Wis~CS8-191~73

COMPUTER SCIENCES DEPARTMENT
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

Received September 14, 1973

ALGORITHMS FOR SOLVING SYSTEMS OF
EQUATIONS AND INEQUALITIES WIT
APPLICATIONS IN NONLINEAR PROGRAMMING

by
T. J. Huang
Computer Sciences Technical Report #191

September 1973






ALGORITHMS FOR SOLVING SYSTEMS OF
EQUATIONS AND INEQUALITIES WITH
APPLICATIONS IN NONLINEAR PROGRAMMINGI)

by

T. J. Huangz)

ABSTRACT

Global algorithms are proposed for solving systems

of nonlinear equations and inequalities. Global convergence

is established under suitable assumptions. For some special

cases, the rate of convergence is R-superlinear. A global
algorithm for solving convex programming problems is also
given. Computational results for one of the algorithms

are given.

1)
2)

Supported by NSF Grant GJ-35292

Computer Sciences Department, University of Wisconsin,
Madison, Wisconsin 53706. Now at the Department of
Mathematics, National Taiwan University, Taipei, Taiwan,
Republic of China.






ALGORITHMS FOR SOLVING SYSTEMS OF EQUATIONS AND
INEQUALITIES WITH APPLICATIONS IN NONLINEAR PROGRAMMING

1. Introduction

In this work we will consider algorithms for solving
systems of equations and inequalities. The problem can be

stated as follows:

1.1 Find xeRn such that x€X Rn

where X = {xe€rR"|g(x) £ 0 and h(x) = 0},

)
g : "> R" and h : R" + R .

Recently, in [Robinson, 1972] and [Pshenichnyi, 1970]
extended Newton's methods for solving 1.1 have been given.

Local and R-quadratic convergence has been proved for their

algorithms. Based on the global convergence of a generalized
algorithm for nonlinear programming in [Mangasaxrian, 138727,
we give globally convergent algorithms for solving 1l.1l.

We rewrite the results of [Mangasarian, 197271 as a general-
ized algorithm for finding a zero of a non-negative lowef

semicontinuous Ffunction as follows:

1.2 Algorithm: (Finding a zero of a non-negative lower
semicontinuous function) Let ¢ and £ Dbe functions
defined on DcR". Assume that ¢ 1is a non-negative lower
semicontinuous on D and £ is differentiable on D.

Start with any xoeD. Having X detcrmine pieRn such



that

1.3 0 £ 0(¢(xi)) 2 —Vf(xi)pi, where ¢ is a forcing

function from '{f0,x) to [0,«). (i.e., fimo(t.) - 0 imblies
100

lim t, = 0). If Vf(xi)pi = 0. stop, else find
i~ -
X: 41 by any one of the following stepsize methods.

1.4 Find Ai such that f(xi+kipi) = min f(xi+Api)

Ae[0,1] oxr re[0,x)

it

and let Xi41 xi+Aipi.

i

1.5 PFind Ai max{l,%,(%)z, ...} such that

f(xi) - f(xi+xip2) 2> cAin(xi)pi, where

ce(0,1) and let x = xi+Kipi .

i+l
1.6 Convergence of Algorithm 1.2: Sﬁppose that {xi} can
be generated by algorithm 1.2 that Vf satisfies a Lipschitz

condition then either {xi} terminates at Xj’ for which
¢(xj)=0, or for every accumulation point (X,p) of

{x3p0 ) 9 x)=0.

Proof: If {xi} terminates at Xj’ by recipe of the
algorithm 1.2, we have ¢(xj)=0, If {xi} is infinite, by
Theorem 3.10 of [Mangasarian, 1972] we have VE(x)p=0.

From 1.3 we have ;im¢(xij)=0 where xi.+§a But since ¢ 1is
J=e J
lower semicontinuous, lim ¢(x; ) 2 ¢(x) 2 0. This implies
j+oo

that ¢ (x)=0. ]




In Section 2, by adding a stepsize to the locally
convergent Robinson algorithm we obtain a global algorithm
for which we can show by Theorem 1.6 that every accumula-
tion point of the generated seguence solves 1l.1. However,
we cannot show that the sequence is convergent. In Section
3, a modified algorithm is given such that the generated
sequence is convergent. Moreover, an R-linear rate of
convergence can be proved for the general case and an
R-superlinear rate of convergence can be established if we
further assume that V(hj(x)z), je{l,...%}, is Lipschitz

continuous with order g>l1, that is

IV (g x)%) - V(h, DA S Klx-vl|9 for some q>1,

x,yERY and j=1,2...%.

In Section 4, by using the same ideas as those in Sections
2 and 3, a global algorithm for solving convex programming
problems is constructed. Finally, computational results for

the algorithm of Section 3 are given in Section 5. We note

here that will denote Euclidean norm throughout this

work.



2. A Globally Convergent Algorithm for Solving
Systens of Equations and Inequalitics

Let us restate problemvlal as follows:
2.1 Find x€R" such that xe€x
where X = {xeRnlg(x) £ 0 and hix) =0}, gecl : R o rM

and hect : R » g%

(C1 denotes the class of continuously
differentiable functions on the domain of definition).

In [Robinson, 1972] and [Pshenichnyi, 1970], Newton's
method was extended to solve 2.1. Applying the idea of
Newfon's method, both Robinson and Pshenichnyi linearized
g and h around the current point at each step. Robinson
determined the new point to be the projection of current
point on the polyhedron generated by the linearization of
h and g around current point. Pshenicﬁnyi determines an
intermediate feasible péint to the linearized system and
then determines the new point along the direction joining
the feasible point to the linearized system and the current

point by a stepsize method that we will discuss later. For

both algorithms, local and R-gquadratic convergence has been

proved.

In this section a globally convergent algorithm is
presented by adding a stepsize to Robinson's algorithm.
As we show below, every accumulation point of the sequence
{xi} generated by the algorithm solves 2.l. However we can

improve this result under additional assumptions and some




modification of the algorithm. In Section 3 the algorithm
is modified by converting the linearized system to a system
that contains only inegualities. This modified algorithm has
the following advantages: 1) We have a larger feasible set at
each step than the case where linearized equalities are pre-
sent in which case the corresponding feasible set may be empty.
2) The sequence {xi}itself generated by the modified algo-
rithm is convergent with an R-linear rate. Under additional
assumptions on 2.1, we can show that the convergence rate is
R-superlinear. We will discuss the details of the modified
algorithm in Section 3. Now we state the algorithm.

2.2 Algorithm for solving systems of equations and
inegqualities

2.3 Set i = 0.

Having Xi let x be the solution of the following

i+l
problem.
2.4 Minimize [!x»xiH
4 s - e = i
subject to gj(xi)+-ng(xin xi) s 0, 5 i1, 2 +c.m
. N . -, =z =
hj(xi) ¥ th(}\_i)(x .&i) Oy j lﬁ 2 o 5 ® QI
Let Py = Xy, 7 X - If p; = 0 stop, otherwise

- =) - - . _F 2
X541 X, 4 Aipi by any one of the following

three stepsize methods:



2.5a (minimization along pi)a Find Ai such that

F(xi+kipi) = Og;glF(xi+Kpi)

2.5b (Armijo's stepsize). Find Ai = max{l,%,(%)zaa,}
such that

s -
F(Xi) - F(Xi+>\ipi) = ~CAiVF'(Xi)pi’

where ce(0,1).

2.5¢c (Pshenichnyi's stepsize). Pind Ai = max{l,%,(%)z

.s.} such that

A

F(xi+kipi) (l—eki) F(Xi)’

where 0<e<l and

L
m
1 2k 1 2
F(x) = == ) 9. ()% + = | n,(x)° ,
2k j=1 3 + 2 4=1 3
k = positive integer 2 1, and
£ s
9. (x) if g.(x) 2 0
t_/ 73 J
J <0

0 if .
if gj(x)

2.6 Properties of F(x): We state here some obvious facts

about F(x).

2.6a F{x) 2 0 for all x€R' and F(x) = 0 4if and only

if x solves 2.1.

2

2.6b F(xject if k 21 and F(x)ec? if k 2 2,

geC2 and hecz.

Now we will establish convergence of algorithm 2.2.




2.7 Convergence theorem for algorithm 2.5: Assume that

2.4 is solvable at cach step. Assume that one of the
following two conditions is satisfied.

2.8 k=2,gec’® and h e c’.

2.9 ||JvF @) - ()] £ Klx-yl]] for x.y e r.

i

Then either the sequence {xi} terminates at Xy such that
F(x3)=0 or every accumulation point {x,p} of {xi,pi}

satisfies T (x)=0.

Proof: If {xi} terminates at XT, X3 is a solution of
2.4. By 2.4 we have gj(xz)éo for 3j=1,2,...m and
hj(x1)=0 for 3j=1,2...%. So Xz solves 2.1. If {xi}

is infinite by 2.4 we have

2K 2K~1
2.10 gj(xi)+ %~gj(>~:i)+

L<
vgj (xl)pl = 0
for all i and 3j=1,2...m,

2

2.11 hj(xi) + hj(xi) th(xi)pi = 0

for all i and ij=1,2...%.
Summing 2.10 from J=1 to m and 2.11 from J=1 to &,

we have
w < —VE .
2.12 0 < ﬁ(xi) i Vf(xi)pi

Hence by Theorem 1.6, we have proven the theorem 1f Z.5a or
2.5b have been used. Now, we will show that the theorem still
holds 1f we use Pshenichnyi's stepsize. We assume that

F(xi)=6>0 for i>M>0.
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Since F(x) € Cl:

2.13 Fxg+dpg) = Flxy) + AVE(x;)p; + MVF(E;) - VF(x;))p,;

holds. By 2.8 or 2.9, 2.12 and 2.13, we have
Fx,+Ap,.) = [1*%(1-—&Hn HZK)]F(y ) for some K>0
i THLrE e B AL | i

and i2M. Since pi*ﬁ as 1€L, the inequality of 2.5c
2 .
holds for A£(1-€)¢/(|p.[|"X), as 4i«L, where L is a subsequence.

By the recipe of 2.5¢ we know that zxiéémin{zri_:_rmj >
“PiﬂzK
17 <

= 0, i€L, since

min{Z,%i§}== 8" >0, i€L, where Hpﬂ

{pi} +p. Hence by the inequality of 2.5¢, we have
i€L
F(x)=0. This is a contradiction. This completes the proof

of the theorem. B

2.14 Remark: By 2.6a, we can reduce the problem 2.1 to an

unconstrained minimization problem as follows.

ninimize F{x)
xE@RN
We note that F(x) 1is not a convex function at a solution
of 2.1 even if we assume g and h are convex. However

efficient algorithms for finding a global solution of a non-

convex unconstrained problem are not available.




2.19 Remark: Note that in 2.4 we need consider only violated

constraints. We can change 2.4 into 2.4' in algorithm 2.2 as

follows:
2.4 min ”X“Xi”

. .— <& . 4
Subject to gj(xi) + ng(xi)(m xi) 0 j e I+{xi;

I

hj(xi) + th(xi)(x~xi) 0 je Eo{xi}

il

where I {x;} {jigj(xi)>0}

Eo{xi} {jlhj(xi)¢0}

The proof of theorem 2.7 goes through for algorithm 2.2 with

2.4" replacing 2.4.
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3. The Modified Algorithm for Solving System of Equations
and Inequalities

There are certain disadvantages associated with algo-
rithm 2.2 which we shall try to overcome in a modification
of the algorithm. 1) If the feasible region of 2.7 is enpty,
then algorithm 2.2 will not work. 2) The sequence {xi} genexr-
ated by algorithm 2.2 may not be convergent itself. Here
we will modify algorithm 2.2 so that the feasible region of
2.4 is enlarged and under suitable assumptions the sequence
{x; } generated by the modified algorithm will converge
R-linearly. For some special cases, as we mentioned in Section

1, we can show that the convergence is R~superlinear.

3.1 Modified algorithm for findinq a feasible point of

equalities and inequalities: Same as algorithm 2.5 except

that subproblem 2.4 is replaced by the following subproblem. -

3.2 Minimize Hx—xiH

subject to gj(xi) + ng(xi)(x~%i) £ 0 j=1,2...m
hy(xy) + Vhy (x;) (x-x;) £ 0 jeE_I_(x)={jlhj (x)>0}
hy(xg) + Vhy (x;) (x=x5) 2 0 jeE_(x)={jlhj (x)=0}
We will make some assumptions here which are required

to prove the convergence theorem.

3.3 Assumptions

3.3a (Compactness) The set § = {xeRn{F(x)éF(xo)} is

compact for the starting point X e r".




3.3p (Linear independence property) The set of vectors,
{ng (x), §=1,2 ... m; th (x), 3=1,2, ...2} satisfy the
LI (linear independence) property, for all x€F. That is

for all x€F

m A
YooAVgL(x) + ] uiVh.(x) =0 and A, 20,
LI PR A ]
j=1,2 ...m, imply that Aj=0, j=1,2 ... m, uj=0,
jzllz e o o 20

3.3¢ (Lipschitz condition on the gradients of g and h)
There exists K>0, such that for all x and y in R

we have

79, (x) - Vg |l = ¥|x-v] for 3=1,2...m

il

Hth (x) = Vh, Wl = "]x-vl] for 3=1,2 ... %

We will give three lemmas which are useful in proving

the convergence theorem.

3.4 Lemma: Let aqr coe @y be m vectors in Rn°

Consider the linear system of inequalities:

3.5 a.x S b. i=1,2 ... M.

Then 3.5 is solvable for every right hand side (bl.,gbm)eRm

if and only if { are positively linearly

a.rt
l l=1I2°BBm

m
independent, i.e. E A.a.=0 and A.20 for i=l1,2...m
(20401 i

imply Ai:O for i=1,2...m.
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Proof: See theorem 2 of [Robinson, 19717. a
Let él’ - be m vectors in R". Define
61al, °..am) to be the following minimum:s

1y § |
3.6 §(ays v ap)e = minimum =17 A.a.lF ;
m 4 2 L2 11
()\l,@.,)\m)GSm l""l

m
where sz{(kl.,.lm)f'z

A.=1 and A.20 for i=1,2...m}.
P i

We will relate 3.6 and 3.5 by the following lemma.

3.7 Lemma: The linear system 3.5 is solvable for every
right hand side b=(bl,..,bm)eRm if and only if

1’ g,.am)>0» Furthermore, if 6(al, ...am)>0 then the
system 3.5 with right hand side bif~c<0 for all i has a

solution X defined by

X = A.a.
26(al, .,oam) jmp 174

Ly, ¥ 2
where 3 H.z Aiaiﬂ==6(al, ceeap).
i=1
Proof: The linear system 3.5 is solvable for every right
hand side b=(bl ...bm)eRm if and only if {ai} i=1,2,...m
are positively linearly independent by Lemma 3.4. Since Sm
is a compact set, 6(al, ...am) attains its minimum in Sm°

So S(al,aa, am)>0 if and only if {ai} i=1,2 ... m are

positively linearly independent. This proves the first part

m
T 2 ,
of the Lemma. Let Elgilxiaiﬂ==6(al, -..a ). By the
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Kuhn-Tucker conditions there exists uiéo and v€R such

that
m .
§~*iag a; Vo= 0 for 3=1,2, ...m,
i=1
1
A, =1 ,
i=1 *
3.8
Ay Z 0 for i=1,2, ...m,
My ki = 0 for i=1,2, ...mn,

By multiplying the first m equalities of 3.8 by Aj and
summing with respect to j from 1 +to m, we have

2
"+ v=0 .

m
R
This implies that vz—26(al,... am). From the fact that

ujéo and the first m equalities of 3.8, we have

nm
= N § o=
3.9 (izlkia; aj Z 26(a1,.o. am) for every 3j=1,2, ...nm.

From 3.9 we have aj§§~c, for every j. This completes the

proof of the Lemma. |
The next lemma provides bounds for [|p,|| in terms of F(x;).

3.10 Lemma: Suppose that assumption 3.3a and 3.3b hold.
Then the scquence {xi} generated by algorithm 3.1 is well
defined. TFurthermore there exists a constant C>0 such that

“Piilz = H§i+l—xil12 $ ¢ P(xy) for every i,
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where Xi+l

defined in 2.8 with %k = 1 .

is a solution vector of 3.2 and F(xi) is

Proof: The first part of Lemma is easily proved by 3.3b
and Lemma 3.4. Define 6l(x): = S(Vgl(x), ,..,ng(x),

£y (X)__Vhl (x); oo € (x)Vh, (x))

+1 if h.(x) > 0
where e.(x) = J and
J ;1 if hy(x) £ 0
I3 z I
6. (x): = rminimum Al Vg (x) + A Vh (x)
2 \E | s m+j
(Al°’°xm+2)esm+z i=1 3=
m 2
el — = 2
where Smm“{()‘l"’“kmﬂ)]jzlkj+j£l["\m+jl 1, Aj_o for

j=ll2 U‘Bm}'

Since S is compact, Gz(x) attains its minimum in S

m+ 2 n+f,

So {ng(x), j=1,2 ... m: th(x), 3=1,2 ... %} satisfy LT

property if and only if 62(x)>0. Since § is compact,

n+f
62(x) is continuous on F. But F is compact, so 62(x)35>0

for all x€F. By the definition of S (%),

_ 2
§, (x) = o mlnimum)eS HXlAJVg (x) -fJZ Am+Jej(x)th(x)H
T it (S A
= minimum Il Z XJVg (x)
¢
(Al'°°k ’lm+l ‘Am+£)esﬁ+l i=1

L

+ ) A Vh.(x)H2
j=1 m+j J
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0 .
where 8! o={A .. X Ao e Anio) | E Aj + ._X_lllﬁwjl = 1,

lj g 0' j‘.:l,2¢onrn and Ar'ﬂ"*':) 8j (X) ; 0’ j"—:llzltovgl}o
) > ] .. .

So edl(x) & Gz(x) by Sm%lzm Sm+2 This implies

Sl(x) 26 >0 for all x € F.

Let {xi} be the sequence generated by algorithm 3.1l.
If {xi} is finite, then the lemma follows trivially.
Iif {xi} is infinite, then F(Xi)>0 for every i. Define

Ki:=F(xi). By taking —c=-/§i< 0 in Lemma 3.7, there exists

ilp! H —---jy such that p} is solution of the following
28 (x )

linear system:

< .'...7-

JKi + ng(xi)p = j=1,2 ... m
< 2

VKi + aj(xi) th(x)p =0 3=1,2, «.. 2

» Z ‘:—‘ Z =
since VK; 2 gj(xi) for j=1,2...m and VK; 2 Ihj(x)i for

j=l,2...%, so pi is also a feasible point of problem 3.2.

This implies that

/ﬁi /ﬁi
”pi“ g m% § **%' for i=0,l,2 P
1Y%y
so |lp, H s ;%-F(xi). The theorem is proved by taking
=L
C "“‘460 %

Now we will prove the convergence theorem for algorithm

3’10
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3.)J1 Convergence and R-lincar rate of convergence of
algoxithm 3,1 ’

Let assumptions 3.3 be satisfied. Then the sequence
{xi} generated by algorithm 3.1 is well defined and if k=1
in 2.8 and {xi} is infinite, then {x;} converges

R-linearly to an x which solves 2.1.

Proof: That the sequence {xi} is well defined follows from
the assumption 3.3b. By Lemma 3.10} there exists C>0 such that
3.12 ”pi”2 pS CF(x;) for all i. By 3.2 we have

£ o7
3.13 VF(xi)pi s ~r(xi) <0 .
Since Fecl from 3.3c, 3.12 and 3.13 we have

3.14 F(xi-%-kpi) = F‘(xi) + }VF(xiy) Py + },\[VF(&i)—VF(xi) in

& F(x;) + (-)\F(xi)) +AZCMF(xi)

i

F(xi)-AF(xi)(l-ACM) for some M>0

and every i

where [|VF(x) - VF(y)|| =M|x-y|| (This is true because of 3.3c)

If Pshenichnyi's stepsize has been used, we have

. l-€
2 T—————— =
3.15 Ai 2 min{1, 5 CM §>0

By the inequality of 2.8c¢ and 3.15,

3.16 F(xi+l) S (1-8¢) F(x;) for every i.

This implies, since 0<1~-8e<1, that F(xi) converges to

0 as 1 +tends to o,
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Since 3.12 holds for every i,

A

3.17 “Xi+1'“xi“ /CF(x.)  for every i.

But /fTQIT converges to 0 with Ql({/ﬁTEIT}) < 1.

We conclude thaé {xi} converges o % R-linearly

and F(x)=0 by 3.12 and Lemma 3.1 of [Huang, 1973a]. This

proves the theorem for the case when the Pshenichnyi's step=-
size has been used. IFf the Armijo's stepsize has been used,

A, can be obtained after finite division of unity by 2

pa 4 3 1 ..<. -
because VI‘(xi)pi < 0. From 3.2 we have Vr(xi)pi = P(xi).

By the inequality of 2.5b, we have F(Xi+l) 2 (l~cki)F(xi)
for every i, where Ai iz obtained by using Armijo's
stepsize. Similariy to the proof for Pshenichnyi's stepsize
we can show that the theorem also holds for Armijo's stepsize.
Finally, if 2.5a has been used, 3.16 also holds. The same

proof for Pshenichnyi's stepsize applies to 2.5a. This

completes the proof of the theorem. &

The next theorem will show that algorithm 3.1 converges

R-superlinearly under an additional assumption on h.

3.18 Theorem (R-superlinear convergence of algorithm 3.1).

Let the hypotheses of theorem 3.11 hold and let h. satisfy

3.19 HV(hj(x)2)=~V(hj(y)2H[ S KHx~y[F for some q > 1,
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j=l, ... % and all x and y in R". Then the sequence

{xi} generated by algorithm 3.1 is well defined and if k=1,
{xi} is infinite and 2.5a and 2.5c have been used to find

Xip1r {Xi} converges to x R-superlinearly, where X solves 2.1.

Proof: That the sequence is well defined follows from 3.3b.

By Lemma 3.10, there exists C >0 such that 3.12 holds for

every i. Since gEECl, from 3.12, 3.3c and 3.2 we have

3.20 gg(xi%gpi) = gﬁ(xi) + ngj(xi)pi + l(Vgﬁ(Ei) - Vg’j(xi))Pi

. 2 0m .
s (1->\)gj (xi) + A I\CF(xi) for some gie K and

for j=1,2 ...m.

< : £ (1- 2 CT :
So, 0-—gj(xi+xpi)+ (1 A)gj(xi)+-%x KCF{xi). Square both

sides of above inequality, we get

2 < 4y 2 2 824 .
3.21 gj(xi+>\pi)+ S (1-X2) gj(xi)++-2AkU.A)KCg%xi)+F(xi)
+ Ak2cPE (x ) 2
< 2_ 2 204 .
=2 gj (Xi)+ )\gj(xi)++ 2A°(1 /\)Kng(xi)+F(xi) u
+ AéchzF(xi)2‘
Again since hziscl, from 3.12, 3.19 and 3.2 we have
g
2 _ 2 1+q, o 2
3.22 hj(xi+xpi) S (L A)hj(xi) + 2A K[CF(xi)]

for j=1, 2, coa L.

Summing 3,21 with respect to 3 from 1 to m and 3.22

with j from 1 to &, we have




18
/ .

< « — - r r
3.23 Fxg+hpy) & F(x;) AF (x,) [1-MATF(x)7]

q;l} and 1 sufficiently large.

for some M>0, r=min{lk,
Since F(xj)-+0 by Theorem 3.11, we have that Ai==1 for
i2N>0 1if Pshenichnyi's stepsize has been used. This

implies that

3.24 F ( ) £ MF(xi)l""r for iZ N > 0

*i+1
By Lemma 3.10 and Lemma 3.1 of [Huang, 1973a], we can
conclude that {xi} converges to x R-superlinearly and

F(x) =0. In fact we have OR({xi}) Z 1+r. By the above

proof we can show 3.24 holds for stepsize 2.5a. &
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4. Applications in Nonlinear Programming

In this section we will apply the same idea as that of
sections 2 and 3 to a nonlinear programming problem. We will
construct a global algorithm for solving the following convex

programming problem.

0

A

4.1 Minimize {f(x)|g(x) £ 0 and Ax = b}, where fecC

and gtsclo f is guasiconvex and gj, i=l, ... m are
convex functions from R" to R and RV respectively,

and A is a fxn matrix and bGBRz. (C0 denotes the

1 denotes the class of

class of continuous functions and €
continuous differentiable functions.)

Consider an algorithm for solying 4.1 as follows:
4.2 Algorithm: (For convex programming problems)

4.3 stare with x, € R®  such that X, £ {xer"|g(x) £ 0}
and £(x ) £ £(x), where f£(x) = minimum {£(x)|g(x) £ 0

and Ax = b}.
4.4 Set i: =0

4.5 At X find %01 by solving

min{f(x)!g(xi) + Vg(x;) (x~-x;) £ 0 and Ax = b}

and define Py T X1 7 ¥

(1)

Conditions 4.3 can be easily satisfied as indicated
in remark 4.10 below.
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4.6 If %y is feasible, that is g(k%;,;) £ 0 and

+1
% = L= X, i 4.7,
Axi+l b, let X501 kl+l and stop, otherwise go to 7
4,7 Find X1 by any one of three stepsize methods stated
1 ¥ 2
in algorithm 2.2 with F(x) = 3 D) 94 () L
'J‘:
4,8 If X511 is feasible stop, otherwise set i: = i+l
and go to 4.5.
4.9 Convergence Theorem: Let X be a sequence genher-

ated by the above algoxithm, then either {xi} terminates
at some point Xz such that Xz solves 4.1, or for every
accumulation point (x,p) of {xi,pi}, we have that x

solves 4.1.

Proof: If {xi} terminates at xr for some 121, then
there are two possibilities: eitherx {xi} terminates
because of 4.6 or because of 4.8. If {xi} terminates by
4.6 it is clear that X3 solves 4.1 because of g 1is
convex and the feasible region of 4.5 contains that of 4.1,
if {Xi} terminates at Xy because of 4.8, then f(x;)

S max{f(xz_;), £(X3)} because £ is quasiconvex and
xyelxy_; %3], But £(xz_;) £ F(xy and f(iz) S F(x), so

£ (x3) £ f(x). Since X5 is feasible, we have that xy
solves 4.1. Assume the seguence {xi} is infinite, we have

as before that £(x;) £ f{x) for every 4i. Using the same



S22
proof as that in theorem 2.10, we have that for everxry

accumulation (xX,p) of {(xi,pi)} X is feasible. This

implies that x is a sclution of 4.1.

4.10 Remark: To get a starting point X, e R® such that
the conditions of 4.3 are satisfied, we can start with any
x' € R®. Then the solution x" of 4.5 with xi==x' is

either the desired starting point X, Or x" solves 4.1.

4.11 Remark: Note that if {xe€R"|f(x)Sf(X)} is compact,

then 4.5 has a solution for every i.

1 and convex, then by a well

4.12 Remark: If f e C
known technique problem 4.1 can be reduced to one with a
linear objective function. Prcblem 4.5 then becomes a

linear programming problem.

5. Computational Results

In this section, computational results for testing
algorithm 3.1 are given. Two problems are tested, one of
them is given by Robinson [Robinson, 1972].

Test problem #1 (Robinson):

Find Xy and xz such that

2
1+x2-—l

2 2
+ -1
(x2 1)

A

- X 0

A
<

f

®q 1

(xl-l)2 ¥ (xymD)? - 1

it
<
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Test problem #2
Find Xy and X, such that

.2 2
100 hl + x2

- 150
2 N2
50 %, + (x,71)° - 1 £ 0

2 4 50(x2—l)2* 1

1t
<

(xlwl)
Both problems are tested by using different starting
points.

Test problem #1

1) Starting point = (.55, .1}
k F(x,)
0 1.28 x 1072
1 5.52 x 107°
2 1.30 x 107>
3 <1.00 x 1078

2) Starting point = (0., -1.)

k F(xk)

0 2.50 x 10%
1 1.32 x 10°
2 2.23 x 1074
3 2.13 x 107°

4 <1.00 x 1078
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3) Starting point = (100., 100.)

k ' F(Xk)

0 1.18 x 10°
1 6.64 x 107
2 4.33 x 10°
3 2.50 x 10°
4 1.34 x 10°
5 6.32 x 10°
6 2.58 x 10%
7 1.87 x 10°
8 8.34 x 107t
9 1.19 x 1072
10 7.16 x 107°
11 2 1.00 x 1078

We note here that this problem has been tested by
Robinson using Robinson's algorithm [Robinson, 1972] with
starting points (.55, .1) and (0., -1.). Comparing
Robinson's results with those given above, we observe that
for the first two starting points we have almost the same
efficiency for these two algorithms. However, using
Robinson's algorithm with starting point (100., 100.), we

observe that no feasible point can be found in the first step.



Test problem #2

1) Starting point

k

W N

= (0.1, 1.1)

F(Xk)

1.56 x 10

4.55
5.66
6.60
5.03
1.90

X

X

X

X

X

S 1.00

2} Starting point

k

U ds W N

=J 23]

w0

10
i1

0

10"

x 1078

= (10ap lQo)

F(xk)

1.4% x 10

8.64

X

X

10

U oy @

10
10
10

o N W

25
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