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ABSTRACT
1 1
Consider the boundary value problem y'' + < y' + B exp {- I l } =0 .
vy'(0) =0 , y(l) = T where B >0, 1T>0. We are concerned with a

mathematically rigorous num erical study of the number of solutions
in any bounded portion of the positive quadrant (T > O , B > 0) of
the T , B plane. These correct computational results may then be
matched with asymptotic (B = ® , T > 0) results developed earlier.

These numerical results are based on the development of a-posteriori
error estimates for the numerical solution of an associated initial value
problem and a-priori bounds on

k

3
cbk(x,yo) = '8_37; y(xnyo) .
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1. Introduction.

In the present paper, we shall be concerned with the multiplicity of

the solutions of the following nonlinear boundary-value problem:

n ]

1 1

— - = g <
y+xy +Bexp{ TTY} 0, O X 1
(1.1)

y © =0, y@) =«

where 1,8 = 0 are nonnegative parameters.

The problem arises in the study of chemically reacting systems with cylin-
drical symmetry; y is then essentially the temperature, and B is a dimension-~
less combination of other physical parameters (see Cotter [ 3], Gavalas [6],
and Frank-Kamenetskii [s5]).

Some time ago, two of us (M. Stein and P. Stein) undertook extensive
computations to study this problem. The calculations (reported in Parter
[8]) confirmed in all essential details the qualitative picture conjectured
by Cotter. S. V. Parter [8] then attacked the problem analytically and
succeeded in establishing several important theorems. Parter's work tended
to confirm the correctness of Stein and Stein's numerical study, but there
remained certain gaps in the picture. Furthermore, the computational results
could not be said to have been rigorously justified.

The calculations of Stein and Stein were based on solving the initial
value problem implied by (1.1). Unfortunately, the available literature
appears to limit the treatment of convergence and error estimates for initial
value problems to those cases where a uniform Lipschitz condition exists.
Clearly, the Bessel operator appearing in (1.1) admits of no such condition
because of the apparent singularity at x=0.

Despite these technical difficulties it was thought worthwhile to
attempt a rigorously correct mathematical study of the problem. Our hope -
justified, as it turned out - that this could be done was based on the .
striking agreement of the analytical and computational results for large
values of B. More precisely, the curves in the B,T plane which separate
regions of uniqueness and nonuniqueness (see Fig. 1) are well approximated
in an asymptotic sense by Parter's formulas. It remains to remove the

discrepancies between the computational and analytic results in a finite



portion of the parameter space. To this end, a theory of a posteriori

crror cstimates is developed and applied to the present problem in the range

Rigorously correct error estimates are obtained which complement the results
of [ 8] and, in effect, serve to justify the original calculations. It
should be pointed out that the methods developed here can in principle be
applied to a wide range of problems; it is hoped that the present example
will convince other workers in the ficld of the power and utility of these
me thods.

All computations described in this paper were carried out on the MANTAC
at the Los Alamos Scientific Laboratory. They are based on the carlier work
of Stein and Stein in the scnse that they use preciscely the same differcnce
equations to obtain an approximation Yi(&,yo) to the solutions of (1.1).

The computational scheme is described in Section 3. Scctions 4 and §
are devoted to deriving the necessary estimates for the a posteriori error
bounds. In Section 6 we show how thesec cstimates and the computational
results can be used to establish the conclusions given in Section 3. The

concluding Section 7 contains general remarks.




2. The computation.
Let

2
_ e 1
(2.1) E(y) = - exp { "ﬁ7r}

lLet
(2.2a) E =48/, =/ x ,
(2.2b) Y(8) = y(x)

Then problem (1.1) becomes

2
Lovstdiem-o0, 0<e</a
de
(2.3) 4
L%% ©) =0 , Y{/?j= t

Obviously, every solution of the boundary-value problem (2.3) is also

the solution of some initial value problem of the form

2
oyl =0, 0<£</F
W EE

(2.4)
dy _ -

for some choice of Yo Thus, the plan of the computation is the following:
(i) Solve the initial-value problem (2.4) for all choices of
< oo
yO, O YO < °
(ii) For fixed values of EO’ study the function Y(EO, yo) as a
function of yo.

(iii) For any given value of T, the number of solutions, Yoo of

(2.5) Y(/7§,yo] =T

is exactly the number of solutions of the boundary-value problem (1.1).



-

Quite clearly we cannot hope to carry out this program for all §,
0 < B < and all Yoo 0 < Yo < =, However, since the analytic results of
[8 ] are quite good for large B, we may restrict B to some finite interval.

Based on the results of [8 ] we choose the range
(2.6a) 0 € B < 31.0525

which corresponds to

(2.6Db) 0 <E<4,1

This choice of B is based on the desire to extend the region R’ of [81 in

which there are at least three solutions of the boundary-value problem (1.1).

If we were only concerned with an improvement of the umiqueness results

of [8], it would be sufficient to limit ourselves to the interval

(2.7a) 0 < B < 16.959546
which corresponds to
(2.7b) 0 <g<3.03

As we shall see in Section 6, our computational results show that this
smaller range of B is enough to determine our range of Yo We recall two
results of [8].

Lemma 2.1. Let O have the property that

-1 —
(2.8) Uemp{a:j3§}<4a, o <o
Let
(2.9) 0<sBK17, 0<1<1/4

and let y(x; B,T) be a solution of the boundary value problem (1.1). Then
(2.10) y(0;B,1) <o+1<a+ 0.25

Proof. See [ 8, lemma 5.4].




Corollary 2.1. Let

(2.11a) 4.2 s Yo
Let Y(g,yo) be the solution of the initial-value problem (2.4). Then
(2.11b) Y(&,yo) >1/4, 0<E<3.03
Proof: Computational results show that we may take

o= 3.2
Thus, inequality (2.11b) follows from the remark that every solution of the
boundary-value problem is the solution of an appropriate initial-value

problem and vice-versa.
Lemma 2.2: If

T=1/4

there is one and only one solution of the boundary value problem (1.1).
Proof: See [ 8; Corollary 5.3.2, Theorem 5.1].

Thus, we restrict the computation to the range
(2.12) 0 < y0'< 4.2

Of course, for a fixed Yo we cannot obtain Y(g,yo) with complete
accuracy. Thus we require precise error estimates for the "approximate
solution," Y{E,yo). Such estimates are discussed in Section 5. Moreover,
we cannot obtain "approximate solutions" for all choices of Yo Hence, we
require precise error estimates on intermediate values of Yo Such esti-.
mates are also discussed in Section 5.

The computations were carried out with

it

Ay, 0.0125 , 0<y, <1
(2.13)

Ay

1]

: <y, < 4.
o = 0.0250, 1<y, <4.2



In principle we have Y(i,yo) for all values of £. Nevertheless, we

only sampled this data at intervals with Af = 0.01. However, we know that

and g% < 0. Thus we can also easily estimate the error in intermediate
points as in Theorem 5.1.

Having said all this, we now turn to the actual computions. Despite
the lack of a uniform Lipschitz condition we employ a standard fourth order
Runge-Kutta method for differential equations of the second order (sce
Collatz [ 2, Table II/5, page 69]) with a step size of

(2.14) h = 0.01
On each interval of length h, say [kh, (k+ 1)h], we use the values

? ?
e e e Ve Yiere Yia
equation) to interpolate a polynomial Q(E) of degree at most five (see

{note: Y; is determined from the differential

Davis [ 4, page 37]). Patching these polynomials we obtain a function
Y(g,yo) € C2[0,4.1] which is a polynomial of degree at most five on each
interval.
In order to apply the estimates developed in Sections 4 and 5 it is
necessary that we have accurate bounds on the residual
2

(2.15)  R(E,y,) = —j?— Y(Eyg) + ¢ 4r Yy + £(T(E,y)

In order to do this it became necessary to carry out the entire computation
in double precision. Nevertheless, a comparison with single precision
Runge-Kutta runs showed that the single precision computations of ?{g,yO)
are sufficiently accurate. Hence, if we had not desired an accurate

estimate of

Max [R(E,yg)|

the computation could have been carried out in single precision.




First we recall the analytic results of [8]. Consider the region R”

bounded by the curves

A
C,: B=~§Q'{(1—2T).- /“:t‘"—'&’?}exp[—-————z—-———], 0<T<0.20
1- vV 1-4t
AO e 2
gz_z_{(o.e)-/o.z}exp[ :_;_—] , 0.20 <71 <0.25
1- /0.2
C2:
= 16.4628344 , 0.20<T1=<0.25
A0 2
C3: T=0.25, jr-e < R < 16.4628344
Aoe2
: = <7t <0.
C4. B 7 s 0 T 0.25
where
(3.1) AO = 5,78305
A0e2
(3.2) *jz-é 10.68282

Lemma 3.1. If (1,8) ¢ R", and T > 0, then there is a unique solution of

the boundary-value problem (1.1).
Proof: See [8], Section 6.

Consider the region R'bounded by the two curves

*

Iy 8 =~§i{ [1-21] - /T'—”E} exp[w 2 —-—-], 0<T<T,
: 1 - /-4t

N 2 *

1"2: B=2e{(l—21)+ J1-4T}exp mv--——-w-—-], 0<T<TO
1+ /1-41

*
where Ty is the point where Fl and FZ intersect. Computational results
show that



Ty = 0.15904
‘,* * .
I‘l("co) = 1’2(10) = 24,325
2.
= 4e” = 29,556

r, (0)

Lemma 3.2. If T >0 and T € R', the closure of R', then there are at least
three solutions of the boundary-value problem (1.1).
Proof: See [ 8], Theorem 4.3.
Turning now to the results obtained from these computations we obtain
the following theorems. Consider the region R_ bounded by
{0} the piecewise-linear function (lch) given in Table (3.3+)
S_{1)

(B) B = 5 {(l - 2T) - /1 -4t }exp[—__._.g._u._“_jj
1 - V/1-4T1

where S_(t1) is the slowly varying function given in Table (3.4)

(v) B = 31.0525.

Theorem 3.1. If T = 0 and (7,B) € R_, then there exist at least three
solutions of the boundary value problem (1.1).
Proof: See Sectiomn 6.

Consider the region R+ bounded by
(a) The piecewise-linear function Q_(t) given in Table (3.3-)

S, (1) o 9
B) B = *“§~*‘{(1-2T) - /1-—41}-exp e —
1 - /1-47 .

where 5,.(7) is the slowly varying function given in Table (3.4).

Theorem 3.2. If T 2 0, B < 16.625376, and (T,B)%Igg then there is one and

only one solution of the boundary value problem (1.1).

Proof: See Section 6.

Remark: The results stated above are illustrated in Fig. 1. The region
marked "overlap region" is the region in which both the computational results
and the analytic results assert the existence of at least three solutions of
the boundary-value problem (1.1). Similarly, the results of Theorem 3.2
improve the uniqueness results of [8 ] by removing the "kink" in the corner,
0.20 <1< 0.25, and raising the lower boundary of R”.

Table (3.3-) shows Q (t). This is a piecewise-linear function which




may be taken linear between the indicated values of the argument . These
arguments are not equally spaced because the computations are actually
carried out for equally spaced arguments in B. The arguments in T are then
given by T(B) - o, where 0 is a computed error bound. Morcover, we have
not listed all the data obtained from these calculations. We have empha-
sized the regions T = 0.24 and T ~ 0 because of their intrinsic interest.
Similarly, Table (3.3+) shows Q+(T), which is computed in the same way.
Table (3.3M) then shows both functions evaluated at the same representative

points.

T Q_(1)
- 0.0137 17.07167
- 0.0022 16.84779
0.0034 16.73640
0.0090 16.62530
0.0201 16.40444
0.0311 16.18499
0.0418 15.96701
0.0523 15.75050
0.0627 15.53550
0.1021 14.69020
0.1251 14.17400
0.1550 13.46655
0.1785 12.87470
0.1965 12.39163
0.2079 12.10623
0.2232 11.63795
0.2260 11.54540
0.2287 11.45322
0.2314 11.36141
0.2339 11.26997
0.2364 11.17890
0.2387 11.08820
0.2407 10.99787

Table 3.3-
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T Q, (1)
-0.0101 17.07167
0.0014 16.84779
0.0070 16.73640
0.0126 16.62530
0.0238 16.40444
0.0347 16.18499
0.0454 15.96701
0.0559 15.75050
0.0663 15.53550
0.1057 14.69020
0.1287 14.17400
0.1586 13.46655
0.1821 12.87470
0.2001 12.39163
0.2087 12.10623
0.2240 11.63795
0.2268 11.54540
0.2291 11.45322
0.2322 11.36141
0.2347 11.26997
0.2372 11.17890
0.2395 11.08820
0.2415 10.99787

Table 3.3+
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T Q_ (1) Q, (1)

0.000 16.804029 16.875045
0.005 16.704657 16.776182
0.010 16.605403 16.676882
0.015 16.505916 16.577973
0.020 16.406430 16.479375
0.030 16.206935 16.279615
0.040 16.003680 16.077019
0.050 15.797926 15.872158
0.100 14.735254 14.812490
0.150 13.584811 13.669995
0.160 13.340585 13.431244
0.180 12.834442 12.927584
0.190 12.566053 12.662673
0.200 12.303977 12.394284
0.210 12.041937 12.066418
0.220 11.735924 11.760405
0.230 11.409000 11.426548
0.235 11.229916 11.259068
0.240 11.029505 11.065625

Table 3.3 M
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Table (3.4) shows S_{T) and S+(T).

which may be taken as piccewise linear between the indicated values of t.

These are slowly varying functions

Once more, we have chosen to list only sample values with the most frequent

values of T in the region of interest, T = 0.24.

T S_(1) S+ (1)
0.17732 5.51433 5.59805
0.18403 5.53041 5.60575
0.19202 5.54498 5.61139
0.21475 5.59254 5.63862
0.21864 5.60080 5.64393
0.22032 5.60548 5.64739
0.22117 5.60712 5.64841
0.22204 5.60895 5-64961
0.22295 5.61193 5.65195
0.22386 5.61399 5.65337
0.22479 5.61612 5.65484
0.22576 5.61921 5.65726
0.22673 5.62130 5.65868
0.22878 5.62746 5.66344
0.23094 5.63404 5.66855
0.23323 5.64128 5.67425
0.23444 5.64557 5.67774
0.23570 5.65040 5.68173
0.23701 5.65561 5.68605
0.23838 5.66138 5.69090
0.23984 5.66858 5.69711
0.24141 5.67752 5.70497

Table 3.4
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4. A basic estimate.

In this Section we develop the basic mathematical estimate required to
establish our a posteriori error bounds.

Suppose E(£) is a solution of the initial-value problem
" 1 [} '
E" + E-E + FE=R , 0<ESA
(4.1)

E(0) = E'(C) =0

Then, after two straightforward integrations we see that

£ g

(4.2a) E(E) = - J K(E,t) F(t) E(t) dt + f K(g,t) R(t) dt

0 0
where
(4.2b) K(E,t) = E&4n E/T
That is, if

g
Q&) = J{ K(g,t) G(t) dt , 0<EsA
0

then Q(£) is a solution of the initial-value problem

Q+.§]i-Q=G, 0<E<A
(4.3)

(4.4) Kple) =1,
and, for all j = 1, define Kj(g) by the recursion

3
(4.52)  K(®) = f K(E,t) Kj_; (8) dt

0



Then

1

_— j=0,1,...
)
(il

A
(4.50)  K.(8) = (—5]

Proof: We proceed by induction. By assumption (4.4), Equation (4.5b) holds
for j =0. Assume (4.5b) holds for j=0,1,...(J-1). Then, according to
(4.3) and (4.5a) we have

2J-1 - 2
e _ (&) 1
(‘EKJ) = &Ky = (4)(J—l) L(J— 1)!]

Thus, Equation (4.5b) follows from a direct integration and the boundary
conditions of (4.3).

Corollary: Let Kj (€) be defined as above. Then

(4.6 ) K(® = 1@
j=0

where IO(E) is the modified Bessel function of zero‘Ch order.
Proof: See page 375, formula 9.6.12 of Abramowitz and Stegun [7].
Theorem 4.1. Suppose

(4.7a) [F(E)| <M , 0<E<SA

Then, for 0 < § < A, we have

(@.7)  |E@)] < [IOWB? 2]

esup {[R(t)]; o0<t<g}
Proof: For any function a(t) eC [0, A] let

(4.8) lali(g) = sup {al(t)] ; 0 <g<a}

From (3.2a) we obtain

[ECt)] < {MUENCE) + IRNI(E)] - K, (1)

)] < MIENE) + IRID] - Ky(8) , 0<t<¢
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We proceed by induction. Assume

n
(4.9) lE(t)| < Kn(t)MnllEll (€) + Z MJ'lxj(t) IRI(E), 0<t<E
i=1

Then, using (4.2a) we obtain

S
IE(s)| < M LIEN () f K(s,t) K_(t) dt
0

n

K(s, ) Z Mj_lKj(t) dt
j=0

S

+ MHRH(E)I
0

+ IR (&) Kl(t)

Hence inequality (3.9) holds for all n. Letting n->« we obtain

N
ot
A
'aat

1 j
[E(0)| <3 Z M Kj(t) IRI(E) 0
j="

That is, (4.7b) holds.

_R_qmark_ :  We observe that

5 IO{ YMx) -1

-S-M M :l>0 for x>0
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5. Estimates: a priori and a posteriori.

We are concerned with the functions Y(&,yo), ¢1(€,y0), ¢2(E,y0) which

satisfy the initial value problem

Y2 X e EYEy)) =0, 0<ESA
by vz 0+ £(YEyP) b =0, 0<ESA
(5.1) <4 9 +—§~ o, + £ (Y(Ey) o, v £ (Y(Eyy)) ol =0, 0<g<a

Y'(0,y5) = 61 (0,7)) = ¢, (0,y)) =0 ,

Y(O,YO) =Yy ¢1(0,>’O) =1, ¢2(0,Y0) =0 ,
where
(5.2) 0< £y <1, £y =0

We first seek a priori estimates for ¢l(£,y0) and ¢2(E,y0). We have

&
(5.3) o) (Boyg) = - é fo t £'(Y(t.y)) ¢ (t,y,) dt

Since ¢l(0,y0) = 1 we see that there is a largest interval (0,51) such that

(5.42)  0<¢,(Ey) <1, o0<g<g |,
and
(5.4b) ¢1(€,Y0) <0, 0s<&s< £1

Indeed, if gl < A, then

(5.49) ¢, (Ey) =0 ,

and there is a largest £,, with 51 < EZ < A such that the inequality (5.4b)
holds on the open interval (0,62).
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Suppose El < A, then using (5.3) we obtain
! 1 ! . L<v <
(5.5) o8yl <58 max {£'0) 5 yED <y <y, }.

We wish to estimate El, We apply the oscillation theorem and compare
¢1(€,y0} with JO(E) which satisfies

J +J. =0

" l #
= <
o " T " Yo . 0<§

J(; (0) =0, Jy(0) =1

Let T, be the first zero of JO(E), Using the comparison theorems (see Ince

[7]) and the tables of Abramowitz and Stegun [1] we find that

= =
El Ty 2.4048255

Suppose r, is the second zero of JO(E) and

i

A< Ty = 5.520078

Then the oscillation theorems imply that
< < E <
¢, (Eyy) <0, £, SEsA
Moreover, on the interval (51,52) we have
! < <
$1(E.y,) <O, ¢ (Eyy <O

Thus

By >0, £ <E<E,

Since 52 is the point in the interval (EI,A) at which ¢1(€,Y0) assumes its

minimum, the convexity of over that interval gives us the estimate
l &

b1 (€LY (E - B) <0 (Eyg) s By <ESE,
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In fact,
I(ELYI A - £ S (Eyy) S0, & <ESE

Applying Theorem 4.1 we obtain the following estimates.

Lemma 5.1. Suppose y(E,Y,), ¢1(E,Y0), ¢2(£,y0) solve the initial-value
problem (5.1) where (5.2) holds. Suppose

(5.6) 0 <A <27, = 4.809651

and let

(5.7a) B(y,) = max [IE' ;] YA <y < yo}

(5.7b) o(y,) = max {l,u% ry B(yy) [A - ro]} .

Thin, using (5.5) and the fact that El > Ty, We see that l¢l(€’y0)l
< 5451(A—-g1), whence

(5-8)  [o;(&y)] Solyy) ,  0<E<A

Moreover, let

(5:9)  Slyg) = max {[£°0 ] Y(A) <y <y}

Then

[1’ (VBOy.,) A) - 1]
0 0
(5:10)  |4,(E,y )< N S(rp) olyy)’

In our case we are interested in the function

2
(5.11 £0y) = & {ﬂ 1 }
) ) T €Xp T

Then

(5.12) £’ <1




-19-

(5.13) IS(yO)l < mex |£7(y)] = 4.71045

Additional particular estimates which we will use in Section 6 are summarized

in the following tables of bounds.

0<A<3.00, all y,

FUNCTION BOUND

v 3

B(J”O/ l
(5.14) 0(¥,) 1
Ho, (s yo)ﬂ (A) 1

1, (VB A) 4.89

o, (e, yO)H (A) 19.5

0<AS3.2 , all Yo
FUNCTION BOUND
Blyg) 1
(5.15) o(¥,) 1
o) Couy it (A) 1
I, (/B0 A) 5.75
16, (=) vyl (&) 22.37
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<A <4, < <y <0,
0<A<4.2, [y(Ay)| <y, 0<y,<0.3
FUNCTION BOUND
B(y,) 0.7332214
(5.16) a(y,) 1.580772
o, Cou vyl (A) 1.580772
IO(fE(yO) A) 8.027823
o, (s y i (&) 113.028

Having obtained these a priori estimates we are now in a position to
obtain a posteriori error estimates.
Theorem 5.1: Suppose YIE,YO), ?IE,ZO) are approximations to Y(E,yo),
Y(g,zoj respectively. Let

R(EY)) = T'(Eyg) + ¢ YEyg) + £(TEy)
R(E,zg) = Y'(E,29) + ¢ Y'(B.zp) + £(V(E2p))
be the corresponding ''residuals." Let

<
0 yO < zO 5
and let

I, (VB(zy) A) - 1
B(zo) :

CA) = C(E.2)) =

Then, for 0 S g <A

[Y(E,7) - Y(E,yy) | < CA) IRC =, y Il (A)
(5.17) '

[Y(E,20) - Y(E,z)| < C(A) IRC >, 2l (A)
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Morecover, let z be an intermediate point, i.e.,

Yo 2 <2 o
and let
(5.18) K= {max [¢,(t,q)]; 0<t<A, y,<a<zy}
Let
(5.19) E = C(A) » max{ IIR( *, yOlh (A, IRC=, 2! (A}
Let

Y(E,y ) (z,-2) + Y(E,2.)(z~y,)
(5.20) Y(E,2) = 0.9 . .

20 " Yo
Then

- K
(5.21)  |V(E,2) - YE.2)| SE+ & lyy- zl°
Proof:

The estimates (5.18) follow immediately, Thecorem 4.1. The estimate
(5.21) follows from a straightforward computation using a Taylor series

expansion of Y(E,yo) and Y(E,zo) about z.
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6. Analysis of the computational results.

Throughout the entire range of calculation we find that

(6.1) [R(E,y) | <2.5 X 107°

Since
10(4.2) < 13,45

we have, using Theorem 5.1, all the computed Runge-Kutta approximations

Y(go,yo) satisfy

(6.2) ]‘Y’(g,yo) - Y(g,y0)| < (31.13) X 107° , 0 <E<4.1

Studying the functions ?(E,yo), as functions of Yg» & very definite
pattern emerges (see Fig. 2). For small values of go(< 2.44) this function
is a monotone increasing function of Yor For slightly larger values of go

the function Y(So,yo) develops exactly one relative maximum,‘Y(gO,yo) and

max’

exactly one relative minimum Y(§& and continues on as a monotone

O’yO)min’
increasing function. This shape can be described as a (distorted) sidewise

S shape. At EO = 3.02 the function assumes negative values. And, for all
larger EO, we have

(6.3) Y(go,yo) 0, £y = 3-02

. <
min
Thus, for all values of T which satisfy

‘ Y >
(6.4a) Y(£0,y0)min>T o ,

the boundary value problem (1.1) with

2

e 2
(6.4b) B=-¢

O >

possesses a unique solution. Similarly, for all values of T which satisfy

(6.5) Y(& <t ,

O’YO)max
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the boundary value problem (1.1), with B given by (6.4b), possesses a unique

solution. Finally, if T satisfies
(6.6)  Y(Epyg)nin < T <V(Epyy)

three solutions.

Since we arc only interested in T = 0, for all EO Z 3.02 we obtain a T
interval in which there are at least three solutions. Thus, as we remarked
carlier (Section 2), it is not neccessary to consider a larger range of Yo to
.extend the region in which there exist at least thrce solutioms.

Of course, the remarks above are not strictly true. For example, in
(6.4a) we must replace Ytgo’yo)min by E?rgc’yo)min"'(j] where ¢ is some

accurate bound on
(6.7) YY) min = YEprY) pin|

Similar modification must be made in the other formulas given above. More-

over, if we could be assured that Y(& ) really has only one maximum and

070
only one minimum we could claim that there are exactly three solutions when
(6.6) holds. Since we only obtain bounds, we cannot make such a claim.
However in Section 7 we shall make some remarks about the possible extension
of these results.

The above remarks indicate that we must obtain precise error bounds on

Y(Eyg) - Y(Egsvy)l

Since the analytic results of [8 ] give good results (one boundary of
the uniqueness domain) for T < 0.20 which corresponds to B = 16.4628344, we

are Interested in Y(go,yo)max for

Looking at our results, we see that the critical value of Yo at which

Y(g,yo) assumes its maximum always satisfies

(yo)max <1
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Moreover, the value of Y(£,1) is sufficiently different (based on (6.2))

from Y(E,yo)max that we may use Theorem 5.1 and estimate (5.21) with

(6.8a) Ay, = 0.0125

Thus using Table (5.14) we have

4

(6.8b) i‘Y‘(g,yO) Y(E,y,) | <4 x1077, 0 <g <3.0

max max

Then, for cach selected value of g we solve for S (1) and S+(T) from the

formulas

(6.9a) 2B = 5,(7) {[1—2(1" t0)] - VI-4(1 Fd_i} exp{ — }
1-vY1-4(1t + g)

where

(6.95) o=4x10¢

Monotonicity properties guarantee that
(6.9c) S (1) <8(1) < S+(T), 0<71<0.20

Thus we have justified the statemants of Section 3. For larger values of B8
(which correspond to larger values of go) we proceed in the same way, using
the estimates of Tables (5.15) and (5.16). It is important to note that the

value (y.) at which Y(£.,y.) occurs satisfies
0 0’70

max max

< 0. > 3.
Vo) pax <0-3. &, >3.0

max

Finally we turn to the behavior of Y(go’yo)min for 0 < gO < 3.02.

Using the Table (5.15), Theorem 5.1 and the data, we find that

4 x 107* , £ < 2.58
!Y(Q’YO)min - \(ano)minl
1.8 X 107° s 2.58 < g
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Using this estimate we construct Q_(t) as a piecewise linear function. For
example, let 81,82 be two consecutive values of B at which we have "sampled"

our data. Then

5 2

+ X 1077 | =& B = =
(6.10)  Q, Y{/—Tg};’yO)min 1.6 X 10 B =8, k=1,2

Linear interpolation is then used to obtain Q, (T) at common valucs of T.
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7. Check calculations and rcmarks.

While the basic computations of this report were carried out on the
MANIAC as described in Section 2, we undertook some additional check
calculations.

Instead of the Runge-Kutta calculations described in Section 2, consider
the following collocation method. On cach interval of length h, say
[kh, (k + 1) h] we determine a quintic polynomial Q(&) which satisfies the

equation at the four points (Lobatto points)

gkzkh 3
F -k hoc .
g"kh+10 (5 fs‘) >
n=khe (s /5,
10
£, = (k+Dh .

As in Section 2, patching this quintic together gives an approximation
~?(E,yo). This procedure was used on the CDC 7600 for Yo = 1,2,3,4. The
results agreed with the Runge-Kutta computations to 6 significant figures
and the residuals were noticably smaller. The above 'check'" calculations
were programmed by John Cerutti. We take this opportunity to thank him.

As we commented in Section 6, the computational results secm to imply
that our conclusion should be "exactly three solutions' rather than "at least
three solutions." If one were willing to undertake the additional calcula-
tions, one could use the methods developed in this rcport to cstablish such
statements. It is necessary to compute ¢l(£,yo) very accurately. This can
be done. However, we have contented ourselves with these more modest results
simply because we thought it more important to make the point - the
potential of computing for precise results - rather than lose the reader in
a maze of technical details. We fear we may have done that cven with these
limited results.

Finally, we remark that our error bounds clearly overestimate the
actual errors. A more careful development of the error estimatc of Section 4
would give the error as an integral of a positive kernal and R(t). The
estimates of Section 4 replace R(t) by max ]R(t)l. However, the actual

residual of our computations are highly oscillatory functions.
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