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ABSTRACT

The computation of continuous approximate solutions of
Differential Equations has become increasingly important in order,
for instance, to be able to apply error bounding techniques from
Punctional Analysis. An efficient procedure for compubting continuous
approximate solutions to initial value problems in ordinary
differential equations is presented. The method is a simplification

of Picard's method of successgive substitutions.






INTRODUCTION.

The computation of continuous approximate solutions of differential
equations has become increasingly important in order, for instance, to

be able to apply error bounding techniques from Functional Analysis [7].

Picard’s method of successive approximations for the solution of ordinary
differential equations is one of considerable concentual importance,
However it has not been apulied directly to the computer solution of such
equations, The apparent necessity to process all the coefficients of a
power series in the independent variable makes it seem a slow and memory
consuming process. On the other hand, an analysis of the behaviour of

the coefficients in the successive approximations to the solutions has
shown the following property: It is not necessary to store and manipulate
all the coefficients of the kth approximation in order to compute the
(k+1)th approximation; the integration need be performed only on the term
of degree k of the pover series expansion of the equation. A simplified

version of Picard's method is derived which makes use of this property.

Application of the resulting method is illustrated amd techkniques for
error analysis are discussed. The nethod is then compared with a’ fourth
order Runge-Kutta method from the poiant of view of actual machine
computations., A final example shows how the method 1z uscful in obtaining

global error bounds on solutions to boundary value problems,






4.= DESCRIPTION OF THE MEITHOD.

Consider the first order differential equation

x(t) = f(x,t) (1.12)
and the initial condition
x(0) = X, (1.1b)

The proposed method for the approximate solution of (1.1) can be

recursively defined as follows:

yo = xo {1.2a)
¥g = Tlxgt) (1.2b)
t
Y5 -_—./ Y'yoq OF (1.2¢)
Y]
where y! , is the term of degree j-1 in the expansion of f(y(3"1),t) as
i1
a power series in t and
(i) _
y = Yo * Vg * oeee ¥ yj (1.3)

Clearly the expression y(J) in (1.3) is a polynomial in te
There is no difficulty in extending the method to systems of equations;

so that x and £ in (1.1) may be regarded as vector valued functions,
The main result of this paper is the following.
Theorem.

The polynomial y(n)(t) is identical to the first n+1 terms of the series
representation of the solution of (1.1) computed by Picard's method of

successive approximations.

The proof (given in the remainder of this section) follows by induction.
First it will be shown that the constant and linear terms in (1.3) are

equal to the cdrresponding terms computed using Picard's method.

The successive approximations to the solution of (1.1) can be computed
by Picard's method from [1,2]

xo(t) = Xg

t (1.4)
xm(t> = X, +g/£ f(xm“1(s),s) ds ; ©

T H m=1‘2|oaa
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Convergence of the Picard sequence X, to a solution x(t) of (1.1) is

guaranteed if f(x,t) satisfies the Lipschitz condition

o0y 1T, (£),8) = £0x (1), )| € H flxy = x (1.5)

[0,7] ol

where X, and x, are continuously differentizble functions defined in
the interval [0,T]%

The solution of (1.1) computed by application of Picard's method can be

written in the form

2 n

x(t) = Py + Pyt + PotT + eae 4 Pt o+ . (1.6)

The first approximation to the solution of (1.1) is:
t

x1(t) = X, +?/2 f(xo,s)ds (1.7)
The expansion of f(xo,s) as a power series in s can be integrated to
obtain

- ‘ 2
x,(t) = Xg * Cqt + et + Lo (1.8)

The constant term Xq remains invariant in all successive approximations
xm(t) $ M=2435.00 » The equality
Yo = Py (1.9)

follows from (1.6) and the definition (1.2a) of Yge

Evaluation of equation (1.2c) with j=1 shews that

¥4 = c1t {1.10)

by direct comparison with (1.7) and (1,8),

An interesting proper.y is discovered in the expansion of functions with
polynomials as arguments. The following lemma will be uwsed to show the
invariance of the linear ternm c1t of (1.8) in all the elements Xy b

m=2,35... of the Picard sequence,

* See section 3 for discussion of an extension to functions which do not
satisfy (1.5)




Lemma 1.

Suppose the function f(z(t),t) can be expanded as a power series in t,
then the term of degree k of the argument

1 2 k
o * Zqt ¥ 2t 4 oo+ Bt ¥ el (1.11)

of the function contributes only to the values of terns of equal or

z{t) = 2z

higher degrec in the resulting expansion of the furcrtion as a power

series in t.

The property is easily verified for the elementary algebraic operations

with polynomials as arguments [3,6]. Given the polyromials:

u = Zuitl
i

ve 2vith s 1= 0,1,2,e.. (1.12)
i

w

it

i
Z; wit

the addition w = u + v c¢an be expressed as:

w A s k= 0,1,24me0 (1.13)

the product w = u « v 1is given by:

W u

k
W, = 0 ugo# vy i k= 0,1,2,0a. (1.14)
i=0 ~
and finally the quotient w = u / v can be computel from:
Wo = U / o
k
. - 23 vooe W (1.15)
i=1 ‘ i k= 1,2,00m
v, = .
k v
0

Equations (1.13), (1.14) and (1.15) show the stated groperty.

It follows from Lemma 71 and the invariance of the cmstant term x., that

0
¢y = Py (1.16)
From (1.9), (1.10) and (1.16) it is easily seen that the equality
. = tj Te1
Y5 = Py (1.17)

ia satisfied for J = 0,1,



Assume (1.17) holds for j = 041,2,e00,n~1, Substitution of the solution
x(t) in equation (1,4) followed by the expansion of f(x(s),s) as a power

series in s results in

t
x(t) = Xq +‘/g (do + d1s + ase * dn_1sn”1 + dnsn + ool ds  (1.18)

which after integration becomes

x(t) = pg + Pyt + oo + pntn + eoo (1.19)
where
Po = %o
a_, (1.20)
Py = = H k= 125000

It is important to note that Lemma 9 guarantees that the constant dn-1 in
(1.18) depends only on the coefficients Py 3 ign-1 of x(t) and the

particular form of f{x,u),

The n~1 iterations carried out using equations (1.2) result in the expression
(n-1) B
y (8) =55 + ¥5 + eo0o + Ypet (1.21)

where the terms ¥ satisfy

y; = pitl § i= 0,1,25000n=1 (1.22)

by the inductive assumption. The variable y;_1 is, by definition, the term
of degree n-1 in the expansion of f(y(n°1)(t),t) as a power series in t,

Lemma 1 and the inductive assumption (1.22) guarantee

' _ n-1
Yne1 = dpoqt (1.23)
Substitution of (1.23) in (1.2¢) yields
dn-1 n
¥y o= t (1.24)
n n

The desired result

n

Yo = Pyt (1.25)

follows by dircct comparison of (1.24) and (4.20).

This completes the proof of the theorem,




2e= APPLICATICHNS.

The computation of the solution to ordinary differential equations using
the described method requires considerably less effort than direct use of
Picard's method, In the casc of linear equations with constant coefficients,
only the term of degree k of the argument contributes %o the value of the
term of equal degree in the expansion of the function as a power series,
Therefore, only one evaluation of the function is needed in every iteration.
It follows from equations (1.74) and (1.15) that nonlincar operations
require a greater number of machine operations, as well as the storage of
the polynomial reprosentation of the operands., The power series expansion

of transcendental functions is achieved using Taylor's series. Since the
érguments of the functions are polynomials, the process is very inefficient,
It is often possible, however, to avoid the use of tramscendental functions
by expressing them as solutions to auxiliary rational &ifferential equations
[6, chapter 11].

In the following examples, the solutions will be carried out using the

direct application of Picard's method and the proposed simplification.

Consider the linear differential equation

xt = 2x (2.1a)
subject to the initial condition
x(0) = 1 (2,1b)

Simplification of Picard's method,

Picard®'s method.

yo = 1 xo = 1
t t
y1=/2dt x,i(t)=1+f2ds
0 0
¥, =2t x1(t)=1 + 2t
£ t
¥, = Ly at x,(t) = 1 + (2 + 4s) az
e Jo e 0
0.2 _ 2
v, = 2t xa(t)-‘l+2t+2t



k2
- !
vy = JC < dt xB(t)
S .3
y3 = t Xa(t)
The result

3
x.(t) = ). y.
3 iz0 *

san be verified by insvection.

In order to illustrate a nonlinear example, consider

x' = x
and the initial condition
X(O) =

Simplification of

Picard's method,

yo = 1 *g =
‘ )
¥ =/P dt x,(t
1 0 1
y1 =t x1(t)
t
¥, = /g 2t dt x2(t)
2
y2 = t xz(t)
¢ 2
¥y = o 3t° dt x3(t)
_ 3
yB =t XB(t)

it

il

1

t 2
1+ Jf (2 + 4s + 4s°) ds
o}

2

1+ 2t + 2t + t3

RS

the equation

(2.2a)
(2.2v)
Picard's method.
1A
i+ JF ‘ds
0
1+ t
t 2
1 +‘/n (1 + 258 + 87) ds
0
T+t + t2 + 1t3
3
¢ 283542516
1+ (1+25+35%+=5"+3s +55  4=5") ds
o 39743° 43574y

1.5 16, 1.7

+ =t

3 + 3 + g;t

The solution computed using the simplification of Picard's method

i=0

is identical to the sum of the terms of degrec less than four in the

solution computed by dircct application of Picard’s rcethod.




34= ACCURACY OF NUMzZRICAL RESULTS.

The polynomial
n .
yB 4y = 2, pth (3.1)
i=0
computed using equations (1.2) is a truncation of the infinite series
L i
x(t) = Z pit (3.2)
i=0

wvhich represents the exact solution of equation (1.1) in the interval
0<tgT (3.3)
with T defined in (1.5).

Bounds on the magnitude oif the error introduced by truncation of the

series (3.2) will now be discussed,

By the same reasoning used in the proof of the theorem it can be shown

that the element X of the Picard sequence generated with equations

(1.%4) can be written in the form

m i [2.0] i
xm(t) = ggg pitT + i;§L1 a;t (3.4)

where the a; depend on the number of iterations m, the particular form

of the function f(x,t) and the initial condition x(0). From the
derivation of the error bound [2]¥*.

Y m~1 Kk
Ix(t) - x (O € (7 - L ) 1) - xgl (3.5)

and the particular form (3.4) of xm(t)° it is not difficult to show
that the expression
Kk o

(m) e "= wp 5
fx(t) - vy (oM €le™ - kZO ) (e = xglh o+ Y qit‘n

= l=m+1

(3.6)
constitutes a bound on the error of the truncated series(3.1) computecd

using equations (1.2).

Tho symbol || I denotes the norm

H2Col = ([0 gy 12C8)]

O
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The inequality (3.6) sugsests two techniques to reduce the magnitude of
the error: a) Computation of a polynomial of degree higher than m,
b) Reduction of the length of the interval (3.4),

The degree of the computed polynomial (3.2) is limited by the hardware of
the machine used, since the cocfficients of higher powers of t tend to
cause underflow or overflow in the computer, The question of efficiency
becomes the limiting factor when dealing with nonlinear equations. The
number of machine operations required to compute the nanlinear terms

grows with the square of the degree of the resulting polynomial,

Clearly, the error term (3.6) in the approximate solution y(m)(t)
vanishes as T-»0, Let the computed polynomial y(m)(t) represent the
solution within the interval

0gtgh (3.7)

where h = T/N. The error in the approximate solution yﬁgﬁ(t)ﬁ can be nade

arbitrarily small within the interval (3.7) by choosing a large enough

(m)

value of : The value y[O](h) can now be calculated anf used as the
initial value to compute a new polynomial y%?%(t) using equations (1.2)

with y(0) = yEgJ)(h)° The polynomial yé?i(s) s Ogsgh rexresents the

solution of (1,1) in t he interval hgtg2h, The procedure can be repeated
N times to obtain the solution for the complete intervsl (3.3). The
procedurc described is usually called analytic continwetion. It can also
be used in some cases to extend the solution for values of the independeont
variable outside the interval (3.3). The approximate slution y(t) within
the complete interval (3,3) is given as a set of N polmonials of degree
m as follows:

(m)() s

y(t):y[k}s O0gsgh 5 khgt(keMT 53 K=0,15000,li=1

{3:8)

as shown in figure 1.

The error bound given by equation (3.,6) may be extended to the case that
the Lipschitz condition (1.5) is satisfied for xy and x, contained
¢ The subscript within brackets represents the sub-imicrval in which the

polynomial represents the solution of the equation,
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y{t)
(m)

y[N_ﬂ](S)

"\ M

yémﬁ(h) : ( :

1 m) !

i t

! i

| |

| ]
| L ot

{(n-1)h Hh=T

Figure 1.
in a ball
u(xg,r) = {x df x - xollsr)- (3.9)

In this case the Lipschitz constant M depends on r and T. Convergence of
the iterations (1.2) to the solution of (1.1) is then guaranteed and the
error bound (3.6) holds if there exist values of T and r for which the
inequality

eMT "

r} x4 (t) = xq | (3,10)

is satisfied,

For the particular case where the Lipschitz constant ¥ = ©<1 the

error bound

w -
) - ¥ wli< -_f—é ey Ce) = xoff + | 25 ayt?] (3.11)

i=meT

is derived by direct application of the Contraction Mapping Principle [2].



L.~ CONCLUSIONS.

The method presented in its analytic continuation form nzy be thought of
as a variable order method for the solution of initial value problems in
ordinary differential equations. The order of the metkod is siven by the
degree of the polynomial which represents the solution over one step and

it can be specified by a parameter in the computer program [5 ],

The most inmportant advantage of the method lies in the fact that‘it“is

an efficient procedurs to compute continuous approximate solutions to
initial value problems in ordinary differential equations. The analytic
continuation scheme described in scction 3 represents the solution in the
form of piecewise polynomial functions of any desired degree. This allows
the possibility of a stable differentiation algorithm. The kth derivative
of the m degree volynomial representing the solution yields a polynomial
of degree m-k. The degrece is limited only by the hardware restrictions

of the computer,

A digital-analog simulator program named SAS using the described method
has been implemecnted in the 3urroughs 35500, BS5500 and Univac 1108
conputers [3,4,5]. Table 1 shows the results of the comparison between SAS
and the fourth order Runge~llutta method described in [9,page 3677 for the
following problens:

a) ¥ = -200y7 - 10“6y

y{0) = 10 3 y'(0) = O

b) YU = -y + et
0 H y'(O)—.:O

g
~
O
~
[0

c} ¥ o= -oaoasyz + 9.81
y(0) =0 ; ¥'(0) = 0O

The maximum error was determined by comparison with the analytic solutions

1y,

evaluated using double precision arithnmetic. The prorrans are written in
G b I G

NUALGOL [10] and were run on the Univac 1102 computer.
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Problem a) Problem b) Problem c¢)

SAS Runge SAS Runge SAS Runge
Maximum 10-6 10’4 10-6 10~3 10~k 10_4
error,
CPU time
millisec. 137.4 4984 . 13.5 6l b 312.6 90,2
Step size, Nelsl 0001 1.5 /15 1,0 0.2
No. of steps. 5 200 4 15 8 Lo
Degree.of 20 11 10 .
polynomials,

Table 1,

The CPU times shown in the table do not include the time invested in the
evaluation of the polynomials for the values of the independent variable
needed for comparison. The results indicate the method's efficiency in

the solution of lincar differential equations.

A comparison of the third derivatives of the functioms computed by 5iS
and the double precision evaluation of the analytic third derivatives is
summarized in table 2, The step size, number of steps and degree of the

polynomials asr those shown in table 1,

Problem a) b) Toe)
laximum

error in 1400,* 1073 10~
conputed y"

CPU time

164 20,2  395.4
3

* The solution is of order 10”.

millisec,

—

The relative error is less than 10—3,

Table 2.

The metlhiod has been used successfully to compute the approximate solutions
of the ‘intermediate’ lincar boundary value problenms resulting from the

application of Iewten's method [2,8] for the solutior of certain nonlinecar

boundary value problems,



The application of llewton's method in 3Banach spaces [2,8] to find an
approximate solution of the nonlinear boundary value problem
fn P
X (t) = f(f(x,t) (l‘,@"')
x(0) = x(1) = 0
requires the solution of the seguence of linear boundary value problenms
given by
1 = -
xk+1(t) = fx(xk(t),t)xk+1(t) + f(xk(t)gt) f(xk(t),t)xk(t)

i co « k- (4.2)
%,,4(0) = % (1) =0 ; k=0,1,2,...

where fx(xk(t),t) is the partial derivative of the function with respect

to x evaluated at xk(t)° In order to apnly Kantorovic's convergence theoren
and error bound for the Newton sequence xk(t) s k= 1,2;00.. starting from
an initiel guess xo(t), it is necessary to compute continuous twice
differentiable aporoximate solutions to the sequence of linear differential
}equations (B.2). If problem (4,2) has a unique solution, it may be
expressed as a linear combination of solutions to twe related initial value
problems: Aparticular solution of (%4.2) and a solution to the corresvonding
homogeneous ecuation [8), The simplification of Picard's method can be used
to compute the continuous anproximate solutions of the related initial
value problems, The linear combinatioﬁ of the computed approximate soluiions
yields the desired continuous twice differenfiable functions which represcnt
the approximate solutions of the sequence (4,2). A modified version of the
program SAS has-been--used- to.compute-avproximate solutions to boundary
value problems of the form (4.71). A summary of the results obtained in
the computation of the approximate solution to the problem

da) x" = e ¥

x(0) = x(1) = 0

is shown in table 3, It is known thatproblem d) has exactly two solutions:
The 'snall' solution which attains a minimum value of aporoximately -0.14
and the 'big' solution which attains a minimum value of approximately -%,09.

The columns of table 3 are labeled accordingly.




Maximum
error,

CPU time
millisec,

No. of MNewton
iterations,

Step size,
No. of steps,

Degree of
polynomials.,

‘BMall’
solution

10~

600

0.5

Table 3,

‘big?
splution

1072

874

(¢ P
10
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