $(L ; RA ; CA)) ¥ s31q
S3 CA=Ch+1 TS11
S2 j;s_ RA lessthan R ? yes- RA=RA+1 L[+ INT
output 'ONE MOMENT HAS BEEN INPUT.' U NEXT-TIME 3}

2 The following functions are used by the main program.
FADEs many lists gradually, FADE will contain all THINGs discarded.
FADE DEFINE: FADE{ LISTS , FADE)
FAl Tfrom LISTS get LISTA = [- returnl
TOFADE = $LISTA
erase $LISTA :
FA2 Tfrom TOFADE get LEFT : THING WT RIGHT I = T - FA1l2Q
FAL is WT lessthanl ? [- FA3 Y
on FADE list LEFT : THING WT RIGHT 3 L FA21]
{ Will divide by 2 if FADE factor is not specified,
FA3 on $LISTA list LEFT : THING WT / (FADE + 2) RIGHT 3 L FA21

(MERGE two lists, combining weights and HISTories
MERGE (DEFINE: MERGE(LISTA,LISTB,HISTA,WT,CLASS)

is CLASS sameas EMPTY ? [-ME1]

from LISTA get LEFT : THING WTA HIST] = [- return + ME3]
ME1 from LISTA ggg LEFT # that CLASS # REST : THING WTA HIST] =L -returnl
ME3 from WTA get '$' = TOTAL
(Can optionally spec1fy LISTB as part of THING

from THING get '$' LISTB =

is LISTB sameas 'CH' ? [+ CH]

from $LISTB g_t that THING TOTAL HISTB =
+ NAME TOTAL + (WT¥T). ™ WTL HISTA HISTB 3 [+MET]

from $THING get '%C=' CLASSES % [+ME2]

erase CLASSES

ME2 on $LISTB 1ist THING CLASSES : THING (WT+1) * WTL LISTB HISTA 1 [ME1]
CH at start of CENTRAL list CHOOSE($(L;RA;CA),THING) [ME11

(Back-1inks only to transforms with names
POINTAT DEFINE: POINTAT(THINGS)

PAl from THINGS get CLASSES : THING HIST] = [- return]
from $THING get '%D=' TOTHINGS % [- PA]]
MERGE (TOTHINGS;N) LPAT]
(NORMALIZE to keep weights roughly constant even though converging passed-on things
ABS DEFINE: ABS(ABS)
ABS1 at start of ABS = [return]
(CHOOSE MAX or MIN we1ghtedgT~AX 1f no type is specified)

CHOOSE DEFINE: CHOOSE(LISTA,CLASS,TYPE) '
§CLASS can be a specific thing, or empty (in which case all things are chosen
among) :
CH1 : from LISTA get CLASSES : FIRST THWT HIHIST 1= [- -return]
is CLASS sameas EMPTY ? [+ CH2]
From CLASSES get # that CLASS # [-CH11
1ist.CHOOSE = CLASSES: FIRST THWT L ; RA ; CA HIHIST

CH2 from LISTA get ORCLASSES : ORTHING ORWT ORHIST 1= [+CH4]
from CHOOSE get CLASSES : THING TOTAL LOC HIST) [return]
CH4 is CLASS sameas EMPTY ? [+ $('CH'TYPE)
From ORCLASSES get # that CLASS # [+$('CH' TYPE) -CH2]
CHMIN is ORWT lessthan THWT ? yes - THWT = ORWT [+CH3 - CH2]
CH [CHMAX]
CHMAX is THWT lessthan ORWT ? yes- THWT = ORWT [+CH3 - CH21]

CHe Tist CHOOSE = ORCLASSES : ORTHING ORWT LISTA HIHIST 1 [CH2]

\

A Note on EASEy Programs (See Uhr,
1973f for details)

Numbering at the right identifies statements, and
allows for comparisons between programs. M

indicates initializing Memory statements: I indicates
cards that are Input by “the program. .V indicates a
Variant, .1l an Tadditional statement.

A program consists of a sequence of statements, an
end card, and any data cards for input. (Statements
that start with a parenthesis are comments, and are
ignored.) Statement labels start at the left;

gotos are at the right, within brackets (+ means
branch on success; - on failure; otherwise it is an
uncgpditional branch). + signifies a continuation
card.

Strlngs on capitals are programmer-defined. Strings

in underlined lower-case are system commands that

must be present (they would be keypunched in caps to
run the program). These include input, output, erase,
set, list, get, start, call, that, and the inequalities.
Other lower-case strings merely serve to help make the
program understandable; they could be eliminated.

EASEy automatically treats a space following a string
as though it were a delimiter; it thus automatically
extracts a sequence of strings and treats them as
names. J,:,;, and % act similarly as a delimiter,
but the programmer must specify it. The symbol # is
used to stand for any delimiter (a space, 1, : ,

i, % or #)

The symbol $stringl is used to indicate "get the contents
of string I, and treat it as a name and get its contents"
(as in SNOBOL).

Pattern-matching statements work just as in SNOBOL
statements: there are a) a name, b) a sequence of
objects to be found in the named string in the order
specified, ¢) the equal sign (meaning replace), and

d) a replacement sequence of objects (b, ¢, and/or d

can be absent). that stringl means "get that particular
object" - otherwise a new strlng is defined as the
contents of stringl, which is taken to be a variable
name.

7.

size(...) is a built-in function that counts the
symbols inthe string(s) named within parentheses
(its argument). integer{(...) succeeds if its
argument is an integer. a

DEFINE: defines a programmer-coded function. The
function is executed whenever it is specified, FUNC~-
TIONNAME (ARGUMENTS), in the program. It ends in
success or failure when it reaches a [return] or
[~return] goto.

A WHOLISTIC INTEGRATED COGNITIVE SYSTEM (SEER-T1) THAT INTERACTS
WITH ITS ENVIRONMENT OVER TIME
Leonard Uhr

University of Wisconsin
Madison, Wisconsin

Abstract

This paper describes, presents and discusses a computer-programmed model for a
wholistic system that performs the variety of functions usually thought of as "cogni-
tive" while interacting with an environment of objects that move about and change over
time. A relatively sophisticated "recognition cone" system that perceives and describes
scenes of moving and changing objects (Uhr, 1975) is embedded in a larger "SEER" (for
SEmantic learnER, or Sensed Environment Encoder Recognizer and Responder) system that
also associates into memory to respond to queries and access relevant information,
deduces solutions to simple problems, parses and "understands" language utterances,
effects actions upon the external environment, and learns its memory of transforms
and their interconnections.

These functions are kept as simple as possible, and combined in as integrated a
way as possible. Each calls upon and helps the others as needed, by implying things,
processes and acts into a small number of common lists to which all have access.

A unified "cognitive memory" is built up using a single general type of transform,
one that is powerful enough to do pattern recognition "feature extraction," scene de-
scription "configurational characterizations," memory "associations," deductive "pro-
ductions," and language "rewrite rules."

Embedding this system in time allows for new interesting and natural appearing
interactions among the various processes as they work in parallel and serially call
upon one another over time.

The program is coded in EASEy (Uhr, 1973f) an English-like variant of SNOBOL
designed to enhance list-processing abilities, and to be easy to read, so that the
program itself can be examined and understood.

Introduction and Background

SEER programs are being developed to explore how a wholistic information proces-
sing system can perform the variety of cognitive functions (perceiving, remembering,
problem-solving, language handling, acting, and learning) that psychologists tradi-
tionally study, and that seem to be the components of human thinking.

Research on the Separate Cognitive Processes, and Attempts to Combine Them

Most research in artificial intelligence and mind/brain modelling has looked at
1

these functions, but separately, in pattern recognition and scene analysis (e.g. Doyle,
1960, Uhr and Vossler, 1961, Andrews et al., 1968, Waltz, 1972, Riseman and Hanson,
1974; see Duda and Hart, 1973, Uhr, 1973a), information retrieval and question-answering
(e.g. Lindsay, 1963, Shapiro and Woodmansee, 1969, Woods, 1968, see Simmons, 1965,
1970, Minsky, 1968), deductive problem-solving (e.g. Newell, Shaw and Simon, 1961,
Gelernter, 1963, Samuel, 1959, 1969, Robinson, 1965; see Nilsson, 1971, Newell and
Simon, 1972), language processing (e.g. Quillian, 1967, Rumelhart and Norman, 1973,
Chomsky, 1965; see Anderson and Bower, 1973, Schank and Colby, 1973), acting (e.g.
Ernst, 1962; Greene, 1960; see Arbib, 1972), and learning (e.g. Uhr and Vossler, 1961,
Samuel, 1959, 1969, Uhr, 1964, Siklossy, 1971, Jordan, 1971, Quillian, 1969, Waterman,
1970, Winston, 1970, Williams, 1974, see Nilsson, 1965, Uhr, 1973a).

There have been a few attempts to combine these separate systems, usually with
a focus on acting, as in the robot research (e.g. Nilsson, 1971, Feldman et al., 1971,
Winston, 1972, Ejiri et al., 1971; see Ernst, 1970, and Uhr and Kochen, 1969, for
critiques). But most of these have built very large and complex systems for each
of the major processes of 1) perception of a static scene (input through a television
camera), 2) "understanding" a verbal command (input through a teletype), 3) deductive
problem-solving, and 4) binding and effecting actions - with verylittle interaction
between these systems. As a result, they have not been able to explore how one process
can call upon or help another. For examples, perception should serve to guide an ac-
tions-sequence that moves to and grasps an object. But the perceptual system is so
rigid that one detailed tv picture is first taken and analyzed, an actions-sequence
deduced and then bound to specific movements, and these movements are made blind, with-
out any intermediate feedback.

Steps Toward Integration of Processes, and Generality and Flexibility

Similarly, it would be natural and desirable to have the search for solution paths
suggest objects that, if present in the environment, would be useful and in turn focus
the attention of the perceptual mechanism on a search for these objects, with percep-
tion in turn making use of deductions and memory searches to help guide its search.

To do this kind of thing we need simple well-integrated systems. A few small begin-
nings have been made (e.g. Toda, 1962; Doran, 1968; Uhr and Kochen, 1969). The present
system is the latest in a series (Uhr, 1974a,b) that attempts to make a direct attack
on this issue - what I will call the problem of everyday thinking about i11-formed
problems.

The desire is to achieve systems that are as general, flexible and adaptive as
possible. Rather than striving for specific (usually ad hoc) power at a particular
task 1ike chess, theorem-proving, or character recognition, SEERs are first-step at-
tempts to develop theory/models of general cognitive systems that can do the variety

2

of things that people do, in roughly the same integrated way. By keeping SEERs as
simple as possible we make them accessible to observation, and to revision. Once a
SEER cycles through a variety of simple cognitive tasks, with good interaction and

integration among processes, we can begin to strengthen each, or several, processes,

by plugging in new functions for them, and testing them separately, and also as part
of the thus-augmented system.

I11-Formed Everyday Thinking Vs. Path-Searching to Solve Well-Formed Problems

Most artificial intelligence research has tried to straightjacket all problems
into the paradigm (see Nilsson, 1971) of a search for a path between given(s) (e.g.
the initial board in a game, the axioms of a logistic system, the sentence to be parsed)
and goal(s) (e.g. the win-states of the game, the theorem to be proved, the "Sentence"
node to be reached by the application of some sequence of rewrite rules). The robot projects
have similarly tried to decompose the whole cognitive process into separate sub-processes
where given(s) and goal(s) are set up, so that they can then be attacked in this way.

A good deal of analysis and thought has gone into devising specific heuristics or al-
gorithms for particular search spaces (e.g. perceiving cubes, wedges and pyramids;
winning at chess, checkers, or kahlah; answering questions about the weather, troop
dispositions, or parts of the body), and these have led to path-searchers that can
find fairly deep paths in rather large spaces. Thus problems are made well-formed,
and specific techniques are constructed to attack them.

In sharp contrast, most of human thinking has a very different quality. Only rarely
do we find somebody making deep deductive searches between well-defined givens and
goals. The mathematician's most creative work comes when he finds and posits theorems
that appear worthy of proof. It is only because in school we survey a logistic system
by studying proofs that we come to think of this as the stuff of mathematics.

Most everyday thinking is much more shallow and, in important ways, i11-formed.
Consider typical situations, 1ike figuring out where to go and what to do on a 2-week
vacation, weekend, or evening; how to get there; where to eat; what; how to eat it;
and so on.

We perceive and interact appropriately with extremely complex mixed fields of
words and objects (e.g. the foods, packages, descriptions and prices in a supermarket).
Out of this chaos our interests lead us to notice what's relevant, and to (usually
shallow) associations and deductions (e.g. "this poundcake mix is easier to make,"
"that brand's spongecake was soggy," "this mix needs egg yolks, so get eggs and use
the whites for pudding"). We move around the store in what might justly be called an
ongoing "conversation" where perceived objects and verbiage, memories and deductions
all play arolein the constant assessment of relevance that guides our acts and thoughts.

The SEER-T1 System Described

SEER-TT is the first attempt at an integrated cognitive system that copes with
environments of things (words and objects) that move about and change in Time. It
builds upon, combines, and extends several previous programs:

SEER systems that respond to static environments have been presented in Uhr, 1974a,
1974b. These extend "DECIDER" systems (Uhr, 1973b, 1973d) that handle environments of
mixed objects and words, since in the real world there can be no separate input channels
for words and symbols; rather, one of a cognitive system's key problems is to recognize
the referential import of certain of the things it perceives.

The perceptual capability has been examined in a sequence of "recognition cone"
programs for recognizing and naming (Uhr, 1972) and for describing (Uhr 1973e). A
short-term-memory algorithm has been developed to handle successive inputs over time
(Uhr, 1973c), and incorporated into the dispersed memory of the recognition cone (Uhr,
1975).

SEER-T1 is the first SEER system that interacts with environments of things that
move about and change over Time. Its perceptual abilities are relatively sophisticated,
since it incorporates the parallel-serial probabilistic hierarchical "recognition cone"
system that handles successive 2-dimensional scenes over time. Time now becomes a
major issue for the other cognitive processes as well. The system begins to coordinate
the time needed for each process's transformations with the external time in which
perceived objects move and change.

This leads to interesting effects and surprising simplifications, since the system
can take advantage of continuing time. For example, it is able to mingle inner-directed
(top-down) and environment-directed (bottom-up) processes in an especially simple way,
by having transforms imply subsequent transforms to apply at any level, but at later
moments of time (since it takes time to effect a transform and to send and merge its
implications into its output buffer).

Overall Architecture of SEER-TI

A succession of scenes - 2-dimensional arrays, much like the frames of a movie
- are input to SEER's Retinal input Buffer, and successively transformed back through
the converging layers of the "recognition cone," until all implied things (including
external and internal names of wholes, parts, and qualities) have been passed back to
the cone's apex (see Uhr, 1972, 1973e for fuller descriptions). Each layer of trans-
forms takes one moment of time. Therefore a 6-layer cone will take 6 moments to trans-
form from Retina to Apex, a 10-layer cone 10 moments, an N-Tayer cone N moments.

Figure 1. Overall Architecture of a SEER System

[}OOKFOR

T35
o]
0
Input o
Scené ™~ o
(o]
o
I i
000 O
Qutput Actions

At each moment each of the Layers is effecting its Transforms on its input Buffer,
and merging its implications into the next output Layer. These Buffers contain things
that have been merged into them at previous moments in time, and thus form a set of
short-term-memories. They are gradually faded away, the weight of each thing being
reduced slightly at each moment, and the thing discarded when its weight goes below
a threshold. Each new thing merged into a Buffer cell is given a relatively high in-
itial weight, and this weight is later increased if the same thing is again implied
into that cell, by some other transforms and/or at some subsequent moment.

Transforms also imply and merge things into several additional lists - a) a list
of things to LOOKFOR, b) a list of dynamically implied transforms (called NEWCHARacter-
jzerS) to apply next (at the next moments of time, until faded away and discarded),
and c) a list of IDEAS, which are Transforms to be applied to the central Apex, and
serve to associate and deduce new nodes, in a search out into the cognitive memory,

d) a Tist of ACTS that might be effected, and e) a 1ist of NEEDS and GOALS.

- At each moment each of these lists is effecting its transforms, in parallel with
each other and with each of the Layers in the cone. NEEDS-GOALS implies ACTS and things
to LOOKFOR that might satisfy them. Things in LOOKFOR imply NEWCHARacterizerS to apply
that might imply them. NEWCHARS are applied at the relative locations specified, and
their implications merged into the next Layer of the cone.

The single most highly weighted transform on IDEAS is applied to the Apex and,
if it succeeds, its implied things merged back into the Apex, and its implied acts
merged into ACTS and implied things-to-lookfor and characterizers-to-apply merged into
LOOKFOR and NOWCHARS. And the single most highly weighted act is chosen from ACTS.

If it is the same as the previously effected act it continues with the actions-sequence
it is presently executing. If it is different, the system generates and binds a new

5

actions-sequence that it will effect over the next moments of time. This process also
implies new IDEAS and things to LOOKFOR to effect these bindings.

Each of these separate processes thus is effected in parallel, at each moment in
time, but looking at different buffers and merging their implications into different
buffers. The central processes are highly serial, since only the single most highly
weighted IDEA and ACT are applied at each moment in time. In sharp contrast, the trans-
forms on all other lists are applied in parallel. We can think of this as a narrow
window giving serial central processes, hopefully allowing for more direction as their
search is heuristically guided by the combined weights of implications; in contrast
to a wide parallel window for the perceptual processes.

Actually, a parameter can be set so that 2, 3, or N most highly weighted IDEAs
can be applied in parallel, at the same moment. We will need to test for an optimum
window size, one that uses parallel processes to speed up search but without losing
too much of the directedness given by serial decisions.

Flow of Processes over Time

This quite naturally gives interactions among all the processes. But these inter-
actions take the time needed to effect the required sequence of transforms. For example,
a characterizing transform might imply a top-angle, and also that the system LOOKFOR
a T and for the word THE. The symbol T implies that features of T be applied, and these
transforms will be effected 2 moments in time later. But they can be effected at any
Layer of the cone. If at the next more central Layer, it will be on the transformed
scene only 1 moment later (plus the short-term memory of still-not-deleted earlier mo-
ments), if at a Layer 2 more peripheral on the transformed scene 4 moments later (but
closer to the raw input, thus giving a top-down direction to processing).

Similarly, THE implies H and E a Tittle to the right of the T, which in turn imply
their features, etc. At the same time, other things that have been merged into LOOKFOR
(because implied by previous transforms, NEEDS, GOALS, and ACTs being effected) imply
transforms to be applied.

Thus there is no need to explicitly decide to "look up" then "look down" with feed-
back loops moving to lower layers. Rather, the general capability to imply things into
any lists, plus the continuing application of implied transforms as time advances,
gives the possibility of any mixture of top-down and bottom-up and 1ista—to-1istb proc-
esses.

Microstructure of the General Configurational Transform

A1l transforms have the same general structure. A transform consists of a set
of conditions (things to look for with optional weights, relative locations and other
attributes, and tests to effect), a threshold for success, and a set of implications

6

(things, transforms, and/or triggers; with optional weights, relative Tocations and
other attributes). The weights and thresholds give the probabilistic quality that
seems to give the power and robustness to real-world pattern recognizers. But when
the threshold is set to equal the combined weights of all the conditions the transform
becomes deterministic, insisting upon an "anding" of all parts, and can therefore be
used for the typically deterministic syntactic rewrite rules, semantic transformations,
deductive productions, and memory associations.

Weights seem desirable for association and deduction as well for perception, and
this general configurational transform allows us to explore probabilistic searches.

The weights serve to give heuristic guidance to the search, since the system chooses
to effect the most highly weighted transform on IDEAS, and that weight will be a func-
tion of any contextually related transforms, from no matter what source, that implied
that transform.

Rewrite rules and productions, which use the simple relations of concatenation
(Teft-right connectedness) and order can also be expressed with these transforms, by
using relative locations. But a wider variety of what I think are potentially very
useful "perceptual rewrite rules" are possible, rules that specify less rigid relations
among the parts - the sort of relations we need for real-world language, where noise
and ungrammatical utterances are common.

Demonstration Examples of SEER-T1's Behavior

Uhr, 1974a, 1974b gives examples of SEER's behavior, including recognizing, describ-
ing, answering, deducing, finding and manipulating, in response to single static scenes
of objects and verbal utterances mixed together. SEER-T1 will handle all of these even
if the objects and/or the words appear only parts at a time, in successive scenes.

For example, utterances might come in a word, or a letter or two, or a phoneme or two,
at each moment. An object 1ike a dog might come in snout, face, ears, body, legs,

then tail, as though the perceptual field were smaller than the object. SEER-T1 works
so long as the utterance or object comes completely into view before its first parts

and their transforms have been faded and discarded from short-term-memories. This means
that the parameters of the short-term-memory algorithm must be adjusted to handle the
expected speed of arrival and disappearance of external things. That is, internal
processes must be tuned to the same time range as the external processes they attempt
to handle.

Thus SEER-T1, when given the transforms shown in the Appendix, handles the follow-
ing simple example problems, along with many other problems. (When given more trans-
forms, for more words, objects and associations, it will handle more. The expectation
js that these transforms will be learned, rather than pre-programmed. Specific trans-
forms have the same status as do the specific rewrite rules for a specific language's

7

vocabulary and grammar, that are given to a parser.)
The following is an example of a simple movement:

T] TOUCH

T, THE @APPLE @PAIL

T3 BANANA @APPLE @PAIL

Ty @APPLE @PAIL @BANANA
Tg @APPLE @PAIL @BANANA
6utput Time: @APPLE @PAIL : GBANANA:

Note that @ indicates an object, as opposed to a word - any arbitrary picture
or symbol could be used; colons (:...:) are used to indicate a thing is touched.
The following examplifies a simple manipulation:

T1 PUT @APPLE @PAIL @BOX @BANANA
Ty BANANA IN GAPPLE @PAIL @BOX @BANANA
Ty PAIL @APPLE @PAIL @BOX @BANANA
butput Time: GAPPLE (@BANANA @PAIL) @BOX

Note that the things manipulated need not be present until after the command is
completed.

An internal need can similarly lead to an action (e.g. HUNGER-NEED implies LOOKFOR
FOOD, implies LOOKFOR BANANA, implies LOOKFOR @BANANA implies the movement of touching,
as does an external command.

Discussion

Implicit vs. Explicit Indicants of Time

Note that no explicit indication is stored about the time of first merging of a
thing into a cell. It would be quite simple to have a clock advance at each moment,
and to store that clock's time with each newly implied thing, and use relative time
as part of the conditions for success of a transform. This would make the discrimina-
tion of things 1ike D;0;G from G;0;D quite simple and straightforward. But it seems
preferable to explore whether the present simpler mechanism may not be sufficient,
since the relative weights of the parts will be a function of time.

The Size of the Perceptual and Cognitive Windows

Exploration is needed into the optimal balance between large parallel windows and
deep serial processes. In addition to widening their windows, to allow for more paral-
lel processes in the central IDEAS and ACTS lists, we must examine the effects of lim-
iting the number of parallel transforms at each layer. This is ultimately necessary
when we think of the actual physical parallel-serial computer (e.g., a nerve network)
being modelled. Only a limited volume of physical space is available for connections.
And there is a tradeoff between having many transforms in a single layer, and having
more serial layers, each with fewer transforms.

Some Possible Mechanisms for Focussing Attention

It seems likely that associative memory searches should be more parallel than de-
ductive searches for paths. This suggests the possibility of handling them with two
separate IDEAS1lists, and/or dynamically changing the size of the window as a function
of characteristics of the problem being tackled.

Alternately, a "line of thought” indicated by a high weight could establish a
new list that temporarily replaces IDEAS, and lets the system in a sense concentrate
on a single much narrowed search.

Summary

This paper describes a wholistic cognitive system that begins to explore the ways
in which the usually separated processes of perception, associative remembering, deduc-
tive problem-solving, language handling and learning can be integrated to handle the
relatively i11-formed kinds of problems encountered in everyday thinking. SEER-TI
interacts with environments that move and change over time. It can perceive moving
and changing environments of words and objects mixed together, and respond to verbal
utterances that are input over time. Its associative and deductive thinking, and its
actions similarly take time to effect.

Some simple examples of the system's behavior are given, to show how it handles
the different cognitive processes as a function of sequences of input scenes within
which it must recognize a mixture of words and objects, and also of its own internal
needs, goals and expectations.

A variety of different configurations are now open to exploration, since the inter-
action among the different processes can be varied in a number of ways. Each process
will also be varied and, hopefully, strengthened, and examined in the test-bed of the
whole system. Learning mechanisms will be added, so that as much as possible of the
system's set of transforms, and its overall architecture, can be discovered through
experience in interacting with its environment. Its layered hierarchical parallel-
serial architecture and its single general type of probabilistic configurational

9

transform have been designed with flexibility, generality, and Tearning in mind.
References

Anderson, J. R. and Bower, G. H. Human Associative Memory, Washington: Winston, 1973.

Arbib, M. A. The Metaphorical Brain, New York: Wiley, 1972.

Chomsky, N. Aspects of the Theory of Syntax, Cambridge: MIT Press, 1965.

Doran, J. E. Experiments with a pleasure-seeking automaton, Machine Intelligence 3,
Edinburgh: Univ. of Edinburgh Press, 1968.

Ejiri, M., Uno, T., Yoda, H., Goto, T. and Takeyasu, K. An intelligent robot with
cognition and decision-making ability, Proc. 2d Joint Int. Conf. on Artificial
Intell., 1971, London, 350-358.

Ernst, H. A. MH-1, a computer-operated hand, Proc. SJCC, 1962, 20, 39-45.
Ernst, H. A. Computer-controlled robots, IBM Report RC 2781, Yorktown Heights, 1970.

Feldman, J. A. et al. The Stanford hand-eye project. Proc. 2nd Int. Joint Conf. on
Artificial Intell., 1971, 521-526.

Gelernter, H. Realization of a geometry-theorem proving machine, In E. Feigenbaum and
J. Feldman, Eds., Computers and Thought, New York: McGraw-Hill, 1963, 134-152.

Greene, P. H. A suggested model for information representation in a computer that
perceives, learns and reasons, Proc. FJCC, 1960, 17, 151-164.

Jordan, S. R. Learning to Use Contextual Patterns in Language Processing. Unpubl.

Ph.D. Diss., Univ. of Wisconsin, 1971.

Lindsay, R. K. Inferential memory as the basis of machines which understand natural
language, In E. Feigenbaum and J. Feldman, Eds., Computers and Thought, New York:
McGraw-Hi11, 1963, 217-233.

Minsky, M. (Ed.) Semantic Information Processing, Cambridge: MIT Press, 1968.

Newell, A., Shaw, C. and Simon, H. A. GPS, a program that simulates human thought,
In: Lennende Automaten, Munich: R. Oldenbourg, 1961. (In Feigenbaum and Feldman.)

Newell, A. and Simon, H. A. Human Problem Solving. Englewood Cliffs, N. J.: Prentice-
Hall, 1972.

Nilsson, N. J. Learning Machines. New York: McGraw-Hill, 1965.

Nilsson, N. J. Problem-Solving Methods in Artificial Intelligence, New York: McGraw-
Hi1l, 1971.

10

Quillian, M. R. Word concepts: a theory and simulation of some basic semantic capa-
bilities, Behav. Sci., 1967, 12, 410-430.

Quillian, M. R. The teachable language comprehender: a simulation program and theory
of language. Comm. ACM, 1969, 12, 459-476.

Riseman, E. M. and Hanson, A. R. Design of a semantically directed vision processor,
COINS Tech Rept. 74-C1, Univ. of Mass., 1974.

Robinson, J. A. A machine-oriented logic based on the resolution principle, J.ACM,
1965, 12, 23-41.

Rumelhart, D. E. and Norman, D. A. Active semantic networks as a model of human memory,
Proc. 3d Int. Joint Conf. on Artificial Intell., Palo Alto, 1973, 450-457.

Samuel, A. L. Some studies in machine learning using the game of checkers. IBM J.
Res. and Devel., 1959, 3, 210-229. (In Feigenbaum and Feldman)

Samuel, A. L. Some studies in machine larning using the game of checkers, II: recent
progress, IBM J. Res. and Devel., 1969, 11, 601-617.

Schank, R. and Colby, K. M. (Eds.) Computer Models of Thought and Language, San Fran-

cisco: Freeman, 1973.

Shapiro, S. C. and Woodmansee, G. H. A net structure based relaticnal question answerer:
description and examples, in Proc. 1Ist Joint Conf. on Artificial Intell., Wash-
ington, D.C.: 1969, 325-346.

Siklossy, L. A language-learning heuristic program. Cognitive Psychology, 1971, 2,
479-495.

Simmons, R. Answering English questions by computer: a survey, Comm. ACM, 1965, 8,
53-70.

Simmons, R. Natural language question-answering systems: 1969, Comm. ACM, 1970, 13,
15-30.

Toda, M. The design of a fungus eater, Behav. Sci., 1962, 7, 164-183.

Uhr, L. Pattern-string learning programs. Behavioral Science, 1964, 9, 258-270.

Uhr, L. "Recognition cones" that perceive and describe scenes that move and change
over time. Computer Sci. Dept. Tech.Rept., Univ. of Wisconsin, 1975.

Uhr, L. and Kochen, M. MIKROKOSMs and robots. Proc. 1st Int. Joint Conf. on Artificial
Intell., 1969, 541-556.

Waterman, D. A. Generalization techniques for automating the learning of heuristics.
Artificial Intelligence, 1970, 1, 121-170.

11

Williams, H. A Hierarchical Net-Structure Learning System for Pattern Description,
Unpubl. Ph.D. Diss., Univ. of Wisconsin, Madison, 1974.

Winston, P. H. Learning Structural Descriptions from Examples. Unpubl. Ph.D. Diss.,
MIT, 1970.

Woods, W. A. Procedural semantics for a question-answering machine. Proc. Fall Joint
Computer Conf., 1968, 33, 457-471.

Acknowledgements

This research has been partially supported by grants from the National Institute
of Mental Health (MH-12266), the National Science Foundation (GJ-36312), (NGR-50-002-160)
and the University of Wisconsin Graduate School.

12

Appendix: The EASEy Program for SEER-T]

. SEER-T1, for scenes that change over time,
NLAYERS = 7
FADER = 'F OORGCF "

C = 'CHARSNEXT'
G = 'GOALS!
I = 'TDEASNEXT!

A = 'ACTSNEXT?'
N = 'NEEDS' [IN]

‘Moves. from central apex to the peripheral retina
VEXT-TIME MERGE(NEED-CHANGES FLATLS)
MERGE(POINTAT(ABOVE(NEEDS GOALS , 5) EYPECTATIONS LOOKFOR))

MERGE(CHALRSNEXT , 'NEVWCHARS')
MERGE(IDEASHEXT , 'TDEAS')
MERGE(ACTSNEYT , 'ACTS')
erase CHARSNLXT, IDEASNFXT, ACTSNEXT, STEPS
FADE('IDEAS ACTS GOALS CHARS NEWCHARS LOOKFOR EXPECTATIONS ')
(CHOCSE nd execute most highly weighted act
\CT CHOOSE(ACTS)
{ Test whether this choice has a higher TOTAL weight than the ACTIVE act,
is TOTAL lessthan ACTIVEWT ? [+ ACTONM]
ACTIVEWT = TOTAL + 5
is THING sameas ACTIVE ? [+ ACTON]
ACTIVE = THING

erase ACTIONS
from $THING get TYPE THRESH '%D=! DESCR 'I=' IMPLIEDS %
(Does 3 steps in the chosen act at each moment,
ACTON ACTTRIES = 3
ACT is O lessthan ACTTRIES ? yes- ACTTRIES = ACTTRIES -1 [- THINK 1

3 O v W -

10
11
12
13

from IMPLIEDS get ACTION ARGS ; = [- OUT]J
ACT? from HIST get CLASS ARG = [+ $ACTION 3]
ARG = ARGS [$ACTION]
(OUTputs its actions-sequence

ouT is TOOUT sameas EMPTY ? [+ SEARCH]
output TOouT
output EXTERNAL [IN]

(Initiates a SEARCH to help in completing the frustrated act.
SEARCH from $ARG get '#I=' IMPLIEDS % [- FAIL]
SEARCH2 from IMPLIEDS get IMPLIED WT ; = [- FAIL]

from IMPLIED get NEEDED '$' [-SEARCHZ]

from $NEEDED get '%D=" PARTS %
MERGE (POINTAT(PARTS),N)

RETURNACT on NEWCHARS set CHOOSE [TMORE J

FAIL output 'FAILED" EXTERNAL [IN]

tT]
(Names the most highly implied object of class specified in ARGument
T from $(L;0;0) get CHOOSE($(L;0;0),ARG) = [-ACT 1]

(TOTAL weight must be above 5.
is TOTAL greaterthan 5 ? [-ACT]

on TOOUT Tist THING [$("AC' ACTION) 1
ACD on TOOUT set '(WITH
(Describes the scene
D3 from HISTC get CLASS THINGH = ([-D2]

from $(L;0;0) get : that THINGH REST = [-D31
on TOOUT Tist THINGH s (D31

D2 on TOOUT set ') ' [T]

(Finds the first THING for each ARGument.

F from $(L;0;0) get # that ARG # REST : THING MORE 1 = [-ACT2 !

(Finds THING only if without variations in EXTERNAL input
from EXTERNAL get that THING = : THING : [-ACT2]
on TOOUT 1ist 'A TTHING ' IS FOUND— ' [ACTZ
(Moves all Found things as PREPosition (TO or FROM) indicates
M is CLASS sameas 'PREP' ? [-F]
from HIST get CLASS ARGT [-ACT]
from $(L;0;0) get # that ARGT # REST : TARGET [-SEARCH]

M2 from EXTERNAL get : THINGA : = [+ $('M' ARG)]

MTO from EXTERNAL get that TARGET = '(' TARGET THINGA ')' [M2]
MFROM from EXTERNAL get LEFT that TARGET RIGHT =

+ : THINGA : LEFT RIGHT TARGET [M2]

(Replies. If nothing about ARG, SEARCH associates out some more.
(needs more directed and conscious search

R from $(L;0;0) get CHOOSE($(L:0;0), ARG) = [-SEARCHR]
MAXWT = TOTAL
R2 on TOOUT TTSt THING

from $(L;0:0) get CHOOSE($(L;03;0),ARG) = [-ACT]
is TOTAL Tessthan MAXWT / 2 ? [+ACT - R2]
SEARCHR MERGE($(L30;0),IDEAS) [RETURNACT]
(Computes
C from ARGS get OP CLASSA CLASSB
from $(L;030) get # that OP # REST : OP
from $(L 0;0) get # that CLASSA # REST : ARGA [- SEARCHC]
from $(L;0:0) get # that CLASSB # REST : ARGB L+ $0P]
SEARCHC MERGE(POINTAT(INTEGERS; [RETURNACT 1
(ADD, - etec. are OPS.
ADD on TOOUT 1ist ARGA + ARGB [ACT]
- on TOOUT Tist ARGA - ARGB [ACTI
/ on TOOUT 1ist ARGA / ARGB [ACT]

(Game move (Needs to look deeper, choose with parallel heuristics)
G from ARGS get OLD NEW

from $(L;0;0) get # that OLD # REST : OLD [-FAIL]

from $(L;0;0) get # that NEW # REST : NEW [-FAIL]

from EXTERNAL get that OLD = NEW [ACT]

(Applies the N most highly weighted Transforms on IDEAS to the apex.

THINK N = 5
THINKAGAIN is N lessthan 1 ? I+ PERCEIVE I

N=N-1
from IDEAS get CLASSES : TRAIS TOTAL HIST 3 = L + PERCEIVE 1
erase LOC

from $TRANS zet THRESH '%D=! DESCR '%I=' IMPLIEDS %
TH1 from DESCR get : CLASSWT DC 3 = [- EVALJ]

integer(DC) [- T}’B I

NEAREST(CLASS , LOC +DC, $(0 ;0 ;0)) [+TH4 = THLJ]
TH3 NEAREST(CLASS , 'Z!' , $(0.0 .03) C-TH12]

TH4 TOTAL = TOTAL + (WT * WI'L) / DIST

-

on HIST list CLASS THING L TH1 2
EVAL is TOTAL lessthan THRESH ? £ + THINKAGAIN J
MERGE(IMPLIEDS , I , HIST , TOTAL / THRESH) € THINK J
(Moves through the recognition cone, from apex ($(D | 3 0 30)) to retina
PERCEIVE L =1
R =1
C=1
TREPEAT TODO = CHARS LAYERS
T6 from TODO get RSTEP CSTEP NOWDO ¢ = L - TREPEAT 2
erase COUNT, INTENSITY
at start of KOWDO set ':FADER X J :NORMALIZE ' RSTEP * CSTEP 1 NEWCHARS

T5 from NOWDO get CLASSES : TRANS TOTAL HIST I = [- ITER]
at start of TRANS get : DRT : DCT : = [+ T871

erase DRT DCT

T8 from $TRANS get RA CAA RMAX CMAX DO

RA = RA + DRT
T7 CA = CAA + DCT
T4 from $DC get TYPE THRESH '¢/D=' BESCR '%I=!' IMPLIFDS %

erase GOT TOVAL

X=L- 1; (RA/KSTEP) ; (CA / CSTEP)

T3 from DESCR get : CLASS TVAL DR DCJ3 = [- $(TYPE 2)2
BEFORE = L ; (RA+ Dk) ; (cA + DC)

(Checks whether BEFORE cell is empty, e.g. outside the cone
is $BEFORE sameas EMPTY ? [+ T3 = $(TYPE 2)1

(TYPE A Transforms that average and difference

Al MERGE ($BEFORE , $X , , TVAL , CLASS) [T3 3
(TYPE T Transforms that look for configurations i
Tl from $BEFORE get # that CLASS # KEST : THING VAL = [- T33

is TVAL lessthan VAL ? yes- TOTAL = TOTAL + VAL - TVAL
on GOT list CLASS THING € T3 1

T2 is TOTAL lessthan THRESH ? [+ A21
MERGE(IMPLIEDS , $X , GOT) T A21

(TYPE D transforms, that trigger decisions directiy

Dl MERGE(CHOOSE($BEFORE) , $(D ; 0 ; 0)) [A21

A2 is CA lessthan $CMAX + DCT ? yes- CA=CA+1 [+ T4 13

is RA lessthan $RMAX + DRT ? yes-=- RA=RA +1 [+ T7 -T%1
(FADEs the earlier layer, only one fade per cell
Fl FADE(BEFORE) T A22
ITER is L lessthan NLAYERS ? yes- L =L +1 T - NEXT J
R = R * RSTEP
C = C * CSTEP
on STEPS list : L RSTEP CSTEP [T6 1
(Input the next moment of time
NEXT erase RA
IN input TYPE DESCR I £ + $('M' TYPE) - end I

SENSE erase CA
on EXTEBNAL lisg DESCR
1 from DESCR get and call SPOTSIZE symbols SPOT = [- 521
integer(SPOT) T - S4 13
MERGE('BRIGHT QUAL :BRIGHT ' SPOTJ , $(L ; RA ; CA)) [831
| Stores colors or any other primitives
b from SPOT get PRIM VAL = [- 3671
from $PRIM get '%I=' IMPLIEDS '%C=' CLASSES % [- 551
MERGE(IMPLIEDS PRIM CLASSES : PRIM VAL J , $(L ; RA ; CA)) T s41
5 MERGE(PRIM : PRIM VAL 3} , $(L ; RA ; CA)) [sS4l

To handle primitives that are letter-strings, e.g. sentences
36 is SPOT sameas EMPTY ? [+ S3 1 b
MERGE(SPOT 'SYMB :SYMB ' SPOT 5 1 , $(L ; RA ; CA)) Es313
33 CA=CA+1 [S11
’2 is RA lessthan R ? yes- RA =RA +1 [+ INT]
output 'ONE MOMENT HAS BEEN INPUT.' € NEXT-TIME 1

. The following functions are used by the main program.
FADEs many lists gradually. FADE will contain all THINGs discarded.
"ADE DEFINE: FADE(LISTS , FADE)
'Al from LISTS get LISTA = L =~ returnl
TOFADE = $LISTA
erase $LISTA
'A2 from TOFADE get LEFT : THING WT RIGHT I = T - FAl1
‘AL is WT lessthan 1 ? [- FA3 Y
on FADE list LEFT : THING WT RIGHT 3 L FA2 1
. Will divide by 2 if FADE factor is not specified,
"A3 on $LISTA list LEFT : THING WT / (FADE + 2) RIGHT 3 L[FA2TJ

[ZH7] [LSIHIH VLSIT LMYO ONIHLYO : S3ISSYIU0 = ISO0HI 3ISLL ZHD

[2ZHD) - €HO+1 LMJO = LMHL -S®K § LMY0 URY3ISSd| [MHL St XVWHD
[XYWHD] HD
[ZH) - EHO+] LMYO = IMHL - S9A ¢ IMHL UPY1SS3| IMYO St NIWHD
[2H0- (3dAL (HD,)$+1 # SSY1D 3BUF # 396 SISSYTIMO wody
(3dAL,HD,)$ +1 ¢ ALdW3 seawes SSY7J St #HI
(UANI94] [LSIH 207 TYLOL ONIHL © S3SSY1) 326 _3SO0HD wo4y ,
[pHD+] = LSIHYO LMMO ONIHL¥O : SISSYTOU0 386 YISIT Wody ZHD

LSTHIH ¥9 ¢ vd ¢ 7 IMHL LSYI4 :S3ISSY1D = 3ISOOHI ISt
[LHD-7 # SSYTD 28Ul # 396 S3ISSYT) wodd
—_— [ZHD +1 ¢ ALdW3 seswes SSYT1J St
[Udn38d- -7 =[LSIHIH IMHL LSHId4 : SISSY1D 33D YLSIT wouy s &HD
uouie
uasoyo ade sBuLyl [LB 9SO YOLym uL) A3dwd 40 “PpuLyl JL4LO9dS B 8Q ued SSY1D
(IdALESSYTIYLSIT)ISO0HD :INIL3d ISO00H)D
(patstoads sy adAy ou b XyW) PAIyBLam NIW 40 XYW 3ISOOHI)

(udn3aa] = ,-, 13b sgy 4o 1Jels je Lsay

(sgy)say :INI43d say

sbuLtyy uo-passed BuibuasAauod ybnoyz usae Juelsuod ALybnoda saybrem deay 03 IZITYWHON)
[1¥d] (NSSONIHLOL)I9Y W
(1¥d -1 % SONIHLOL ,=0%, 286 9NIHL1$ wody

[U3 -] = [LSIH ONIHL : S3ISSYT) 196 SONIHL wody Lvd

(SHNIHL)LVINIOd :3INI43a 1YINIOd
SaWeU Y3LM swaogsued} 03 A{uo syutl-yoegq)
CLIWT (ONIHLS(VOEvdT)$)3SO0HD 3Stl TWYINID 40 3dels je H)
CLIW) T VLISIH 9LSIT TIM s« (L+IM) ONIHL * S3ISSYAD 9NIHL ISt gLSIT§ uo 2N
S3SSYT) 8seus
[2IW+] % SISSYTD ,=0%, 39D ONIHLS wouy
[LIW+T ¢ 9ISIH VISIH UM o (L+IM) + TY10L IWWN +
= @LSIH TYLOL 9ONIHL 3ey? : 136 g1S17¢ wody
[H) +7] & (HD, Seawes gJSIT st
= g1SI7 ,$, 39D ONIHL wouy
ONIHL 40 3Jed se g1§I7 AjLoads A||euotido ue))

. 10L = ., 390 yiM wouy £IW
[UANISA- 1= [LSIH VIM ONIHL : LSIY # SSY1D 38U # 1437 336 YISIT wody E

[€IW + UANFBL - 7 = [LSIH VLM ONIHL : L1437 336 YISIT wouy
[L3W-1 & ALdW3 Seawes SSyT) St

(SSYTI0° LM VLSIH gLSIT¢ YLSIT)ITIIW *3INI430) 394 W
S9LUOISTH pue S3YBLaM BULULqUOD €SISL| OMI IDYIW)

A Note on EASEy Programs (See Uhr,
1973f for details)

Numbering at the right identifies statements, and
allows for comparisons between programs. M

indicates initializing Memory statements: I indicates
cards that are Input by the program. .V indicates a
vVariant, .l an additional statement.

A program consists of a sequence of statements, an

end card, and any data cards for input. (Statements
that start with a parenthesis are comments, and are
ignored.) Statement labels start at the left;

gotos are at the right, within brackets (+ means
branch on success; - on failure; otherwise it is an
unconditional branch). + signifies a continuation
card.

Strings on capitals are programmer-defined. Strings

in underlined lower-case are system commands that

must be present (they would be keypunched in caps to
run the program). These include input, output, erase,
set, list, get, start, call, that, and the inequalities.
Other lower-case strings merely serve to help make the
program understandable; they could be eliminated.

EASEy automatically treats a space following a string
as though it were a delimiter; it thus automatically
extracts a sequence of strings and treats them as
names. J1,:,:;, and % act similarly as a delimiter,
but the programmer must specify it. The symbol # is
used to stand for any delimiter (a space, 1, : ,

;. % or #)

The symbol $stringI is used to indicate "get the contents
of string I, and treat it as a name and get its contents"

(as in SNOBOL).

Pattern-matching statements work just as in SNOBOL
statements: there are a) a name, b) a sequence of
objects to be found in the named string in the order
specified, c) the equal sign (meaning replace), and

d) a replacement sequence of objects (b, c, and/or d

can be absent). that stringI means "get that particular
object" - otherwise a new string is defined as the
contents of stringI, which is taken to be a variable
name.

size(...) is a built-in function that counts the
symbols inthe string(s) named within parentheses
(its argument). integer(...) succeeds if its
argument is an integer. '

DEFINE: defines a programmer-coded function. The
function is executed whenever it is specified, FUNC-
TIONNAME (ARGUMENTS), in the program. It ends in
success or failure when it reaches a [return] or
[-return] goto.

