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Abstract

A linear multistep method (p,o) is defined to be Ao*stable if when it
is applied to the equation x(t) = -Ax(t) the approximate solution xh(tn) tends
to zero as tn+~w for all values of the stepsize h and all Xe(o,=).

Various properties of Ao—stable methods are derived. It is shown that most
of the properties of A(a) - stable methods are shared by Ao*utable methods. It

is proved that there exist Ao—stable methods of arbitrarily high order.
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1. Introduction

Consider the problem

X(t) = = Aax(t), t > o, (1.1)
x(o) = 1,
where A is a complex constant. Let
k k
p(t) = [ a o, ole) = 1 8 v, (1.2)
j: j=0

where it is assumed that oy > o,that ¢ is not identically zero, and that

p and ¢ have no zeros in common. If the linear multistep method (p,o) is

applied to {1.1) then

p(B)x (&) = -Ah o(E) x(t,), (1.3)

where h is the S‘tepsize)tn = nh, xh is the approximate solution, and

E is the translation operator.

Let
H = {z : Re(z) > o},
H_ = {z : Re(z) <ol, (1.1)
p = {z: |z| <1L

The closure and boundary of a set S are denoted by S and 39S respectively; in
perticular, 8H_ is the imaginary axis.

The solution of (1.1) is x(t) = exp{-At) so that x{t) + o as t = « iff
XéH+. Most classes of highly-stable methods involve the requirement that
xh(tn) +o0oasn -+ o for all h and for all A in some subset S of H+ : for

A-stable methods 8 = H_ (Danlquist (51); for A{a)-stable methods S =
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{x: ]arg(x)! < o, # o} (Widlund [19}). We consider here yet another class of

methods the éc*stable methods, in which S is the open positive real axis;

that is, the method (P,0) is A -stable iff all the zeros of the characteristic

polynomial

d(z3a) = plg) + q o(r) (1.5)

lie in D for gll q¢ (o,»). For references concerning other types of

highly-stable methods see Bjurel et al [1], Gear [9], and Lapidus and

Seinfeld [[14].

As is usual we will often work in the z-plane where

S
i
r:
Y
1
S
‘+

(1.6)

We recall that the mapping (1.6) maps the disk D in the r-plane onto the

half plene H_ in the z-plane. We set

k k
_lz -1 z + 1} J
T(Z) "'[ ) ] O(Z — 1) = jZO a,j Z s BBY, (1-7)
k k
. lz=1) 1) - ‘
s(z) = Lze | o<§ — ) jZo bj r 2 say, (1.8)
and
£(z3q9) = r(z) + q s(z). (1.9)
We note that
o) = (z-1)F r(%»f—}—) , (1.10)

o(z) (1.11)
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and that
r{1) = a3 s(1) = B3 p(1)=2k‘a . a(1) = 25, (1.12)
Kk’ k’ X’ k
Neither r nor s is jdentically zero because,by assumption, mneither p
nor ¢ is identically zero. Furthermore, T end s have no zeros in common. For,
suppose that r(z) = s{z) = o. Then 2 # 1 because r(1) = oy # 0. Hence,
from (1.7) snd (1.8}, p(z) = o(g) = O where ¢ = (z+1)/(z-1). But this con-— :

tradicts the assumption that p and ¢ have no zeros in common.

As is well-known (Henriei [12)) the method (p,o) is D-stable (stable in

the sense of Dahlquist) iff P satisfies the root condition, that is, (1) L

all the zeros of p lie in D end (ii) any zeros of p on 3D are simple. The

method (p,o) is consistent if

p(1) = 0 3 p(1) = al1), (1.13)
end is of orderp if

o(t) - o(g) log g - e (g - F, (1.1)

as [ + 1,where ¢ is & non-=zero constant and p is a non-negative integer. To
be useful a method must be convergent and hence both consistent and D-stable.
However, it turns out that many results can be proved without meking the.
assumption that (p,0) is convergent, and thus we do not make this assumption
unless explicitly stated.

Recalling that a method is Alo)-stable if it is Ala)-steble for some
avo (Widlund [19]), ve see that the class of Ao - stable methods includes
as subclasses the A — stable methods, the Ala) - stable methods, and the
A{o) - stable methods, and it seems likely that every useful class of highly-
stable multistep methods will be a subulass of the Ao - stable methods. By

studying Ao - stable methods we are therefore able to determine properties
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vhich are shared by all highly-stable multistep methods.

2.Characterization of A, ~stable methods.
Theorem 2.1
The method (p,o) s Ao-stable iff all the zeros of f(z;q) lie in H_ for
all q & (o0,=).
Proof:
Necessity: Assume that (p,o) is Ao-stable and that f(z;qo) = () for some
q, e(o,»). We wish to show that z ¢ H_.
First assume that z # 1. Then, from (1.7) and (1.8), we see that ¢(c;qo)=0
for r=(z+1)/(z~1). It follows that { e D and hence tha§-z'=(c+1)/(c*1) e H..
How assume-that z = 1, so that r(1) + a4, s(1)=0. Using (1.12) it follows

that o + q Bk = 0. For g # a4, let

p(z) = ¢lgsa)/(a +a B )
k .
- J
= jZo (“5 + qBj) 3 /G + a8, ).

Since p has leading coefficient one and since the zeros of p lie in D, the co-
efficients of p are uniformly bounded for all q # g It follows that

o +q, Bj = o for all j which contradicts the assunption that p and o are

relatively prime. Thus z = 1 is jmpossible, and the proof of necessity is complete.

Sufficiency: Assume that all the zeros of £(z3q) lie in H_ for all gq e(o,=).

Let ¢(c;q0)=o for some qoe(o,w). We must show that re D.
First assume that £ ¥ 1. Then from (1.10) and (1.11) it follows that

f(z;qo) =0 for z = (g + 1)/(g-1). Hence z ei_ and. = (z + 1)/(z - 1) € D.

n

Now assume that £ = 1, so thet p(1) + 4 o(1) = 0. Using (1.12) it follows

+ = 0. .
that ak qo bk 0 Now
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k .
tlz3q) = J (aj + qu) zd
j=o
But by %X o, for if b, =0 then a, = o and p(1) = o(1) = o which is impossible

because p and ¢ have no zeros in common. Since bk % o,the leading coefficient
of f changes signvhen q = a,- But all the zeros of f lie in H_ so that for each
q the coefficients of f must have the same sign (Marden (16,p.181]1). Hence
aj + q, bj = o for all j so that r = -q, S This implies that p = -q, ¢ which
is impossible. Thus the case g = 1 cannot occur and the proof of sufficiency
is complete.
Theorem 2.2

Let. the method (p,o) be A0 —~ gtable. Then the zeros of p and o lie in D

and the zeros of r and s lie in ﬁ;. Furthermore, any zeros of p and ¢ on 3D end

any zeros of r and s on oH_ are at most double zeros.

Proof: Assume that p(c1) = o Wwhere C1 % D so that l€1l > 1. Then there
exists a circle C with centre gy such that C does not intersect D and p does

not vanish on C. Choose q > o so that

Q max |o(z) | <  min lp(z)].
r €C L eC

Then, by the theorem of Rouché (Marden [16,p.21), ¢(z3q) = p(g) +qo(z) has at leas

one zero inside C. But (p,o) is Ao—stable so that the zeros of ¢ lie in D. We
pave thus arrived at & contradiction and it follows that the zeros of p must
lie in D.

Now let £, € 9D be a zero of p of Qultiplicity m. Then p(g) ~ c(g - cl)m

for some c\ﬁ o and all 7 close to [ Since p and ¢ have no zeros in common,

1
o(c1) ¥ o. Hence, there exists & small circle C with center %, such that

argl-p{t) /o(t)] changes by at least (m-3) = as ¢ traverses the open arc C,
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consisting of the points of C lying outside D. Thus, if m > 3 there exists
L€ C1 with "p(CE)/O(C2) = q ¢ (0,). Since this contradicts the assumption,
that the method (p,0) is Ao -~ stable it follows that m < 2.

The assertions of the theorem have thus been proved as regards p. The
assertions concerning o,r, and s can be proved in the same way.
Theorem 2.3

The following stetements are equivalent:
(i) The method (p,0) is Ao—stable.
(ii) For z e H_, r(z)/s(z) is regular and does not take values in (-»,0). For
zedl, T (2} ;?;3 does not take values in (—=,0).
(iii) For ¢ in the complement of 5, p{z)/o{r) is regular and does not take
values in (-w,0). For Te 3D, p(g)ngB does not teke values in (~w,0).
Proof: Only the equivelence of (i) and (ii) will be proved since the equival-
ence Of (i) and (iii) is proved in the same way.

Assume that (i) holds. From Theorem 2.2 we know that s has no zeros in
H, so that r/s is regular for zeH_, and it is clear that r/s does not take values
in (-~,0). Suppose that r(z) ;TZ3 =Q e (-»,0) for some z € 3H_; then s(z)%o
so that r{z) + q s(z) = o for qﬁ~Q/|s(z)|2 e{o,»),which is impossible. Hence (ii)
holds.

Now assume that (ii) holds. Let r{z) + q s(z) = o for g e(o, »). Then s(z)

o since if s(z) = o then r(z) = o which is impossible. Thus r(z)/s(z)

~t~

1

-q € {-»,0) so that from the first part of (ii), z% H,. On the other hand,
r(z) s(z) = —qls(z)!2 e(~=,0) so that from the second part of (ii), z+3H+.
Hence z ¢ H_ and (i) holds.

The above theorems are similar to, and were motivated by, previous results
of Dahlguist [5}, Widlund [19], Norsett (17], Liniger [15], and Cryer [4].for
for A-steble, A(a) — stable, and A(o) -stable methods. (see also Cooke [2]) The
present theorems are more general than the previous results since they hoid

for A0 -stable
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methods and were obtained without the gssumption that the method {(p,0) is con~
vergent. Since the resder may suspect that the class of Ao~stable methods co—

incides with the class of Alo)-stable methods, we conclude this section

with a counter-example:

Lerma 2.4

The method

plz) = 2 -1, olz) = (g + D2/,

is convergent and Ao—stable but not A{o) ~ stable.
Proof: Since 6(1) = o and p(1) = o(1), the method is consistent. Since

o(z) = t(z-1) the method is also D-stable and hente convergent.

Now

2
£(z3a) = =3 + af =y laz® + 22 + 21,

so that the zeros of f(z;q) are equal to
o _ — e
zi'?{[‘i \/1-2q] .

If q ¢ (0,») then z, and z_ have negative real part. Thus, by
Theorem 2.1, the method (p,0) is A -stable
Now let q = 2de*® where & > o and o < |a] < w/2. Then f(z3;q) has

zeros with negative real part if the same is true of the polynomial plw)

= w2 + W+ ae*® . To locate the zeros of p we first observe that p has no pure

imaginary zeros. The "oomplex Hurwitz determinants" (Marden [16, p.180]) are

given by A1 = 1 and



1 0 -d sina
_ 2 .2
A2 = 1 & cosa 0 =d cos a—-d" sin o .
0 d sina 1

For large 4, A1 > o and A2 < o0so that p has one zero with negative
real part and one zerc with positive real part. In consequence, the method

{p,0) is not A(o)-stable.

3. Further properties of A - stable methods
) i

Theorem 3.1

If the method (p,o) is A - stable then a;3 o and bj > o for

k k
o % j < k. Furthermore, 5 a. > o and X b. > o. Finally, 8 > o
| o 7 k
. Ja=0 J=o
> 0.
and bk 0
Proof: From Theorem 2.2 we know that the zeros of r(z) lie in H_. There-

fore the coefficients of r, namely 8 5 e 58y BTE non-negative (Marden [16,

p. 181]). Since r is not identically zero not all the aj are zZero so
k

that 'z 8s > o. The assertions concerning the coefficients
J=o
bj are proved in the same way. The final assertion of the theorem

follows from the fact that

k
By = s(1) = Z b..

We now assume that the method (p,0) is consistent so that from (1.13),

p(1) = a, = o and a(1) = b, # 0. Rewriting (1.14) in terms of z we find

(Widlund [19]1) that
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r(z) - s(z) log [(z + 1)/(z = 1)1 v -¢ (2/2)P 7%, (3.1)
as z -+ @, Hence
a =2 b /(142)] kp e m sk, (3.2)
Jjzo

with the convention that a, = o if m < o and bj = ¢ if j > k. With the aid
of (3.2) we obtain
Theorem 3.2
Let the method (p,o) be A -stable. If k> 3 and p 3 3 then:
bj > o for 2¢ j € k; aj > o for max (0,k-p) € j £k - 1; and aj> o for
2g<j<k-1.
Proof: Assume that bk-1 = 0, The zeros of f(z;q) lie in H_ so that, by
the Routh-Hurwitz criterion (Gantmacher [7,p.194]1), the corresponding Hurwitz

determinants A, must be positive. But, using (3.2), we find that

k
ak_1 + qbk~1’ ak + q bk
A =
2 s
ak_3 + qbk_B, ak—2 + qbk_~2
2bk . q bk
= k]
ob, . +2 b+ qb ab
k-2 3 'k k-3 > k-2
= ~-q b (?«b +qb ) <0
k 3 k k-3

We have thus reached a contradiction from which it follows that bk~1 > 0.

Now the zeros of & lie in H_. Hence, S5(z) = bk - Sl(z)sé(z) where
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31(2) contains the imaginary zeros of § and Sé contains the zeros of S with
strictly negative real part. It is easily seen that the even coefficients
of 51 are non-zerc and that all the coefficients of 82 are non-zero. Since
bk ¥ o and bk—1 # o it follows that 52 is of degree at least one, so that all
the coefficients of $1§% are non-zero. Furthermore, by Theorem 2.2, § has
at most a double zero at z = o so that m < 2. Thus, as asserted, bj> o for
2<j <k

That 8 > o for max (o,k-p) < j < k-1 follows immediately from (3.2).
Since 8,1 > © and & o > o it follows, as shown above for the coefficients
bj’ that aj >0 for 2 ¢ §J £ k-1.

As an immediate application of Theorem 3.2 we have
Theorem 3.3.

There is only one Ao - stable multistep method of order P2k +1

namely the trapezoidal method with p =2, k= 1, r(z) = 2b1, and s(z) = b, z.

Proof: Let p > k + 1. From (3.2) withm = -1 we see that sz = o0 for j > o.
Since b, # o, it follows that k is odé and that b,y = 0. Appealing to Theorem
. -

3.2 we conclude that k = 1 and that bo = 0. Using (3.2) again the theorem follows.
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4, High order A -stable methods

From Theorem 3.1 we know that an Ao—stable method must be implicit. The
best-known implicit multistep methods are the Adams-Moulton methods and we

begin by studying these:

Lemma 4.1

The k-step Adams-Moulton methods of order k >2 are not Ao—stable.

Proof: For the Adams-Moulton method of order k>2 we have (Henrici [12,p.194]1),

X
olz) = ¢, olc) =) Y:; (-,
m=o

where

® n ° -8
Y, T -0" f (m ) ds.

®
In particular , Yo = 1 and

*

Y1 = -}, Since (~1)m(~ﬁ) < o for se(-1,0) and

%
and m > 1, it folbws that ym < O form> 1.

Now

k k
s{z) = } Lhzm =27k ) y* (z+1)5 2B,
=0 m¥o m

Hence, bk = 2-k > 0 and

L =27k : % 5B _ .~k ¥ v K m
=2 ] y*2®=2"Fy oy +] y* 2" 1 < o.
(o]

=0 n 1 m=2 n

Appealing to Theorem 3.1 the lemma follows.




—13—

Theorem 4,2

The k-step method of order k corresponding to s{z) = (z + d)k is A -stable

ir a5 2K

k+1

Proof: Let s(z) = (z+d)k vhere d > 2" ', and let r(z) be determined from (3.2),

The zeros of s(z) lie in H_ end the zeros of f£(z;q) are continuous functions of
q so that, using Theorem 2.1, it suffices to prove that f(z;q) has no imaginary

zeros for q e (0,=).
k

How D, = (
J 3

) dk—‘] so that, using (3'2),

gs{aw) + r(aw),

"

f{aw;q)

k-1
qdk( H-w)k + 2 amdmwm
n=0 ¢

k k, 5 anm
qd  (1+w)* + 2 ) aw } D142 /(1+2)

m=0 Jzo

k-..
@@ (10X + 2 7
m=0

1

i k k-1-23 .
v ] (m+neﬂ d /(1423),
Jzo

k-1
d [TO(W) + T1(W)],

I

vhere

k-1
qc'i(1+w)k + 2 2 wm( k ) ,
m=0

To(w)

1

qd(1-l~w)k + 2 [(Hw)k - 11 /v,

[gaw + 2)(1 + )X =2 1 / w,

1t

end

k-1 k o
=2 § P TG re2) a7 (12,
m=o Jj>o

with the convention that (};) =0 if £ > k. It thus suffices to prove that
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|T1(iy)| < ITo(iy)l for all qe(o,=) and all y elo,») .

To estimate To(iy) it is necessary to consider three cases:

1. Ify e [1,» ) then

lTo(i,y)I > (laaiy + 2} . | 1+ 3yl* -21 /v,

> 2 11+ )2

s 2 g,

"1]/3'3

2. If y e {3k, 1] then

lTo(iy)l > [ |qaiy + 2. |1+ iylk -21/y,
k/2

> e 11 +y9 -1 /y,
2
> 2 1+ M1y,
> ky/e,
> 1/h, .
3. If y ¢ (o, 3k ] and w = iy then

Iz, 60 = [(aav + 2000+ 0" =2/ v,

r.Y .
|(qaw + 2)1L + kv + 5 w9 (5)1 -2 |/ v,
j=2

2 ¥ 5x
\(qd“+ 2k)w + qdkvw” + (qdw + 2) X w () l /vy,

=2 ]

>

E -2k
(ad + 2k) = qdky = (ady + 2)y [ ¥ °(3)
J=2

k k-2
'qd/2 + 2k = (qdy + 2)y(5)(1 + ¥ e,

\Vv

WV

qd/2 + 2k - (qdy + 2) y(k2/2) 3,

A\

AN

qd/2 + 2k - 3 (qd/8 + k/2),

W

k/2,



wvhere we have used the fact that if y ¢ 1/2k then

(+ )52 <1+ 12052 < (1 + 1/ (x2))¥? <o <.

In the above argument it was assumed that k > 2; if k = 1 or k = 2 the

inequality is trivially true. Also, since To(w) is a polynomial in w

the gbove bourd also holds for y = o.

To estimate T1(i,y) we observe that

) Qg) = X L.
L20

Using this fact it follows that for y e [o, =),

k-1, 557 k -2j .
Iz, Giy)] ¢ emax 01,y ) D N SR pg) @0/ +25),
m=o  j>o
k-1
$& max 0,y L 1/2a,
mn=o0
%=1 k-1
$ w2 3mex 11,y .
1 -
< —  max [, yk 1].
12

Compaering the bounds for To(iy) and T1(iy) we see that lTo(iy)l > [T1(iy)|

for all y e [0,®), and the proof of the theorem is complete.

Theorem 4.3
The k-step methop of order k corresponding to s(z) = (z + d)k is not
A, - steble if k » 8 and d < ! @ -
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Proof: lLet s{z) = (z + d)k and let r(z) be determined by (3.2).

Assume that the method (r,s) is Ao ~ stable so that all the zeros

of r(z) lie in H_. Let

u(x) = } &3 xj, vix) = ) 85541 .

jzo jzo

Then
r(iy) = u(—yz) + iy v(—yz).

Since r(z) has real coefficients the zeros of r(z) occur in conjugate pairs

except for zeros at the origin. Hence

r(z) th(z2) (z)

i)

vhere m = 0 or 1, the zeros of h (z2) are imaginary, and the zeros of ¥(z) lie

in H_. Let

¥(iy) = W) + iy 0.
From the Hermite-Biehler theorem (Obreschkoff [18,p.L31) it follows that W(x)
end ¥(x) have real non-positive zeros. If m = o then u(x) = h(x) W(x) and
v{x) = n(x)¥(x), while if m = 1, then u(x) = xh(x) ¥(x) and v(x) = h{x) W(x).
Hence u(x) and v(x) have real non-positive zeros.
If k is even set p = (k-2)/2, v = 1 and w(x) = x"v(1/x) while if k is odd

set p = (k-1)/2, v= o, and wix) = x"u{1/x). Then

u

Hi-J

wix) = } 85y X J,
J=o




...‘]7.."

From Theorem 3.2 we note that all the coefficients of w are non-zero. The
sum of the zeros of w{x) is equal to 840 /av vhile the product of the

zeros of w(x) is equal to / 8, Since the roots of w(x) are all

+
£ 8oy

real and of the seme sign we may apply the theorem of the arithmetic and

geometric means to obtain (Hardy et al [11,p.521),

u \
254y /av < [av+2 / va 17 . (h.1}
From (3.2)we see that
B.v+2 = X b\)+3+2.vj /(1'*‘2{}) s
jzo
& 1 3ba.os /(3+23),
3o v3+42)
= 3a.
v

. _ X = (ky gk-d = = =
Since s(z) (z+d)", we have that bs (j) . Hence, 8, % 8 ¢ = b
and

gy, % X bot142] /(1+23)
j%0 J J/s
< 1 b
iz o

1
J
N
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Substituting these bounds into (4.1) we find that

() &y
4 M
>
7 Bouty [uav/ aw-zl s
> (w31 .

[(k—e)/GJ(k"‘?)/z)

e

Hence, for k28,

[(k-2)/61% [6/(x-2)7 /¥

/o2 01k,

1
- 1
(k/91? [1/3 /3,
1
k2,
vhere we have used the fact that (k-2)/6 > k/9 together with the fact (Hardy

1+ 4

\'4

W

Wooaw

[10,p.1427) that k'/¥ < 3773, Tne theorem follows.

We conclude with some remarks:
1.The bounds for d in theorems 4.2 and 4.3 were chosen to simplify the analysis
and could obviously be strengthened. The aimportant point is that for each k there
exists a d such that the method corresponding to s(z) = (z+d)k is A°~stable, but
that as k increases so must d.
2. The algorithm of Routh (Obreschkoff [18,p.107]) was implemented on the ICL
1906A at the University of Oxford and used to detemine numerically the location
of the roots of the function f(z;q) corresponding to s(z) = (z+d)k. If it was found
that the roots of f lay in H_ for q=jAf50-j), j=0,1,2,...,50, then it was assumed

that the method was Ao—stable. If k(d) denotes the maximum value of k

for which the method corresponding to s(z) = (z + d)k is
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is A -~ stable, then it was found that k(.5) = L, k(1) = 6, x(5) = 15,
k(10) = 23, k (20) = 36. These results must be treated with caution since
only 51 values of q were examined. The computations were performed using
double precision arithmetic and werespparently quite stable numerically. To
compute the constants k(d) exactly it would, however, be necessary to use a
symbolic system such as the SAC-1 system of Collins as was done by Cryer [3,4].
3. The choice s(z) = (z+d)k in theorems 4.2 and 4.3 simplified the analysis
but other choices of s(z) could probably be used provided that the coefficients
bys By _1yeens b increased so rapidly that r(z)~ [s(z) - b.] /7.
4. In theorem L4.3 we used the fact that if the zeros of a polynomial lie in

H_ then the "even" and "odd" 'parts of the polynomial have real zeros. This
fact can be used to derive many interesting relationships among the coefficients
of Ab~stable methods. For example, it can easily be shown that (bj)2 > bj~2bj+2’
and it can also be shown that the sequence bo’bz’bh"" is either monotone
increasing, or monotone decreasing, or initially monotone inereasing and then
monotone decreasing.
5. When trying to construct k-step Ao-stable methods of order k it is convenient
to first choose a polynomial s(z) with bj > o for 2¢ j <k and then use (3.2) to
find the corresponding r(z). The corresponding f(z;q) has strietly positive
coefficients so that according to the Liénard-Chipart refinement of the
Routh-Hurwitz theory (Marden [16,p.181), Gantmacher [7,p.221]), the method
(r,s) is Ao~stable iff either all the even Hurwitz determinants of f are strictly
positive for all qg>o or all the odd Hurwitx determinants of f are strictly positive
for all q > o. As an example, let

s(z) = zu + z3 + z2

so that, from (3.2)
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23+ 2% +bz/3 & 1/3,

it

r(z)/2

and

£(z3q) qzh + (q+2) 23 + (q+2)z2 + 8z/3 + 2/3.

Tn this case it is convenient to examine the odd Hurwitz determinants.

Since A1 = q > 0 and

qg+2 q ¢}
8, = 8/3 a2 a2 = [18q°+8q+721/9 > 0,
0 2/3 8/3

the method (r,s) is a fourth order Ao~stable method. It should be noted

that b1=b° = 0 which shows that Theorem 3.1 cannot be strengthened to require
that b1 > 0.
6. Dahlquist [5] has proved that an A-stable linear multistep method has

order at most two. Widlund [19] has given A(a)-stable methods of order three and

four. Gear [8] has shown that the "backward difference" or "numerical differen—

tiation" methods

_ h
hf(tn+k’ x (tn+k))

1%

1 h
m vm x (tn+k)

n=1

are stiffly stable, but Cryer {3] has proved that these methods are not D

stable if k > 6. Dill and Gear [6] and Jainend Srivastava ({131have used
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computers to construct stiffly stable methods of order eight and eleven
respectively, but were unable to construct higher-order stiffly stable

methods. Even though we have shown here that Ao-sta.ble methods of

arbitrarily high order exist, we conjecture that A(o)-stable linear multistep me-

thods of high order,of order greater than 20 say, do not exist.
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