SUPERLINEARLY CONVERGENT QUASI-NEWTON
ALGORITHMS FOR NONLINEARLY CONSTRAINED
OPTIMIZATION PROBLEMS

by
U. M. Garcia Palomares
and
O. L. Mangasarian

Computer Sciences Technical Report #195'
March 1974
SUPERLINEARLY CONVERGENT QUASI-NEWTON ALGORITHMS FOR NONLINEARLY CONSTRAINED OPTIMIZATION PROBLEMS

by

U. M. Garcia Palomares

and

O. L. Mangasarian

ABSTRACT

A class of algorithms for nonlinearly constrained optimization problems is proposed. The subproblems of the algorithms are linearly constrained quadratic minimization problems which contain an updated estimate of the Hessian of the Lagrangian. Under suitable conditions and updating schemes local convergence and a superlinear rate of convergence are established. The convergence proofs require among other things twice differentiable objective and constraint functions, while the calculations use only first derivative data. Rapid convergence has been obtained in a number of test problems by using a program based on the algorithms proposed here.

1) Research supported by NSF Grant GJ-35292 at the University of Wisconsin.

2) Now at: Instituto Venezolano de Investigaciones Cientificas (IVIC), Departamento De Matematicas, Apartado 1827, Caracas, Venezuela

3) Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706.
SUPERLINEARLY CONVERGENT QUASI-NEWTON ALGORITHMS FOR NONLINEARLY CONSTRAINED OPTIMIZATION PROBLEMS

1. INTRODUCTION

We develop in this paper a class of algorithms for finding Kuhn-Tucker points of the following nonlinear programming problem:

\[ \text{minimize } \{ f(x) \mid g(x) \leq 0 \} \]

where \( f \) and \( g \) are differentiable functions from \( \mathbb{R}^n \) into \( \mathbb{R} \) and \( \mathbb{R}^m \) respectively. Our algorithms require calculations with gradients, hence \( f \) and \( g \) should at least be differentiable. However our convergence proofs require, among other things, twice differentiability of \( f \) and \( g \). Starting with an initial and possibly infeasible guess \( x_0 \), of a solution, and an initial guess \( u_0 \) of the Kuhn-Tucker multipliers, the algorithms construct a sequence \( \{(x_i, u_i)\} \) which under suitable conditions converges to a Kuhn-Tucker point \((\bar{x}, \bar{u})\) of 1.1. The convergence we establish is a local one and the main condition required for it is closeness of the starting point to a point \((\bar{x}, \bar{u})\) satisfying the second order sufficiency conditions, the linear independence of the gradients of the active constraints and positivity of the multipliers associated with them. The subproblems solved are linearly constrained quadratic programming problems for which efficient and finite algorithms exist [3, 12]. These quadratic subproblems contain an \( n \times n \) matrix which is an estimate of the Hessian of the Lagrangian of 1.1. If this estimate is close enough to the Hessian a linear convergence rate is obtained, and if it converges to the Hessian a superlinear rate of convergence is obtained. If the exact Hessian is used the algorithm becomes that of Wilson [14] for which Robinson [11] has established a quadratic convergence rate.
In order to achieve superlinear convergence it is sufficient but not necessary that the updated estimate of the Hessian of the Lagrangian converge to the Hessian. In fact any updating scheme which satisfies a less stringent condition, condition (b) of the algorithm below will achieve superlinear convergence. Thus a "finite difference" approximation of the Hessian similar to that employed by Goldstein and Price [6], in which only gradients are computed, can be used. Numerical experiments on all of Colville's test problems [2] were carried out with a specific updating scheme [5], in which under suitable conditions the updated matrices converge to the Hessian. The test results are quite encouraging and are discussed in more detail in section 4.

The subproblems generated here by matrix updating schemes can be considered either as quadratic approximations of the subproblems of either Robinson's [10] or Wilson's [14] algorithms, both of which converge quadratically [11]. However in Robinson's algorithm the subproblems to be solved have nonlinear objective functions which in general are not quadratic. In Wilson's algorithm explicit evaluation of second derivatives is required which need not be the case in our algorithms. In addition the Lagrangians of our subproblems here can also be considered as estimates of a quadratic approximation of the Lagrangians of the original problem 1.1 [5]. Topkis [13] has proposed a different quadratically convergent algorithm. However his subproblems are nonlinearly constrained.

Throughout this paper all vectors will be column vectors. The transpose will be denoted by the superscript \( T \). The gradient or Jacobian with respect to \( x \) will be denoted by \( \nabla \), whereas the gradient or Jacobian with respect to any other variable will be denoted by the same symbol \( \nabla \) subscripted by that variable. Similarly \( \nabla^2 \) will denote the Hessian with respect to \( x \), whereas the Hessian with respect to another variable will be denoted by \( \nabla^2 \) subscripted by that variable. Subscripts to vectors will denote iteration number, while superscripts will denote a vector component. The symbol \( \| \cdot \| \) will denote an arbitrary but fixed norm.
2. ALGORITHM

The algorithm is described by the following steps. Let $z = (x, u)$, and let $\nabla^2 L(z)$ denote the $n \times n$ Hessian with respect to $x$ of the Lagrangian $L(z) = f(x) + u^T g(x)$.

Step 1: Set $i = 0$

Step 2: Having $z_i = (x_i, u_i)$ find a Kuhn-Tucker point $z_{i+1} = (x_{i+1}, u_{i+1})$ of the following linearly constrained quadratic program

$$\begin{cases} 
\text{minimize} & \nabla f(x_i)^T (x - x_i) + \frac{1}{2} (x - x_i) G(z_i) (x - x_i) \\
Q(z_i): & \text{subject to } g(x_i) + \nabla g(x_i)^T (x - x_i) \leq 0
\end{cases}$$

If $z_{i+1}$ is not unique, choose any Kuhn-Tucker point $z_{i+1}$ which is closest to $z_i$ in terms of the distance $\|z_{i+1} - z_i\|$. Here $G(z_i)$ is any $n \times n$ matrix which satisfies one or more of the following conditions.

a. $\|G(z_i) - \nabla^2 L(z_i)\| \leq \frac{1}{10^\beta}$ (linear convergence)

where $\beta$ is a constant defined in 3.2 below.

b. $\left\| \frac{(G(z_i) - \nabla^2 L(z_i))(x_{i+1} - x_i)}{\|z_{i+1} - z_i\|} \right\| \to 0$ (superlinear convergence)

c. $G(z_i) = \nabla^2 L(z_i)$ (quadratic convergence)
Step 3: If some convergence criterion such as \( \| x_{i+1} - x_i \| \leq \varepsilon \) is satisfied for some small preassigned positive number \( \varepsilon \), stop. Otherwise set \( i := i+1 \) and go to step 2.

We make some remarks concerning the algorithm.

**Remark 1:** The key to the convergence of the algorithm is the matrix \( G(z_i) \) which is an estimate of the Hessian \( \nabla^2 L(z_i) \), and which need be defined on the sequence \( \{ z_i \} \) only. Condition (a) is a closeness requirement on \( G(z_i) \) which is similar to a condition given by Ortega and Rheinboldt for an algorithm for **unconstrained** optimization \([9, p. 401, theorem 12.3.3]\). We shall establish in theorem 3.1 below a linear rate of convergence under condition (a), a superlinear rate of convergence under condition (b), and a quadratic rate of convergence under condition (c). In section 4 below we shall give updating schemes for the matrix \( G(z_i) \) such that condition (b) is satisfied. When condition (c) is satisfied the above algorithm becomes Wilson's algorithm \([14]\).

**Remark 2:** The rationale behind employing the quadratic subproblems \( Q(z_i) \) is that the Lagrangian associated with it is (to within the constant term \( f(x_i) \)) equal to a quadratic approximation of the Lagrangian of the original problem \((1.1)\) around \( z_i \), provided that \( G(z_i) = \nabla^2 L(z_i) \) \([5]\). Hence finding Kuhn-Tucker points of \( Q(z_i) \) is equivalent to finding Kuhn-Tucker points for a quadratic approximation of \( L(z) \) around \( z_i \) for case (c) above (Newton method) and to approximately doing that for case (b) above (quasi-Newton method).

**Remark 3:** The iterates \( x_i \) need not be feasible with respect to the original problem, that is \( g(x_i) \leq 0 \) need not be satisfied. If there are equalities \( e_j^i(x) = 0 \), \( j=1,\ldots,k \), present in \((1.1)\), they can be replaced by the \( k+1 \) inequalities \( e_j(x) \leq 0 \), \( j=1,\ldots,k \), and

\[
\sum_{j=1}^{k} -e_j(x) \leq 0.
\]
Alternatively the subproblem \( Q(z_i) \) can be modified by adding the linear equality constraints \( e(x_i) + \nabla e(x_i)^T(x-x_i) = 0 \).

**Remark 4:** The quadratic subproblems \( Q(z_i) \) are convex if the matrix \( G(z_i) \) is positive semidefinite. Efficient and finite schemes for solving such problems exist \([3, 12]\). The updating scheme presented in section 4 below generates \( G(z_i) \) which under suitable conditions \([5]\) are positive definite matrices.

**Remark 5:** Condition (a) of the algorithm which also appears in condition (b) can be replaced by the weaker condition

\[
\frac{\| (G(z_i) - \nabla^2 L(z_i))(x_{i+1} - x_i) \|}{\| z_{i+1} - z_i \|} \leq \frac{1}{108}
\]

**Remark 6:** When \( G(z_i) \) is positive definite problem \( Q(z_i) \) has another interesting geometric interpretation as a gradient projection problem which is the following. It is equivalent to finding the closest point in the "linearized" set \( \{ x | g(x_i) + \nabla g(x_i)^T(x-x_i) \leq 0 \} \) to the point \( x_i - G(z_i)^{-1} \nabla f(x_i) \) in terms of the norm \( \| x \| G(x_i) = (xG(x_i)x)^{1/2} \).

**Remark 7:** If \( g(x) \) is convex and \( X = \{ x | g(x) \leq 0 \} \) is not empty then the feasible region \( X_i = \{ x | g(x_i) + \nabla g(x_i)^T(x-x_i) \leq 0 \} \) of \( Q(z_i) \) is not empty and contains \( X \), because for \( x \) in \( X \)

\[
0 \geq g(x) \geq g(x_i) + \nabla g(x_i)^T(x-x_i)
\]

If \( g(x) \) is not convex, the theorem below ensures the nonemptiness of \( X_i \) under certain conditions including a closeness condition and second order sufficiency conditions. Note also that if \( X_i \) is nonempty then \( Q(z_i) \) will always have a solution if the original problem 1.1 contains upper and lower bounds on \( x \).
3. CONVERGENCE AND RATE OF CONVERGENCE OF THE ALGORITHM

In the theorem below we shall establish convergence of the algorithm iterates \((x_i, u_i)\) to a Kuhn-Tucker point of our original problem and establish various convergence rates.

We shall use the concept of R-quadratic convergence rate as defined in [9]. We shall also use the second order sufficiency conditions for problem 1.1 [4]. A point \((\bar{x}, \bar{u})\) in \(\mathbb{R}^n \times \mathbb{R}^m\) is said to satisfy the second order sufficiency conditions, if it satisfies the first order Kuhn-Tucker conditions and if \(y^T \nabla^2 L(\bar{x}, \bar{u}) y > 0\) for each nonzero \(y \in \mathbb{R}^n\) satisfying \(\nabla g_j(\bar{x}) y = 0\), \(j \in \{j | u_j > 0\}\) and \(\nabla g_j(\bar{x}) y \leq 0\), \(j \in \{j | u_j = 0\}, g_j(\bar{x}) = 0\}\). We shall also use the concept of strict complementarity at \((\bar{x}, \bar{u})\), that is \(\bar{u}_j > 0\) or \(g_j(\bar{x}) < 0\) for \(j = 1, \ldots, m\).

3.1 Convergence and Rate of Convergence

Theorem: Let \((\bar{x}, \bar{u})\) be a Kuhn-Tucker point satisfying the second order sufficiency conditions for problem 1.1 with strict complementarity and linear independence of the gradients of the active constraints \(\nabla g_j(\bar{x})\), \(j \in \{j | g_j(\bar{x}) = 0\}\). Suppose that \(f\) and \(g\) have second order derivatives which are Lipschitz continuous in an open neighborhood \(N(\bar{x})\) around \(\bar{x}\). Then there exist positive numbers \(\delta_1\) and \(\delta_2\) such that if the algorithm above is started at any point \((x_0, u_0)\) with \(||(x_0, u_0) - (\bar{x}, \bar{u})|| < \delta_1\) and \(||G(x_0, u_0) - \nabla^2 L(x_0, u_0)|| < \delta_2\), then the sequence \\{\((x_i, u_i)\)\} exists and converges to \((\bar{x}, \bar{u})\) with the following R-rates:

a. R-linear convergence rate, that is there exist \(\delta \in (0, 1)\), \(\varepsilon > 0\), \(\bar{\tau} \geq 0\) such that \(||z_i - \bar{z}|| < \varepsilon \delta^i\) for all \(i \geq \bar{\tau}\).

b. R-superlinear convergence rate, that is for each \(\delta \in (0, 1)\), no matter how small, there exist \(\varepsilon > 0\), \(\bar{\tau} \geq 0\) such that \(||z_i - \bar{z}|| < \varepsilon \delta^i\) for all \(i \geq \bar{\tau}\), provided that condition (b) of the algorithm is satisfied.
(c) R-quadratic convergence rate, that is there exist \( \delta \in (0,1) \), \( \varepsilon > 0 \), \( i \geq 0 \) such that \( \| z_i - \hat{z} \| \leq \varepsilon \delta^i \), for all \( i \geq i \), provided that condition (c) of the algorithm is satisfied.

**Proof:** We first establish the convergence of the algorithm with an R-linear rate, then establish the other rates of convergence. Our proof for convergence with an R-linear rate is patterned after that of Robinson [10] in which he proves R-quadratic convergence of a different algorithm. Introduce the functions \( h : \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n+m} \) and \( d : \mathbb{R}^{n+m} \times \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n+m} \) as follows

\[
\begin{align*}
    h(z) &= \begin{bmatrix}
        \nabla f(x) + \nabla g(x) u \\
        u^1 g^1(x) \\
        \vdots \\
        u^m g^m(x)
    \end{bmatrix} \\
    d(\hat{z}, z) &= \begin{bmatrix}
        \nabla f(\hat{x}) + G(\hat{z})(x - \hat{x}) + \nabla g(\hat{x}) u \\
        u^1 g^1(\hat{x}) + \nabla g^1(\hat{x})^T (x - \hat{x}) \\
        \vdots \\
        u^m g^m(\hat{x}) + \nabla g^m(\hat{x})^T (x - \hat{x})
    \end{bmatrix}
\end{align*}
\]

These functions are obtained from the equalities \( h(z) = 0 \) and \( d(\hat{z}, z) = 0 \) which constitute the equalities of the first-order Kuhn-Tucker conditions for the original problem 1.1 and the quadratic subproblem \( Q(\hat{z}) \) respectively. McCormick [7] has shown that the second order sufficiency conditions, strict complementarity, and linear independence of the gradients of the active constraints at \((\hat{x}, \hat{u})\) insure that \( \nabla_z h(\hat{z}) \) is nonsingular. Define

\[
3.2 \quad \beta = \frac{3}{2} \| \nabla_z h(\hat{z})^{-1} \|
\]

Since \( h(\hat{z}) = 0 \) and \( \nabla_z h(\hat{z}) \) is nonsingular, there is some open neighborhood of \( \hat{z} \) which contains no other zero of \( h \), and hence no other Kuhn-Tucker point of 1.1. Combining this with the facts
that $\nabla^2 f$ and $\nabla^2 g^j$, $j=1, \ldots, m$, are Lipschitz continuous on $N(\bar{z})$ and that $\| G(z_i) - \nabla^2 L(z_i) \| \leq \frac{1}{10\beta}$, we conclude that there are positive constants $\mu$ and $M$ such that $\bar{z}$ is the unique zero of $h$ in $\mathcal{B}(\bar{z}, \frac{1}{2}\mu)$, the closed ball of radius $\frac{1}{2}\mu$ around $\bar{z}$, and that for any $z_{i_1}$ and $z_{i_2}$ in the open ball $\mathcal{B}(\bar{z}, \mu)$ we have that

3.3a $\| \nabla_z h(z_{i_1}) - \nabla_z h(\bar{z}) \| \leq \frac{1}{2\beta}$

3.3b $\| \nabla_z h(z_{i_1}) - d'(z_{i_1}, z_{i_2}) \| \leq \frac{1}{2\beta}$

where $d'(z_{i_1}, z_{i_2})$ is the $(n+m) \times (n+m)$ matrix $\nabla_z d(z_{i_1}, z) |_{z=z_{i_2}}$.

3.4 $\| h(z_{i_2}) - d(z_{i_1}, z_{i_2}) \| \leq M \| z_{i_2} - z_{i_1} \|^2 + \| (\nabla^2 L(z_{i_1}) - G(z_{i_1}))(x_{i_2} - x_{i_1}) \|$

3.5 $g^j(x_{i_1}) + \nabla g^j(x_{i_1})(x_{i_2} - x_{i_1}) < 0$ for $j \in \{ j | g^j(\bar{x}) < 0 \}$

3.6 $u_{i_1}^j > 0$ for $j \in \{ j | \bar{u}_j > 0 \}$

We shall need the following two lemmas, the first of which was also established by Robinson for his own algorithm [10].

3.7 Lemma

$\hat{z} \in \mathcal{B}(\bar{z}, \frac{1}{2}\mu)$ $\implies$ $\exists$ a unique Kuhn-Tucker point $\tilde{z} \in \mathcal{B}(\bar{z}, \frac{1}{2}\mu)$

4 $\beta \| h(\tilde{z}) \| \leq \mu$

of $Q(\hat{z})$, and $\| \tilde{z} - \hat{z} \| \leq 2 \beta \| h(\tilde{z}) \| \leq \frac{\mu}{2}$
Proof: See lemma 1 of [10]

3.8 Lemma: The sequence \( \{z_1\} \) generated by the algorithm under condition (a) exists, remains in \( B(\tilde{z}, \frac{H}{2}) \) and converges R-linearly to \( \tilde{z} \).

Proof: Since \( h(\tilde{z}) = 0 \) there exists a \( \delta_1 \in (0, \frac{1}{4\mu}) \) and such that

\[
z \in B(\tilde{z}, \delta_1) \implies \| h(z) \| \leq \frac{\eta^2}{8M_\beta^2}
\]

where

\[
\eta = \min \left\{ \frac{1}{2}, \frac{\mu M_\beta}{2}, \left(\frac{2\mu M_\beta}{\frac{1}{4}}\right)^2 \right\}
\]

Let \( \delta_2 = \frac{1}{10_\beta} \). Since \( z_0 \in B(\tilde{z}, \delta_1) \) we have that

\[
\| z_0 - \tilde{z} \| < \delta_1 < \frac{1}{4} \mu \quad \text{and} \quad 4\beta \| h(z_0) \| \leq \frac{\eta^2}{2M_\beta} \leq \mu
\]

where the last inequality follows from the choice of \( \eta \) which satisfies \( \eta^2 \leq 2\mu M_\beta \). By lemma 3.7 it follows that there exist a unique Kuhn-Tucker point \( \tilde{z} \) of \( Q(z_0) \) in \( B(z_0, \frac{\mu}{2}) \) with \( \| \tilde{z} - z_0 \| \leq 2\beta \| h(z_0) \| \). Since \( z_1 \) is supposed to be a closest Kuhn-Tucker point of \( Q(z_0) \) to \( z_0 \), we must have that \( z_1 = \tilde{z} \) and hence

\[
3.9 \quad \| z_1 - z_0 \| \leq 2\beta \| h(z_0) \| \leq \frac{\eta^2}{4M_\beta}
\]
Since \( z_1 \) is a Kuhn-Tucker point of \( Q(z_0) \), \( d(z_0, z_1) = 0 \). Hence

\[
\| h(z_1) \| = \| h(z_1) - d(z_0, z_1) \| \\
\leq M \| z_1 - z_0 \|^2 + \| (\nabla^2 L(z_0) - G(z_0))(x_1 - x_0) \| \quad \text{(by 3.4)}
\]

\[
\leq (M \| z_1 - z_0 \| + \| \nabla^2 L(z_0) - G(z_0) \|) \| z_1 - z_0 \| \\
\leq \left( \frac{n^2}{4\beta} + \frac{1}{10\beta} \right) \frac{n^2}{4M\beta} \quad \text{(by 3.9)}
\]

\[
= \left( \frac{n^2}{2} + \frac{1}{5} \right) \frac{n^2}{8M\beta^2}
\]

Suppose now that for some \( i \geq 1 \) and all \( k \in \{1, 2, \ldots, i\} \) we have that

3.10 \( \| z_k - z_{k-1} \| \leq 2\beta \| h(z_{k-1}) \|, \quad z_{k-1} \in B(\bar{z}, \frac{M}{2}) \)

and

3.11 \( \| h(z_k) \| \leq \frac{n^2}{8M\beta^2} \left( \frac{n^2}{2} + \frac{1}{5} \right)^k \)

Then

\[
\| z_1 - \bar{z} \| \leq \| z_0 - \bar{z} \| + \sum_{k=1}^{i} \| z_k - z_{k-1} \|
\]
But for any \( k \in \{1, \ldots, i\} \)

\[
\|z_k - z_{k-1}\| \leq 2\beta \|h(z_{k-1})\| \leq \frac{n}{4MB} \left(\frac{1}{2}\right)^{k-1} \quad (\text{since } n \leq \frac{1}{2})
\]

Hence using \( \|z_0 - \bar{z}\| < \frac{1}{4}\mu \) we get

\[
\|z_i - \bar{z}\| < \frac{1}{4}\mu + \frac{n}{4MB} \sum_{k=1}^{i} \left(\frac{1}{2}\right)^{k-1} \leq \frac{1}{4}\mu + \frac{n}{2MB} \leq \frac{\mu}{2} \quad (\text{since } n \leq \frac{\mu M\beta}{2})
\]

Hence \( z_i \in B(\bar{z}, \frac{\mu}{2}) \). Also from 3.11 we have

\[
4\beta \|h(z_i)\| \leq \frac{n}{2MB} \quad (\text{since } n \leq \frac{1}{2})
\]

\[
\leq \frac{\mu}{4} < \mu \quad (\text{since } n \leq \frac{\mu M\beta}{2})
\]

So we conclude from lemma 3.7 that \( z_{i+1} \) exists and is unique in \( B(z_i, \frac{1}{2}\mu) \) and

\[
3.12 \quad \|z_{i+1} - z_i\| \leq 2\beta \|h(z_i)\| \leq \frac{\mu}{2}
\]

Since \( d(z_i, z_{i+1}) = 0 \) we have that
\[ ||h(z_{i+1})|| = ||h(z_{i+1}) - d(z_i, z_{i+1})|| \]
\[ \leq M \| z_{i+1} - z_i \|^2 + \| v^2 L(z_i) - G(z_i) \| \| z_{i+1} - z_i \| \]
(by 3.4 and \( \bar{B}(z_{i+1}) \subset B(z, \mu) \))
\[ \leq 4M\beta^2 \| h(z_i) \|^2 + \frac{1}{10\beta} \left( 2\beta \| h(z_i) \| \right) \]
(by 3.12 and condition (a) of algorithm)
\[ \leq \left[ \frac{n^2}{2} \left( \frac{n^2}{2} + \frac{1}{5} \right)^i + \frac{1}{5} \right] \frac{n^2}{2} \left( \frac{n^2}{2} + \frac{1}{5} \right)^i \]
(by 3.11)
\[ \leq \frac{n^2}{8M\beta^2} \left( \frac{n^2}{2} + \frac{1}{5} \right)^{i+1} \]
(since \( n \leq \frac{1}{2} \))

Hence by induction the sequence \( \{z_i\} \) exists and both 3.10 and 3.11 hold for all \( i \geq 1 \). Relations 3.10 and 3.11 imply that
\[ \| z_k - z_{k-1} \| \leq \frac{n^2}{4M\beta} \left( \frac{1}{3} \right)^{k-1} \]

Hence for \( i > k \)
\[ \| z_i - z_k \| \leq \| z_i - z_{i-1} \| + \ldots + \| z_k - z_{k-1} \| \]
\[ \leq \frac{n^2}{4M\beta} \left( \left( \frac{1}{3} \right)^{i-1} + \ldots + \left( \frac{1}{3} \right)^{k-1} \right) \leq \frac{3n^2}{8M\beta} \left( \frac{1}{3} \right)^k. \]

Hence \( \{z_i\} \) is a Cauchy sequence which converges to some \( z' \) in \( \bar{B}(z, \frac{1}{2} \mu) \) with the linear rate
\[ \| z_i - z' \| \leq \frac{3n^2}{8M\beta} \left( \frac{1}{3} \right)^i. \]

Since \( \{z_i\} \) converges and since \( v^2 f \) and \( v^2 g^j \), \( j=1, \ldots, m \),
are continuous, the sequence \( \{ \| \nabla^2 L(z_i) \| \} \) is bounded by \( \sigma \), say. Hence

\[
\frac{1}{10\beta} \geq \| G(z_i) - \nabla^2 L(z_i) \| \geq \| G(z_i) \| - \| \nabla^2 L(z_i) \| \geq \| G(z_i) \| - \sigma
\]

and the sequence \( \{ \| G(z_i) \| \} \) is bounded by \( \sigma + \frac{1}{10\beta} \). It follows then that the Kuhn-Tucker conditions for \( Q(z_i) \)

\[
\nabla f(x_i) + G(z_i)(x_{i+1} - x_i) + \nabla g(x_i) u_{i+1} = 0
\]

\[
u_{i+1}^T (g(x_i) + \nabla g(x_i)^T (x_{i+1} - x_i)) = 0
\]

\[
 g(x_i) + \nabla g(x_i)^T (x_{i+1} - x_i) \leq 0
\]

\[
u_{i+1} \geq 0
\]

become in the limit as \( (x_i, u_i) + (x', u') \) the Kuhn-Tucker conditions for problem 1.1. But since \( \bar{z} \) is the unique Kuhn-Tucker point of 1.1 in \( \tilde{B}(\bar{z}, \frac{1}{2} \mu) \) and since \( z' \in \tilde{B}(\bar{z}, \frac{1}{2} \mu) \) it follows that \( z' = \bar{z} \). This completes the proof of the lemma and establishes part (a) of theorem 3.1.

Since each of conditions (b) and (c) of the algorithm imply condition (a), we have by the lemma 3.8 just proved that the sequence \( \{z_i\} \) generated by the algorithm under condition (a), (b) or (c) is well defined and converges R-linearly to \( \bar{z} \). To show R-superlinear convergence under condition (b) we have from 3.4, 3.10 and

\[
d(z_i, z_{i+1}) = 0 \text{ that for } i=1,2,...,
\]
3.13 \[ \frac{\|z_{i+1}-z_i\|}{\|z_i-z_{i-1}\|} \leq 2\beta [M\|z_i-z_{i-1}\| + \|\nabla^2 L(z_{i-1}) - G(z_{i-1})\| \frac{(x_i-x_{i-1})}{\|z_i-z_{i-1}\|}] \]

If we let \( \beta_i \) denote the term in the square bracket in the inequality above, we have, from condition (b) and the fact that \( \{z_i\} \) converges, that \( \beta_i \to 0 \). Hence

\[ \|z_{i+1}-z_i\| \leq \beta_i \|z_i-z_{i-1}\|, \quad \beta_i \to 0 \]

and by induction \( \|z_{i+1}-z_i\| \leq \beta_1 \beta_2 \cdots \beta_1 \|z_1-z_0\| \).

Hence for \( k > i \)

\[ \|z_k-z_i\| \leq \|z_k-z_{k-1}\| + \cdots + \|z_{i+1}-z_i\| \]

\[ \leq (\beta_{k-1}\beta_{k-2}\cdots\beta_1) + \cdots + (\beta_i\beta_{i-1}\cdots\beta_1) \|z_1-z_0\| \]

For a given \( \delta \in (0,1) \) pick \( i \) such that \( \beta_i \leq \delta \) for \( i \geq i \).

Then for \( k > i \geq i \) and \( \gamma = \beta_1\beta_2\cdots\beta_i\delta^{i-1} \)

\[ \|z_k-z_i\| \leq (\delta^{k-1}+\delta^{k-2}+\cdots+\delta^i)\gamma \|z_1-z_0\| \leq \frac{\|z_1-z_0\|\gamma}{1-\delta} \delta^i \]

Since \( z_k \to \bar{z} \) we have upon letting \( k \to \infty \) in the last expression that

\[ \|z_i-\bar{z}\| \leq \frac{\|z_1-z_0\|\gamma}{1-\delta} \delta^i \text{ for } i \geq i, \]
which establishes the superlinear convergence of the sequence \( \{z_i\} \) under condition (b).

We finally establish R-quadratic convergence under condition (c). We have from condition (c) and 3.13 that

\[
\|z_{i+1} - z_i\| \leq 2\beta M \|z_i - z_{i-1}\|^2, \quad i=1,2,\ldots
\]

Pick \( i \) such that \( \gamma = 2\beta M \|z_{i+1} - z_i\| < 1 \). We have then by induction that

\[
\|z_{i+1} - z_i\| < (2\beta M)^{-1} \gamma^{2^{i-i}}, \quad i=i, i+1, \ldots
\]

Hence for \( k > i \geq i \)

\[
\|z_k - z_i\| \leq (2\beta M)^{-1} \sum_{\ell=i}^{k-1} \gamma^{2^{\ell-i}} \leq (2\beta M)^{-1} \sum_{\ell=0}^{\infty} \gamma^{2^{i-\ell}}(2^{\ell}-1)
\]

\[
\leq (2\beta M)^{-1} \gamma^{2^{i-i}} \sum_{\ell=0}^{\infty} \gamma^{2^{\ell}-1}
\]

By defining \( \epsilon = (2\beta M)^{-1} \sum_{\ell=0}^{\infty} \gamma^{2^{\ell}-1} \) and \( \delta = \gamma^{2^{-i}} \), we obtain upon letting \( k \to \infty \) in the last string of inequalities

\[
\|z_k - z_i\| \leq \epsilon \delta^{2^{i}}, \quad i=i, i+1, \ldots
\]

which is the desired R-quadratic convergence rate. This completes the proof of theorem 3.1.
4. COMPUTATIONAL IMPLEMENTATION
AND NUMERICAL EXPERIENCE

In order to insure superlinear convergence, condition (b) of the
algorithm must be satisfied. For this purpose any updating scheme
for an \((n+m) \times (n+m)\) matrix \(H(z)\) which satisfies either of the
following more stringent conditions will also satisfy condition (b):

4.1 The updated matrix \(H(z)\) is an approximation of the Hessian
\(\nabla^2_z L(z)\) of the Lagrangian with the property that
\[ \| \nabla^2_z L(z_i) - H(z_i) \| \to 0 \]
if \(z_i \to \bar{z}\)

4.2 The updated matrix \(H(z)\) is an approximation of the Jacobian
\(\nabla_z h(z)\) of the equalities of the Kuhn-Tucker conditions of problem
1.1, with the property that \(\| \nabla_z h(z_i) - H(z_i) \| \to 0 \) if \(z_i \to \bar{z}\)
h(\bar{z}) = 0 and \(\nabla_z h(\bar{z})\) is nonsingular.

It is clear that the upper left corner \(n \times n\) submatrix of both
\(\nabla^2_z L(z)\) and \(\nabla_z h(z)\) is \(\nabla^2 L(z) = \nabla^2 f(x) + \nabla^2 u g(x)\). Hence under either
scheme 4.1 or 4.2 we obtain that \(\| \nabla^2 L(z_i) - G(z_i) \| \to 0\), where
\(G(z_i)\) is the upper left corner \(n \times n\) submatrix of \(H(z_i)\), and
condition (b) of the algorithm is satisfied.

Another possible choice for \(G(z_i)\) is a finite difference
approximation to the \(n \times n\) matrix \(\nabla^2 L(z_i)\), similar to that
employed by Goldstein and Price [6]. We show now that this choice
for \(G(z_i)\) also satisfies the condition \(\| \nabla^2 L(z_i) - G(z_i) \| \to 0\).
In particular we define the \(j^{\text{th}}\) column of \(G(z_i)\) as
\[ G(z_i)^j = \frac{\nabla L(x_i + \theta_i I^j, u_i) - \nabla L(x_i, u_i)}{\theta_i} \quad j=1,\ldots,n \]
where $i^j$ is the $j^{th}$ column of the $n \times n$ identity matrix, 
$\theta_i = r \| V_L(z_i) \|$ and $r$ is some positive constant. Since $f$ and $g$ have Lipschitz continuous second derivatives in a neighborhood of $\bar{x}$, it follows that for $(x,u)$ and $(x+y,u)$ in a neighborhood of $(\bar{x},\bar{u})$ and for some $K > 0$ that

$$\| V_L(x+y,u) - V_L(x,u) - V^2_L(x,u)y \| \leq K \| y \|^2$$

Hence if we let $V^2_L(z_i)^j$ denote the $j^{th}$ column of $V^2_L(z_i)$ we have for $j=1,\ldots,n$ that

$$\| G(z_i)^j - V^2_L(z_i)^j \| \leq K \| i^j \|^2 \theta_i \leq K_1 \| V_L(z_i) \|$$

where $K_1$ is a positive constant. Hence for $z_i \in B(\bar{z},\frac{\mu}{2})$

$$\| G(z_i) - V^2_L(z_i) \| \leq K_2 \| V_L(z_i) \| \leq K_3 \| z_i - \bar{z} \| < K_3 \frac{\mu}{2}$$

where $K_2$ and $K_3$ are positive constants, and the last inequality holds by choosing $\mu$ small enough. By picking $z_0 \in B(\bar{z},\frac{\mu}{2})$ we have by the above inequality that condition $a$ of the algorithm holds for $z_0$. By the proof of lemma 3.8, $z_1$ exists and is in $B(\bar{z},\frac{\mu}{2})$. Hence using the above inequality again we have that $z_1$ also satisfies condition $a$. By repeating this argument we have that all $z_i$ satisfy condition $a$ and hence by lemma 3.8 the sequence converges $R$-linearly to $\bar{z}$. But by the above inequality we also obtain that $\| G(z_i) - V^2_L(z_i) \| \to 0$. Hence by theorem 3.1 the sequence $\{z_i\}$ converges $R$-superlinearly to $\bar{z}$.

The algorithm was implemented computationally by an updating scheme due to Garcia-Palomares [5] and which under suitable conditions satisfies condition 4.1 above. For explicitness we give the scheme here. Initially set both $H_0$ and $C_0$ equal to the $(n+m) \times (n+m)$ identity matrix. Subsequently we have that (using the simplifying
convention that the index $i$ is dropped and the index $i+1$ is replaced by $1$:

$s = z_1 - z$

$w = \nabla z L_1 - \nabla z L - Bs$

$t \in (0, 1)$

$$H_1 = H + \frac{t}{s^T Cs} (ws^T C + Csw^T) - \frac{t^2 s^T w}{(s^T Cs)^2} C s^T C$$

$$C_1 = \begin{cases} 
I & \text{if } i+1 = 0 \mod (n+m) \\
C - \frac{t}{s^T Cs} C s^T C & \text{otherwise}
\end{cases}$$

In implementing the algorithm, only the $n \times n$ matrix $G(z_1)$ is updated during the initial iterations. When $\|x_{i+1} - x_i\| \leq \varepsilon_1$ for some small $\varepsilon_1 > 0$, we begin to update the $(n+m) \times (n+m)$ matrix $H(z_1)$.

Another feature of the implementation of the algorithm prevents the iterates $x_i$ from becoming more infeasible with respect to feasible region $\{x | x \in \mathbb{R}^n, g(x) \leq 0\}$ of problem 1.1. This is done by adding a heuristic stepsize to the algorithm which is determined by decreasing the infeasibility along the direction $x_{i+1} - x_i$ generated by solving problem $Q(z_i)$. In particular we let $r(x_i) = \max \{r, g_1^i(x_i), \ldots, g^m(x_i)\}$ for some small positive number $r$, and move a sufficiently small amount $\lambda_i > 0$ along $x_i + \lambda_i (x_{i+1} - x_i)$ such that $r(x_i + \lambda_i (x_{i+1} - x_i)) \leq r(x_i)$. This was achieved by cutting $\lambda$ in half until the infeasibility decrease
condition \( r(x_i + \lambda_i (x_{i+1} - x_i)) \leq r(x_i) \) is satisfied. This stepsizes
procedure was an important factor in achieving convergence from starting
points that were not close to the solution. That the procedure is
well defined can be seen from the following. If for some \( j \in \{1, \ldots, m\} \),
g^j(x_i) > 0\), then since \( g^j(x_i) + \nabla g^j(x_i)^T (x_{i+1} - x_i) \leq 0 \), we have
that \( \nabla g^j(x_i)^T (x_{i+1} - x_i) \leq -g^j(x_i) < 0 \). Hence we can always move a
sufficiently small amount \( \lambda_i > 0 \), because the direction \((x_{i+1} - x_i)\)
is a downhill direction. If convergence to a solution is obtained
with this stepsize, and \( \lambda_i = 1 \) for sufficiently large \( i \),
then the convergence rates given by theorem 3.1 hold.

The algorithm together with the heuristic stepsize was coded
in FORTRAN V for the UNIVAC 1108. The principal pivoting method of
Cottle and Dantzig [3] was used in solving the subproblems \( Q(z_i) \). It was tested on all eight of Colville's test problems [2]. The
results given in Table 1 are very encouraging; in
more than half the test problems the proposed algorithm was faster
than all the algorithms reported on by Colville. We also list in
Table 1 the timings obtained by Best [1] and Robinson [10] using their
algorithms.
TABLE 1

SUMMARY OF COMPUTATIONAL PERFORMANCE OF THE QUASI-NEWTON ALGORITHM ON THE COLVILLE TEST PROBLEMS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>feasible</td>
<td>-32.3487</td>
<td>.1300</td>
<td>.0048</td>
<td>10</td>
<td>.0061</td>
<td>.1228</td>
<td>.1113</td>
</tr>
<tr>
<td>II</td>
<td>feasible</td>
<td>32.3486&lt;sup&gt;a&lt;/sup&gt;</td>
<td>10.710</td>
<td>.3967</td>
<td>2</td>
<td>.1933</td>
<td>.0877</td>
<td>.0038</td>
</tr>
<tr>
<td>II</td>
<td>infeasible</td>
<td>32.3486&lt;sup&gt;a&lt;/sup&gt;</td>
<td>4.7738</td>
<td>.1768</td>
<td>2</td>
<td>.0052</td>
<td>.0069</td>
<td>.0064</td>
</tr>
<tr>
<td>III</td>
<td>feasible</td>
<td>-30666.5</td>
<td>.1044</td>
<td>.0039</td>
<td>4</td>
<td>.0020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>infeasible</td>
<td>-30666.5</td>
<td>.1654</td>
<td>.0061</td>
<td>4</td>
<td>.0020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>feasible</td>
<td>10E-10</td>
<td>.2632</td>
<td>.0098</td>
<td>1</td>
<td>.0206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>feasible</td>
<td>126318.&lt;sup&gt;c&lt;/sup&gt;</td>
<td>.2814</td>
<td>.0104</td>
<td>1</td>
<td>.0206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>infeasible</td>
<td>125220.&lt;sup&gt;c&lt;/sup&gt;</td>
<td>1.8662</td>
<td>.0691</td>
<td>4</td>
<td>.0156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>infeasible</td>
<td>8884.90</td>
<td>.4034</td>
<td>.0149</td>
<td>1</td>
<td>.0264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>infeasible</td>
<td>246.7&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.746</td>
<td>.0647</td>
<td>8</td>
<td>.0290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>feasible</td>
<td>-1162.0&lt;sup&gt;a&lt;/sup&gt;</td>
<td>4.554</td>
<td>.1687</td>
<td>8</td>
<td>.0224</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The answer to the original maximization problem is the negative of the one given in this table, because we minimize \(-f(x)\) instead of maximizing \(f(x)\).

b. \(10^{-10}\)

c. This is the best minimum that has been found for this problem

d. The standard time is determined by dividing the execution time in seconds by 27, a factor which is determined for each computer by a timing package provided by Colville.

Acknowledgement

We are grateful to Ms. Ileana Teodoru for pointing out a flaw in an earlier version in the induction of lemma 3.8.
REFERENCES


