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ABSTRACT

A linear multistep method (p,0) 1is defined to be DAo—stable
if when it is applied to the delay differential equation
&(t) = - y(t-T) the approximate solution yh(tn) +0 as n > ®
for all ue(0,m/2T) and all stepsizes h of the form h=1/m , m

a positive integer.

General properties of DAO—stable methods are derived. These
properties are similar to the properties of A-stable and A(o)-stable
methods; for example, it is proved that a k-step DAO~stable method
of order k must be implicit. As an application it is shown that

the trapezoidal method is DAo~stable.

Finally, the condition that h = 7/m is dropped and the resulting
methods, which we call GDAO—stable methods, are studied.
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k . k .
olg) =) a7, olg) = § 8.2, (1.1)
=0 I j=0 9
be such that @ > 0, o is not identically zero, and p and ¢ have no zeros in
cormon. If the linear multistep method {p,c} is applied to the problem

x(t) = ax(t), t >0,

(1.2)
x(0)

T,

then (Henriei (61),

i

p(2) %" (5 ) ~ns (B)x(6 ), n > 0,

xh(to) 1 (1.3)

]

h h .
x(tj) w(tj),0$J<ka

where h is the stepsize, xh is the approximate solution, tj = jh, E is the
shift operator, and wh(tj) is an approximation to x(tj).

If xeH = {z : Re(z) > 0} then x(t) = exp(~lt) + 0 as t + », By
requiring that this property of x be inherited)at least in part, by xh we
obtain various classes of highly-stable methods such as the A-stable methods
(Dahlquist), the A(a)-stable methods (Widlund), the strongly A-stable methods
{Axelsson) and the stiffly-steble methods (Gear). (See Gear (5] and Lapidus
and Seinfeld [T]). TFor the purposes of the present paper the most relevant
class of highly-stable methods is one previously studied by the author (Cryer
[4}): {p,o} is A -stable iff xh(tn) + 0 as n +oewhen A e (0,»). Equivalently,

{p,o} is Ao—stable iff the roots of the characteristic equation

p(z) + qolg) = 0, (1.4)

lie strictly inside the unit circle in the f-plane vhen q e (0,). -

In the present paper we study the analog of Ao-stable methods for delay
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differential equations. Let

y(t) = -py(t - 1), t >0,
(1.5)
y(t) = ylt), -1 2t <0,

vhere 1T > 0 is the delay, where y is a given continuous function, and where
u is a real constant. Applying the method {p,o} to (1.5) and choosing the

stepsize h so that
T = nh (1.6)

where m € Z_, the set of strictly positive integers, we obtain

I o(B) yMt ) = -me(®) yMt),  n > -m, -
. 1.7

yh(-tj) = w(tj), -m<Jj 20,

h _ .h i<

It follows from the work of Tavernini [10] that yh_+ y as h + 0 iff the method
{p,0} is convergent for ordinary differential equations.(For further references

A Cryer [3].)
on numerical methods for delay differential equation see Tavernini [11] and/

It is known (Bellman and Cooke [1, p. 4hL]) that y(t) =+ 0 as t + @ for all
p iff uwe (0,m/21). We will say that {p,0} is ng—stable if yh(tn) + 0 as
n-+ o for all u ¢ (0,n/2t) and all ¥. It is easily seen that {p,o} is DA~

stable iff all the zeros of the characteristic equation
¢ (Tiqsm) = ¢p(z) + (a/m) olg) = o, (1.8)

lie in D, the open unit circle in the Z-plane, for all q e (0,7/2) and all
m e Z+.

So far as we are aware, the stability of numerical methods for delay
differential equations has been considered previously only by Brayton and
Willoughby (2] and Wiederholt |12]. Brayton and Willoughby show by means of
an example that when Euler's method is used to solve a neutral differential
equation the range of values of h for which the method is stable can differ

from the corresponding range of values of h for ordinary differential equations.
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In that part of his work which is of concern to us here, Wiederholt determihes
numerically for m = 1, 2, 3 and for specific choices of p and o the set of
values of q such that all the roots of (1.8) lie strictly inside D.

The definition of DAO~stability is rather arbitrary in several respects:
(i) the assumption that t = mh; {(ii) the assumption that p is real and not

complex; and (iii) the use of (1.5) instead of more general equations such as
yt) = -uylt - 1) = v y(t).

Concerning these assumptions it may be remarked that the first is convenient
but is later removed, the second is necessary because the theory of delay
differential equations with complex coefficients has been little studied, while
the third is not necessary but is very convenient because (1.5) has a very
simple domain of asymptotic stability.

Since each restriction broadens the class of methods, the author believes
that every highly-stable multistep method for delay differential equations
will be DAO-stable, so that by studying DAO—stable methods one can determine
properties which are cammon to all highly-stable methods for delay differential
equations,

Following Henrici [6, p. 229] we set

] . ez
» = L s 2 (1.9)

We recall that the mapping (1.9) maps the open unit disk D in the ¢~plane onto

the open left half plane H_ in the z-plane. We set

1-2 K 147 k
r(z) = (—-—-—2) p(—-——-l_z)=z a,z’, say, (1.10)
J=0
k k .
= (lz Iz J
s(z) = (2) 0(1_2) JZO bjz s Say, (1.11)
and
k
flzsasm) = (12" (58 ¢(F5asm) = (142)" v(z) + (a/m)(1=2)" s(z) | (1.12)



We note that
p(z) = (z+1)" r (c+1) o(z) = (g4 (;+1) (1.13)
and that
sosasm) = (1) (e 2(Epsam). (1.14)
The characteristic egquation of (1.5) is (Bellman and Cooke [1, p. 541),
v

ve + g = 0, {(1.15)

There is an interesting connection between (1.8) and (1.,15)., If the method

{p,0} is of order p then (Henrici [6, p. 227])

o (z-1)P), (1.16)

p(z)/10g t - olt)
Using (1.16) and recalling that o(1) # 0, equation (1.8) becomes
M logt + am = o{(c-1PY1), (1.17)
Setting ¢ = exp(vr/m) we obtain
ve' 4 afr =m§(<c—1)1’“>; (1.18)

In other words, (1.8) is a perturbation of (1.15), the magnitude of the
perturbation being determined by the order of the method.

There is, of course, a similar relationship between (1.12) and {(1.15).
Instead of writing down the general case we will look at the trapezoidal method
where the results are particularly instructive. For the trapezoidal method

(1.12) takes the form
(142)™ 22 + (q/m) (1-2)" = o.

Setting z = vi/2m end rearranging ve find that

(1+vr/2m)m + g/t = 0. (1.19)
1-v1/2m
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The connection between (1.15) and (1.19) is obvious. In particular, it follows
from the Hurwitz theorem (Marden [8, p. 4]) that the roots of (1.19) converge
to the roots of (1.15) as m -+ o,

Some general properties of DAO—stable methods are derived in section 3.
These properties are similar to properties of A-stable, A(a)-stable, and Ao—
stablé methods; for example, it is proved that a k-step method of order k must
be implicit.

To locate the roots of (1.15) is a non-trivial task so that, in view of
the relationship between (1.8) and (1.15) it is to be expected that the location
of the roots of ¢ will also be non-trivial., There are many elegant theorems
concerning the zeros of polynomials (Marden [8]) but none of them seem to be
sufficiently delicate. We have found only one general method for proving
that a method is DAO~stable: to first show that the roots of ¢ lie in the unit
disk D for small q and then to show that the roots of ¢ do not lie on the unit
circle for any q ¢ (0,m/2). We have used this method to determine whether
certain simple methods are DAO~stab1e: the tedious preliminary computations are
given in section 2 and the results are given in section 3.

In section 4 the condition that t = mh is dropped and the resulting methods,

which we call GDAO—stable methods, are examined.



2. Preliminary results

In this section we determine (by very laborious means) whether or not

the polynomial
P(z) = £™(g-1) + [a/(m-w)]1[(1-u) + ug][(1-v) + vz, (2.1)

has zeros on the unit circle for various values of u e [0,1), v € [0,1],
qe (0,m/2), and m ¢ Z,. These results will be used in the analysis of the

characteristic equation (1.8).

Let Ly = ele° be a zero of P on the unit circle. That is,

cgn(c0~1) = -[q/(m-u)}[{1=u) + ucO][(1*V) +vg 1. (2.2)

Since P has real coefficients we will assume that O 5'90 < m. Clearly

gy # 1 so that 8_ > 0. Also, (1-u) +u Z, # 0 and (1-v) + Ve, £ 0.

0

Now,

3

1 21 -
(1-u) + uz [(co2 + g, 2) + (2u~1),(cO - % %)] 503/2.

1]

[cos(eo/z) + i(2u-1) sin(90/2)] Co%’ (2.3)

3

(1 + i(2u-1) tan(eole)] cos(60/2) Lo .

1)

Hence, equating the squares of the absolute values of both sides of (2.2) we

obtain

b s? = [q/(m—u)]z[l—hu(1-u) s2][1-hv(1—v) se], (2.4)
or, equivalently,

y 721 + 1) = [a/(mw) 101 + (2u-DPTPI01 + (2v-1)5T7],  (2.5)

vhere S = sin(60/2) and T = tan(eo/z), and where {2,5) is applicable only if
60 < 1, Using (2.4) and Jordan's inequality (Mitrinovie [9, p. 33]) we find

that

(m--u)eO = 2(m~u)90/2 < 2(m-u)(n/2) 8 < mq/2 < m, (2.6)



1
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Rearranging (2.2) we find that

e = /10 + w100+ w1/t - g7,
(2.7)
= ifq/(m~u)I{(1-u) + ucol[(I—V) + VCOI/ES.
Let
¥y = w,(u) = arg[(1-u) +ugol,
(2.8)
v, = wz(v) = arg((1-v) +vg ],
so that 0 < ¥, wz 5_90 < w. Then, from (2.7),
(m+2)8, = w/2+ 4, +14,. (2.9)

Tt might appear that (2.9) should involve the addition or subtraction of multi-

ples of 27, but this is not so since from (2.6),
1 = - + 1 .
(m +3)8, (m-u)e, + (u + 2)0, < 5n/2

Since 0 §_¢1 < 8 _ it follows from (2.9) that

0

/2 < (m + 1;.)@0 < /2 + 20 (2.10)

In order to proceed further it is necessary to make certain simplifying
assumptions. We begin by considering the case u = 0. Then, from (2.6),

60 < 7. Noting (2.3) we see that (2.2) is equivalent to

" = ila/2m)cos(s, /2) + i(2v-1) sin(6_/2)]/sin(e /2). (2.11)
Equating the real parts of this equation we find that
cos(meo) = —{q/2m)(2v~-1). (2.12)

Equating the squares of the absolute values of both sides of (2.11) we find

that

™ = (q/em)?/01-(q/2m) P (2v-1)7]. (2.13)
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Clearly, solving (2.11) is equivalent to solving (2.12) and (2'13)subject to (2.6).

We next consider the case m = 1, Then (2.2) takes the form
toltg=1) = =al(1-u) + ug J[(1-v) + vg 1/(1-u), (2.14)
which may be rewritten as

cg[(1-u) +quv] + co[~(1-u) +q {u(t-v) + v(1-u)}] +

(2.15)
+ q(1-u)(1-v) = 0
If CO exists we must have that
(1~u) +quv = q(1-u)(1-v), (2.16)
which has the useful equivalent forms
ql1=u-v] = (1-u), . (2.
(1-u)[q(1~v)~11 = quwv, . (2.17a)
(g=1)(1=u) = q v, (2.17b)
(g-1)(1-u-v) = wv. (2.17¢c)
It follows from (2.,17a) that
n(1-v}/2 > q(1-v) > 1, (2.18)
so that
q > .1, (2.19)
and
v < (m=2)/rm. (2.20)

Finally, we consider the case m > 2 and u ¢ [0,3]. Then w1 §_90/2 so that

it follows from (2.9) that 6 < /2 and T = tan 80/2 < 1. Using (2.3) we see

0
that

tan(\p1 - 60/2) = (2u~1) tan 90/2.
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Since tan is a convex function,
(1-2u) tan 6,/2 > tan[(1-2u)0 /2]
80 that we can conclude that
¥y - 8572 2 (2u-1)8 /2.
On the other hand, let
h{u) = tan[(u-))eo/E] - (2u~1) tean 90/2.
Then h(0) = 0. Furthermore,

nw = (0,/2) sec®[(u-1)8 /2] - 2 ten® /2,
< (60/2) sec2(80/2) - 2 tan 90/2,
< T(1 +7%) - om,

< 0.
Hence, h(u) < 0 for u e [0,3] so that
vy - eo/e > (u—1)60/2.
Substituting the above bounds for v, into (2.9) we obtain

€1
n/2 + w8 /2 + p, < (m+3)0, < m/2 +uby + Y. (2.21)

0

Lemma 2,1,
Let u=0, ve [0,3), and m > n2/2h‘2v—1|. Then there exists a q ¢ (0,7/2)

such that (2.2) has a solution Ly

Proof: Equations (2.12) and (2.13) can be solved separately for By: denote the

solutions by 91(q) and eg(q), respectively. By (2.6), 0, < ™ s that without

ambiguity

mo,(q) = w/2 - arc sin[(q/2m)|2v-1]],
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mee(q) = 2m arc tan{(q/Em)/[1-—(q/2m)2(2v-1)2]%}.
Thus,
mo (0) - mo(0) = w/2> 0.

On the other hand, using elementary inequalities,

[n/2 = (n/bm)|2v-1]] - 2m arc tan{n/Unm},

iA

m6{(n/2)~m62(n/2)
[n/2 = (n/im)|2v=1]1 = 2m[(n/bm)~(r /bm) 731,

fa

|

- (a/bm)[|2v-1] - v°/2km],

- < O’

provided that 2km > n2/12v~11. The lemma follows.

Lemma 2.2.

Let wu=0and ve [3,1]. Then (2.2) does not have a solution.

Proof: Ifm = 1 then the assertion follows from (2.20).

Now let m > 2 and set ¢ = (q/2m)(2v-1), From (2.12) we have that,

unambiguously,
mo )% = (/2 + )% > (x/2 +c)’

vhere sin § = ¢, On the other hand, it follows from (2,13) that
mo)? < () < (1/2)%/(1¢7),

However, c¢ < n/8 so that, as is easily checked,
(/212 /(1=2) < (nf2 + o).

We have thus arrived at a contradiction and the lemma is proved,

et

o0
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Lemma 2, 3.

If v = 1 then (2.2) does not have a solution.

Proof: If m = 1 the assertion follows from (2.20).
Now let m > 2 and u ¢ (3,1). Set m=m-1, q = qu/{m + 1 = u), and v=ou.

Then
P(z) = ¢{™(g-1) + (a/m)[(1=¥) + v 31},

and it follows from Lemma 2.2 that P has no zeros on the unit circle.
Finally let m > 2 and u ¢ [0,3). Since Yy = 0s {2.21) is equivalent

to
/2 - < (m—u/E—%)GO < owm/2 4+ u60/2,

s0 that T = tan 6,/2 > (w/4)/(m-u/2-3). From (2.5) we find that

2

) /T (b - [9/(n-w)12(2u-1)2] /[a/(n-u) 12,

16(m-u)2/n2 - (2u—1)2.

v

Combining the above inequalities we find that

2 5 6(mw)?/ - (2u-1)2,

16(m - u/2 - 327 > 1T
Hence
16 (em - 3u/2 - Pu/e - N/ > - (2u-1)%,
which implies, since m > 2, that
12(1-u) 2/ < (1-2w)?,

But u :_% so that 1-u > 1-2u and we have arrived at a contradiction.

Lemma 2.4,

If v = 3 then (2.2) does not have a solution.
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Proof: Ifm=

1 the assertion follows immediately from (2.20).

Next, let m > 2 and u ¢ [3,1). Then, from (2.3),

tan(y, - 8,/2) (2u-1) tan 8,/2,

jv

tan[(Eu—1)éO/2])

so that y, :_ueo. Since ¥, = 60/2 it follows from (2.9) that

(m-—u)eO > m/2.

However, from (2.5),

wr? < [q/(m-)]?

with the result that

(m—u)eo < 2(m—u)60/2 < 2(m~u) tan 60/2,
< u/2,

so that we have a contradiction.

Finally, let m > 2 and u € [0,3]. Then it follows from (2.21) that

(m—u)eo = (n/2 - y)
where § > 0,

Now (2.2) may be rewritten in the form

o = -al(gr) /(g 10-ulg ™ uco"“l/e(m—-u).

Equating the real parts of this equation we find that

siny = cos(m-u)eO = q g(eo)/E(m—u)T,

where

g(9) (1-u) sin w8 - u sin({~u)6.

Since g(0) = Z(0) = g(0) = 0, we have that

@
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siny < € 8,” max |*&" (o) | /67,
059590

3

< e 0 max1|u(1-u)3I/6T,

0_<__uf_z

3
= 9e (% 7/ 2s67).

where e = (q/2)/(m-u) < (1. 6)/3.
Using (2.5) we see that

0, < 2T < 2¢

and that

Tyt + TR 5 e/11 + A1 > e/(1 + 272) > e/(1 +(1.6)2/18) > 6¢/T.

Substituting these bounds into the previous inequality for sin y it is found

that \

sin v < 9e(2e)3 (7/6c)/256 <£3/6.

On the other hand,

i

(m-u)o 2(mfu)60/2,

0

2(m-u) arc tan T,

2(m-u) arc tan ¢,

n

< (n/2e)(e=e>/3 + €2 /5),

= (/)1 - 273 + V/s),
s0 that
- 2 L
p=a/2- (m-ue > (n/2)(e°/3 - ¢ /5).

Combining the above inequalities and using Jordan's inequality, we find

that

36 > siny > (2/mhy > /3 -€'/5,
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which implies that

e > 2 - 652/5 > - 8,

But € (q/2(m-u)),

jA

(n/2)/2(3/2),
= /6,

< '6-

We have thus arrived at a contradiction and the lemma is proved.

Lemma 2.5.

For each m e Z _ there exists q ¢ (0,m/2) such that the equation
- m ,
P(zg) = ¢(z=1) +q¢/tm+3) = 0 .
. _ 18y . .
has a solution CO = e on the unit circle.

Proof: Comparing P(z) and P(f) for u = v = 0 we see that the two polynomials
are almost the same, the only difference being that the variable q in P(z) is
replaced by q = mg/(m+3) in P(z). Tﬁe present proof is therefore a modification
of the proof of Lemma 2.1.

If m = 1 then it is easily verified that the lemma holds,

If m > 2 then it follows, as in (2,6), that g < M. Set w= q/(2m+1) =

E/Em,
mgi(q) = /2 - arc sin w,

and

i

- 1
mez(q) 2m arc tan {w/[1_w2]z}.

It suffices to prove that m51(n/2) - m52(n/2) < 0,

Let w = (n/2)/(2m+1) so that w < 1. Then
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m51(n/2) - mae(n/Q)

< (n/2 - w) - [{n/2w)-1] arc tan {»7/[1—»7215},

(n/2 - w) [w - arc tan {G/a-ﬁe]%}]/a

But sin2 W < 52 so that (1—52) sin2 v < (l—sin2 ;)52 and hence tan2 v <
— — - — ' 1 —
w2/(1-w2). Therefore w < arc tan (w/[l—wglz). It follows that me1(n/2) -

mgz(n/2) < 0 and the lemma is proved.

As the reader will have by now appreciasted, the analysis of the roots of
P(z) is extremely laborious. The basic reasan is that when q = O P(Z) has the
zero £ = 1 so that when m is large P(g) must have a zero close to 1, and it is
necessary to determine whether this root lies inside or outside the unit circle.

There are many general theorems giving bounds for the roots of polynomials.
None of them seem to be sufficiently sharp for our purposes. Those, such as
the theorem of Cauchy (Marden [8, p. 123]), which do not take account of the
signs of the coefficients of the polynomial are hopelessly inaccurate, How-
ever, several theorems do take account of the signs of the coefficients and
yield interesting bounds; among such theorems we draw the reader's attention
to the theorems of Lucas (Marden [8, p. 22]), of Obreschkoff and Schoenberg
(Marden [8, p. 191]), of Pellet (Marden [8, p. 128}), of van Vleck (Marden

[8, p. 153]), as well as the various theorems on lacunary polynomials (Marden

(81).
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3. DA -stable methods

Theorem 3.1.

If the method {p,o} is DA_-stable then it is D-stable (stable in the sense

0
of Dahlquist).

Proof: Assume that {p,c} is DAO—stable. It suffices to prove that p satisfies
the root condition, that is, all the zeros of p lie inside or on the unit circle
and all the zeros of p on the unit circle are simple.

Let £, be a zero of p lying outside the wnit circle. Then there exists

1
a circle C with centre c1 which lies outside the unit circle and on which p does
not vanish. Applying the theorem of Rouché (Marden [8, p. 2]) it is easily
seen that there exists agq, e (0,7/2) such that ¢(C;q1;1) has at least one zero
inside C, which is impossible,

Now assume that p has a zero of multiplicity at least two on the ﬁnit circle;

without loss of generality we may assume that this zero is §1 = 1, so that

plzg) = (C—-1)2 v(g), say, where y is a polynomial. For meZ,_ let

c, = {u:le] =1 +1/my Jarg | < (k+3)n/m}.

If g eC then |z-1] < (k+4)n/m, Since p and o are relatively prime, a(1) # 0.

Now consider
m 2
F(g) = m" p(z)/o(z) = mo (g=1)° v(z)/a(z).
For g e C_and m sufficiently large, |F(z)| > 0 and

IF(2)] < m(1+1/m)™(eH)n/m)2 1+ v (1) o (1) |1,

Ia

(e )M 2el 1+]v(1) /o(1) | 1 /m,

1A

< 1,

On the other hand, when m is large then arg (™) increases by (2k + 6)n as ¢
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traverses Cm while arg (p(z)/o(z)) changes by at most {2k + 2)wn, It follows
that there exist m, € z, and t, € Cm2 such that a, = - F(cz) e (0,1) and

¢(c2;q2;m2) = 0, which is impossible since {p,ol} is DAO—stable.

Theorem 3.2
The method {p,oc} is DAO—stable iff all the zeros of f(z;q;m) lie in

H for all q ¢ (0,7/2) and m ¢ Z,

Proof:
Necessity. Assume that {p,o} is DAO~stable and that f(z‘;q1;m1) = (0 for some

a, € (0,m/2) and w,o€ 2. We wish to show that z, € H .

If z, # 1 then, from (1.12), ¢(c1;q1;m1) = 0 vhere ¢, = (1+z1)/(1~z1);

since {p,o} is DAO-stable Zy € D so that z, € H_. If z, = 1 then, from (1.12),

r(1) = 0; but, from (1.10), r{1) = a > 0. Thus z, = 1 is impossible.

Sufficiency. Assume that all the zeros of f(z;q;m)-lie in H_ for all
q e (0,m/2) and all m e Z,. Let Mgﬁqﬁ%)=()Mrsqu1e(Mnﬁ)mm

m1 € Z+. We wish to show that c1 e D.

If L, # -1 then, from (1.1k4), f(z1;q1;m1) = 0 where z = (;1—1)/(c1+1);

hence, z, ¢ H_ and ;1 € D.

1
ir g, = -1 then, from (1.8), (-1)

m
To(-1) + (q1/m]) o(~1) = 0. BSince,
n

from (1.13), p(=1) = (—2)k a, and o(-1) = (—2)k bk, it follows that a_ + (-1) L

k

(q]/m1)bk =0, If bk = 0 then a_= 0 so that p(=1) = ¢(-1) = 0 which contra-

dicts the assumption that p and o are relatively prime. Thus bk # 0 and

m

&, + (-1) L (q/ml)bk changes sign as g passes through the point - Now
m

a + (-1) ! (Q/ml)bk is the leading coefficient of f(z;q;m1). By assumption,

all the zeros of f lie in H_ so that (Henrici [6, p. 230]) all the coefficients
of f(z;q;m1) have the same sign. It follows that all the coefficients of

f(z;q;m1) change sign as g passes through the point . That is, f(z;q1;m1)

th

0. From (1.14) we conclude that ¢(g;q1;m1) =z 0 which contradicts the assump~
tion that p and o are relatively prime. Hence L, = -1 is impossible and the

proof of sufficiency is complete.



Theorem 3.3

If the k~step method {p,c} is DAO—stable and of order k then it
is implicit.
Proof: Assume that {p,c} is DAO—stable, of order k, and explicit. By

Theorem 3.1 {p,0} is also D-stable.

Using (1.11) we see that s(1) = B, =0, s0 that
k=1
b, = - ] b (3.1)
J=0

It is shown by Henrieci [6, p. 231] that

b, = ) Gy, 8., if0<j<k, (3.2)
] 20 20 jr1-22

where the constants 02_ are the coefficients in the power series expansion

of z/{log [(1+z)/(1~z)1}, and where ay = 0if j < 0.

Henrici proves that ¢. = 3, and that c,, < O for £ > 0. Henrici also

0 2L

proves that

£
T oc, . /(1425) = 0 if g> 1,
-0 2¢-2J

from which it easily follows that

¥a
I oespns >
j=0 20-2)

s

0 and ( .) + c

021—23 >0, if p > 1. (3.3)

i 20 -

Since {p,0} is D-stable it follows (Henrici [6, p. 230]) that a = o,

a, # 0, and that all the coefficients 8 have the same sign. From (1.10),

| Eertd

&j =r(1) = O > 0,

j=0
so that ay = 0, a, > 0, and aj >0 for2<j<k.

Now consider the polynomial

1

P (z) = £(233/2;m) (142)™ r(z) + (3/2m) (1-2)" s(z),

k+m .
d(m) z'J

say.
b J 4
J=0
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By Theorem 3.2 the zeros of Pm(z) lie in H_ so that (Henrici [6, p. 230]) the

coefficients of Pm(z) have the same sign. Using (3.2) we see that
am) =, (3/2m) b, = (3/im) a, > 0
0 o} 0 1 ’

so that the coefficients of Pm(z) are non-negative. In particular,

a{?) = (a, * 3,/4) 20, (3.1)
and
d1(<1) = (a, +a_, +(3/2)(b -b_)) > 0. (3.5)

We now obtain bounds for b, end by .. It is convenient to set ¢ i 0

if j is odd. Then, from (3.1) and (3.2)

k§1
- Db = b.,
k 5=0 J
k-1
= C. . a.
jZO 250 22 j+1-2
k k-t
= )y a ] e, .
t=0  °© . J
J=o0

Remembering that the aj are non-negative, that a, > 0, and that ¢y = i,

1

and using (3.2) and (3.3) we obtain three inequalities:

k=1
-b > a X c; > 0 (3.6)
J=0
k k-t
= b, 2 Z a 2 Csoa
LS BRI S-SR
= (a +28,_,)/2, (3.7)
and
12{ . kit 1
- b +Db = a c, . + c N
kx © k-1 pho b | xSk j
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k~t

k
> ) a e, .+ ) e,
MR s ¢

= a +a /2 (3.8)

Substituting (3.7) into (3.4) we find that

O<a + 3bk/h,

A

o = 3 (a +a _)/8,

= - (3.9)
= (Sak Bak_1)/8.

Substituting (3.8) into (3.5) we find that

0 <a +a + 3(b

e ta g~ Pem1)/?s

<oy ta g -3 (s ey /2)/2,

= (~2a, +a,_,)/h. : (3.10)

Inequalities (3.9) and (3.10) are incompatible unless &, = 0. But if a, =0

then, using (3.6), we have that a_ + 3bk/h < 0 which contradicts (3.h).

k

We have thus shown that the assumption: that {p,c} is DA_~stable, of

0

order k, and explicit leads to a contradiction, and the theorem is proved.

Theorem 3.4
Let the zeros of p(g) other than ¢ = 1 lie in D, and let {p,0} be con-

vergent. Then {p,0} is DA_-stable iff for all q e (0,7/2) and all m ¢ Z,

0

the polynomial ¢(z3;q;m) has no zeros on the unit circle.

Proof: Let m e Z_ be fixed. Let 51(q), eees L .. (a) be the zeros of

mt+k
¢(z3q3m) with £,(0) = 1 and [;j(o)l <1 for 2 < j < mtk., Each cj(q) depends
continuously upon q so that for some q, € (0,m/2) we have that ch(q)l <1
for q ¢ (O,q1) and 2 < j < mtk,

Since {p,0} is convergent, p(1) = 0 and (1) = o(1) # 0. Differentiating

the equation ¢(§1(q);q;m) = 0 with respect to q we find that t1(0) = -1/m.
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Hence |c1(q)] < 1 for sufficiently small q e {(0,n/2).
The theorem is now an immediate consequence of the continuity of the
cj(q) with respect to q.

Using Lemmas 2.1 and 2.2 together with Theorem 3.4 we obtain
Theorem 3.5
Let BO = 1=-v and 81 = v, where v ¢ [0,1]. Then the method
p(z) = -1, o(z) = By + B,

is DAj-stable iff v e [3,1].
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L, GDA}-stable methods
In the definition of DAO-stability it was assumed that 7 = mh, In
meny important problems this is a reasonable assumption because the delay

is constant. When the delay is variable, or very small, however, we must

relax this condition. In the present section we assume that
t = {m-u)h > 0 (4.1)

where u € [0,1) and m ¢ Z+. (Tt would perhaps be more natural to set

t = (m+u)h but this would involve allowing m to take on the value zero.)
When (4.1) holds and u > O then the use of the method {p,o} involves

the computation of the approximate solution at non-gridpoints. For a

general discussion of this gquestion the reader is referred to Tavernini [10}.

Here we will assume that the value..of the approximate solution yh at the

M ]

non—-gridpoint t.
gridp j+ J

u is obtained from the values at the gridpoints tj+1’ t

ey %;£+1' That 1s, we set

h e 8 g h
y (tj+u) = B y(Eu) y (tj) (k.2)

where £ is a positive integer and y(E;u) is a polynomial in E of degree at
most £ with coefficients which depend upon u. The resulting method will be

denoted by {p,0,v}; when applied to the problem (1.5) we obtain
+£-1 h h
N p(E) y (t,) = -uh o(E) v(Esu) y (¢ ), n > -m+1, (4.3)

with appropriate initialization procedures.
Usually, y will be an interpolation polynomial. For example, if linear

interpolation is used then

tj+u) = (1-u) yh(tj) + uyh(tj+1)

so that y(Ej;u) = uk + (1-u) and £ = 1. We will not insist that y be an

interpolation polynomial but will assume conditions which are always satisfied
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by interpolation polynomials, namely that (4.2) is exact if u = 0 or if

yh is a constant; that is, we require that

v(E;0) = £ (4.1)
and

y(13u) = 1. (k.5)

It may be remarked that it was assumed that yh(tj+u) is computed using
h . . .
values of y = at gridpoints up to at mest tj+1 in order to ensure that
when m = 1 equation (4.3) is an equation for yh(t ) in terms of
nt L+ K

the values of yh at gridpoints up to at most tp+f+k-1 + In the

present context this assumption is therefore necessary. However, for a specific
practical problem it might be known that m # 1, in which case the assumption
could be relaxed.

We will say that the method {p,o,v} is GDA-stable if yh(tn) + 0 as
n - o for all y e {0,n/21) and all initial data y. Eguivalently, {p,0,Y} is

GDAO—stable iff all the zeros of the characteristic equation

am
(gasmm) = 7 o() + =L o(r) ylgu) = 0 (4.6)

lie in the open unit circle D for all g ¢ (0,%/2), m ¢ Z,, and u € [0,1).

Noting (4.4) we see that

o(z3q;m;0) = I;K_1 ¢(r3q3m). (b.7)

It has not been assumed that p(z) and y(zj;u) are relatively prime, so
that, without further assumptions, it is possible for ¢ to vanish identically
for certain values of q, m, and u. It would be possible to avoid this
difficulty by assuming that p(z) and y(z;u) are relatively prime for all
u e [0,1) but this assumption is unacceptably strong; for example, if
linear interpolation were used then y(zj;u) = (1-u) + uz, so that this assump-

tion would be equivalent to requiring that p have no negative real zeros.
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Instead, we make the assumption, which is satisfied by all convergent

methods, @hat
p(1) = o, (4.8)

Since p and ¢ are relatively prime, it follows from (4.5), (4.6), and (4.8),

that ¢(r3;q;m;u) cannot vanish identically.

As in the case of DA _-stable methods it is often convenient to work in

0
the z-plane, We set
k+f
F(z3qsmzu) = (T—Z)mT(lg—z-) ¢(-;'}:-;q;m;u)
- ¢ -
= (42" (Y r(2) + (o/(m)) (1-2)" 's(2)alzn)  (h.9)
where ’
gy 1
glzsn) = (38 vE2s4). ~ o (.10)
Clearly
m-1 .
#(z3q3msu) = (5*2*'1— (g+)*Ep “g,,-};q;m;u) (h.11)
and
L -1
y(zzu) = (ga1) g(iﬁ;u). (4.12)

If the method {p,0,y} is GDA . -stable then it follows from (4.7) that

0
{p,o} is DAO—stable. Applying Theorems 3.1 and 3.3 we obtain

Theorem b4.1

If {p,o0,vy} is GDA_~stable then {p,0} is D-stable.

0

If the k-step method {p,o,y} is GDA0~stable and of order k then it is

implicit.,

We conjecture that the analog of Theorem 3.2 is not true for GDAO—stable

methods, Our reason for believing this is that unless further restrictions

are imposed it is possible for p(g) and y(g;u) to have the common zero
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r = -1 for certain values of u. For example, if p(g) = C2“1 and y(g3u) =
(1-u) + uZf then p and y have the common zero = -1 when u = 3. To illus-
trate the difficulty let p(z) = (c2~1), a(z) = 2;2, £ =1, and y(z;u) =

(z+1)/2. Then

s(zsasmiu) = (gP-1) + [o/(m-w)] t2 . (g + 1),
so that ¢ = -1 is zero of &. But, ¢ = z(g+1)% where

¢(g3q3m3u) = cﬁ(r,-ﬂ + [a/(m-u)) ¢,

and m =m-1. If m = 1 then & has the zero ¢ = 1/[1+q/(m-u)] < 1. Ifm > 1}

then
Bosasmu) = e-1) + (@@ (1] + o),

where q = q(m=1)/(m-u) < q and v = 1 so that, using Lemma 2.2 and Theorem

3.4, we can conclude that all the zeros of % lie in D. Since

IR
(1-2)"" (38 o (F;q3m30),

F(z3q3m;u)

- 2
-1 (1=
(1+2)(1-2)™" (158 335 q3m30),

it follows that all the zeros of F lie in H_. It should be noted that the

@

above example does not prove the conjecture since y satisfies (4.5) but not
(4.4),

Avoiding the difficulty by brute force we are led to

Theorem 4.2

Assume that p(z) and y(z3;u) do not have the common zero [ = -1 for
ue [0,1).
Then {p,u,v} is GDAO~stable iff all the zeros of F(zjqsm;u) lie in H_

for all q e (0,7/2), me Z, and u e [0,1).
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Proof:
Necessity. The arguments are the same as in Theorem 3.2, equation (1.12)

being replaced by equation (4.9).

Sufficiency. Assume that all the zeros of F(zj;q;mju) lie in H_. Let
¢(c1;q1;m1;u1) = 0, We must show that C1 € D.
If ¢, # -1 we proceed as in Theorem 3.2, using (%.11) instead of (1.1h4).
If &, = -1 then it follows as in Theorem 3.2 that

m,~1

1 Wa -
a, + (-1) la,/(m;=u,)] 2%b, ¢, = 0
where e = (~2)-"ey(—1;u) is the leading coefficient of g(z;u1) and where
by # 0. Thus if &y = (—2)~k"P(*1) =0 then c, = (—2)—"8Y(—1;u) = o which is

impossible; hence ay # 0, by # 0, and Cy # 0. As in Theorem 3.2 we can
conclude that F(z;q1;m1;u1) Z 0. Consequently, @(g;q1;m1;u1) £ 0; but this
is impossible, so that the case g, = -1 cannot arise and the proof is com—

plete.

Theorem 4.3
Let the zeros of p other than ¢ = 1 lie in D and let {p,0} be convergent.
Then {p,0,v} isGDAO—stable iff for all q ¢ (0,7/2), m ¢ Z,» and u e [0,1) the

polynomial ¢(z3;q;m;u) has no zeros on the unit cirecle.

Proof: Let me Z,_ and ue [0,1) be fixed and denote the zeros of ¢(c;q;m1;u1)
by 51(q), vees Cm+£*k—1(q)’ with g,(o) = 1 and le(O)‘ <1 for § > 1.
Differentiating (4.6) with respect to g and noting (4.5) we find that

61(0) < 0, The theorem now follows as a result of continuity of the functions
Z;j(Q)O

Using Lemmas?.3 and 2.4 and Theorem 4.3 we obtain

Theorem 4.4

The fully implicit method
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ple) = =1,  olg) = g, y(gu) = (1-u) + ug
and the trapezoidal method
p(z) = z=1, olr) = (g+1)/2, y(z;u) = (1-u) + ug

are GDAO—stable.

We conclude by considering the "modified trapezoidal method" namely
h h _ .h
vyl ) -y() = ny (tn+%),

where it is understood that jh(tn+%) is to be computed by linear interpola-
tion. The modified trapezoidal belongs to the family of modified Adams

methods considered by Zverkina [13]. Such modified Adams methods are parti-
cularly useful f&r delay differential equations. Somevhat surprisingly the
next theorem shows that the modified trapezoidal method is not as stable as

the ordinary trapezoidal method.

Theorem 4,5

The modified trapezoidal method is DA _-stable but not GDA.-stable (in

0 0

a generalized sense.)

Proof: When (1.6) holds the modified trapezoidal method as applied to (1.5)

takes the form

h h — .h
Yy (tn+1) -y (tn) = hy (tn+%~m)’
I A CID I (R L V-8

which is simply the trapezoidal method. Thus, by Theorem 3.5, the method
is DAO—stable‘
Now assume that (4.1)holds with u = } so that the modified trapezoidal

method as applied to (1.5) takes the form

B ).

h h
vt ) sy (e )=y (e

n+ +1

Hence, with an obvious generalization of (4.6),
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¢(53q3m;3) cm—1(c~1) + q/(m-3),

ca(c—ﬂ + q/(m+3),

where m = m-1. Applying Lemma 2.5 it follows that the method is not

GDAO-stablea in a generalised sense.
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