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I. INTRODUCTION

Most of the literature in numerical analysis is
concerned‘with a-priori error estimates, i.e. a state-
ment of form: Let Y(E) be the solution of the
problem. Let Y(£;h) be an "approximation" to Y(§) .

Then
le-2 (- [ < B Y]]
where
(1) E(h) is some error function, typically
E(h) = ch®
(2) 14 IIB is some norm of the true solution

Y(£) and usually involves derivatives of
Y(£) of order N

(3) || v-¥(-,h) || , is an appropriate norm of the

error function.

For many problems these a-priori estimates are
gufficient. On the other hand, there are a large number

of problems where either

o) They have not been established, or
R) they exist, but are not adequate because

IlYllB is unknown.

*
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The latter situation is a familiar one and (incredibly)

does not seem to upset people.

On the other hand, particularly when dealing with

nonlinear Boundary Value problems where non-uniqueness and

bifurcation phenonema occur, it is not always possible

to establish a-priori estimates. Indeed, it is precisely
these difficulties that lead one to employ the "shooting"
methods and rely on the usually excellent a-priori

estimates for Initial Value problem.

Recently [6], [7] we came upon a class of problems
where the need for better estimates was obviously impera-

tive.
Nonlinear boundary value problems of the form

v+ %y‘ + gf(x,y,7) = 0 , 0 < x < 1

(1.1)

y'(0) =0 , y(1) =0
arises in the study of chemically reacting systems with
cylindrical symmetry; y 1s essentially the temperature,
and R 1is a dimensionless combination of other physical

parameters (See Gavalas [4], and Frank-Kamenetskii [31) .

In these problems one is not only concerned with
computing accurate approximations to the solutions (there
are frequently several solutions:) but one is also con-
cerned with the bifurcation behavior, i.e. determine values
of B,t at which bifurcation occurs. Indeed knowledge
of the bifurcation behavior is of great importance even
when one merely seeks one solution for fixed values of
g, . If we know that we have determined a neighborhood
which contains one and only one solution we may proceed
with a variety boundary value techniques to solve this

problem.
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Unfortunately, while the Chemical Engineering
literature is replete with computational results for
problems of this form, there is essentially no discus-
sion of error estimates. Moreover, the problem contains
an apparent singularity which seems to eliminate most of
the mathematical a-priori error estimates which require

a uniform Lipschitz condition.

Since problems of this type occur in a variety of
applications we felt it was desirable to develop the theory
of a-posteriori error estimates in detail. Hence this
lecture is concerned with a discussion of the many
technical problems which arise in the computation of
a-posteriori error estimates between a computed function

?(x,yo;h) and the function Y(x,yo) which solves the
related initial value problem

v o+ %{—Y' + BE(x,Y(x),T) =0, 0 < x <1

(1.2)
Y'(0,yq) = 0, ¥Y(0,y4) =y,

Much of this discussion is elementary and quite apparent
once the basic facts have been re-asserted. Nevertheless,
we feel that this question is of sufficient importance
that a somewhat detailed discussion is worthwhile. We
hope that this is just the beginning of a serious study

of the general problem of a-posteriori error estimates.



2. A BASIC ESTIMATE

Consider the linear initial-value problem

"BT;L?T (A (X)E')' + F(X)E = R(x), 0 < x < 1
(2.1)
E(0) = E'(0) = 0

where «a(x) , B(x) are positive and "smooth" for x > 0 ’

F(x) is bounded and

_ 1 % _
(2.2) B(x) = 3 (%) JO B{(t)dt =« M, 0 < x < 1
Let
X
_ d(s)
(2.3) K(x,t) = B(t) ft & (s)

An application of Fubini's theory shows that K(x,t) ¢ L'(0,1) .
Moreover, after two integrations of (2.1) and the necessary
application of Fubini's theorem, we see that E(x) satisfies
the Volterra integral equation of the second kind

X

X
f K(x,t)R(t)dt - J K(x,t)F(t)E(t)dt.
0 0

(2.4) E (x)

i

That is, if

x
Q(x) f K(x,t)£(t)dt

0

then Q(x) is the solution of the initial value problem

(a(x)Q") ' = B(x)f(x) 0 s x <1
(2.5)
Q(0) = Q'(0) =0
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Remark: 1In the case of the Bessel Operator of (1.2) we

have
a(x) = B(x) = x
X
B(x) = >
K(x,t) = xln(%) .

In order to simplify the treatment without losing most of
the cases of physical interest we assume K(x,t) is an L2
kernel (see [81])

The solution of this Volterra equation is easily

obtained (see [8]). Let

X
(2.6) H(x) = f K(x,t)R(t)dt
0
(2.7) G(x,t) = Gy (x,t) = K(x,t)F(t)
X .
(2.8) Gj(x,t) = [t G(x,s)Gj_l(s,t)ds, iz 2.
Then,
oo . X
(2.9) E(x) = H(x) + % (-1)7 J G. (x,t)H(t)dt
j=1 o

Moreover, this infinite series is absolutely convergent.

Thus, if we define
X
G:(x) = f |G: (x,t) |dt
J 0 J

then

It ™8

(2.10) |E(x)]| < [} + Gj(x{}. Sup {H(t)|; O<tsx} .
1

3

and the infinite series is absolutely convergent.
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In many applications the function F(t) is not known.
However bounds for F(t) are known. The discussion given

above is then easily modified. Let

(2.11) |[F(x)| = F
Let
X X
(2.12) Kj(x) = IOKj(x,t)dt, Kj(x,t) = jtK(x,s)Kj_l(s,t)ds.
Then
(2.13) Kj(x) > 0
and
(2.14a) |E(x)| < [% + jgl Kj(x)Fj] sup{ |H(t) |; Ostsx}.

Using the definition of H(t) we may rewrite (2.14a) as

o8

(2.14b) |E(x) | < (%

. Kj<x)Fj sup{ |R(t)|; Ostsx}
J

1
The following Lemma gives a useful alternative formula

for the quantities Kj(x)

Lemma 2.1: Let

(2.15) Ky(x) = 1

and, for all j 2 1 define ﬁj(x) by the recursion
~ X ~
(2.16) K. (%) = K(x,t)XK. (t)dt
0 -1
Then from the remark following (2.4) we see that ij(x)
satisfies

(@ (K5 (x) ") " = B(X)K _y (%)

(2.17) ~ ~
0

=
S
l
=
Lt -
S
i




Moreover,

(2.18) K (x) = ij(x) L3 21

Proof: It is only necessary to establish (2.18). We
proceed by induction. The identity is clearly true for

3 = 1 . Assume that (2.18) holds for j = 1,2,...(J~-1) .
Then

X X
KJ(X) = JO K(X,t)KJ__l(t)dt = fOK(x,t)KJ_l(t)dt
(X t
= JOK(X,t) fOKJ_l(t,S)dsdt

rX t
= ds f K(x,t)KJ_l(t,s)dt

/0 [
(X
= I KJ(x,s)ds = KJ(x) .

Thus the lemma is proven.

Remark: In the special case of the Bessel Operator we can

easily verify [7] that

23
(2.19a) K. (x) = [%] 1
J [0

and

IO(/FX) -1
F

1
F o
J

o~ 8

(2.19Db) Kj(x)Fj =

1

where Io(x) is the modified Bessel function of zeroth

order (see Abramowitz and Stegun [ 1]) .
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3. ESTIMATES: A-PRIORI AND A-POSTERIORI

We are concerned with the functions Y(x,yo),
(x,yo) which satisfy

(
-B——(—-g"-{-)—(u(x)Y'(x))' +E(x,¥(x)) =0, 0=<x<1

1

(3.1) { B(x)

¥'(0,y9) = @' (0,y) = 0

(@ (x)0' (x)) + £,(x,¥(x))0(x) = 0, 0= x5 1

LY(OIYO) = YOI CD(OIY()) = l
where f(x,y) 1is a smooth function and

(3.2) lfy(x,y)l < F

In those applications where one is really interested in
the initial-value problem, one is usually not interested in
the function @(x,yo) . However, in those applications
where one solves the initial value problem as a device to
solve a related boundary value problem (i.e. "shooting"),
the function @(x,yo) assumes a great deal of importance,
for both the differential equation and the numerical com-

putation (see [51,[71).

In order to obtain an a-priori bound on Y(x,yo) we let

E(x) = Y(x,yo) - Yy

Then E(x) satisfies the equation

FET @B 4 £ (x,0(x))EX) = - £(x,y))
(3.3)
E(0) = E'(0) =0

Applying the results of section 2, we see that

l [e o]
(3.4) Y (x,yg) = vol < & z

K. (x)F? sup{|f(t,yy) |, Ostsx}.
j=1 7

For the sake of definiteness, let us say



(3.5) lY(x,yO)l <Q, 0<x<1,
where Q is a computable constant.
In order to obtain an a-priori bound on @(x,yo)
we let
E(x) = 2(x,y5) - 1

Then E(x) satisfies

B—-—(;lt—)—m(xm')' + £ (XY (X)E = - £ (x,Y (X))

(3.6)
E(0) = E'(0) = 0

Tn this case the results of section 2 lead to the estimate

o138

(3.7) |8 (x,7)-1) | <

K. (x)F7
; 3

1
For the sake of definiteness, let us say
(3.8) e (x,yg)| s L, 0<x <1
where L is a computable constant.

It often happens that these estimates are rather
large "over-estimates", nevertheless they are useful starting
points for further estimates. In particular cases one can
use special properties of the special function to obtain

better bounds, see [7]

Suppose ?(x,yo), w(x,yo) are functions which satisfy
the appropriate initial conditions and "approximate"

Y(XIyO)I (D(XIYO) . Let

il

By (x) = Y(x,vy) - Y(x,7p)

(3.9)

EZ(X) ¢(X,y0) - w(XIYO)
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Then these functions satisfy
(‘

1 '
ETQT(“(X)El )+ fy(x,E(X))El(X)

- Ry (¥ (x,y())

(3.1o>§g%§7(a<x>E2'>' + £ Gy (K))Ey (1) = = Ry(h(xyg) T (xs¥g))
- fyy(x,c(X))El(X)W(x,yo)
fﬁ(O) = EZ(l) = El'(O) = Ez'(O) = 0
where
R (a(x) = greyle(xan)’ + fxa(x)
(3.11) L ,
R, (b(x),a(x)) By (e (xR fy(x,a(X))b

Therefore, if we can estimate or bound Rl(§(x,y0)),
Rz(w(x,yO),Y(x,yo)) we may use the basic estimates of

section 2 to establish a-posteriori error estimates. Of
course, if we are not interested in the function ¢ we

may ignore the second equation.
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4. CONSTRUCTION OF APPROXIMATING FUNCTIONS

One of the difficulties in implementing the procedure
descirbed in the preceeding sections is that fact

§(X’YO)’ w(x,yo) must be functions which are piecewise

in C2[O,l] . Most computational procedure compute values
?(xk,yo,h), ?'(xn,yo,h), V(xg,ygrh), V' (x,¥5,h) which are

"approximations" to the functions Y(x,yo), @(x,yo) and
their derivatives at a discrete set of points

(4.1) 0 = X < Xq < =0 < x.oo= 1 .

However, it is an easy matter to use these values and the
differential equations to obtain approximate values for
derivatives of any desired order. These values may now

be used to construct Hermite approximates, i.e functions
which are piecewise polynomials and satisfy the differential

equation at these "knots".

In our work [7] with M. L. Stein and P. R. Stein we
used a standard Runge-Kutta procedure and constructed

functions which are quintic polynomials in each interval.

On the other hand, if we approach the problem with
these estimates in mind, we are led to the construction of

certain implicit Runge-Kutta schemes, i.e. collocation

schemes (see [2]) . For example, let
(4.2) 0 = uy < u, < eee < Uy = 1
be M distinct points in the closed interval [0,1] . Then

in each interval [Xk'xk+lj of the partition of [0,1]
described by (4.1) we can try to construct polynomials
pk(x),wk(x) of order M + 2 which satisfy the collocation

equations



r

a (g, ) a' (&, )

k3. k3T =
(4.3)<

alg ) o' (£ s)

l\. .
with

(4.3a) gkj = X + [xk+l-xr]uj
As a check on the calculations in [7] John H. Cerutti
used this method with M = 4 and

/z

1
’ u"é""‘fb“l

i.e., the Lobatto points. Cerutti did four calculations
with Yo = 1,2,3,4 . The results agreed with the Runge-
Kutta runs to six significant figures and the residuals

were noticeably smaller.

=0
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5. BOUNDING THE RESIDUAL.

At first glance, the problem of finding realistic
bounds on the residual appears trivial. After all, finding
the maximum of a real valued function R(t) on the interval
(0,1] 1is a problem in elementary calculus. After a moments
thought, this problem appears impossible. Fortunately,
after reconsideration it is indeed possible, and a bit

complicated.

For the moment, let R(t) be a general smooth function
defined on the interval [0,1]. We will assume we have

crude (O(1l)) bounds on R(t) and its derivates, say

(5.1) 1RO (6] < oy 3= 1.2,...,m

Let us consider several methods for our problem

Method I: Choose points Xp 0 < Xy < Xy < mee < Xy = 1.
Let
(5.2) MAX [xk+l—xk] = h
Then
h2
(5.3) MAX |R(t)| < MAx]R(Xk)! + g 0,

Method 2: 1Isolate the zeros of R'(t), i.e., determine

disjoint intervals [a.,BjJ which contain all the zeros of
R'(t) in [0,1]. Then

2 2

h. h.
(5.4) MAX|R(t)]| < MAX{[R(2)) | + 4= o,, [RGB+ 3= 0,)
where
(5.5) h., = B. - a., .
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Method 3: Sample R(t) to determine (via sign change)
that in the subinterval [xj,xj+l] R(t) has at least k

roots, say gl,gz,...,gk, which in general are not known

precisely. Then, since

k
(5~6) R(t) = jzl(t"gj) Rrgllgzl"‘lgklt]
we see that
k
[x. .-x.]
j+l 73
(5.7) |R(t)] = TRTT T P ¥y S B S Xy,

This method is particularly applicable in the case
where ?(t,yo) is obtained by Collocation - In that case we are

assured of at least M zeros of R(t) in each interval [xj’xj+l]'

There are a variety of other methods which come to
mind. The reader is encouraged to think about methods for

solving this problem in an efficient manner.
Suppose now that §(tIYO)Iw(t'YO) are in fact

plecewise polynomials functions, being a polynomial on the

subinterval [xj,xj+1]. Then
(5.8a) R(t) = Rl(t) + R2(t)
where
Ry (t) = =2la(t) ¥ (t,y) "]
1 B(t) 40
(5.8Db) _
R, (t) = f(t.,Y(t,yo))

If we have bounds on the derivatives of

5 k
(‘5‘1}“) f(tIY)

we have no difficulty in obtaining crude bounds on the
derivatives of Rz(t). Similarly, with some effort we can

obtain crude bounds on Rl(t) .
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In the special case of the Bessel operator

(a(x) = B(x) = x) Rl(t) is a rat
not too difficult to obtain the necessary crude bounds. For

ional function and it is

example
— 3 — L A 1 _|| 1
a)? R (£) = L350V 4 25070 _ooe§ 4+ 2F
dt 1 3
t
. (< — (i AR N o -
aV o - A0 L 35OV | 5250 ) L6k - 6%
dt 1 4
t
| I 2 |
Thus we can determine the zeros of Rl (t) . That is, we

find disjoint intervals [uj,ej]

of Rl"'(t).

Then

(5.9a) g (3V)(gy = BLE) oy

1

where P(t) is a polynomial, say

(5.9b) P(t)

M
= I
S=

AStS .
0

which contain the zeros

< t < )
BJ

Employing the techniques described above, let Sj be a

good bound for

of estimates on

iv
(5.10) IRl

P(t)
P'(

(t)] =

on [aj,Bj]

(obtained on the basis

t), P"(t)), then

S.
—_—
5 O <
(uj)
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Or, if one is willing to work a bit more, we can
proceed as follows. Observe that
P, (t)
(v) .1
RY () = =g v uj < t < Bj
t
where Pl(t) is another polynomial. Thus, by careful root

finding one can frequently find (smaller) disjoint intervals

(o.',B."') on which |R;'(t) assumes its maxima and on which
j '3 1

Riv(t) is monotone. Hence, crude (but reasonable) bounds on

]Riv(t)l can be obtained. Using the methods described above

one can obtain crude [0(l)], but reasonable, bounds on

(N
| Ry (t)|. Finally, combining these bounds with 0O(1)

{20 ]
bounds on |R, (t)|, we have bounds on |R''(t)|. Thus, using

the methods described above we get good bounds on |R(t)|.
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