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PREFACE

This report is a revision of a May, 1973, Ph.D. Thesis
in the Department of Computer Sciences at the University of
Wisconsin. The changes consist of the following:
correction of a few typographical and other minor errors;
rewording of several short segments; deletion of the
majority of program and sample output listings; deletion of
the empirical computing time tables for all except the main
algorithms.

The deletions were made in this instance to shorten
the document and thus facilitate mechanical preparation of.
the report. However, a complete listing of the Fortran
subprograms will appear in a forthcoming SAC-1 manual on

the system (to be published in the near future).
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ALGEBRAIC ALGORITHMS FOR COMPUTING THE COMPLEX
ZEROS OF GAUSSIAN POLYNOMIALS*
by

James R. Pinkert
ABSTRACT

Let G be a univariate rational polynomial or a
univariate Gaussian rational polynomial (a polynomial with
Gaussian rational coefficients) having m distinct zeros.
Algebraic algorithms are designed and implemented which,
given G and a positive rational error bound €, use Sturm's
Theorem, the Routh-Hurwitz Theorems, and infinite precisioh
integer arithmetic or modular arithmetic to compute m
disjoint squares in the complex plane, each containing one
zero of G and having width less than e. Also included are
algorithms for the following operations: associating with
each square the multiplicity of the unique zero of G
contained in the square; determining the number of zeros of
G in regions of the complex plane such as circles and
rectangles; refining selected individual zeros of G, that
is, given G, a square S containing a single zero of G, and
a positiv; rational error bound €, computing a subsquare
of S which contains the zero and has width less than €.

The theoretical computing times of the algorithms are

analyzed and presented along with empirical computing times.
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CHAPTER 1: INTRODUCTION

1.1 1Incentives for development

Before advancing very far into the study of
mathematics, one encounters the familiar expression,
n n-1 0
P(x) = ax + a ble + . . .+ ax

n n~1 0

a "polynomial”. More precisely, when the a are elements of
J

some algeb:aic system A this expression is a fpoiynomial over
AT The x is a formal symbol whose value is indetefminate:
Usually A is a commutative ring with identity, so it has the
operations of addition, subtraction, and multiplication.

Common as this expression may be, one aspect of it has
received a great deal of attention from the outset. At what
values of the indeterminate x does the expression evaluate
to zero? Closed form solutions for 0 < n < 4 vyere
developed, but it was proved that for n > 4, a closed form
solution did not exist. Hence the problem became one for
the so-called "numerical mathematics”.

No atEempt will be made to present a historical survey
here. Suffice it to say that interest in this problem grew
as more and more instances appeared in which the solution of
this or a related problem was of prime importance. Hence
the number of techniques for its solution arew

ccrrespondingly.



These techniques entered a new phase with the
development of the digital computer. It enhanced methods
already in use and made practical some approaches that were
far too cumbersome for hand calculation.

It also presented new problems, however. Foremost
among these was that the use of fixed length "integer" or
fixed precision "floating point" numbers in the computer led
to errors in the calculations of the zeros. In some cases,
these errors were not overly detrimental. In others, the
so-called "ill-conditioned" polynomials, these errors made
the solutions meaningless. g

Again, no survey of methods will be presented. Many
numerical techniques were (and are) being tried to
circumvent the computational error problemn.

In 1970, however, a significant advance was published.
Heindel [HEL70] developed an algebraic, rather than
numerical; system which would give the real roots of a
polynomial over the integers to any desired accuracy. Hence
the previous problems of loss of accuracy were sclved.

It is important to discuss one aspect of this system
here——polfnomials over the integers. Potential use of
Heindel's work has sometimes not been realized because the
polynomial was over the "reals" rather than integers. The
quotes are used because it becomes apparent that what is
usually meant is not the reals in the standard mathematical

sense, but rather in the sense of being commonly represented




in a computer as a "floating point" number. With present
day binary computers, however, these floating point numbers
are actually rationals, not reals.

The importance of this distinction is that later on it
will be shown that for a rational polynomial R, one can
compute an integral polynomial R' which has the same zeros
as R. Hence any of the "real" polynomials can also be
handled by the integer system. This is definitely not meant
to say that every application should be run with the
algebraic system. One drawback, for example, is‘that the
basic arithmetic operations are software rather than
hardware, and hence the algebraic system takes longer to
run. What is meant, rather, is that floating point
coefficients should not immediately imply numerical
techniques.

Heindel's system does, however, work only with the real
roots of integral polynomials. Often the complex roots are
also required. 1In addition, applications for finding the
roots of polynomials over the Gaussian integers have also

arisen.



1.2 Operations performed by the system

What was needed, then, was a completely closed computer
system (that is, no manual "starting values", monitoring of
intermediate values, or other human intervention) which
would input a polynomial over the integers or Gaussian
integers and output all of the roots of the polynomial to
any pre-specified, guaranteed accuracy. This is what the
system presented in this report does.

To be more precise, if the input polynomial has m
distinct roots, the system outputs a set of m disjoint
squares in the complex plane, each containing one root of
the polynomial and having width less than the specified
value.

In addition to this main algorithm, there are
algorithms for performing many associated operations. It is
possible to obtain the number of roots of a polynomial in
certain regions of the complex plane, such as circles,
rectangles, horizontal and vertical half-planes, horizontal
and vertical lines, and quadrants.

Having isolated the roots into disjoint squares (or
having other knowledge of the location of roots), one may
wish to refine only certain roots. That is, given the
polynomial and a rectangle containing one root of the
polynomial, compute a subrectangle of the specified maximum

dimension which contains the root. Algorithms are provided




for doing this operation.

The main algorithms assume a polynomial P with only
simple roots (roots of multiplicity one). If the
application requires only the location and not the
multiplicity of roots, there are algorithms for producing a
polynomial P' which has each distinct root of P occuring as
a simple root. Hence the main algorithms can be applied to
P'. If the multiplicities as well as locations are
important, there are algorithms which produce, along with
the disjoint squares each containing one root of P, the

multiplicity of the root in the square.



1.3 Applications

In addition to its intrinsic mathematical interest,
there are many processes in the physical world which are
expressed in terms of polynomials and whose important
characteristics are related to the locations of the zeros of
these polynomials. One such application, the stability of
certain mechanical and electrical differential systems,
created the initial interest in pursuing the research

presented in this report.




1.4 sac-1

The algorithms presented in this report are implemented
in Fortran, making extensive use of SAC-1, system for
Symbolic and Algebraic Computation. The extent of this
system makes it impractical to describe even briefly
individual subprograms.

However, a general overview of each module will be
given here. In addition, all except the most straightforward
algorithms presented in this report have verbal descriptions
of the methods which they employ. Finally, many of the -
SAC-1 routines have names which clearly describe what they
do. For example, IPROD, PPROD, RPROD, GIPROD, and GPPROD
compute the product of two infinite precision integers, two
polynomials, two rational functions, two Gaussian integars,
and two Gaussian polynomials, respectively. Hence, even
those not familiar with SAC-1 should be able to follow most
of the algorithms.

In order to study the material in depth, however, a
thorough understanding of the following modules is required:
List Processing, Integer Arithmetic, Polynomial, Rational
Function, Modular Arithmetic, Real Zero, and GCD and
Resultant. Manuals giving detailed descriptions of these
and the other SAC-1 modules are readily available from the
University of Wisconsin Computer Sciences Department.

SAC-1 is not only extremely powerful, but also very



portable and easily used. A few so-called primitives are
machine dependent and usually written in assembly language.
The remainder of the system, however, is written in ASA
Fortran. Hence SAC-1 can be easily implemented on virtually
every machine with a Fortran compiler. In addition, one
uses the system by calling the subprograms in the usual
Fortran fashion. Hence there is no new language to learn;
one need only become familiar with the subprograms.

The basis of the system is the list processing module
[COG67]. SAC-1 uses a single link reference count
structure. Space is saved using only a single link, and
little efficiency is lost since the majority of applications
proceed sequentially through the list. The reference count
approach allows the overlapping of lists, which saves
considerable storage. In addition, return of cells to
available space requires time proportional to the number of
cells returned rather than to the number of cells in use.

Consider an integer A ¥ 0, where for some integer B > 1.

m m+1 m 3
B < |A| <8 . Then A can be written as A = J a
- =0 j
where a = 0 or sign(a ) = sign(a), |a ] < B, and a # 0.
] J J m

The SAC-1 integer arithmetic system [COG68a] uses this

technique, representing A as the list (g , o » -« - « , & )
0 1 m

where o 1is the Fortran representation of a . This order is
3 ' 3




9
chosen since most arithmetic operations begin with the low
order digit. B can be set for the particular installation,
subject to a few restrictions.

n j
A polynomial P can be written P(x) = Zj=0 pjx where

p # 0 and n = deg(P). 1In this case the p are infinite
n J

precision integers or polynomials in other variables. This
recursive canonical form lends itself to performing
operations on the polynomials using recursive techniques.
Polynomial P is represented in the SAC-1 polynomial system

[COG68b] as the list (X, ¢ , e, . . . , c, e ) where X is

r r 1 1
the representation of the main variable and c is the
J
representation of the j-th non-zero element p of the
e
J
sequence {p , P, - . . , P }. This representation does not

0 1 n
include the zero coefficients. The list begins with the
highest degree term, as most polynomial operations proceed
in this order (as opposed to arithmetic order mentioned
above) .

The rational function system [COG68c] provides
operations on rational numbers or rational functions. P/Q
is represented as the list (r,s) were r and s are the
representations of R and S such that R/S = P/Q, R and S are

relatively prime, and sign(S) = 1.
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The modular arithmetic system [COG69a] provides for
arithmetic operations in GF(p) for p a prime less than B,
and for operations on multivariate polynomials over GF(p).
Certain polynomial operations can be done much faster than
using classical methods by using homomorphisms, the modular
operations, and then the Chinese Remainder Theorem.

The real zero system [HEL70b], written by Lee Heindel,
has been discussed in the first section of this chapter.

The polynomial gcd and resultant system [COG72] uses
modular and evaluation homomorphisms to compuﬁe gcdjs and
‘resultants much faster than with classical methods.é”

The Gaussian integer and polynomial system [CAB73] is
scheduled for release at approximately the same time as this
report, and the manual describing it is an invaluable
accompanying document for the study of the materialuuﬂ

presented here. G = G + iG 1is represented as the list
1 2

(9 rg ), where g and g are the representations of G and
102 1 2 1

G . Operations corresponding to those in the integer
2

arithmetie and integral polynomial modules are provided for

Gaussian integers and polynomials.
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1.5 Algorithms and computing times

Knuth [KND67] gives a formal definition of an algorithm
in the following manner. A computational method is a
guadruple (Q, I, P, £f) in which Q is a set containing
subsets I and P, £:Q0 - Q, and f(p) = p for all p ¢ P. 0Q, I,
P, and f represent the state of the computation, the input,
the output, and the computational rule. Each x € I gives a

computational sequence x , x , . . . , defined by x = x and
0 1 0

X = £(x ) for k > 0. The sequence terminates in K steps
k+1 k - -

if K is the smallest k such that x ¢ P. x is then the
k K

output for input x. Some computational sequences never
terminate. An algorithm is a computational method which
terminates in finitely many steps for all x ¢ I.

If £ is expressed in terms of elementary operations,
such as a Turing machine table, and each execution of an

elementary operation corresponds to the generation of

another element in the sequence x = f(x ), then K can be
k+1 k

termed the computing time of algorithm A = (Q, I, P, f)

given input x € I, which can be written t (x) = K.

A
As an example, consider the following algorithm SUM for
adding two positive numbers a and b represented as strings
of ones. Let the input tape be of the form 1...101...10...0

and the output tape be of the form 1...10...0 . Let the
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following be indices: i, j, k > 0; &, m, n >0; 0 <p < 1;

g, ¥, s, t »

characters c.

0; g+ xr + s + t

Let 5 ¢ {A, B, C

ALGORITHM SUM:

gqirfpmsjtnk

Q: Sx 1

i
Ax1 0

x1T01Tx1x10

j k
10

i3

Dx1 0

(1)

(2)

(3)

(4)

(5)

(6)

(7)

2 4
- A1

i 4k

AT x1 01 0
i

-~ B1 x1

i ik
Al %01 0
k i+1
-+ B1

i
B1 x1 0 X
i
B1 x0

]

i
C1 x10

J+1
+ DT x0

i,
D1 x0

i-1 3
x10

]

i-1
+ D1 x1

i jk
D1 x1 0

1.

» D}

1
x1

=

J+1 k

0

-1
1 0

i+1 k
0

Let

1

k

3

01

C

u

k

0

be a string of u

Note .that this is just a string encoding of a four

state Turing machine to perform the addition, with x being

the read-write head and the character right of x being read

or written.

For computing time analysis, the transformations in £

are done the following number of times:
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(1) a

(2) 1

(3) b + 1

) 1

(5 1

{(6) 1

(7)) a+b -1 .

Hence t (a,b) = 2a + 2b + 4,
SUM

Although this illustrates formal definitions, writing
algorithms for complex operations in the above manner would
be impractical and incomprehensible. Hence algorithms are
written using meta-languages. The following is an example
of this procedure.

ALGORITHM SORT:

SORT(A,N)

Array Sort
A is a Fortran linear array of N elements. A is sorted
into ascending order.

Method:

Use a bubble sort.

Description:

(1) [ITnitialize and check for single element.]
If N =1, return; j <« 1.
(2) [Tnitialize inner loop.] k « 7§ + 1.

(3) [Make pass through array.] If A[j] > A[k],
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(t < A[j1; A[j]l <« A[k]l; A[k] = t); k « k + 1; if k < N,

go to (3); j+~ 3+ 1; if j < N, go to (2); return.

Describing computing times in the formal sense
discussed above is also somewhat impractical. One could
analyze algorithms in terms of the number of machine cycles
used. However, each implementation would then need
computing times of its own. In addition, the analysis may
be very difficult and the usefulness of the results
limited because of their complexity.

Hence computing times are given in terms of codominance
equivalence classes. If £ and g are two positive real

valued functions defined on a set S, then f is dominated by

g, written £ = g, if there is a positive real number c such
that £ (x) < cg(x) for all x e S. 1If f « g and g = £, then £

and g are codominant, written £ v g. If f ® g but not g «

£, then f is strictly dominated by g, written f = g.

Now consider the following definition of t (x)
A

introduced above. Let I be the well defined set of wvalid
A

inputs te algorithm A (the elements of I may be n-tuples).
A

Let P be the set of outputs of algorithm A for all inputs x
A

€ I (the elements of P may be m-tuples). When algorithm A
A A

is initialized with input x € I , it performs a certain
A
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finite number, t (x), of primitve actions and stops with
A

output vy ¢ P . t 1is the computing time function of
A A

algorithm A.

Using the notions of codominance equivalence classes,
one obtains meaningful expressions for this computing time
function which are not burdened with encumbering details.

2
For example, t (a,b) v a + b and t (A,N)_i N .
SUM SORT

Subsequent algorithms in this report will include
computing time functions as discussed above. In all but the
obvious algorithms, proofs of the stated times will also be
included. These proofs will take one of several forms.

For short algorithms or for algorithms in which a small
set of steps are the major factor in determining computing
time, a paragraph giving the derivations will be used. For
example, in algorithm SORT one might use the following.

"For N > 1, step (2) is executed N - 1 times and step (3) is

N~-1 2
executed % (N - 9) N(N - 1)/2 = N times. Hence

it

2 2
+ (A,N) « N + N -1 N ."
SORT - -
For longer algorithms, a table will be used. This

table will contain three entries: the number of the step,

i; the number of times, n , that step (1) is executed; the
i
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computing ‘time, t , of step (i). For example, SORT might
i .

have the following table.

Step n t
i i
1 1 N
2 < N VI
2
3 < N N

Explanation of non-obvious table entries (as perhaps n
3

above) follow the table.
In certain instances it is not possible to specify Ffor

some step (i) a pair of entries n , t such that the product
i i

n t accurately reflects the actual computing time bound. A
i i

common example is when the j-th execution of step (i) is a
n
function of j, say t (j), and ¥ t (j) « n-max {t (3)1.
i j=1 i 1<j<n i
Then the table entry is left blank and a derivation for the
time of that step follows the table.
Certain properties of codominance equivalence classes

will be used often in the derivation of computing times.

For £, g, £, £, g , g non-negative valued functions on s,
1 2 1 2

the following hold, as shown in [MUD71], page 20:

(1) 0 = £;




(2)
(3)

(4)

(5)
(6)
(7)

(8)

if ¢ is a positive constant, cf ~ f;

17

iff «g and £ « g then £f + f «g + g and
T 2 2 1 2 1 2

tf =gg;

1 2 1 2

if £f =g and f « g then £ + £ « g;
1 2 1 2

max{f,g} v £ + g;

if 1 « £ and 1 = g then £ + g = fg;

if 1 « £ and ¢ is a positive constant, then f ~

£ + c;

ifS=8% xS x. . .x S5 and f = g, then f(a ,-

1 2 n

2 n 1 2 n

1

«g(a ,x , « . .,x) for any a ¢

1
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1.6 Format of presentation

The development of this system evolved naturally into
the development of a sequence of well-delineated subsystems.
Such a sequence of subsystems is also an instructive format
for presentation of the system, and hence is used in this
report.

The final section of this introductory chapter gives
some basic definitions used in the rest of the report.

Chapter two presents algorithms used throughout the
‘rest of the system. OSection one is the major exception to-
the "well-delineated subsystems” mentioned above. It
consists of a potpourri of algorithms for operations on
integers, rational numbers, and polynomials. Probably the
best approach to this section is to skim it initially and
then refer back to it as required. Many system algorithms
require square-free polynomials as input. Hence section two
discusses algorithms for computing the greatest square-free
divisor of a polynomial. The modular Sturm sequences
discussed later use approaches involving mixed radix
representdations. Section three discusses modular arithmetic
with specific emphasis on mixed radix representations and
algorithms for their use.

Fundamental to the operation of the system are Sturm
sequences and Routh-Hurwitz sequences. Chapter three

discusses these sequences. Theoretical background is
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presented in section one. Section two discusses the integer
and modular generation of the sequences. Section three
gives algorithms for using the sequences to determine the
number of zeros of a polynomial in three areas of the
complex plane--the upper and lower half planes and the real
axis.

In order to work with areas other than these three
basic areas, it is necessary to construct polynomials whose
roots are certain functions of the roots of the input
polynomial. Chapter four discusses these techniéues.
Section one presents a theoretical background of root
squaring and mappings, section two discusses algorithms for
root squaring, and section three discusses algorithms for
mappings. Section four applies the techniques to determine
the number of zeros of a polynomial in regions of the
complex plane such as quadrants, rectangles, and circles.

Chapter five then presents the heart of the system--
algorithms for isolating and refining the roots of a
polynomial.

Chapter six presents extensions of the system. Section
one gives?algorithms for refining individual isolated roots
of a polynomial. Section two discusses the square-free
factorization of a polynomial, and section three uses this
factorization to isolate and refine the roots of a
polynomial that have multiplicity greater than one. Section

four gives special input-output algorithms for the data



structures used in the system. Section five presents
algorithms for working with polynomials over the rationals.

Chapter seven gives some closing remarks, empirical

observations, and @ sample run of the system,
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1.7 Definitions and basic material

This section defines terms occuring in this thesis
which have not been used widely enough yet to assume
familiarity with them. In addition, it presents some
elementary properties of certain functions. These
properties will be used in many derivations and proofs.

n i

Let A(x , « « « , X ) =173 A(x, .« .., x ) x

1 r i=0 i 1 r-1 =

be a multivariate integral polynomial, Al # 0. The leading

numerical coefficient of A, lncf(aA), is A if A 1is an
n n

integer and lncf(A ) otherwise. The sign of A, sign(a),
n

is sign(lncf(A)). The sum norm and the infinity norm of

an integer a, |a| and |a| , are the absolute value of a,

[oe]

n
lal]. |a] =1z |A | and |A| = max {|a ] } are
1 i=0 i 1 - 0<ic<n i

then the sum and infinity norms of the integral polynomial

A.
Let a = a + ia be a Gaussian integer. Then |a| =
’ 1 2 1
la | + |a | and |a| = max{|a |, la |} - Tet A(z , . . .,
1 2 e 1 2 1
n i
z ) =7 Az, . . ., % )z be a multivariate
r i=0 i 1 r-1 «r

Gaussian polynomial. Using the preceding definitions for
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Gaussian integers, the norms of A are defined exactly as

n
for integer polynomials: |A| = % |A | and |a] =
1 i=0 i1 [
max {|aA | }. Note that |A| is a semi-norm and
0 <i<mn i e
therefore |A|] = 0 if and only if A = 0, |a] = |-a] ,
1 1 1

|a+B| < |a] + [B] , and |AaB| < |A| - |B|] . Also,
17 1 1 17 1 1

|a| =0 if and only if A = 0, |-A] = |a| , and |A + B

o] [0 [ee] [on]

< |a] + |B| . Finally, |aB| < |a| -|B| . See [COG73b].

o] «x ee] o0 1 ¢ -

The length of an integer a, L(a), is defined as

follows. L (a) = [Iog (|lal + 17] for a # 0 and L (0) = 1.
B B B

Since log " log for any other base y and since in most
B Y

contexts B is fixed, the subscript is omitted and L(a) is
used. The following properties of L(a) are given in
Collins, [COG73al, pp. 5 - 6:

(1) L(a t b) « L(a) + L(b);

(2) L(ab) ~ L(a) + L(b) for a,b # 0;

(3) E(la/bl) ~ L(a) - L(b) + 1 for |a| > || > 0;

(4) L(H_ a) « Z L(a_);
(5) L a) I L(a ) for |a | > 1;

(6) L(a ) ™~ bL(a) for |a] > 2 and b > 0.
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The length function will also be used for Gaussian
integers and rational numbers, based on the following

definitions. If a = a + ia 1s a Gaussian integer, then
1 2

L(a) = L(a ) + L(a ). Ifr =1xr /r is a rational number,
1 2 1 2

then L(r) = L(r } + L(r ).
1 2

Theorem 1.7.1: For arbitrary rational numbers r and

s, L(r + s) « L(r) + L(s) and L(rs) = L(r) + L(s).
Proof: Trivial for r = 0 or s = 0, so assume r # 0

with r = r /r in lowest terms and s # 0 with s ='s /s in
12 12

lowest terms.
Let t = r + s. The result is trivial if t = 0, so

assume t # 0 with t = t /t in lowest terms. Then L(t ) i
1 2 1

IL{r s 4+ r s ) «L{r s ) + L(r s ) «L(r ) + L(s ) + L(r )
1 2 21 1 2 21 1 2 2

+ L(s ) = L(r) + L(s) and L(t ) <L(r s ) < L(r ) + L(s )
1 2 2 2 2 2

< L(r) + L(s), so L(t) = L(t ) + L(t ) & L(r) + L(s).
1 2

Now let t = rs, with r,s # 0 and £t = t /t in lowest
' 1 2

terms. Then L(t ) *L(r s ) « L(r ) + L(s ) and L(t ) =
1 11 1 1 2

I{r s ) =L(r ) + L(s ) so L(t) = L(t ) + L(t ) « L{xr ) +
2 2 2 2 1 2 1.

L(s ) + L(r ) + L(s ) = L(r) +L(S)..
1 2 2
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Subsequent discussions will often concern polynomials
which differ only by a constant, and hence a term expressing
this relationship is introduced here. Two polynomials A and

B are similar, A = B, just in case there are non-zero

constants a and b such that aA = bB.
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CHAPTER 2: AUXILIARY ALGORITHMS

2.1 Miscellaneous algorithms

This section consists of algorithms and other material
which is used in many subsequent sections, but which does
not fit well into any particular subsystem. Hence it should
probably be skimmed on first reading and then referenced as
required.

For example, many times it is necessary to interchange
the values of two variables. This is usually done by the _
foliowing sequence df steps: T+ A; A+« B; B+« T {(where A
and B are the variables to be interchanged). When several
such operations must be performed sequentially, there is a
large amount of repetitious code. Hence the following
algorithm performs the interchangé operation.

ALGORITHM CZFLIP:

CZFLIP (A,B)
Complex Zero System, Elig Values
A and B are arbitrary variables. The values of A and B
are interchanged.

Description:

(1) [Interchange.] T <« A; A < B; B < T; return.

Computing Time: Vv 1,

Because of the rigid nature of Fortran array allocation,

it is sometimes advantageous to represent arrays as SAC-1
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lists and.use the inherent dynamic storage allocation of
this structure. A graphic example of this can be seen in
the main algorithms PRIR and GPRIR by reconstructing them
using Fortran arrays. The following algorithm computes the
transpose of a two dimensional array stored as a list.

ALGORITHM CZTRAN:

B=CZTRAN (A)
Complex Zero System Transpose
A is an m by n matrix, m,n > 1, in list form, A =

((a , a ; . .« .« 5 @ Yy, .o o, (& , a r e .
1,1 1,2 ‘ " 1,n : m,1 - m,2 -

., a )), where all a are atoms or all a are
m,n L,3 1,3

lists. B is the transpose of A, also in list form, B =

Description:

(1) [Initialize.] B+« 0; A+« A; C <« 0.

(2) [Generate list of pointers to rows.] ADV(c,Ad); C <«
PFA(c,C); if A # 0, go to (2).

(3) [Obtain type.] T <« TYPE(c).

(4) [Initialize new row.] b <« 0; C « C.

(5) [Loop.] ¢ <« FIRST(C); ADV(a,c); if T = 0, (b <«
PFA(a,b); go to (6)); b + PFL(BORROW(a),b).

(6) [Increment and check.] ALTER(c,C); C « TAIL(C);
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if T# 0, go to (5).
(7) [Check outer loop.] B <« PFL(b,B); if ¢ # 0,
go to (4).
(8) [Finish.] B <« INV(B); erase C; return.

Computing Time: v mn, for A an m by n matrix.

Proof:
Step n t_
i i
1 1 ~vo
2 m v
3 1 v -
4 n v
5 mn | v 1
6 mn | Vv 1
7 n v
8 1 “von

The next set of algorithms is from Rubald's forthcoming
Ph.D. thesis [RUC73]. They are included here to facilitate
reading of this report, since they are used often in
subsequent algorithms.

Some representations in SAC-1 use pairs of elements.
Examples include rational numbers and Gaussian polynomials.
Other structures are naturally dealt with in pairs, such as
the coefficient and exponent in the representation of a

polynomial. In order to avoid the constant use of pairs of
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subprograﬁ calls, the following algorithms are two-element
versions of ADV, DECAP, and FIRST.

ADV2 returns the first two elements of the list and
moves the pointer to the third element.

ALGORITHM ADVZ:

ADV2(a,b,C)
égzance 2 Elements

C is the input. a and b are outputs. C is a list (c ,
1

C 4 + o« « 4, C ), with n > 2. The new value of a is c
2 n 1
and the new value of b is ¢ . The new value of C is
2
the list (¢ , ¢, . . . , ¢ ). No reference counts are
3 L n
changed.
Description:

(1) ADV(a,C); ADV(b,C); return.

Computing Time: Vv 1.

DECAP2 is similar to ADV2 except that in addition to
advancing the list pointer and returning the first two
elements, ‘it erases the cells which contained these
elements.

ALGORITHM DECAPZ2:

DECAP2 (a,b,C)

Decap g.Elements
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C is the input. a and b are outputs. C is a list (c ,
1

c, ¢4« .« .+, C), withn > 2. The first two cells
2 3 n

of C are removed and returned to available space. Thus

the new value of C is the list (c3, C y v o« « 4 C).
4 n

The new value of a is ¢ and the new value of b is ¢ .
1 S 2

Description:

(1) DECAP(a,C); DECAP(b,C); return.

Computing Time: ~ 1.

FIRST2 returns the first two elements of the list, but
not alter the list pointer.

ALGORITHM FIRST2:

FIRST2 (a,b,C)

First 2 Elements

C is the input. a and b are outputs. C is a list (c ,
1
C 4+« +« « 4y C), withn > 2. The new value of a is c
2 n 1
and the new value of b is ¢ . C is unchanged. No
2

reference counts are changed.

Description:

(1) a <« FIRST(C); b = PIRST(TAIL(C)); return.

Computing Time: ~ 1.

Sometimes in these pair structures one is interested
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only in the second element. Hence the following algorithm

returns this second element.

ALGORITHM SECOND:

a=SECOND (B)
Secoqg Element

Bis alist (b, b, . . ., b)), with n > 2. The new
1 2 n

value of a is b . B is unchanged. No reference counts
2

are changed.

Description:

(1) a « FIRST(TAIL(B)); return.

Computing Time: ~v 1.

The next algorithm is used when one needs to convert an

L-integer to a rational number.

ALGORITHM RNINT1:

B=RNINT1(A)
Rational Number from Integer (1)
A is an L-integer. B is the rational number B = A/,

Description:

(1) B <« 0; if A = 0, return; B <« PFL (BORROW(A) ,
PFL(PFA(1,0),0)); return.

Computing Time: ~ 1.

The previous algorithm converts a single L-integexr to a

rational number by creating a denominator of +1. In order
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to create a rational number from a pair of L-integers it

would be convenient to have an algorithm for L~integers

analogous to PGCDCF for polynomials. The following is such

an algorithm, returning the GCD and the cofactors.

ALGORITHM IGCDCEF:

IGCDCF(A,B,C,A,B)

Integer GCD and Cofactors

A and B are L-integers. C = gcd(A,B), A = A/C, and

B = B/C.

Description:

(1) C « IGCD(A,B); if FIRST(C) = 1 and TAIL(C) = 0, (&

< BORROW(A); B < BORROW(B); return); A < IQ(A,C); B

<« I0(B,C); return.

Computing Time: v 1 if A = 0 and B = 0; otherwise <«

n{m - k + 1), where m ={max L(A), L(B)}, n =
L(B)}, and k = L(gcd(A,B)).

Proof: t (A,B) «=n{m -k + 1), t (a,0) =
IGCD IQ

+ 1) <n{m~-%k + 1), and t (B,C) = k(L(B) -
IQ

n(m:k+1).§

The last algorithm in this set from Rubald's

uses the previous algorithm to convert an arbitrary pair of

L-integers to a canonical SAC-1 rational number.

min{L(A4),

k(L(n) -

kK + 1) <

thesis

k
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ALGORITHM RNINT2:

C=RNINT2 (A,B)
Rational Number from Integers (%)
A and B are L-integers, (A # 0 and B = 0). If A = 0
then C = 0. Otherwise, C is the rational number C =

C /C such that gecd(C ,C ) =1, C > 0, and C = A/B.
1 2 1 2 2

Description:

(1) [Initialize and check for zero.] If A = 0, (C <« 0;
return); IGCDCF(A,B,G,A,B); erase G.

(2) [Check signs.] S « ISIGNL(B); if S = 1, (C « PFL(A,
PFL(B,0)); return); C <+ PFL(INEG(A),PFL(INEG(B),0));

erase A, B; return.

Computing Time: ~ 1 if A = 0; otherwise, « n{m - k
+ 1), where m = max{L(a), L(B)}, n = min{L(A), L(B)},

and k = L{gcd(A,B)).

Proof: t (A,B,G,A,B) « n(m - k + 1) . Let & =m
IGCDCF -
- n. Then t (B), t (r), t (B) «am + n v m
ISIGNL INEG INEG -
3
=4 +tn <ng+n=n(m-~n+ 1) i_n(m -k + 1). g

The SAC~1 rational function system does not include a
routine for computing the negative of a rational function R,
although one can of course use RDIF(0,R). Explicit negation
of a rational function is performed by the following

algorithm.
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ALGORITHM RNEG:

R*=RNEG (R)
Rational Function Negation
R is a rational function. R*¥ = -R, a rational function.

Description:

(1) R* + 0; 1f R = 0, return; FIRST2(R ,R ,R); R* <«
1 2

PFL (PNEG(R ) ,PFL(BORROW(R ) ,0)); return.
1 2

n
Computing Time: «(II A VL(a), where R=R /R , & =
i=1 i 1 2 i

deg (R), A =132 + 1, and a = |R | . .
i 1 i i 1
One frequently has need of simple rational numbers such
as 1/2. 1In oxder to lessen the code required to generate
the internal representation of such numbers, the following
algorithm inputs two Fortran integers and constructs a SAC-1
rational number from them.

ALGORITHM RNUM:

r=RNUM{a,b)
Rational Number
a ang b are Fortran integers, 0 < |al|,|b| < B; gcd(a,b)
= 1; and b > 0. 1 is a rational number, r = a/b.

Description:

(1) a « PFA(a,0); b «+ PFA(b,0); r + PFL(a,PFL(b,0));
return.

Computing Time: "~ 1.
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Another rational function operation that is used quite
often in the system is the computation of the average of two
rational numbers. For example, one frequently needs to find

the midpoint of a line interval or of a strip in the complex

plane.

ALGORITHM RNAVER:

c=RNAVER(a,b)
Rational Number Average
a and b are rational numbers. ¢ is the rational number
c = (a + b)/2.

:Description:. . SN S

(1) d <« RNUM(1,2); e « RSUM(a,b); c <« RPROD(d4,e);

erase d, e; return.

Computing Time: « L(a )L(b ) + L(a )L(b ) + L(a )L(b ),
1 2 2 1 2 2

where a = a /a and b = b /b .
1 2 1 2

The last rational function operation in this set inputs
two rational numbers and computes equivalent rational
numbers with a common denominator. This is used in such
operations as transforming a complex rational coordinate

r /r + ir /r to the form a/c + ib/c so that efficient
11 12 21 22

homothetic operations can be used.
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ALGORITHM CZRPCD:

CZRPCD(xr ,xr ,a,b,c)
1 2

Complex Zero System, Rational
Pair to Common Denominator

r and r are inputs. a, b, and ¢ are outputs. r and
1 2 1

r are rational numbers. If r =r = 0, then a = b =
2 1 2

c = 0. Otherwise, a, b, and c are the unique

L-integers such that r = a/¢c, r = b/c, ¢ > 0, and
1 2
ged(a,b,c) = 1. )
Method:
et r =1y /rxr and r =r Jr . Ifr = 0, then a =
1 11 12 2 21 22 1
0, b=r , andc=1r_ . Ifr =0, then b =10, a =
21 22 2

r , and ¢ = xr . Otherwise, let d = gcd(r ,r ),

11 12 12 22
r =r fd, andT =7r /d. Thena=r ¥ , b =

12 12 22 22 11 22
r r ,andc=1r T .

21 12 12 22
Description:

(1) [Initialize.] a <+ 0; b+« 0; c+« 0; if r = 0 and

1

r = 0, return.

2

(2) [Check for zero.] If r # 0, FIRST2(r ,r ,r );
1 11 12 1

if r # 0, FIRST2(x ,r ,r ); ifr = 0,
2 21 22 2 1
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(b « BORROW(r ); ¢ <« BORROW(r ); return); if r = 0,
21 22 2

(a < BORROW(r ); c <« BORROW(r ); return).
11 12

(3) [Compute terms.] IGCDCF(r ,r ,d,r ,r ); a <

12 22 12 22
IPROD(r ,r ); b + IPROD(r ,r ); c <« IPROD(x ,
11 22 21 12 12
r ); erase d, ¥ , r ; return.
22 12 22
Computing Time: = a a + a a + a a , where a =
11 22 21 12 12 22 15
L(r ) for 1 < i,j_i 2.
ij G s -
Proof: t (r ,r ) =« L(r )L(r ). The time for
- IGCDCF 12 22 ~ 12 22
the products is « L(r J)L(r ) + L(r )L(r ) +
11 22 12 21

2

¥

L(r )YL(x ).
12 22

Many operations performed by the system require
computing the greatest common divisor of two polynomials.
PGCDCF, contained in the SAC~1 Polynomial GCD and Resultant
System [COG72], is used for this purpose. Empirically, it
is much faster than other polynomial gcd algorithms, with
the added advantage that it also computes the cofactors of
the inputs. 1In analyzing the theoretical computing time,
however, one encounters the problem that its maximum
computing time is not what would be expected. The following

discussion derives the computing time of the present version
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of PGCDCF, then shows how a simple modification of one step

can reduce the maximum computing time to the expected

result.
Theorem 2.1.1: Let A', A' be univariate integral
1 2
polynomials, m = max{deg(A'), deg(A')}, n=m + 1, and d =
1 2
max{|A'| , |A'] }. The number of primes processed by PGCDCF
1 o 2 o
is = uL(ud).
Proof: Let B' = gecd(A',A'), A = pp(A'), and A =
T 1 2 1 1 2

pp(A'). If p is an odd prime.such that ﬁ(p}ldcf(A ¥,
2 1

—(p|ldcf(a )), and deg(gcd(A mod p, A mod p)) = deg(B'),
2 1 2

then p is termed a lucky prime. Otherwise, p is an unlucky

prime [BRW71].

Letp, P, . . . , p be the lucky primes used by
1 2 L
L -1
PGCDCF, Q = 1 P, and Q' = 1 p . In the notation of
i=1 1 i=1 i
the algorithm (with a; = ldcf(Al) and a, = ldcf(Az)),
Q>h=20b=2max(|a | , |a ] )-gcd(a ,a ) (1)
11 21 1 2
and
Q>m =mn = 2|B| -|c ], (i=1,2), (2)
i i 1 i1

but Q' fails to satisfy at least one of these conditions.
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Thus,
Q' <max(h, m , m ) (3)
1 2
Clearly,
2
h < 2ud . (4)
Now, 1dcf(C ) = a = 1ldcf(A ), so C |a A and B|bA so
i i i i ii i
Bla A By Musser's Corollary, [MUD71] p. 115, since
ii
laa | =Ja|"|a | < a-ua,
ii1 i i1
_ _ _ 2m 2 o
Bl »IT 1, 18] <n a)y. 50 (5)
1 11 21 ‘
By (2), (3), (#), and (5),
Um+2 4
(6)

Q' < 2u da .
2-1 _ o .
Since 2 Q' 2 -1 <1+ (Um+ 2)log p + blog d and
2 2
£ = uL(u) + L(4). (7)
= deg(B) ’

Every unlucky prime divides S (A ,A ), where k
kK 1 2

2 (m-k)
so if t is the number of

and |S (A ,A)] < (na)
k 1 2
unlucky primes then
t= (m - k)L(ud). (8)
By (7) and (8),
£+ t = uL(nd). % (9)
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Theorem 2.1.2: Let A' and A' be univariate polynomials
1 2

with deg(A'), deg(A') <m; y =m + 1; and |A'| , |A'] < 4.
1 2 1 e 2 o

3 3
Then the time to execute PGCDCF is = U L(ud)

Proof: Let N be the bound on the number of primes used

by PGCDCF. As shown in the previous theorem, N « yL(ud).

Let B' = gcd(A',A'") and C' = A'/B', C' = A'/B'. The
1 2 1 1 2 2

following bounds hold for these quantities [MUD71]:

2y
B'] , |c'| . |c'] < (u@) .

© 1 o 2 o

Then the timing chart for PGCDCF is as follows.

Step n t
. i i
1 1 N
» 2
2 1 « pL(d)
2
3 1 o« L (4)
2
4 1 < pL(pd) + L(d)
5 i.N = L(d)
6 < N « pL(d)
2
7 <N « U
8 < N AV |
9 <N v o
10 < N « Uy
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1 <N v
12 <N | v
2
13 <N e u L{pd)
2 2
14 SN} = p L(ud)
15 1 | =me——-
3 2
16 1 < u L(ud)
2 2
17 1 < U L(pd)
In step (4), t (A ) = pL(pd) and t (2,t) =
‘ . PNORMF i S IPROD

L(Hd)L(d). So t = pL{pd) + L(ud)L(d) ~ pL(p) + pL(d) +
4

2 2
L(ML(d) + L(d) "~ uL(ud) + L(d) .

In step (7), CGCDCF.is called, and it in turn calls
2

CPGCD1 since the polynomials are univariate. Hence t « y
g =

t, t v 1 since the polynomials are univariate.
9 11

In step (13), if Q is a product of unlucky primes, then

2 (m~k)

ols (& ,a), so @ < (pd) , L(Q) = uL(pd), and t
k 1 2 13

iR

2
g L{pd). If Q is a product of lucky primes, then L(Q) <

PL(p) + L(d) = pL(pd) .

In step (14), remarks similar to those for step (13)
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apply. L(IB] ), »(|€ | ), (€ | ) = pn(ud), so t (B),
© 1 o 2 « PNORMF
B 2 2 2
t (C) = 1 L(Hd) and t (m,n ) < W L{ud) .
PNORMF i IPROD i
_ _ _ 2m 2
In step (16), |Bl ’ lC ] ; IC | < U (ud ), as noted
1 11 21
2m+1 2 2
in the proof of the previous theorem, so t < uL(u da )
16

3 2 2 2 3 2

voog L(H) 4+ U L(WL(d) + uL(d) = u L(ud) .
2u
In step (17), Bl , lc |, lc | = (ua , sot = _
o 1 » 2 ® 17
21U 2 2
PL((1d) )YL(d) = v L(ud) .
17 2 2 3 3 b
Hence, X nt < (N+ wu L(pd) = u L(ud) . &

i=1 i i

One step of PGCDCF requires the comparison of the
product of two numbers with another number. This
multiplication is the cause of the problem in the computing
time. An alternative approach is to compare the sum of the
logarithms of the two numbers with the logarithm of the
other number, thus eliminating the multiplication. The
following algorithm is used in computing the required
logarithms.

ALGORITHM FLOG2:

n=FLOG2 (A)

Floor of the Logarithm to the Base 2
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A is a positive L-integer. The SAC-1 implementation

:
Liog )] .
2

has 8 = 2 . n

i i
Method: Let A = % ap , with a > 0. Use the

i=0 i 3
recurrence relation m =1, m = 2m + 1, to compute

0 i i-1
k+1
the least k such that 2 - 1T=m >a . Then n =
k™ 3

£3 + k.
Description: R

(1Y [Initialize.] n-+ 0; B+ A; C <« TAIL(RA); goAEo (3).
(2) [Increment n and obtain next B-digit.] n <+ n + £&;
B« C; C+« TAIL(C).

(3) [Check for last B-digit.] If C # 0, go to (2).

(4) [Initialize for high—drder B-digit.] m + 1;

b « FIRST(B); go to (6).

(5) [Compute next term and increment n.] m < 2m + 1;
n<«n+ 1.

(6) [Compare.] If m < b, go to 5; return.

Computing Time: o L(A).
Proof:

Step n t

2 L(A) -1 o
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3 L (A) v
4 1 v
5 < £-2 N
6 < £-1 N
6
Hence ¢ nt o« L(A) + & « L(A), since £ is a
i=1 117 -

constant for each implementation. &

FLOGZ can be used in PGCDCF in the following manner.

Let q = FLOG2(Q), m = FLOG2(m), and n = FLOG2(n ). Then
i i
: ﬁ#ﬁi+3 L B
2mn < 2 . Hence if g >m + n + 3, or equivalently g
i - i

> m+ n + 2, then Q > 2mn .
i i

Theorem 2.1.3: Changing step (14) of PGCDCF to the

3 2
following changes the computing time T to T < u L(ud)

(14) 8 « ICOMP(Q,h); if s < 0, go to (5); m =

PNORMF (B); n <« PNORMF(C ); n < PNORMF(C ): S <
1 1 2 2

FLOG2(Q) - FLOG2(m) - 2; £t <« S - FLOG2(n ); t « S -
1 1 2

FLOG2(n ); erase m, n , n ; if £t < 0 or t < 0,

2 1 2 1 2
go to (5).
Proof: ©L(Q), L(m), L(n ) « pL(ud), t (X) « uL(ud)
i FLOG2
for X =Q, m, n . t (X) = UZL(ud) for X =8B, ¢, C, so

i PNORMF 1 2
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2 3 2 g
t <y L(ud) and n t “p Lupd) .
14 4 14
When working with polynomials one frequently references
n i
two of the terms. If A(x) = I a ¥ 1s a polynomial . of
i=0 i

degree n, the leading coefficient of A, designated ldcf(a),

is a , the coefficient of the high-order (n-th degree) term,
n

and the trailing coefficient of A, designated trcf(a), is

a , the coefficient of the constant (0-th degree) term.
0

. For example, in later modular algorithmsﬁthe,trailing
coefficient of a congruence polynomial is needed? Since tﬁe
SAC-1 modular arithmetic system does not contain an
algorithm for this purpose, such an algorithm is included in
this system.

ALGORITHM CPTRCF:

a=CPTRCF (A)
Congruence Polynomial Trailing Coefficient
A is a univariate polynomial over a finite field GF (p) .
a is the trailing coefficient of A, that is, the
constant term of A, an element of GF (p) .

Description:

(1) [Initialize.] a « 0; if A = 0, return; A' <« TAIL(A).
(2) [Obtain last element of A.] ADV(a,A'); if A' # 0,

go to (2); return.

it

Computing Time: v U, where m deg(A) and 4t = m + 1.
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Proof: Step (1) is executed once with time t ~ 1.
1

If A # 0, step (2) is executed y times with time t
2

The next group of algorithms perform operations on
integral polynomials. Some of these operations are not
provided elsewhere in the SAC-1 system. Others could be
performed by more general routines already existing;
however, freguency of application makes the implementation
of the specialized versions worthwhile. B I

The first such operation is the multiplicétion of a
polynomial by an arbitrary power of its main variable:
Determination of the main variable of a polynomial will
depend, of course, on how the polynomial is specified; a

polynomial can be rewritten to make any of its variables the

n i
main variable. If A(x , X, + . « , X ) =L A x 1is a
1 2 r i=1 1 r
polynomial in r variables x , . . . , X with the A
1 r i
polynomials in r-1 variables x , . . . , X , then x is
; 1 r-1 r

called the main variable. In SAC-1 the main variable is

clearly determined by the structure of the list representing

the polynomial.
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ALGORITHM PALTEX:

B=PALTEX (A, k)
Polynomial with Altered Exponent
A is a proper integral polynomial with main variable x;

k
k is a Fortran integer such that x A(x) has no negative

k

exponents. Then B is the polynomial B(x) X A(x).

Description:

(1) [Initialize.] B < 0; if A = 0, return; A' < TAIL(A).
(2) [Obtain term of A.] ADV2 (a,j,A'). ' ‘ i
(3) [Compute term of B.] B + PFA(j+k, PFL(BORROW(a),
B)); if A' # 0, go to (2).

(4) [Finish.] B <« PFL(PVBL(A) ,INV(B)); return.

Computing Time: v , where m = deg(A) and u=m+ 1.

Proof:
Step n t_
i i
1 1 v
2 <y o
3 <u o
4 <1 | =y

3
length (B) < 2y in step (4), so t (B) « 2y ~n y. g
INV -
The next algorithm adds a univariate polynomial and an
L-integer, without the necessity of making the L-integer

into a compatible O0-degree polynomial, as would be required
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if using the SAC-1 program PSUM.

ALGORITHM PISUM:

B=PISUM(A,x,c)
Polynomial Integer Sum
A is a univariate integral polynomial. TIf A # 0, then
x is the wvariable of A; if A = 0, then x is an
arbitrary variable. If A = 0 and ¢ = 0, then B = 0;
otherwise, B is the univariate integral polynomial, in

variable x, B(x) = A(x) + c.

Description:

(15[0 zeio?] If ¢ = 0, (B <+ BORROW(A)}”retufn). A -
(2) [A zero?] C <« PFL(BORROW(x) ,PFL(BORROW(c) ,PFA(Q,
0))); if A =0, (B + C; return).

(3) [prdd.] B <« PSUM{A,C); erase C; return.

Computing Time: = m + L(a) + L(c), where m = deg(ad) and

a = |a] .
Proof: |
Step n t.
i i
1 1 vl
2 <1 v
3 <1 «m + L(a) + L(c)

Consider the time to execute PSUM(A,C) in step (3).
Since deg(C) = 0, PSUM will scan A and borrow
coefficients until it finds the low-degree term. This

will take at most m steps with time v 1 for each step.
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If A does not have a O-degree term, then c is borrowed.
If A does have a 0O-degree term, then the coefficients

are added with time t « L(a ) + L(c), for a the
- 0 0

coefficent of the 0-degree term. Thus the total time

t (A, C) em+ L{(a ) + L{(c) «m + L(a) + L(c) since
PSUM 0 -

la | < a. g

0

A third operation used very often in this system is the
multiplication of an arbitrary polynomial by a linear monic
polynomial. A polynomial P is linear in its main variable

if deg(P) = 1; it is monic if 1ldcf(P) is a unit.

ALGORITHM PMLMP:

B=PMLMP (A,c)
Polynomial Multiplied by a
Linear Monic Polynomial
A is a univariate integral polynomial. ¢ is an
L-integer. B is the univariate integral polynomial
B(x) = A(x)"(x + ¢).

Description:

(1) B <« PALTEX(A,1); B < PIP(A,c); B <« PSUM(B ,B );
1 2 1 2

erase B , B ; return.
1 2

Computing Time: « pL(a)L(c), where m = deg(A), p = m +

1, and a = |a| .

<«




49

Proof: t (A, 1) = p. t (A,c) = uL(a)L(c).
PALTEX PIP
deg(B ), deg(B ) < u and L(|B | ), L(|B | ) = L(a) +
1 2 1 o 2 ©
L(c). Hence t (B ,B ) = u{L(a) + L(c)}. Thus the
PSUM 1 2

total time t «= uL(a)L(c).g

The next algorithm returns the sign of the trailing
coefficient of a polynomial.

ALGORITHM PTCS:

s=PTCS (A)
Polynomial Trailing Coefficient Sign
A is a univariate integral polynomial. s is a Fortran
integer, the sign of the constant term of A (s = 0 if
A= 0).

Description:

(1) [Obtain coefficient.] c + PTLCF(a).
(2) [Obtain sign.] s <« ISIGNL(c); erase c; return.

Computing Time: = p + L(a), where m = deg(ad), u = m +

1, and a = |A] .

[ee]

Proof:

Stép n t

2 1 =< L(a)

n i
The content of a polynomial A(x) = 2 a X , written
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cont(A), is the gcd of its coefficients; cont(a) = ged(a ,
0

&, . . . ,a). The primitive part of a polynomial,
1 n

written pp(A), is the polynomial divided by its content;
pp(A) = A/cont(A). The SAC-1 system has a routine for
computing the primitive part of a polynomial. However, it
returns the absolute value of the primitive part. In most
cases, this is the desired result; however, in computing
p.-r.s.'s, one needs the signed primitive part. Hence the
following algorithm computes the primitive part which has
the same sign as tﬁe input polynomial.

ALGORITHM PSPP:

B=PSPP (A)
Polynomial Signed Primitive Part
A is a non-zero integral polynomial. B = A/cont(A), a
primitive polynomial whose sign is the same as the sign
of A.

Description:

(1) [Compute content.] C <« PCONT (A) .
(2)[Divide by content.] B + PSQ(A,C); erase C; return.

Computing Time: « UL(a)z, where m = deg(A), ¥ =m + 1,

and a = IAI .
[ee]
2 2
Proof: t (A) = uL(a) . t (A,C) = uL(a) since
PCONT PSQ
Cc < a.g
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n i
The order of a non-zero polynomial I a x 1is its
i=0 i

order as a formal power series, namely the least k such that

a # 0. The following algorithm determines the order of the
k

input polynomial.

ALGORITHM PORD:

n=PORD(A)
Polynomial Order

A is a non-zero univariate integral polynomial. n is

the crder of A.

Description:

(1) [Initialize.] A' « TAIL(A).
(2)[Loop.] A' < TATIL(A'"): ADV(n,A'"); if A' # 0,
go to (2); return.

Computing Time: & U, where m = deg(A) and 4y = m + 1.

Proof:
Step n t.
1 i
1 1 v
2 < v

In some subsequent algorithms it is required that the
input polynomial have no roots at the origin. A polynomial
P(x) has a root at the origin, of course, just in case P(0)
= 0. The following algorithm uses PORD to compute a

polynomial which has the same roots as the input polynomial
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except that the roots at the origin have been removed.

ALGORITHM PWRAZR:

B=PWRAZR(A)
Polynomial with Roots at Zero Removed
A is a univariate integral polynomial. If A = 0, then

B = 0. Otherwise, B(X) = A(x)/xk, whexre k is the order

of A.

Description:

(1) [Initialize. 1 B <« 0; if A = 0, return; k <« PORD(A).
(2) [Compute B.] If k = 0, (B <« BORROW(A) ; return);
B « PALTEX(A,-k); return.

Computing Time: * Yy, where m = deg(ad) and 4 = m + 1.

Proof:
Step n t.
i i
1 1 = U
2 1 = U

This completes the integral polynomial set. The next
two algorithms in this section perform operations on
Gaussian polynomials. The first constructs a simple
Gaussian éolynomial from two coefficients and exponents.

ALGORITHM GPCONS:

B=GPCONS(A,c ,e ,c ,e )
T 1 2 2

Gaussian Polynomial Construction

A(z) is a non-zero univariate Gaussian polynomial in
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variable z. ¢ and ¢ are L-integers. e and e are
1 2 1 2

81 e2
non-negative Fortran integers. B(z) = c z + ic z ,
1 2

a univariate Gaussian polynomial compatible with A(z).

Description:

(1) [Initialize and check first segment.] B <« 0; B <«
1 2

0; B+« 0; if ¢ # 0, B < PFL(GPVBL(A),PFL(BORROW(c ),
1 1 1

PFA(e ,0))).
1

(2) [Check second segment.] If ¢ # 0, B> <+
2 2

PFL (GPVBL(A) ,PFL(BORROW(c ) ,PFA(e ,0)})).
2 2

(3) [Assemble.] If B # 0 or B # 0, B « PFL(B ,
1 2 1

PFL{(B ,0)); return.
2

Computing Time: ~ 1.

The final algorithm of this section computes the
symmetric part of a Gaussian polynomial, defined as follows.

Let A = A. + 1A be a Gaussian polynomial and let B =
1 2

gcd(A ,A ). Then B is the symmetric part of A.
1 2
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ALGORITHM GPSYMP -

GPSYMP (A,B, C)

Gaussian Polynomial Symmetric Part
A is the input. B and C are outputs. A is a non-zero
univariate Gaussian polynomial. B is the symmetric
part of A, that is, the ged of the real and
imaginary parts of A. C = A/B. B is a univariate
integral polynomial and C is a univariate Gaussian
polynomial.

Description:

e

(1) [Compute ged and cofactors.] FIRST2(A , A (A C o«

T 2 1
0; C <« 0; if A = 0, (B + PABS(A ); C <« PQ(A ,B);
2 1 2 2 2
go to (2)); if A =0, (B <« PABS(A ); C <« PQ(A ,B);

2 1 1 1

go to (2)); PGCDCF(A ,A B, C ,C ).
1 2 1 2

(2) [Construct C.] C <« PFL(C ,PFL(C ,0)); return.
1 2

2
Computing Time: < p3L(ud)“, where m = deg(a), U =m +
1, and 4 = ]Alm.
Proof: Follows from the time for PGCDCF, noting that

12 1+ |a |
2

1

7
< d and deg(a ), deg (A ) <1n.§
= 1 5 =

oo
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2.2 Greatest square-free divisors

The concept of multiplicity mentioned in the
introduction is of great importance when dealing with the

roots of a polynomial. The multiplicity of a root a of a
i

polynomial A(x) is the largest positive k such that
k

(x = a ) |A(x). The concept of multiplicity is directly
i

related to that of "square-free".

A polynomial A is square-free just in case there is no

polynomial B of positive degree such that B |A. To say that
a polynomial is square-free is equivalent to saying that the
roots of the polynomial are simple, that is, of multiplicity
one. This is shown in the following theorem.

Theorem 2.2.1: A Gaussian polynomial is square-free if

and only if its roots are all simple.
Proof: Let A be a Gaussian polynomial and assume that
B is a Gaussian polynomial of positive degree such that

2 n e 2

B IA. Le; B = bl (x - o) ] and C = A/B . Then A =
j=1 J
2 n 2e.
Cb T (x - o) r SO QG , ¢, « . ., 0 are multiple
j=1 . 1 2 n

roots of A.

Now assume that o is a multiple root of Gaussian
1
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polynomial A. Since a 1is an algebraic number, there is an
1

irreducible Gaussian polynomial B of positive degree which

has o as a simple root. Let C = gcd(A,B). C must also
1

have o as a root, since it is a common root of A and B.
1

Hence C is of positive degree. CIA and C|B. But B is
irreducible, so since CIB and C is of positive degree, then

C = B. Hence B|A. Now let D = A/B. o 1is a multiple root
1

of A and a simple root of B, so o must be a root of D. By
' 2
the same argument as above, B|D. Thus B|(A/B), so B |A.
Hence A is not square-free.
Given a square-free factorization of a polynomial it is

then a trivial task to determine the multiplicity of a root.

A square~free factorization of a polynomial A is a

sequence of polynomials A , A, . . . , A of positive

1 2 n
degrees and a sequence of distinct positive integers e , e ,
1 2
n ej n
. « « , € such that A =1 A and I A is
n j=1 3 j=1 j

square-free. This problem will be dealt with in a later
section.

If, however, one is interested only in the location of
the roots, then all that is required is a polynomial A*
which has all of the unique roots of A occuring as simple

roots. One can obtain A* by computing a greatest




57

square-free divisor of A.

A square-free divisor of a polynomial A is a polynomial

B such that B|A and B is square-free. A greatest

square-free divisor C is a square-free divisor such that if

B is another square-free divisor then B|C.

The method used to obtain a greatest square-free
divisor is based on Section 2.4 of Musser [MUD71], where it
is shown that A/gcd(A,A') is a greatest square-free divisor
of A.

Also, using Musser's discussion and Theorem 2.2.1 )
Aabdve, it is easy to verify the previous assértidhiﬁhat”a
greatest square-free diviéor of A has all of the unique
roots of A occuring as simple roots.

The term "the" greatest square-free divisor of A will
be used for a greatest square-free divisor B of A such that
sign(B) = 1 if A and B are integral polynomials, and ldcf(B)
is in the first quadrant or on the positive real axis if A
and B are Gaussian polynomials.

The first algorithm finds the greatest square-free
divisor of an integral polynomial, using the method
discussed above.

ALGORITHM PGSFD:

B=PGSFD(A)
Polynomial Greatest Square-Free Divisor

A 1s an integral polynomial of positive degree. B is
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the greatest square-free divisor of the primitive part
of A.

Method:
Let A = pp(A). Then B = A/gcd(A,3').

Description:

(1) [Compute value.] A <« PPP(A); v <« PVBL(A); &' <
PDERIV(A,v); erase v; PGCDCF(A,A',C,B,D); erase A, &',

C, D; return.

3 2
Computing Time: < u L(ud) for univariate polynomials,
where m = deg(®), u=m+ 1, and d = |a| .
x> -
3 . ‘ g -
Proof: |A'I < ud, so t (A,A') =y L(uzd)2 =
o PGCDCF

UBL(pd)z. g

The following algorithm performs the same operation for
a Gaussian polynomial.

ALGORITHM GPGSFD:

B=GPGSFD(A)
Gaussian Polynomial Greatest
Square~Free Divisor
A is a univariate Gaussian polynomial of positive
degree. B is the greatest square-free divisor of the
primitive part of A.

Method:

Let A = pp(A). Then B = A/gcd(A,A').
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Description:

(1) [Compute value.] A <« GPPP(A); v « GPVBL(A); A' «
GPDERV(A,v); erase v; GPGCDC(A,A',C,B,D); erase A, A',

C, D; return.

3 2
Computing Time: « p L(yd) for univariate polynomials,
where m = deg(A), py =m + 1, and 4 = |A]| .
_ o 3 2 2
Proof: IA'{ < pd, so t (A,A") « py Ly d) «=
o GPGCDC - -
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2.3 Mixed radix representations

Many algorithms in SAC-1 generate, and subsequently
must perform operations on, very large L-integers. A
graphic example of this is provided by the polynomial
remainder sequence which is used later. The coefficients
of the polynomials in these sequences can grow very rapidly.

In order to decrease the amount of time spent on
operations involving large L-integers, a great deal of
attention has been focused on modular algorithms. Whereas
the time to multiply two L-integers a and b is ~ L(a)L{b),-
‘the tlme to perform a mult1p1lcatlon in a flnlte‘fleld GF(p)'

2
is ® L(p) . Since in virtually all cases single precision

2
primes are sufficient, L(p) ~ 1. Corresponding comparisons

can be made for other operations.

The advantages of performing the operations in GF (p)
can be employed as follows. Suppose one must do an
operation S op T. If it is possible to obtain a bound B on
the numerical components of the result U, such as the

coefficients of a polynomial, then the operation (a mod p )
i
op (b mod p ) can be done for sufficiently many primes p
i i

n

such that 2B < [ p. . (An alternate approach when an
i=1 i

a priori bound cannot be computed is indicated below.) Let
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the results of these n operations be (u , uw, . . . , u).
1 2 n

Then the following theorem, the Chinese Remainder Theorem,
insures that-there is a unique value U in the specified

range which produces the given residues u for primes p .

i i
Theorem 2.3.1: If p, p, . . . , P are positive
1 2 n
integers which are  pairwise relatively prime (gcd(p ,p )
i3
=1 for i # j) and if u , v, . . . , u are integers then
1 2 n
n
- there exists exactly one integer U such that -II. p < -
i s el e - - e i - A . - i=1 i
n
20 < 1II P and U = u (mod p ) for 1 < i < n.
i=1 i i i -7

There are many proofs of this theorem in the literature.

For example see [KND68].

The pair of lists (u , u, . . . , u) and (p , P ,
1 2 n 1 2
« « +» P ) will be termed the residue representation of
n
integer U. Null lists () and () are taken as representative

of U = 0.

Having performed the operation modulo p for
i

sufficiently many primes p , it is necessary to have an
i

efficient method to compute the unique integer U from the
residue representation.

There are various methods to do this, one of which will
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be considered here. Let P 1 <i <n, be an odd prime.
n-1
Suppose one has Q = T p and U such that
n-1 j=1 5 n-1

|U | < 0 /2 and U z=u (mod p ) for 1 < i < n. It is
n-1 n-1 n-1 i i -

now desired to compute U given u and P such that, for Q
n n n n
= 1 P, |U| <Q/2and U zu (mod p ) for 1 < i< n.

i=1 i n n n i i

Theorem 2.3.2: Let Q , U , u , and P be defined as in
i i i i

the preceding paragraph. Define the following quantities:

q = Q in GF(p ); ‘ (1)

n-1 n-1 n

d* = g (u - U ) (mod p ); (2)
n n-1 n-1 n

dﬁ if d* < p /2
n
a = ; (3)
n d* - p otherwise
Uu =20Q + . (4)
n n—1 n n—1
Then |U | <Q /2 and U =u (mod p) for 1 < i < n.
n n n i i -

Proof: From (2) and (3), d =g (fu - U ) (mod p )

n n-1 n n-1 n
and [d | < p /2; hence [d | < (p - 1)/2 since p 1is odd.
n n n n n
From the definition of Q A <3N for 1 < i < n. Hence
n-1 i n-1 -
by (4) U =z U zu (mod p ) for 1 <i<n., U =29 d

n n-1 i i n n-1 n
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+ U =0 g (u - U ) + U zu (mod p ), since
n-1 n-1 n-1 n n-1 n-1 n n

by (1) g Q =1 (mod p). |d | < (p =~ 1)/2 and |U |

n-1 n-1 n n n n-1

< Q /2, so |u | = |Q d + U | < Q (p - 1)/2 +
n-1 n n-1 n n-1 n-1 n

Q /2 = pQ /2=Q/2-g

n-1 n n-1 n

The method given in this theorem is used in the
algorithm CCRA in the SAC-1 Polynomial GCD and Resultant
System [COG72].

Note that if Q = 1 and hence U = 0, then U = u
0 0 , 1 1 -

(mod p ) and |U | < p /2. This gives a convenient method
1 1 1

of initialization.

Hence given a list (p , p, . - . , p ) of distinct
1 2 n

odd primes and a list of residues, one can compute the

desired integer U using the following recurrence relations:

% if d% < p /2

i i i
d = ,
i d* - p otherwise
i i

for 1 < i < n.
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g = Q in GF(p ),
i i i+1

for 1 < i < n.

Then U = U .
n

An algorithm based on these relations, CHRA, is also
given in the Polynomial GCD and Resultant System [COG72].

CHRA assumes that one has the lists (u , v, . . . ,
1 2"

- a

) and (p, P, - - . , P ). This would usually indicate-
B ) ToaTTE T * e v

12 S n
that one had an a priori bound on the result, computed the
number of primes required, did the operations for these
primes, and now needs the integer result. Hence he applies
CHRA.

Frequently, however, modular algorithms do not proceed
in this manner. Instead, one does the operation for prime

p , obtains the integer result U basedon (u, . . . , u)
i i 1 i

and (p , . . . , p ), then checks if sufficiently many
1 i

primes have been used. This check may be computation of

PP . . . p and comparison with an a priori bound. It may
12 i

also be performing some operations with U to see if it
i

satisfies certain conditions and hence is the desired
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result. This latter method is used, for example, when it
is not possible to compute an a priori bound or when
empirical data indicates that the known bounds are usually
much larger than necessary.

An important advantage of the method used in CCRA is
that it does not require all of the residues and primes at
one time. Hence it can be used in the sequential manner
indicated in the preceding paragraph.

However, these forms of applying the Chinese Remainder
Theorem did not prove efficient for the modular algorithms
presented in this report. The reason is that only the sién
of the integer U is required, not the magnitude. Szabo has
shown that (c.f. [KND68], p. 255) it is essentially
necessary to use all of the residues and primes to

determine the sign of the final result U; one cannot obtain

in a simple way this sign from subsets (u , . . . , u)
1 i

and (p , « « - r P ). Hence, in order to obtain the sign
1 i

of the results using the methods discussed above, one would
have to actually compute the integer U, then take its sign.
This is inefficient.

An alternate approach is the use of the mixed radix
representation of a number suggested by H. L. Garner

[KND68]. Given primes (p , P, . . . , P ) compute
1 2 n

constants c such that
ij
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-1
c =p mod p . (5)
ij i Jj
Now suppose that the residues (u , u, . . . , u ) have been
1 2 n
computed. Let v be defined by
1
v = u ' (6)
v = (v - Vv )c (mod p ) , 1 <3 <1, (7)
i,3+1 i,7 i J.i i
v if v <p /2
i,i i,i i
v o= . : (8)
i v - p otherwise
i,1i i ‘ -
Construct the‘lists (v ,v, .. .,v)and (p , Ps - .
1 2 r 1 2
. r P ) where v # 0 and v r + «» « v =0, or the lists
r r r+1 n
() and () if all v = 0 for 1 < i < n. Then these lists
i = >

will be called the mixed radix representation of a number

r i-1

V =1L v {1 p l,or V=0 if the lists are null.
i=1 i g=1 3
The following theorem shows that this mixed radix

representation is unique.

Theorem 2.3.3: The mapping ¢(v , v, . . . ,v ) =
1 2 r

r i-1
X v {1 p } for distinct odd primes (p , P , . . . P )
i=1 i g=1 LI v

is one-one from the set {(v , v , . . . , v ): |[v | < p /2
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r

for 1 < i < r} onto the set {v: |v]| < (I p )/2}.
i=1 i
Proof: Use induction on r. r = 1 is the identity
mapping.
r-1
For r - 1, assume for each v, |v| < (I p )/2, that
i=1 i
there exist unique elements v , . . . , Vv such that
1 r-1
d(v , « - « , V ) = wv.
1 r-1
r-1
Let v = (v/(I p )), where (x) is the closest
r i=1 1 , , : -
‘ r-1
integer to x. Then for s = v - v -II p , |s| <
r i=1 i
r-1 r
| (1 p )/2|. WNow |v | < p /2 since |v| < (I e )/2.
i=1 i r r i=1 i
By the induction hypothesis select v, . . . , Vv such
1 r~1
that ¢(v , . . . , Vv ) = s. Then &(v , . . . , Vv y V)
1 r-1 1 r—=1 r
r i-1 r-1 r-1 1-1
=7 v {I p}l=vI p +I v {T p1l =
i=1 1 =1 3 r j=1 j i=1 i =1 j
r-1 r—1
v I p + o(v , . ;v ) = v I p + s = v. Hence
r j=1 7 1 r-1 r j=1 3
the mapping & is onto.
Now assume &(v , . . « , v ) = &(v', . . . , v'"), with

1 r 1 r
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r=1
[V [, |v'[ < p /2 for 1 < i <r. Then (v - v")I p =
a . 1 - ror i=1 i

o(v'y, - « o,V ) =3 (v, ...,V ). By the induction
1 r-1 1 r—1

hypothesis, |o(v', . . . , v' Y||olv , « o o, v )| <
1 r-1 1 r—1

r-1 r-1 r-1
(1T p)/2, so [(v - v")I p | <1 p and |v - v'|
i r r i=1 i i=1 i r r

< 1. Hence v =v'and o(v', . . . , v' ) =0o(v , . .« .,
r r 1 r=1 1

v ). By the induction hypothesis, v' = v for 1 < i<
r—1 i i -

r-1. Hence (v, . . . , v ) = (v', . . .,
1 r 1

Next it is necessary to show that V = u (mod p ) for
i i

1 <1< r. This is done by first proving a theorem about

the v defined above.

k, %

Theorem 2.3.4: Let v be defined as in (5) through

k, 2
£-1 2 -1 i-1
(8). Then v i) P = I {-v II pt +u (mod p)
k,2 j=1 i=1 ig=1 3j k k

for 1 < & <k < r.

Proof: Obvious for &= 1, since v = 1u . Assume

k,1 k
for & - 1. Then v = (v - v )c (mod p ) by
k,% k, -1 =1 -1,k k
-1 L-2

11
—~
=
o
N
<
i
<
e}
G

(7), so v I P . .
k,% =1 3 i=1 5 k,%-1 L-1 2-148-1,k
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= {I p Hw - v ) (mod p ) since by (5) p c
=1 7 kK, 21 2-1 k 2-12-1,k

=1 (mod p ). Using the induction hypothesis for

k
-2 -1 g§-2 i-1
v I p gives v I p = (X {-v 1 plt+u)
K, 21 3=1 3 K, 3=1 7 i=1 ig=1 K
2=2 =1 i=-1 %
- v I p = I {-v I p I +u (mod p ).
=1 3=1 3  i=1 ig=1 5 K k

This theorem can now be used to prove the desired
result.

Theorem 2.3.5: Let v be defined as in (5) throuqh*(é)
k

and let
xr i-1
V = % v {I p }. (9)
i=14i §=1 3

Then V 2 u (mod p ) for 1.< i < n.
i i - -

Proof: Consider V (mod p ). V = % v {I p }
k i=1 1 3=1 3

i-1
(mod p ) since v {I P} =0 (mod p) for i > k. By (8)
k i 9=1 3 k

: k-1 k-1 k-1 i-1
and Theorem 2.3.4, v I p = v I p = I -v {I p !
k 3=1 3  k,k =1 3 i=1 i 5=1 7

k i-1 k-1
+ u (mod p ) so I v {1 Pt =vI p +
k k i=1 i g9=1 3§ k 3=1 3
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Note that it is possible to write a simple algorithm
to obtain the integer V, employing directly the definition
(9).
What is important to this report, however, is to note

that one can obtain the sign of V without actually computing

V--sign(V) = sign(v ) where (v , v, . . . , v ) and (p ,
r 1 2 r 1
P, . . ., p) are the mixed radix representation of V.
2 r
This follows since the magnitude of v p o) - + . p 1is
r r-1 r=-2 1

greater than the sum of the other terms in (9). . o
In order to implement the mixed radix representation
three algorithms are required. The first computes the

inverses ¢ . Note that list storage of these inverses is
ij
used, which makes transmission between subprograms much

easier than with a variably-dimensioned Fortran array.

ALGORITHM GLPINV:

M=GLPINV (L)
generate Eist of Erime Inverses

L is a list of odd prime Fortran integers, L = (p ,
: 1

-« « sy P),withp <p <. . .<p. Mis the list
n 1 2 n

(pl)r (PsrpPp,c )y, (P,pPrc ,P,c ), P+ P
1 2 1 12 3 1 13 2 23 4 1

C sy Prc , P, )y v, {Ppre,sCc S0 .,
14 2 2 3 34 n 1 n
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P ; c }), where c is the multiplicative
n-1 n-1,n 17

inverse of p in GF(p ).
1 3

Description:

(1) [Initialize.] M « 0; if L = 0, return; Q <« L.

(2) [Obtain next prime.] P « L; ADV(q,Q):; M' « PFA(qg,0).
(3) [Loop on preceding primes.] ADV(p,P); if p = q,

go to (4); M' « PFA(CRECIP(q,p),PFA(p,M"')); go to (3).
(4) [Generate sublist.] M <« PFL(INV(M'),M); if Q # O,

go to (2).

(5) [Finish.] M « INV(M); return.

Computing Time: « va where n = length(L) and v = n
+ 1.

Step n t‘

i i
1 1 o -
2 n o
2

3 < n o

4 n = D

5 <1 nNon

]

Since L(p ) = 1 by definition, t «~ 1. 3
n 3

The next algorithm converts from the residue

representation to the mixed radix representation.
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ALGORITHM RTMR:

V=RTMR (M, U)
Residue Representation to Mixed
Radix Representation

Mis a list (p , . . . , p ) of primes, where P

i i i
1 no ]
is the i -th prime on the list PRIME and i < i <
J 1 2
-« . <i . Uidis alist (u, . . ., u), with u e
n 1 n j
k-1
GF(p ). Let P =1 p for 1 <k <n+1, P= -
i k j=1 1 - :
J ]

P . Let A be the unigue integer such that |A| <
n+1

P/2 and A = u (mod p ) for 1 < | <n. If A =0, then

;| i
J
V = (). Otherwise, V is the unique list (v1, .« e e g
r
v ) such that A = 3 vP, r<n, |v | <p /2 for
r =13 3 i i
‘ ]
1 <3 <r, and v # 0.
- r
Method:
Let v = u and v = (v - v )c for 1 < j
i, 1 i i,3+1 i,7 i j,i
< 1, where c = p"1 and arithmetic is performed in
Jri J
GF(p ). Then v = v if v <p /2 and v =v

i i i, i i,1 i i i,i
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- p otherwise. The c are obtained from the list
i j,i.

PRINV.

Description:

(1) [Initialize.] V « 0; if U = 0, return; M' « M; U'
« U; V' =« 0; L « PRINV.
(2) [Obtain next pair.] ADV(p,M'); ADV(u,U').

(3) [Locate prime on PRINV.] ADV(L ,L); apv{(g,L );
1 1

if g # p, go to (3); 1f v = 0, go to (8).

(4) [Initialize inner loop.] V' <« INV(V); M'' « M; V''
<« V. )
(5) [Obtain next pair.] ADV(v,V''); u <« CDIF(p,u,V);
ADV (q,M'").

(6) [Locate inverse.] ADV2(q',c,L ); 1if q' # g,
1 .

- go to (6).

(7) [Compute next product.] u <« CPROD(p,u,c);

if v'' #0, go to (5).

(8) [Convert to symmetric modular residue.] v + u - p;
if v+ u<0, v+« u V<« PFA(v,INV(V')); 1if M' # 0,
go to (2).

(9) [Delete high order zeros.] If FIRST(V) # 0,

go to (10); DECAP(v,V); if V # 0, go to (9).

(10) [Obtain inverse.] V <« INV(V); return.

Computing Time: ~ 1 for n = 0; otherwise « mn, where
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Stép n ‘t_
i i
1 1 o1
2 n o, 1
3 m v o
4 n = n
2
5 <n no
6 < mn v
2
7 <n Y
8 | n = n o . -
9 <n AV
10 1 «n

The third algorithm simply locates the high order digit

v in a mixed radix representation in order to determine
r

the sign of the number represented.

ALGORITHM SMRR:

S=SMRR (V)
Sign of a Number in Mixed
Radix Representation
V is a list of the mixed radix representation of a

number N: V = () if N = 0; otherwise, V (v , « . .,

1

Il

r i-1
v), v #£0, for N = g {v I p } where the p are
r r i=1 i 3=1 3 3

positive odd Fortran primes such that p < . . . <p
1 r-1
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and |v | < p /2. s is the sign of N, a Fortran
J ]

integer.

Description:

(1) [Initialize.] s « 0; 1f V = 0, return; V' « V.
(2) [Find last element.] ADV(v,V'); if V' # 0,
go to (2).

(3) [Obtain sign.] s <« 1; if v < 0, s « -1; return.

Computing Time: v p, where r = length(V) and p = r
+ 1.
Proof: ‘
Step n t.
i i
1 1 no
2 r o
3 < 1 N1

Although these three algorithms are all that are
actually required for this system, it is interesting to
study a fourth algorithm which performs the conversion from
mixed radix representation to g-radix representation.

In order to derive the computing time of this
algorithm, it is necessary to compute a bound on the
magnitude of the integer represented in mixed radix form.

Theorem 2.3.6: Let M= (p, P, . . . ,p) and v =
1 2 r

(v ., v, . . . , v ) be the mixed radix representation of a
1 2 r
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number N. - Assume 3 < p , p, . . . , p < B. Then
1 2 r
r-1 r
3 < |InN] <.
2
r i-1 r-1
Proof: IN|] = |z v I p| > p -
i=1 i =1 3 =1
r~-1 i-1 r-1 r-1 r-1
lz vo _epl>1 _p - /21 p = (/21 p
i=1 i 3=1 3 =1 3 j=1 3 =1 ]
r-1

> (1/2)3 , by Theorem 2.3.3 . Also by Theorem 2.3.3,

ha r %
IN| < (1/2)H_ p o< (1/2)g . &
=1 3 £ -
The following algorithm converts from mixed radix
representation to B-radix representation.

ALGORITHM MRTI:

N=MRTI (M, V)
Mixed Radix to L-Integer
N is the L-integer whose mixed radix representation is

given by M and V. N = 0 if V = (). Otherwise, V

it

(v , v, ... ,v), v #0, and M = (b, P s « v o,

1 2 r r 1 2
r i-1
P ). Then N = 3 v I P .
r ' i=1 i 9=1 4

Description:

(1) [Initialize.] N + 0; if V = 0, return; V « V; M <
M; ADV(v,V); N « PFA(v,0); ¢ « PFA(1,0); go to (3).

(2) [Obtain next pair.] ADV(p,M); ADV(v,V); IMFI(c,p);
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d « BORROW(c); IMFI(d4d,v); e <« ISUM(4,N); erase d4d,N;
N « e.

(3) [Check for end.] If V # 0, go to (2); erase ¢;

return.
2
Computing Time: ~L(N) .
Proof:
Step n t
i i
1 1 o
2 r-1 x T
3 r ] i
3 2
Let T = 7 n t . Then from the table T <« r for r
i=1 i 1
> 0.

The time for the j-th execution of step (2) is ~ j
. . ,
since 3 <c < B , where ¢ 1is the value of c after
J J
the j-th execution of step (2). So the computing time

2
T vr for r > 0.

r-1 r 2
Also, 3 /2 < ]N| < B so T ~ L(N)
In comparing this algorithm to CHRA, one sees that the
codominance equivalence classes of the computing times are
the same. However, the following chart shows that

empirically MRTI is somewhat faster.
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These times were obtained on a PDP-10 using primes

P in the range 231+ 1 <P < 233 with random residues u
kR 1 1
e GF(p.) for 1 < i < r. The time unit is seconds (s).
1
r MRRE , MRTI , Total, CHRA ; Ratio: CHRA/Total
(s) (s) (s) (s)
10 .084 .233 317 .533 1.68
20 .383 .900 1.28 1.67 1.30
30 . 700 1.60 2.30 3.67 i-60
490 1.12 2.92 4.04 5.58 1.38 i
50 1.77 3.82 5.59 8.78 1.57
60 2.45 5.86 8.31 11.9 1.43
70 3.42 7.30 10.7 15.8 1.48
80 L.63 | 10.1 1.7 || 20.7 1.41
90 6.12 | 12.4 | 18.5 || 25.8 1.39
100 | 6.75 | 15.3 | 22.1 || 31.6 1.43 :




79

CHAPTER 3: STURM SEQUENCES

3.1 Theoretical background

The basic tool for root isolation and refinement is
the Sturm sequence. Sturm's theorem applies it to finding
the number of real roots of a real polynomial in an
interval, the Routh-Hurwitz theorems apply it to finding
the number of roots of a complex polynomial in the upper
and lower half-planes.

Heindel [HEL70] defines what in this report shall be

called a restricted Sturm sequence as follows. Let F (x)Q
1

and F (x) be two continuous real-valued functions of a
2

single real variable x. A restricted Sturm seguence for

F and F is a sequence F , F , . . . , F of continuous
1l 2 1 2 r

real-valued functions of a single real variable satisfying
the following three properties for all intervals (a,bl,
a < b, and s (x) = sign(F (x)):

i i

(1) if a <y < b and F (y) = 0, then there exists
1

an € > 0 such that s* = s (x) # 0 is constant for
2

y - e <x <y + e, while s (x) = -s* for y = € <
1

Xx <y and s (x) = s* for y < x <y + €;
1

(2) ifa<y<b,1<1ic<mr, and F (x) = 0, then
i

s (x) = -8 (x) # 0;
i-1 i+l
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(3) F (x) # 0 for all a < x < b.

r
He then states and proves the following generalized
Sturm's theorem.

Let F (x) be a continuous real-valued
1

Theorem 3.1.1:

function of a single real variable, ¥ , F, . . ., F a
1 2 r

and P , and let V{x) be
1 2 -

restricted Sturm sequence for F

the function whose value is the number of variations in

sign of the sequence F (x), F (x), . . . , F (x). Then the

1 2 r

number of distinct real roots of F (x) in the interval
1

(a,b] is v(a) - V(b).
Rather than reproducing the proof here, an intuitive
discussion based on Wilf [WIH62] will be given.

Let F (x), F (x), - . . , F (x) be a restricted Sturm

1

2

r

sequence for F(x), with F (x)
1

= F(x) and F (x)
2

= F'(x).

(It is possible to generate such a sequence if F meets
certain conditions specified later.) Consider how Vi(x)
behaves aé‘x traverses the interval (a,b]. The only
places that V(x) can change are at points where one of the

functions in the sequence changes sign, that is, vanishes.

Now by definition, F (x ) # 0.
0 r 0

Suppose such a point is x

So let F (x ) = Based on the definition

k o0

0 for 2 < k < r.
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of a restricted Sturm sequence, the following configurations

are possible.

Left of x At x Right of x
0 0 0
F F F F F ¥ F F F
k-1 k  k+1 k-1  k  kt1 k=1 k _k+1
+ + - + 0 - + - -
+ - -~ + 0 - t + -
- + + - 0 + - - +
- - + - 0 + - + +

Note, however, that the number of variations in sign of thé

sequence F (x), F (x), F (x) is the same at x~, x , and
k-1 k k+1 0 0
xT . Hence, if x 1is a zero of F (x) for 2 <k <r, V(x)
0 0 k 0
= Vv(xt).
0

Now consider a point x which is a zero of F (x) =
0 1

F(x). By definition, F (x ) = F'(x ) # 0, so the following
2 0 0

are the only possible combinations.

Left of x At x Right of x
0 0 0
B F F F F F
1 2 a2 a2
+ - 0 - - -
- + 0 + + +

In this case, a sign variation is lost as x passes through
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X . Hence v(x%) = V(x ) = V(x™) - 1.
0 0 0 0

Therefore, as x goes from a to b in (a,b], V(x)
decreases by the number of zeros of F(x) in the interval.
(Note that the right hand end point b is included because,

as shown in the preceding paragraph, V(x ) = v(xT). )
0 0

Hence, if n is the number of zeros of F in (a,bl,
n =YV(a) - v(b) . (1)

Using te as the interval bounds, one obtains the number
of real zeros of F.

Now consider the problem of determining the number of"
zeros of a Gaussian polynomial in the upper and lower
half-planes. The following théorem of Hurwitz as presented
in Marden [MAM66] gives a method for doing this.

Theorem 3.1.2: Let G(z) = G (2) + iG (z) where G (z)
1 2 1

and G (z) are real polynomials with G # 0. As the point
2 2

Z = X moves on the real axis from -« to +x, let a be the

number of real zeros of G (z) at which H(x) = G (x) /G (x)
1 1 2

changes from - to + and b the number of real zeros of G (z)
’ 1

at which H(x) changes from + to -. If G(z) has no real
zeros, p zeros in the upper half-plane, and g zeros in the
lower half-plane, then for n = deg(G)

p=(1/2)[n+ (b -a)] , (2)
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q=(1/2)In - (b - a)] . (3)
What is required, then, is a method for determining
b - a. Routh shows that Sturm sequences can be used to do
this.
Following Wilf [WIH62], let (a,b) be a finite or

infinite interval of the real axis, and let ¥ , ¥ , . . .
1 2

r

F be r continuous functions defined on (a,b). F , F ,
r 1 2

. « « , F 1is a Sturm sequence for F and F on (a,b) if
r 1 2

the following hold: .

(1) at a zero x of F (x), F (x ) and F ()
0 k k+1 O k-1 0

have opposite signs and are not zero, 1 < k < r,

a < x < b;
0

(2) F (x) # 0 for a < x < b.
r

Routh has developed the following theorem as presented
in Marden [MAM66].

Theorem 3.1.3: Let G(z) = G (z) + iG (z), where G (z)
1 2 1

and G (z) *are real polynomials and G (z) # 0, be a
2 2

polynomial which has no real zeros, p zeros in the upper
half-plane, and g zeros in the lower half-plane. Let

G (x), G (x), « . ., G (X)) be a Sturm sequence for G (x)
1 2 r 1

and G (x). Then for n = deg(G)
2
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(1/72) [n + V(+e) - V(-e)] , (4)

fl

P

il

q (1/2) [n = V(+w) + V(-0)] . (5)
Marden proves both Theorems 3.1.2 and 3.1.3 in detail
in [MAM66], and as with Theorem 3.1.1, the proofs will not

be repeated here--rather, an intuitive discussion of them

will be given, again based on Wilf [WIHe62].

n
Consider G(z) written in the form I (z - o ), where
i=1 i
the o are the roots of G(z). (Recall that G(z) has no

1

real roots so all o are complex.) Then

i
n
arg{G(z)} =3 arg{z - o } . (6)
i=1 i
Now observe what happens to a = arg{z - o } as z
i i

traverses the real axis from - to +», If o is in the
i

upper half-plane,

then a goes from 0 to 7. If o is in the lower half-plane,
i i

& goes from 0 to -m. Thus, by (6), arg{G(z)} increases by
i
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m for each root in the upper half-plane and decreases by g
for each root in the lower half-plane. Denoting the net

change in arg {G(z)}! as z goes from -» to +» by A ,

R
A = (p~-qrm . (7)
R
Since G(z) has no real zeros,
p+ q=deg(G) =n . (8)

Solving (7) and (8) simultaneously for p and q gives

il

n/2 + A /(27) , (9)
R

p

n/2 - A /(2w) . (10)
R

o]
Il

If G(z) is evaluated at a real point x, then

G(x) = G (x) + iG (x)

1 2
= lG(x)Ieie(X) (11)
where
0(x) = cot—1H(x) (12)
for H(x) = G1(x)/G2(x) as in Theorem 3.1.2 . Hence
arg{G(x)} = 0(x) . (13)

In order to determine p and g from (9) and (10), it is

necessary to compute A . Suppose that x and x are zeros
R i J

of G (x), with x < x and G (x) # 0 for X < X < X . Since
1 i 3 1 i |

G(z) has no real zeros, G (x ), G (x ) # 0. Thus,
2 i 2 3
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H(x ) = H(x ) = 0. (14)
i j

If H(x) changes sign as x traverses the interval

(x ,x ), only the following combinations are possible.

G G
1 2
+ + 0 -
+ - 0 o+
(15)
- + 0 -
- - 0+

Combining (14) and (15), the change in H(x) and the B

corresponding change in argument A for x traversing
i, J

[x ,x ] are as follows.

i3
(16)
H(x) A
i,7

0/+ » +/+ » +/0 » +/- » 0/~ /2 +~ 0 » -7/2

0/= = +/- > +/0 » +/+ + 0/+ -1/2 + 0 » /2

0/+ » =/+ » =/0 » -/= 0/- /2 > 7w > 3n/2

0/= » =/= + =/0 + ~/+ > 0/+ 3/2 > o+ w/2

Hence if fo) changes from + to - then A = -7, and if

i,3
H(x) changes from - to + then A = T.
i, 3
Let S(x) = sign{H(x)}. Then on the interval (x ,x ),

i 3

A = (1/2){s(x™) - s(x™)}. (17)

i3 J 1
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If x 1is the algebraically smallest root of G (x), then on
1 1

the intexrval (-»,x7),
1

A = (n/2)S(x~) , (18)
0,1 1

since G (x) # 0 and sign{G (x)} cannot change. Similarly,
1

if x 1is the algebraically largest root of G (x) then on
n 1

(X+l +) ,
n

A = (-1/2)s(x") . (19)
n,n+1 n -

Adding up these quantities for all of the roots gives

n
A =12 A (20)
R k=0 k,k+1
n-1
= (1/2) [2 {s(x™ ) - s(x"1} +
k=1 k+1 k
S(x™) - S(xt+)]
1 n
n .
= (w/2)L {s(x7) - s(x™)} . (21)
k=1 k k

Thus the sum increases by 7 if H(x) goes from + to - as x

goes from x~ to x¥, and decreases by 7w for - to +. Hence
k k

A /m is the excess of + to - changes over - to + changes as
R

X goes from =« to +w,

In order to compute this excess, recall that the only
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place V(x) can change is at x a zero of G (x). Consider
0 1

the possible combinations.

x~ xt
0 0
G G G G
12 a2
(22)
+ - — —
+ + - +
- - + -
- + + +
These give the following values for H(x) and V(x).
H(x) vixt) - v(x™)
0 0
x- xt
A
(23)
- + -1
+ - +1
+ - +1
- + -1

Note, then that the excess of + to - changes over - to

+ changes is given by V(+®) - V(-®). Thus,
p = (1/2){n + V(+») - V(-x)} , (24)
g = (1/2){n = V(+o) + V(-o)} . (25)

Hence, given an integral polynomial P(x) one can

compute a restricted Sturm sequence with P(x), P'(x) and use
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V(x) to compute the number of zeros of P(x) in (a,b] or the
number of real zeros of P(x). Given a Gaussian polynomial

G(z) = G (z) + iG (z) with no real zeros one can compute
1 2

a Sturm sequence with G (z),G (z) and use V(x) to compute
1 2

the number of zeros of G(z) in the upper and lower

half-planes.
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3.2 Generation of Sturm sequences

This section develops algorithms for two methods of
generating the Sturm sequences discussed in Section 3.1--
integer and modular.

Consider polynomials A and A over S, where A A # 0.

1 2 1 2
Let A, A, ..., A ' be a sequence of polynomials over S
1 2 r+l
defined by
e A =QA + £ A r 1 <i<r, (1)
ii i i+l i i+2
where e ,f € §; A = 0 or deg(a ) < deg(A ); and A
i i i+2 i+2 i+1 r+1

= 0 1is the first identically zero polynomial in the

sequence. Then this sequence is called a polynomial

remainder sequence (p.r.s.) for A and A .
1 2

If 5 is a field, then it is possible to set all e ,f
A i i

to units and do the division directly. 1In this system,
however, S is the integers, and hence not a field. Thus

suitable e must be computed, and the method used relates
i

to the te;hnique of pseudo-division. Given two integral
polynomials A and B # 0, in most cases there are not two
integral polynomials Q and R with R = 0 or deg(R) < deg(B)
such that A = BQ + R. However, if b = ldcf (B),

m = deg(A), and n = deg(B), then there are two integral

polynomials Q* and R* with R* = 0 or deg(R*¥) < deg(B) such
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m-n+1
that b A = BQ*¥ + R*¥* . Q* and R* are then the

pseudo-quotient and pseudo-remainder.

Given non-zero integral polynomials A and A , this
1 2

pseudo-division can be used to generate an integral p.r.s.

for A and A . Let a = ldcf(A ), n = deg(A ), and
1 2 i i i i
§ +1
i
e = a. , where § =n =-n ’ (2)
i i+l i i i+l

for 1 < i < r - 2. Then selecting any £ such that £ | (e &
i i i-i

- Q0 A ) will give a p.r.s. over the integers for A and

i i+l 1
A *
2
n i
A polynomial A(x) = X a X 1is primitive just in case
i=0 i
gcd(a , a, . « . ,a) =1. A primitive p.r.s., then, is
0 1 n

a p.r.s. in which A is primitive for 3 < i < r.
i

iIfef <0 for 1<i<r -2, then the p.r.s. defined
ii

by (l) is called a negative p.r.s.

If e is as in (2) and £ = -sign(e )-cont(e A - Q A )
i i i ii i i+l

then the resulting p.r.s. will be a negative primitive
p.r.s. Heindel [HEL70] states and proves the following

theorem about this negative primitive p.r.s.
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Theorem 3.2.1l: Let A be a primitive, positive
1

square-free univariate polynomial of positive degree with

integer coefficients, A = pp(A'), and A , A, . . . , A
2 1 1 2 r

be a negative primitive p.r.s. Then A , A, . . . , A is
1 2 r

a restricted Sturm sequence for A and A' .
1 1

A similar result can be shown for Sturm sequences.

Theorem 3.2.2: Let A , A be integral polynomials with
1 2

deg(A ) > deg(A ) and gcd(A ,A ) = 1. Let A, A, . « « ,-
1 2 1 2 1 2

A be a negative primitive p.r.s. Then A , A , . . . , A
r 1 2 r

is a Sturm sequence for A and A .
1 2

Proof: e A =Q A + £ A where e £ < 0, so if
ii i i+l i i+2 i i

A (x ) =0 then A (x ) and A (x ) have opposite signs
i+l 0 i o0 i+2 0

unless they are zero. However, by the recurrence relation

this would imply A (x ) = 0 for all k, 1 < k < r, which is
k 0

impossible since A = + gcd(A ,A ) =+ 1 . Hence
r 1 2

condition (1) of the definition of Sturm sequence is

satisfied. Since gcd(A ,A ) = 1, it follows that A (x) # 0
1 2 r

for any x in (a,b] and hence condition (2) is satisfied. '
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The following algorithm computes a negative primitive
p.r.s. and hence can be used to generate a Sturm seqguence
or restricted Sturm sequence.

There is one aspect to note about its output. The
algorithms in this report need only V(f«) and/or V(0).
Computing V(t ®) requires only the signs of the leading
coefficients and the degrees, and computing V(0) requires
only the signs of the trailing coefficients. Hence the
algorithm constructs lists of these degrees and signs,
rather than storing each polynomial in the sequence in its

entirety.

ALGORITHM CZNPRS:

CZNPRS(A,B,I,N,S,T)
Complex Zero System, gegative
Primitive P.R.S.
A, B, and I are inputs; N, S, and T are outputs. A
and B are non-zero univariate integral polynomials,

with deg(a) > deg(B). I =0 or I = 1, a Fortran

integer. Let A , A, . . . , A = 0 be any negative
1 2 r+l
p.r.s. for A and B. Let n = deg(A ), s =
i i i
sign(ldcf(A )) and t = sign(trcf(A )). Then N =
i i i
(n ,n, ...,n), S=1(s,58, .«..,8),7T=
1 2 r 1 2 r

(¢t , t, «. « .,t)ifI =1andT=204if I = 0.
1 2 r
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Method:
A negative primitive p.r.s. is computed.

Description:

(1) [Initialize.] A <« PSPP(A):; A < PSPP(B); N <« 0;
1 2

S« 0; T+ O0; n « PDEG(A ); n <« PDEG(A ); s <
1 1 2 2 1

PSIGN(A ); s =< PSIGN(A ); if I # 0, (t < PTCS(A );
1 2 2 1 1

t <« PTCsS(A )).
2 2

(2) [Compute next term.] A <« PSREM(A ,A ); erase A :
3 1 2 1 .

if A =0, go to (3); A < A ; A <« PSPP(A ); erase A ;
3 1 2 2 3 3

ifs >0 or MOD(n - n ,2) > 0, (A <+« PNEG(A );
2 1 2 3 2

erase A ; A <« A ); N <+ PFA(n ,N); S « PFA(s ,S);
2 2 3 1 1

ifI #0, T+« PFA(t ,T); n <« n ; n < PDEG(A ); s =<
1 1 2 2 2 1

S i 8 <« PSIGN(A ); if I #0, (£t <« t ; t <« PICS(A ));
2 2 2 1 2 2 2

go to (2).

(3) [Finish.] Erase (A ); N < INV(PFA(n ,PFA(n ,N)));

2 2 1

S « INV(PFA(s ,PFA(s ,S))); if I # 0, T <« INV(PFA(t ,
2 1 2

PFA(t ,T))); return.
1

3 1+k 2
Computing Time: < v L(pd) , where m = deg(d), p =

m+ 1, n=deg(B), v=n+1, m > n, and |A| , |B]

(o] o

| A
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d; k = 0 if the p.r.s. is normal, k = 1 otherwise.

Proof: Let A = prem(A ,A ). The time to compute
i+2 i i+T

3 2 m-n-+2
A is = u L(pd) . A | < (pd) so the time to
3 - 3 @
2 2
compute A from A is « v(m -~ n + 2) L(ud) «
3 3 -

2 2
B ovL(ud) .
mt+n
For 2 <i<x, |a ], |a | < (pd so the
- i e i+l o

time to compute A from A and A is « (n +
i+2 i i+1 i -

2 m+n 2 2 2 2
N + 1) (L ((nd) )) = u vL(pd) § , where § =
i i. i

n -n . Note that § + 1 v~ 8§ since § > 0. Also,
i i+1 i i i

. m+n §.+2
|A | < ((ud) ) so the time to compute A from
i+2 i+2

2 2 2
A for 2 <i<r-11is = (n + Ny L(pd) § «
i+2 i+2 i

2 2 2
n vL(ud) § .
i

r-1 2 2 2 2 2 r=-1 2
Now X B vL(ud) § g vL(pd) ¢ § - In
i=2 i i=2 i

il

r-1 2 r-1 2 2 2
general, I § < (I §) =(n -n) < n . Hence
i=2 i i=2 i 2 r

2 2 2 2 3 2
B VL(ud) § <« u v L(pd) and the total time is =
i
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3 2 2 3 2 32 2

¥ L(pd) + p v L(pd) < u v Lpyd) .
If the p.r.s. is normal and each § = 1, then
i

r-1 2 r-=1 2 2 r-1 2
)X § =73 1 < n. Hence p vL(pd) = § =

i=2 i i=2 - i=2 i

2 2 2 3 2 2 2 2

u v L(pd) and the total time is p L(ud) + u v L(pd)

3 2 B
« p vL(ud) . B

Modular generation of negative p.r.s.'s is more
involved, and requires some additional definitions and -
theorems.

Consider the polynomial remainder sequences defined

by e A =Q A + £ A ‘'with A = 0 or deg(a ) <
ii i i+1 i i+2 i+2 i+2

deg (A ). A natural p.r.s. is a p.r.s. satisfying e =
it+1 i

f =1 for all i. A positive p.r.s. is a p.r.s. satisfying
i

e £ >0 for all i. A negative p.r.s. is a p.r.s.
ii

satisfying e £ < 0 for all i.
ii

A pseudo-subresultant p.r.s. is a p.r.s. B , B,

«. » «. B, B = 0 such that, for 3 <i<r,B =
x r+1 i

(B ,B) or B =- (B ,B ).
gln. -1 1 2 i g& -1 1 2
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Recall that Q& (B ,B ) 1is the i-th subresultant of
i 1 2

B and B [BRW71b]. A theorem is now presented which gives
1 2

the relationship between a pseudo-subresultant p.r.s. and
a natural p.r.s.

Theorem 3.2.3: I1faA, A, .. ., A, A = 0 is a
1 2 r r+1

natural p.r.s., a = 1ldcf(A ), n =deg{(A ), § =n - n ’
i i i i i i i+1

1 2
§ +6 8 +1 .
k-2 i-1 i k=2
b = {I a ta (1)
k i=2 i k-1
for 3 <k <r+1, and D =b A, then D, D, . . . , D,
- k k k 1 2 r
D = 0 is a pseudo-subresultant p.r.s.
r+1

Proof: 1In the Fundamental Theorem of Polynomial

Remainder Sequences [BRW71b] let e, = f = 1. Then
g e -maj-p. 1
n k

ILet D be defined as in Theorem 3.2.3 . D is called
k k

the natural pseudo-subresultant p.r.s. of A and A .
1 2

The following algorithm uses Theorem 3.2.3 to compute a
natural pseudo-subresultant p.r.s. over GF(p). For reasons

explained in connection with CZNPRS, this algorithm saves
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only degrees and leading and trailing coefficients rather
than the entire p.r.s.

ALGORITHM CZCPRS:

CZCPRS (p,A,B,I,N,C,D)
Complex Zero System, Congruence Natural
Pseudo~-Subresultant P.R.S.
Pr A, B, and I are inputs. N, C, and D are outputs.
p is a prime number, a Fortran integer. A and B are
non-zero univariate polynomials over GF(p), with
deg (A) > deg(B). I =0 or I =1, a Fortran integer.

et , 8, .. .,58, s 0 be the natural

I

1 2 r r+1
pseudo-subresultant p.r.s. with S = A and § = B.
1 2
Let n = deg(S ), ¢ = 1ldcf(s ), and d = trcf(s ).
i i i i i i
Then N=(n, n, ..., n), C= (cr ¢, « . .,
1 2 r 1 2
c), D=(d,d, ...,d)if I =1andD-=0 if
r 1 2 r
I =0,
Method:
Let 2, A, . . ., A be the natural p.r.s. Use the
1 2 r
§ -1 8§ +1
k-1 k-1
recurrence relation b = a a b for k > 3
k+1 k-1 k k
§ +1
1
with b =b =1, b = a . § =Db A is then the

1 2 3 2 i i i
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desired sequence.

Description:

(1) [Initialize.] A < BORROW(A); A < BORROW(B); n <«
1 2 1

CPDEG(A ); n < CPDEG(A ); N <+ PFA(n ,PFA(n ,0)); a =<
1 2 2 2 1 1

CPLDCF(A ); a <« CPLDCF(A ); C <« PFA(a ,PFA(a ,0)); D <«
1 2 2 2 1

0; if I # 0, D <« PFA(CPTRCF(A ),PFA(CPTRCF(A ),0));
2 1

2 1
(2) [Compute next term.] A <+ CPREM(p,A ,A ); erase A ;
3 1 2 1
if A =0, go to (3); § *n -n; ifk > 2, e <«
3 1 1 2 1

CPOWER(p,a ,§ -1); e < CPOWER(p,a ,8 +1); e < CPROD(p,
101 2 2 1

e ,e ); b <~ CPROD(p,e,b ); n <« CPDEG(A ); a <
1T 2 3 2 3 3 3

CPLDCF(A ); c < CPROD(p,a ,b ); N <« PFA(n ,N); C <
3 3 3 3 3

PFA(c ,C); 1if I # 0, (d < CPROD(p,CPTRCF(A ),b ); D <«
3 3 3 3

PPA(d ,D)); A <« A ; A <+« A ; n < n;n < n; a =<«
3 1 2 2 3 1 2 2 3 1

aj;a <« a;b «b; k<« k+ 1; go to (2).
2 2 3 2 3

(3) [Finish.] Erase A ; N <« INV(N); C <« INV(C); D <«
2

INV{(D): return.

Computing Time: « uv, where m = deg(A), n = deg(B),

U =m+ 1, and v = n + 1.
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Proof:
Step n t
i i
1 1 = n
2 r-1
3 1 vor
et S5, S5, .. .,8, s = 0 be the p.r.s. and v
1 2 r r+1 Jj
= deg(S ). Then the time for the j-th execution of
J
step (2) is v v (v - + 1). Summing over all
J+T F+1 )
r-1 r-1
executions, I v (v = v + 1) < v I (v -
j=1  J+1 3 F+1 2 j=1 j
viv = v +1r -1 <v(v +n+ 1) = vy
1 r 1

In most cases the p.r.s. will have to be computed over

GF(p ) for several primes p in order to construct it over
i i

the integers. Hence the following algorithm applies CZCPRS
a designa@ed number of times and combines the results into
a convenient structure. Note that the number of
applications of CZCPRS is specified, not the primes with
which it is to be applied. In general the primes used are
taken sequentially off the list generated in the main
program. However, CZSPRS does not use primes p such that

for input polynomials A and B, p|ldcf(a) or pl|ldcf(B), since
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the p.r.s.'s computed over GF(p) for such primes p are not
applicable. Also, after applying CZCPRS, CZSPRS checks
whether or not the degree sequence of the returned p.r.s.
is maximal with respect to the prior p.r.s.'s computed,
rejecting those p.r.s.'s with non-maximal degree sequences.
(The meaning of non-maximal here is relative to the
lexicographical ordering of all finite sequences of
non-negative integers; see Heindel [HEL70], Section 2.9,
for a discussion of this concept.) A non-maximal degree
sequence is produced when the prime p over which the p.r.s.

was generated divides the leading coefficient of one of the
polynomials in the pseudo-subresultant p.r.s.

The theorem following the algorithm bounds the number
of primes processed, and hence is used in the proof of

computing time.

ALGORITHM CZSPRS:

CzZSPRS(A,B,%,I,N,P, C,d)

Complex Zero System, Pseudo-Subresultant P.R.S.
A, B, &, and I are inputs. N, P, C, and JJ are
outputs. A and B are non-zero univariate integral
polyﬂomials, deg(a) > deg(B). & and I are Fortran

integers. & is a positive integer such that if p ,
1

P+ - « « , p are any primes in the list PRIME, and
2

S is any subresultant of A and B, then |S| <

o)
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L
(1/2) 1 p. I=0o0rI=1., LetS, S, ...,
i=1 i 1 2
s, s = 0 be the complete pseudo-subresultant
r r+1
p.r.s. of A and B. Letn = deg(S ). Then N = (n ,

i i 1

n, ...,nj), Pisalist (p , P+ « -« « + P)

2 r 1 2 2
where p < p < . . .‘< p and each p 1is contained
1 2 L k
in the list PRIME. C is a list (C, C, . . . , C)
1 2 L
with ¢ = (¢ , C y e e . 4 C } where c = -
k 1,k 2,k r,k ek
¢ (ldcf(S )). If I =0 then & =0. If I = 1, then
p J :
k
d=m®,DdD,...,D)withdD = ,d ,
1 2 L k 1.k 2,k
.« <« 4, 4a )} where d = ¢ (trcf(s )).
r,k jrk P 3
k
Method:

Letp, P, . . ., p be the first £ primes p in
1 2 L

the }ist PRIME for which ¢ (ldcf(a)) # 0 and
' p

¢ (ldcf(B)) # 0, and the degree sequence of (¢ (A),
p P

¢ (B)), produced by CZCPRS, is maximal relative to
P

all other primes among the first j primes on list

PRIME, where p is the j-th prime on list PRIME. N
2

is




the c¢common degree sequence forp , P, « « « , P . C
1 2 L k

is the output of leading coefficients from CZCPRS for

p. IfI=1,D 1is the output of trailing
k k

coefficients from CZCPRS for p .
k

Description:

(1) [Initialize.] N < 0; P « 0; C < 0; &J « 0; p' «
PRIME; k <« 0; a < PLDCF(A); b <« PLDCF(B).

(2) [Leading coefficient test.] If P' = 0, (print

"OUT OF PRIMES--CZSPRS"; stop); ADV(p,P'); if CMOD(p,a)
= 0 or CMOD(p,b) = 0, go to (2).

(3) [Apply CZCPRS and compare degree sequences.] A% <«
CPMOD(p,A); B* < CPMOD(p,B); CZCPRS(p,A*,B*,I,N*,C,D);
erase A*,B¥; S <« LEXORD(N,N*); if S < 0, go to (5);

if 8§ >0, go to (6).

(4) [N = N*] Erase N*; P < PFA(p,P); C < PFL(C,C);
ifI#0,d «PFL(D,&); k <k + 1; if k < 1,

go to (2); go to (7).

(5) [N < N*] Erase N; N < N*; erase P, C, &J; p «
PFA(p,0); C <« PFL(C,0); d&J <« 0; if I # 0, {J <« PFL(D,
0); k «1; if k < &, go to (2); go to (7).

(6) [N > N*] Erase N*; C, D; go to (2).

(7) [Finish.] P <« INV(P); C < INV(C); & <« mnv(d);

erase a, b; return.
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2
Computing Time: = {g + v L(a) + pvL(b)}+{uv + uL(a) +

vL(b)}, where a = |A| , b = |B| , m = deg(A), n =
1 1

deg(B), u=m+ 1, v=mn+ 1.

Proof: Let N be the total number of primes processed,

as given by Theorem 3.2.4 . Then the table is as
follows.

Step n t.

i i

1 1 o

2 <N | « L{a) + L(b) : -

3 <N | = pv + pL{a) + vL(b)

4 <N v o

5 < N v

6 <N ~ 1

7 1 %

ﬁ
The time follows immediately from the table.é

Theorem 3.2.4: The number N of primes processed by

CZSPRS is N = g + v L(a) + pvL(b), where a = |a| , b =

1l
o]
+
—

|B| , m = deg(a), y =m + 1, n = deg(B), v
1

Proof: A prime p is rejected in step (2) if and only
if, for a = ldcf(a) and b = 1ldcf(B), pla or p|b; that is,

plab. Since a < a, b < b, and p > 2, the number N of such
- - 1
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primes is N < L(ab) v L(a) + L{(b).
1

A prime p is rejected in steps (5) or (6) if and only

if it produces a non-maximal degree sequence. Let S , S ,
1 2

« « « ¢+ 8 be a pseudo-subresultant p.r.s. for A and B.
xr+1

Then the degree sequence for p is non-maximal if and only

if, for s = 1dcf(S ), P'S for some i, 3 < i < r; that is,
i i i
r r nmzxr-2 nmn
pll s . Then I s < (ab) < (ab) so
i=3 i i=3 i -
r 2
LI s ) v L(a) + pvL(b). Since p > 2, the number N of
i=3 i 2
r
primes rejected in steps (5) or (6) is N « L(I 8 ) «
2 i=3 i 7
2

v L(a) + pvL(b). The number of primes not rejected is
given by input 2. Hence the total number N of primes is
2

bounded by N= 2 + N + N « & + v L(a) + pvL(b).
1 2

In the next theorem, a method for obtaining a positive
pseudo-subresultant p.r.s. from a natural

pseudo-subresultant p.r.s. is presented.

Theorem 3.2.5: If D, D, . . ., D is a natural
1 2 r+1
pseudo-subresultant p.r.s., b defined as in Theorem 3.2.3,
i
u = sign(b ) and ¢ =uD, thenCc, C, .. ., C is a

i 1 i ii 1 2 r+1
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positive pseudo-subresultant p.r.s.

Proof: € =ubD =ubA =|b|A . Sincear , A,
i i i ii i i i 1 2
. <« « + A 1is a natural p.r.s., A = Q A + A .
r i i i+1 i+2
Multiplying both sides by |b |.|b . |b | gives
i i+1 i+2
|b -|b |-<C =0 «]b |« |k .C + |b |+ |b |-C .
i+1 i+2 i i i i+2 i+1 i i+1 i+2
Hence e C = Q'C + £ C where e = |b . |lb |» £ =
i i i i+1 i i+2 i i+1 i+2 i
]b ]-[b |, and Q' = [b - |b |-Q , soe £f > 0 and C ,
i i+1 i i i+2 i i i 1
c, ..., C is a positive p.r.s. Since D =
2 r+1 i
igg (A ,A) and C = %D , it is also a
n -1 1 2 i i

pseudo-subresultant p.r.s. H

The following theorem gives a recurrence relation for

computing the u of Theorem 3.2.5 .
i

Theorem 3.2.6: Let A , b , and D be as in

i i i

Theorem 3.2.3 , d = 1ldcf(D ), s = sign(d ), and u =

i i i i i
sign(b ) as in Theorem 3.2.5 . Thenu =u = 1,

i 1 2
§ +1
1
u = s ’ (2)
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§ +1
i
u = (usu s ) u 2 <1 < r-2. (3)
i+2 i i i+1 i+ i+1
§ +1 § +1 § +1
1 1 1
Proof: b = a = d , sou = sign(b ) = s .
3 2 2 3 3 2

Since sign(a ) = sign(d /b ) = sign(d )/sign(b ) = s /u =

i i i i i i i
s u, then, for i > 2, u /u = sign(b )/sign (b ) =

i i i+2  i+1 i+2 i+1
§ -1 § +1 § -1
i i i
sign(b /b ) = sign(a a ) = {sign(a )} . )
i+2  i+1 i i+1 i
§ +1 § +1 § +1
i i i
{sign(a )} = {sign(a )} « {sign(a )} =
i+1 i i+1
§ +1 § +1
i i
(u s u s ) . Hence u = (u s u s ) u .
i i i+1 i+1 i+2 i i i+1 i+1 i+1

A negative p.r.s. is required for a Sturm sequence,
so the next theorem shows how to compute a negative p.r.s.

from a positive p.r.s. by using appropriate sign

corrections.

Theorem-3.2.7: IfA , A, . . .

, A is a positive
1 2 r+1
p.r.s., ¢ =1 for j =1 or j =2 (mod 4) and o = -1 for
3 3
j=z=30r j =0 (mod 4), and B = oA, then B, B, % . . ,
J J 3 12

B is a negative p.r.s.
r+1
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Proof: e A = Q A + £ A . Multiplying by o ¢

J 3 j 3+ j j+2 j j+2
gives o eB = (0o o )Q B + o £ B or e B =
j+2 3 3 j oj+1 j+2 3 j+1 j j j+2 J 3
0 B + £ B . Thene f =06 e f < 0 since e £ >

J i J j+2 33 J 3+2 3 3 i

The next two theorems combine Theorem 3.2.6 and
Theorem 3.2.7 to develop a method for obtaining a negative
pseudo-subresultant p.r.s. from a natural
pseudo-subresultant p.r.s.

Theorem 3.2.8: Let ¢ be as in Theorem 3.2.7, o = -

J J

g o r @ and s be as in Theorem 3.2.6, v = o u , and

j j+1 J J j J 3
w = v s . Then

3 33 § +1

J
v = g (o0 w w ) v . (4)
j+2 3+ 3 3 3+1 j+1
§ +1
J
Proof: v = g u = g (u s u S ) u
j+2 J+2 g+2 j+2 3 3 G+1 g+1 Jj+1
§ +1
j
= g (6 vs o v s ) g v =
j+2 0 33 3 J+1 G471 541 j+1 3+1
s +1
J ¥

o (a0 w w ) v .

j+1 3 3 F+1 J+1

Theorem 3.2.9: IfD , D, . . . , D is a natural
1 2 r+1

pseudo-subresultant p.r.s., v as defined in Theorem 3.2.8,
J
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and E =vD, then E , E, . . . , E is a negative
3 J 3 1 2 r+1

pseudo-subresultant p.r.s.

Proof: E =vD =0 ub. By Theorem 3.2.5 uD,

J 33 333 11

uauD, . .., u D is a positive pseudo-subresultant
2 2 r+1 r+1

p.r.s. By Theorem 3.2.7 cuD, ocubD, . . .,
111 2 2 2

(o] u D is a negative pseudo-subresultant p.r.s.%
r+1 r+1 r+1

This completes the theoretical tools necessary for
computing a negative pseudo-subresultant p.r.s. Before )
considering the algorithm for this"operation, however,
one other algorithm is presented to simplify initial
construction of the natural pseudo-subresultant p.r.s.

It uses mixed radix methods to compute the signs of a set of
integers in residue representation (such as the set of
coefficients in residue representation produced by CZSPRS).
An input list allows a different number of primes and
residues to be used in computing each integer. This is
useful in the p.r.s. application because the coefficients
of various polynomials in the p.r.s. have widely differing

bounds.

ALGORITHM CZCLS:

S=CZCLS(C,P,L)
gpmplex Zero System, Construct

List of Signs
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Pisalist (p , P , - - . , p ) where p is the

i i i 3
1 2 k
j-th element of PRIME and i < i < . . . < i . Cis
. 2 k
a list ((c ;, C r e« « 4 C Yo - o o, (c ‘
']I‘\l 112 1,}(. I',1
c 4y « « « 4 C )), where c € GF(p ). L is a
r,2 r, k il i
J

list (2, 2, . . ., &) of positive integers, with
1 2 r

1<% <k. S is the list (s , s, « . . , s ) where
i 1 2 r

s 1is the sign of the integer a of least absolute

i i
value such that a = ¢ (mod p ) for 1 < j <2 .
i i,3 i i
J
Method:
Let p* = p . Construct theblists P* = (p*, p*,
m i 3 1 2
m
« « « 4 P¥ ) and c* = (c , C r e <« . 4 C ).
, . 301 32 38
J J
Then a = RTMR(P*, c*) and s = SMRR(a ).
J 3 J J
Description:

(1) [Initialize.] S * 0; if C = 0, return; C' <+ C;
L' « I,
(2) [Obtain next coefficient residues.] ADV(c,C');

ADV(R,L"); P' © P; ¢' ¢« ¢c; P* < (; c¥ <« 0.
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(3) [Obtain & residues and primes.] ADV(d,c');
ADV(p,P'); c* <« PFA(d,c*); P* <« PFA(p,P*); 2 <« & - 1;
if & > 0, go to (3).

(4) [Obtain sign of coefficient.] P* <« INV(P*); c* <
INV(c*); a <« RTMR(P*,c*); s <« SMRR(a); erase P*, c*, a;
S <« PFA(s,S); if C' # 0, go to (2).

(5) [Finish.] S < INV(S); return.

Computing Time: «rki + 1.

k
Proof:

Step n t' -

i i
1 1 N
2 r v
3 rk o
4 r = ki

k

5 1 W o

The final algorithm in this section, then, computes a
negative p.r.s. using modular methods. It computes an
overall bqund on the coefficients and uses CZSPRS with this
bound. Individual bounds on each polynomial of the p.r.s.
are computed, and these bounds and the results of CZSPRS
are input to CZCLS to construct the signs of the leading and
trailing coefficients of the natural pseudo-subresultant
p.r.s. Theorem 3.2.5 through Theorem 3.2.9 are then

applied to generate sign correction factors, which are used
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to alter the natural pseudo-subresultant p.r.s. to a
negative pseudo-subresultant p.r.s.

ALGORITHM CZNMRS:

CZNMRS (A,B,I,N,S,T)
Complex Zero System, Negative Modular
Polynomial Remainder Sequence
A, B, and I are inputs; N, S, and T are outputs. A
and B are non-zero univariate integral polynomials

with deg(2a) > deg(B); I =0 or I =1, a Fortran

integer. Let A , A, .. ., A, A = 0 be any

1 2 r r+1 -
negative p.r.s. for A and B. Let n = deg(A ), s =

i i i
sign(ldcf(A )), and t = sign(trcf(A )). Then N =
i i i
h,n, ...,n), S=(,s, +«. ., 5s), and
1 2 r 1 2 r
T=(t, t, ... ,t)if I =1and T =0 if I = 0.
1 2 r

Method:
Let a = |a]l , b =|B|] , m = deg(a), n = deg(B), h =

il

riogA(éﬂ , k= [log (b)], 2 =hn + km + 1, and &°
2 2

ri/PEX—I. CZSPRS is applied to A, B, and &', obtaining
N, P, Cf,JS'. Iet N=(n , n, ..., n), so that
m=n,n=n. Lets, s, ..., 8,8 = ( be

1 2 1 2 r r+1

the natural pseudo-subresultant p.r.s. of A and B.
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For 3 <1< r, let 8 = h{n - n + 1) + k{(m - n
-7 i i-1 i-1

+ 1) + 1 and &' = [ /PEXPl . Then |S | <
i i ie —

L
i
(1/2) (2 ), so ldcf(S ) is determined by the i-th
i

terms of the first &' elements of C}, and similarly
i

for trcf(S ) and Aj if I = 1. Applying CZCLS yields
S=(s, s, ...,s)and, ifI1 =1, T= (t, t,
1 2 r 1 2

. « .« t). (Note that for i=1,2 , s and t are
r i i

obtained directly from A = S and B = S .) Theorems
1 2

3.2.5 to 3.2.9 are then used to obtain sign correction
terms for S, and for T if I = 1.

Description:

(1) [Initialize.] a <« PNORMF(A); b <« PNORMF(B); m <+
PDEG(A); n <« PDEG(B); ELPOF2(a,t,h); ELPOF2(b,t,k);
2« hn + km + 1; P « PEXP - 1; &' « (& + P)/PEXP;
erase a,b; CZSPRS(A,B,Q',I,N,P,C?,&j); r + LENGTH (N)
- 2; T« 0; L+ 0; if T =0, go to (3); N' < TAIL(N).
(2) [Compute number of primes for each coefficient.]

For i <« 1,2,...,r, do: (ADV(n ,N'); & < h(n - n + 1)
1 2 1

+k(m-n + 1) +1; &' « (& + P)/PEXP; L < PFA(R',L));
1 2 2 2

L « INV(L).
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(3) [Compute list of TRCF signs.] If I = 0, go to (4);

t <« PTCS(A); t <« PTCS(B); I <« CZTRAN(JY); erase dJ;
1 2 1

L« TAIL(TAIL(L )); T' « cacLs(dY ,P,L); T « PFA(t ,
2 1 2 1

PFA(t ,T'")); erase djl.
2 1

(4) [Compute list of LDCF signs.l s <« PSIGN(A); s <«
1 2

PSIGN (B); Cf + CZTRAN(Cz); erase CP; C} <
1 2

TATL(TATL(C )); s' « czcus(C ,P,L); S « PFA(s ,
"1 2 1

PFA(s ,S')); erase C , L, P; if ¥ 0, return; n <«
2 1 2

FIRST(N); N' « TAIL(N); Q < O.
(5) [Compute list of deltas.] For i « 1,2,...,r, do:

(n +n; ADV(n ,N"); § + n - n ; Q « PFA(S + 1,0));
1 2 2 1 2

Q <« INV(Q). )

(6) [Initialize for sign correction.] S' <« S; ADV2(s '
1

s ,8"); 1If I =1, T' « TAIL(TAIL(T)); W <« S ; W <
2 1 1 2

s ;0 < 1; a0 <« =-1.
2 1 2

(7) [Compute first correction.] DECAP(qg ,Q); Vv <« -S ;
1 3 2

if MOD(q ,2) =0, v < -1; go to (9).
1 3

(8) [Compute next correction.] DECAP(g ,Q); v <« o W W ;
1 3 11 2
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if MOD(g ,2) =0, v <« 1; v « aV V.
1 3 3 2 32

(9) [Correct sign if necessary.] s < FIRST(S'); w <
3 3

s v; if v <0, ALTER(w ,S'); if I = 0, go to (10);
33 3 3

if v < 0, ALTER(-FIRST(T'),T'); T' <« TAIL(T').
3

(10) [Increment and check for end.] S' < TAIL(S');

W YW, W YWV oYV ;a a0 ¢ —-g;
1 2 2 3 2 3 1 2 2 2

if 8' # 0, go to (8); return.

_ 2 2 2 -
Computing Time: < p v L(d) , where a = [A] , b = |B] ,

deg(d), n = deg(b), ¥ = m + 1, and

i

max{a,bl}, m

Q
i

Proof:
Step n t
i i
2

1 1 < {uv + uL(a) + vL(b)}*{v L(a) + pvL(b)}
2 <1 <V

2 2
3 1 = v {viL(a) + pL(b)}

2 2
4 1 = v {vL(a) + uL(b)}
5 1 < v
6 1 v
7 1 N
8 <wv v
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t follows from noting that g = VL(a) + uL(b).
1

The maximum length r of the p.r.s. is r = v. The
maximum number of primes used for determining a
coefficient's sign, &, is & = VL(a) + uL(b). The
maximum index of a prime, i, is given by the total

number of primes used in CZSPRS, i < v2L(a) + HVL(Db).

2
Hence, t = v{vL(a) + pL(b)}-{v n(a) + wL(b)} = -
CzCLS

2 2

v {vL(a) + uL(b)} .
10

Summing the table entries gives I nt «

i=1 i i

2
v{vL(a) + pL(b)}-<{v L(a) + pvL(b) + pv + pL(a) + VvL(b)}

2
= vivL(a) + uL(b)}+{yL(a) + v L(a) + pvL(b)} =«

2 2 2 ﬁ
u v L{d) .
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3.3 Application of Sturm sequences

This section applies the algorithms of Section 3.2 to
determine the number of zeros of a polynomial in basic
regions of the plane, using techniques discussed in
Section 3.1 . The regions referred to as "basic" are the
upper and lower half-planes and the real axis.

The first algorithm generates a Sturm sequence (using
either modular or integer methods), then computes the
number of sign variations, V(x), of this sequence either at
X = %o O0or at ¥ = 1w and x = 0. These values of V(x) are
used by subsequent algorithms in this section in determining
root location.

ALGORITHM CZNVSS:

CZNVSS(A,B,I,h,k,)

Complex Zero System, Number of

Variations in a Sturm Sequence
A, B, and I are inputs; h, k, and % are outputs. A and
B are non-zero univariate integral polynomials, with
deg(A) > deg(B). I =0 or I = 1, a Fortran integer.
h, k, and & are Fortran integers. Let S be any Sturm
sequence for A and B {by definition, a negative p.r.s.

A ,A, .. .,;,A with A = A, A = B, sign(d ) =
1 2 r 1 2 1

sign(A), sign(A ) = sign(B), and psrem(A A) = 0).
2 r-1 r

h, k, and % are the number of variations in S at ~o,
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0, and +», respectively, except that if I = 0, then
k = 0.

Description:

(1) [Obtain degrees and coefficient signs.]
If METHOD = 0, (CZNPRS(A,B,I,N,S,T):; go to (2));
CZNMRS(A,B,I,N,S,T).

(2) [Initialize.] h < 0; k< 0; £ <« 0; s < 0; t =« 0;
1 1

u <« 0.
1

(3) [Process next term.] DECAP(n ,N); DECAP(s ,S); t =<
2 2 2 -

0; i£f I # 0, DECAP(t ,T); u < s ; if MOD(n ,2) # O,
2 2 2 2

u - -u; ifs +s =0, L « & + 1; s < s ;
2 2 1 2 1 2

ift #0, (ift +t =0, k«k+1; t <« t);
2 1 2 1 2

ifu +u =0, h«h+ 1; u «u; if N # 0,
1 2 1 2

go to (3); return.

. oo 2 2 2
Computing Time: « pu v L(pud) if modular methods are

3 1+k 2
used; <« u v L(pd) if integer methods are used; m =

deg(A), n = deg(B), ﬁ =m+ 1, v=mn+ 1, and
la] . |B]| < d; k = 0 if the p.r.s. is normal, k = 1
[eo] [ee]

otherwise.

Proof: n =1 and t ~~ 1. n < length of p.r.s. «
2 2 37 -
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v and £t ~ 1. Hence the time for the algorithm is
3

dominated by the time to compute the p.r.s. @

As shown previously, the number of real roots of a
polynomial A is V(-x) - V(+4x), using a Sturm sequence for
A and A'. The following algorithm computes the number of
real roots of a polynomial using this method. In addition,
it computes the number of roots in the upper half-plane by
noting that any roots of an integral polynomial which are
not real must occur as complex conjugate pairs, one in the
upper and one in the lower half-plane.

ALGORITHM CZNRNA:

CZNRNA(A,h,k)
Complex Zero System, Number of Real
Roots and Number Above Real Axis
A is the input; h and k are outputs. A is a non-zero,
square-free univariate integral polynomial. h is the
number of real roots of A and k is the number of roots
of A above the real axis.

Description:

(1) [Initialize.] n <« PDEG(A); if n =0, (h<« 0; k<« 0;
return) .
(2) [Compute derivative.] A' « PDERIV(A,FIRST(A)).

(3) [Compute location of roots.] CZNVSS(A,A',0,% , & .
1 2

2 ); erase A'; h<« 4 -4 ; k<« (n - h)/2; return.
3 - 1 3
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4+k 2
Computing Time: « yu L(ud) , where m = deg(A), 4 =m +

1, and |A] = d; k = 0 if modular methods are used or

o0}

the p.r.s. is normal, k = 1 otherwise.

Proof:

Step n t

i i
1 1 N
2 <1 < uL(d)

4+k 2
3 <71} = u  L(ud)
2

L(p|a'| ) < Lip d) ~ L(ud). k&

<o

In later instances it will be necessary to know, in
addition to the number of real roots, how many of these
real roots are in (-»,0] and how many in (0,+«). The
following algorithm computes these values, using V(-«) -
V(0) and V(0) - V(+»), respectively. It also returns the
number of roots in the upper half-plane, employing the same
techniques for this as CZNRNA.

ALGORITHM CZNNPA:

CZNNPA(A,h,k, )
Complex Zero System, Number of Non-positive
Real Roots, Positive Real Roots,
and Roots Above the Real Axis
A is the input; h, k, and & are outputs. A is a non~zero

square-free univariate integral polynomial. h is the
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number of non-positive real roots of A, k is the
number of positive real roots of A, and & is the
number of roots of A above the real axis.

Description:

(1) [Initialize.] n <« PDEG(A); if n =0, (h <« 0; k « 0;
£ <+ 0; return).
(2) [Compute values.] A' <« PDERIV(A,FIRST(A)); CIZNVSS(A,

A',17,h ;,h ,h ); erase A'; h« h ~-~h ; Xk« h - h ;

1 I

1T 2 3 1 2 2 3

£« (n - h - k)/2; return.

Computing Time:s pa+kL(pd)2, where m = deg(d), y = m.;
1, and d = [Al ; kK = 0 if modular methods are used or
the p.r.s. is zormal, k = 1 otherwise.
Proof:

Step , n t.

i i

1 1 N

, 4+k 2

2 <1 = U L(ud)

2

Lpla'l ) < Ly @) ~ L(pd).

[+o]

Before going to algorithms for Gaussian polynomials,
one additional aspect not discussed previously must be
considered. The algorithms which generate a Sturm sequence

for A and A assume deg(A ) > deg(A ). Hence if the
1 2 1 2
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Gaussian polynomial is A(z) = A (z) + iA (z) and deg(A ) <
1 2 1

deg(A ), then those algorithms could not be used to generate
2

the required Sturm sequence A , A, . . . , A . The
1 2 r

following theorem, however, shows how the desired values

can be computed from the sequence B = A , B =2AaA, . . .,
1 2 2 1

B so that an additional special algorithm need not be
r

implemented.

Theorem 3.3.1: Let A=A + iA , with A ,A # 0, be.
1 2 1 2

a univariate Gaussian polynomial with no real zeros. Let

S be any Sturm sequence for A and A , and let V (x) be
2 2 1 2

the number of variations in sign of S at x. Then the
2

number of zeros of A in the upper half-plane is {deg(a) +

V (=) =V (+x)}/2.
2 2

Proof: Let g(A ,A ) be the number of real zeros, x ,
1 2 0

of A such that A'(x )‘A (x ) < 0 minus the number such that
1 1 0 2 0

A'(x )-A (x ) > 0. (Note that g(A ,A ) = (b - a), where
1 0 2 0 1 2

(b - a) is the quantity described in Theorem 3.2.2 .) Let

S be any Sturm sequence for A and A and let V (x) be the
1 1 2 1

number of variations in sicn of S at x.
1
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Section 3.1 shows that the number of zeros of A in the

upper half-plane is {deg(d) + g(a ,A )}/2 = {deg(np) +
1T 2

V (+®) = V (=x)1}/2 .
1 1

Since A and iA have the same zeros, the number of zeros
of A in the upper half-plane is the same as the number of

zeros of iA in the upper half-plane. iA = -A + iA . It is
2 1

immediate from the definition that g(-A ,A ) = -g(A ,A ).
2 1 2 1

Hence, the number of zeros of iA, and also of A, in

the upper half-plane is {deg(A) + g(-A ,A )1}/2 = {deg(n) -
2 1

g(A ,A)}/2 = {deg(R) + V (-») = V (+=)1}/2 .
2 1 2 2

The following algorithm computes the number of zeros
of a Gaussian polynomial in the upper and lower half-planes,
assuming that the polynomial has no real zeros. The results
of Theorem 3.3.1 are used when necessary.

ALGORITHM CZABRA:

CZABRA(A,h , k)
Complex Zeros Above and
‘gelow the Real Axis
A is the input; h and k are outputs. A is a non-zero
univariate Gaussian polynomial having no real zeros.
h and k are Fortran integers, the number of zeros of A

above and below the real axis, respectively.
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Description:

(1) [Initialize.] FIRST2(A ,A ,A); n < PDEG(A ); n <
1 2 1 1 2

PDEG(A ); n <« MAXO(n ,n ); if A =0o0or A = 0, (h +«
2 1 2 1 2

n/2; k « h; return); ifn <n , (T <« A ; A < A ;
1 2 1 1 2

A <« T).
2

(2) [Compute number of sign changes.] CZNVSS(A ,A ,0,
1 2

2 4% 42 )i 2+ 8% - ;ifn <n , % € -%; h* (n+
1T 2 3 3 1 1 2

2)/2; k = n - h; return.

L+k 2 :
Computing Time: <« | L(ud) , where m = deg(hd), U =

m+ 1, and 4 = [Al ; Kk = 0 if modular methods are used

o)
or the p.r.s. is normal, k = 1 otherwise.

Proof:

Step , n t
i i

1 1 v

4+k 2
2 1 < U L(ud)

|a | ,]a | <d; deg(ar ),deg(A ) <m. The time for
1T 2 o« 1 2

CZNVSS follows immediately from this. E

In order to handle a Gaussian polynomial with real

zeros, one need only note the following. Let A = A + iA ,
1 2
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where A and A are integral polynomials. Then at any real
1 2

point x, A (x) and A (x) are real values. Hence at x a
1 2 0

real zero of A, A (x ) = a + i0 is pure real and iA (x ) =
1 0 2 0

0 + ib is pure imaginary. Thus A (x ) + iA (x ) = a + ib
10 2 0

can be zero only if a =b =24 (x ) = A (x ) = 0. This
1 0 2 0

means that x is a zero of the gcd of A and A , and hence
0 1 2

all real zeros of A are real zeros of gcd(A ,A ).
1 2

The following algorithm splits a Gaussian polynomial

A=A + iA into A = B(A + iA ), where B = gcd(A ,A ),
1 2 1 2 1 2

A=A/B, and A = A /B. Then B is an integral polynomial
1 1 2 2

so CZNRNA is applied to it. A + iA is a Gaussian
1 2

polynomial with no real zeros, so CZABRA can be applied to
it. These results are then combined to give the number of
zeros of a Gaussian polynomial in the upper and lower
half-planes and on the real axis.

ALGORITHM CZNZHP:

CZNZHP (A,h,k)
Complex Zero System, Number of
Zeros in Upper Half-Plane
A is the input; h and k are outputs. A is a non-zero

square~free univariate Gaussian polynomial. h is the
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number of real zeros of A, k is the number of zeros

of A in the upper half-plane.

Description:
(1) [Initialize.] FIRST2(A ,A ,A); if A = 0,
1 2 1
(CZNRNA(A ,h,k); return); if A = 0, (CZNRNA(A ,h,k):
2 2 1
return).

(2) [Compute number for real and complex factors.]

PGCDCF(A ,A ,B,A ,A ); A < PFL(Z ,PFL(Z ,0));
1 2 1 2 1 2

CZNRNA(B,h,k ); erase B; CZABRA(A,k ,%); erase A; k <
1 2

k + k ; return.
1 2

44k 2
Computing Time: = yu (LL(u) + L(d)) , where m =

deg(A), t =m+ 1, and d = [Alm; k = 0 if modular

methods are used or the p.r.s.'s are normal, k = 1

otherwise.
5 2 _ _ 2m
Proof: t =uL(d . |[E| ,|X| ,[B] <u (na
1 1 o 2 0
2m+1
=u  dsince deg(A ),deg(A ) <m; |A]| ,|Aa ]| < a&;
1 2 1 o 2 o
and hence |a | ,|a | < ud. Thus t (B) «
11 21 CZNRNA
44k 2u 2 b+k 2

u L{pg d) <«=uq (WL(u) + L(d)) . Similar relations

3 2 B
hold for t . (B). t (A ,A) = u L(pd) . E
CZABRA PGCDCF 1 2
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CHAPTER 4: ROOT SQUARING AND MAPPINGS

4.1 Theoretical background

This section presents a theoretical background of root
squaring and mappings, which will be used to expand the
algorithms in Section 3.3 in order to determine the number
of roots of a polynomial in a variety of other areas in the
complex plane.

Root squaring, as the name implies, is simply a process

which derives from a polynomial A with roots o , o, . . ._,
1 2
2 2 2
o a polynomial A* with roots o« , oo, . . . , & . Although
n 1 2 n

it is a fairly common concept, its application here will be
somewhat different.

Suppose a polynomial A has n roots in quadrant Q ,
i i

with no roots on the axes:

Root squaring is used to establish a relationship between

n and n and between n and n in terms of the number of
1 3 2 4

zeros of another polynomial in the upper and lower
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half-planes.

Consider root ¢ of A in guadrant q :

i i

0 < arg(a1) < 1/2; (1)
/2 < arg(ocz) < m; (2)
T < arg(a3) < 37/2; (3)
3n/2 < arg(uq) < 27. (4)

If root squaring is applied to A, giving a polynomial A%, .

2
then the roots a of A* corresponding to o of A have the
i i

following arguments:

2
0 < arg(o ) < 7; ‘ (5)
1
2
T < arg(a ) < 27; (6)
2
2
27 < arg(a ) < 3m; (7)
3
2
37 < arg(e ) < U7, (8)
4

Hence, roots of A in quadrants one and three correspond to
roots of A*¥ in the upper half-plane, and roots of A in
quadrants two and four correspond to roots of A* in the
lower half-plane. Using the methods discussed in Section

3.3, one can determine the number of roots of A¥ in the
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upper and lower half-planes, say u and 1. Then n + n =
1 3

uandn 4+ n = 1.
2 4

The following theorem gives a method for performing

root squaring.

Theorem 4.7.71: Let A be a univariate polynomial over

C, the field of complex numbers, of degree n > 0. Let A(x)

n i n
= 5 ax =al (x = o ) with o € C for 1 < 1 < n.
i=0 i n i=1 i i
n i n i 2 2 X
Let A (x) =2 a.x , A (x) = 7 a,x , B=A - A , and
1 i=0 1 2 i=0 % 1 2
i even i odd
2 n 2 n 2
A¥(x ) = B(x). Then A*(x) = (-1) a I (x - o ).
n i=1 i
Proof: A (-x) = A (x) and A (-x) = -A (x), so B(x) =
1 1 2 2
2 2
A(x) = A (x) ={A (x) +2A (x)}{A (x) - A (X)} =
1 2 1 2 1 2
n
A(x){A (-x) + A (-x)} = A(x)A(-x) = {a T (x ~ o )}
1 2 n i=1 i
n n 2 n 2 2
{al (-x - 0 )} = (-1) a I (x =0 ) and A*(x) =
n i=1 i n i=1 i
nz2n 2 g
(-1) al (x - o ).
n i=1 i

Mappings are used with the same basic idea as the

preceding application of root squaring, although a different
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approach is employed. Given a polynomial A and a method
for finding the number of zeros of polynomials in region U,
one desires a method for finding the zeros of A in some

other region W.

Consider a polynomial A and a mapping @: U —> W. Let
C(z) = A(®(z)). C(z) = 0 just in case A(®(z)) = A(w) = 0
for 2(z) = w € W. Hence the number of zeros of C in U is
the number of zeros of A in W.

Furthermore, suppose D(u) # 0 for u € U. Then B(u) =
D(u)C(u) = 0 for u € U just in case C(u) = 0. Hence B(z) °
has the same number of zeros in U as does C(z). Thus the
number of zeros of B in U is the number of zeros of A in W.
Therefore, given a method for determining the number of
zeros of B in U one can determine the number of zeros of A
in W.

As an example, CZNNPA computes the number of zeros of
an integral polynomial A in (-<,0]. Suppose one is

interested in the number of zeros of A in (-%,r] instead,

where r is a non-zero rational number r /r . Let U =
1 2
(-~,0] and W = (-o,r]. Then ¢(z2) = z + r is a mapping
1-1
®: U —> W, so let C(z) = A(z + r). CZNNPA cannot be

applied to C(z), however, since it is a rational polynomial.

n i
Hence, suppose A(z) = I a 2z . Then C(z) =
i=0 i
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i
pX a (z+1r) =1 af(rz+r)/r} , so let D(z) =
i 1

i=0 i i=0 i 2
r . Then D(z) # 0 for z in (-»,0]. Hence B(z) = D(z)C

n n-i i

= X ar (r z + r ) has the same number of roots in
i=0 i 2 2 1

(=2,0] as A(z) has in (-«,r]. Since B(z) is an integral

polynomial, CZNNPA can be applied.

(z)
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4.2 Root squaring

This section presents algorithms for implementing
Theorem 4.1.1 . To facilitate exposition, the following
terminology is introduced.

n i
A polynomial A(x) = I a x will be called even if
i=1 1

e is even for 1 < i < n and odd if e is odd for 1 < i < n.
i i

The even part and the odd part of a polynomial A will be

polynomials A and A , respectively, such that A = A + A -
e o) e o)

A is an even polynomial, and A is an odd polynomial. The

e o
e
n i
halve of an even polynomial A(x) = I a x will be the
i=1 i
(e /2)
n i
polynomial A(x) = % a x
i=1 i

The method presented in the theorem can then be stated
as follows: split the input polynomial A into even and odd
2 2
parts, A and A ; square these, giving B = A and C = A
e o} e e e o

(note that the square of an even polynomial or an odd

polynomial is even); compute D = B - C (note that the
e e e

difference of two even polynomials is even); compute the
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halve of even polynomial D , the result of this operation
e

being the desired polynomial.
The first two algorithms, then, split input polynomials
into even and odd parts.

ALGORITHM PSPLT:

PSPLT (A,A ,A )
T2

Polynomial Split into Even
and 0dd Exponent Terms

A is the input. A and A are outputs. A is a proper

1 2
n i
integral polynomial, A(x) = I a x , where n =
i=0 i
n i n i
deg(A). Then A (x) = I a,x and A (x) = % a.x .
1 i=0 2 1i=0
i even i odd

Description:

(1) [Initialize.] 2 <« 0; A <« 0; if A = 0, return;

A' « TAIL(A).
(2) [Obtain term of A.] ADV2(a,j,A").
(3) [Check if even or odd.] If MOD(j,2) = 1, go to (5).

(4) [Even; prefix to A .] A < PFA(Jj,PFL(BORROW(a),A ));
1 1 1

go to (6).

(5) [0dd; prefix to A .1 A <« PFA(J,PFL(BORROW(a),A )).
2 2 2

(6) [Test for end.] If A' # 0, go to (2).
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(7) [Finish.] If A # 0, A <« PFL(PVBL(A),INV(A ));
1 1 1

if A # 0, A <« PFL(PVBL(A),INV(A )); return.
2 2 2

Computing Time: « u, where m = deg(A) and p =m + 1.

Step n t_
i i
1 1 v
2 <y AU
3 O A
4 <y o
5 < u N
6 <y AV
7 <1 <y

t =« u since deg(A ) < deg(A) and deg(a ) < deg(a). Q
7 1 2

ALGORITHM GPSPLT:

GPSPLT (A,A ,A )
1 2

Gaussian Polynomial Split into
Even and 0dd Exponent Terms

A is the input. A and A are outputs. A is a properxr
1 2

n i
Gaussian polynomial, A(z) = g a z , where n =
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n i n i
deg(A). Then A (z) = 7 a,.z and A (z) = 7 a.z
1 i=0 *t 2 i=0
i even i odd

Description:

(1) [Initialize.] A <« 0; A <« 0; if A = 0, return;

FIRST2(A',A"',n).

(2) [Split parts.] PSPLT(A',A',A'); PSPLT(A'',A'',A'').
1 2 T2

(3) [Assemble A .] If A" # 0 or A'' # 0, A <
1 1 1 1

PFL(A',PFL(A'',0)).
1 1

(4) [Assemble A .] If A' # 0 or A'' # 0, A <«

2 2 2 2
PFL(A',PFL(A'',0)); return.
2 2
Computing Time: «y, where m = deg(A) and p = m + 1
Proof:
Step n t.
i i
1 1 v
2 <1 !
3 <1 v
4 <1 N

t « y since deg(A') < deg(A) and deg(A'") < deg(a). g

The next two algorithms compute the halves of the

input polynomials.



136

ALGORITHM PHAEX:

B=PHAEX (A)
Polynomial with Halved Exponent
A is a proper integral polynomial, A(x) = I a x ,
i=0 i

where 2n = deg(A). B is the integral polynomial B(x) =
n i

Z a x .

i=0 i

Description:

(1) [Initialize.] B + 0; if A = (0, return; A' < TAIL(A).
(2) [Obtain term of A.] ADV2(a,j,A').

(3) [Compute term of B.] B + PFA(3j/2,PFL(BORROW(a),B));
if A' # 0, go to (2).

(4) [Finish.] B =~ PFL(PVBL(A),INV(B));: return.

Computing Time: « p, where m = deg(A) and u=m + 1.

Proof:
Step n t.
i i
1 1 Vo
2 < N
3 <p v
i <1 < U

Steps(2) and (3) are executed once for each term of A

il

and thus n < pand n < u. Length(B) length(a) <

2 3

2pu + 1 and thus t « u.g
y -
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ALGORITHM GPHAEX:

B=GPHAEX (A)

Gaussian Polynomial with Halved Exponent
A is a proper Gaussian polynomial, A(z) = I az ,

where 2n = deg(A). B is the Gaussian polynomial B(z) =

Description:

(1) [Initialize.] B « 0; if A = 0, return;

FIRST2(A ,A ,A).

1 2
(2) [Compute parts.] B <« PHAEX(A ); B < PHAEX(A ).
1 1 2 2
(3) [Finish.] B « PFL(B ,PFL(B ,0)); return.
1 2

Computing Time: < U, where m = deg(A) and 4 = m + 1.

Proof:
step n t'
i i
1 1 v
2 STz
3 <1 v

t = W since deg(A ) < deg(A) and deg(A ) < deg(a).:
2 1 2

A large part of the time in the root squaring

algorithms will be the time to square the even and odd



138
polynomials. Hence, rather than use the standard product
routines, the following algorithms for squaring univariate
polynomials are implemented.

ALGORITHM PSQR:

B=PSQR(A)
Polynomial Squared
A is a univariate integral polynomial. B is the

2
univariate integral polynomial B = A .

Method:
n &
If A = 0, then B = 0. Otherwise, let A(x) = ¥ a x
i=0 i
where n = deg(A). Let B (x) = 0 and B (x) = B (x)
-1 | j-1
2 27 i n k
+ ax + 2a x I ax for 0 <j <n. Then B =
3 3 k=9+1 k
B .
n
Description:

(1) [Initialize.] B <« 0; if A = 0, return; A' <
CINV(TAIL(A)); ¢ <« PFA(2,0).

(2) [Obtain first term of A'.] DECAP2(j,a,A").

(3) [Compute first term of B'.] B' <« PFL{IPROD(a,a),
PFA(23,0)); if A' = 0, (erase a; go to (7)).

(4) [Initialize inner loop.] a <« IPROD(a,c); erase a;
A'' « A",

(5) [Obtaln next term of A'.] ADV2 (k,a,A'") .




139
(6) [Compute next term of B'.] B' « PFL(IPROD(a,a),
PFA(J+k,B')); if A'' # 0, go to (5); erase a.
(7) [Add.] B' « PFL(PVBL(A),B'); B'' « PSUM(B,B');
erase B, B'; B « B''; 1if A' # 0, go to (2).

(8) [Finish.] Erase c; return.

Computing Time: = sz(a)2 + uzL(p), where m = deg(a),
p=m+ 1, and a = |A] .
Step n t'
i i
1 1 = u
2 < 1 v
2
3 < = L(a)
4 <y = L(a)
2
5 < ol
2 2
6 < « L(a)
7 <y < pL(pa)
8 < 1 N
2 2

|B*|_ < 2a and thus, by induction, IB] < 2(3 - Na
at the beginning of the j-th execution of step(7).

2 2
Hence L(|B'ls) < L(2a ) v L(a) and L(|B|.) < L(2pa ) o

L(Ha) for all executions of step (7). Thus t « pL (pa) .
g -



Summing over all table entries ¥ nt «y L(a) -+
i=1 i i ™

2 2 2 2 a
u L{pa) ~ v L{a) + u L(y). &

ALGORITHM GPSQR:

B=GPSQR(A)
Gaussian Polynomial Squared

A is a univariate Gaussian polynomial. B is the

2
univariate Gaussian polynomial B = A .
Method:
If A=0 then B = 0. Otherwise, let A = A + iA .
1 2
2 2

Let B = (A - A ) and B = 27 A . Then B =B + iB .

1 1 2 2 12 1 2
Description:

(1) [Initialize.] B < 0; 1f A = 0, return; FIRST2 (A ,
1

A ,A); c «= PFA(2,0).
2

(2) [Compute real part.] B' « PSQR(A ); B'' <« PSQR(A ) ;
1 1 1 2

B <« PDIF(B',B''); erase B', B '",
1 T 1 1 1

(3) [Compute complex part.] B' <« PPROD(A ,A ); B =
2 1 2 2

PIP(B',c); erase B', c.
2 2

(4) [Finish.] B =« PFL(B ,PFL(B ,0)); return.
1 2
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2 2 2
Computing Time: « u L(a) + u L(u), where m = deg({d),
u=m+ 1, and a = |a| .
Proof:
Step n t
i i
1 1 v
2 2 2 2
2 <1 ] =wuL(a) +pL(u + uL(pa )
2 2 2 2
3 <1 | =wuL(a) + p LW + uL(pa )
b <1 v
The table entries follow since |A |, |a I <
1 2 ®
|a] 5 deg(a ), deg(a ) < deg(n); deg(n?), deg(a?) < 2(u
o 1 2 1 2
2 2 2 2
-L; |a|, la] <ua; laa] <ua
1 « 2 o 1 2 w

2
The theorem follows by observing that uL(pa ) ~

2 2 2 a
WL (W) + uL(a) = p L(W) + u L(a) . &
As an illustration of speed gain, the following test

runs were made on randomly generated polynomials using a
31
PDP-10 with B = 2 . The units for L(|A] ) are B-digits

lees

(Bd) and the units of time are seconds (s).



142

The following algorithms, then, use the previous

deg (A) L(lal ) PPROD PSOR GPPROD , GPSQR
(Ba) (s) (s) (s) (s)
5 2 2.90 1.43
10 2 10.1 5.18
15 2 19.8 10.4
20 2 37.0 18.14
5 3 .753 .383 3.43 1.70
10 3 3.33 1.60 11.1 6.03
15 3 7.13 3.53 26.5 15.1
20 3 10.4 5.35 47.2 22.7
5 4 1.10 .584
10 4 3.95 2.00
15 4 8.30 4.u4s
20 4 14.5 7.67

algorithms of this section and the method of Theorem b.1.1

to perform root squaring.

ALGORITHM PRSQR:

B=PRSQR(A)

Polynomial with Roots Squared

A is a univariate integral polynomial of positive

n
degree n, A(x) = {ldcf(a)}mn (x - a ).
i=1 i

univariate integral polynomial B(x) =

B is the
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n 2 n 2
(-1) {ldcf(n)} 1@ (x = o ).
i=1 i
Method:
n i
Let A(x) = T a x where n = deg(A). Let A (x) =
i=0 i 1
n i. n i 2 2
) ax and A (x) = I ax . LetB'=A ~-A .
i=0 2 i=0 1 1 2
i even i odd
2

Then B(x ) = B'(x).

Description:

(1) [Split A.] PSPLT(A,A ,A ).
1 2

(2) [Compute B'.] A' « PSQR(A ); A' <« PSQR(A );
1 1 2 2

erase A , A ; B' « PDIF(A',A'); erase A', A'
1 2 1 2 1 2

(3) [Finish.] B « PHAEX(B'); erase B'; return.

2 2 2
Computing Time: =y L(a) + p L(y), where m = deg(a),

p=m+ 1, and a = |A]
[ee]

Proof:

Step n t
i i

1 1 < U

2 2 2 2
< u L{a) + p L{p) + pL(ua )

[\
R

(%]
—
| R
g ol

2 2 2 2
|~ ] <wupa and |A | < pa . The theorem follows by
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2 2
observing that uL(pa ) ~ pL(p) + pl(a) « p L(y) +

sz(a)z. g

ALGORITHM GPRSQR:

B=GPRSQR({A)
Gaussian Polynomial with Roots Sguared
A is a univariate Gaussian polynomial of positive
n
degree n, A(z) = {ldcf(A)}Hi=1 (z - ai) . B is the

univariate Gaussian polynomial B(z) = :

n 2 n 2
(-1) {ldcf(A)} 1 (z —a ) .
i=1 i
%Eﬁhoéz
n i
Let A(z) =71 a z , where n = deg(A). Let A (z) =
i=0 i 1
n i n i 2 2
b a z and A (z) =73 az . LetB' =2 - A .
i=0 1 2 i=0 1 1 2
i even i odd
2
Then B(z ) = B'(z).
Description:

(1) [Split A.] GPSPLT(A,A ,A ).
1T 2

(2) [Compute B'.] A' « GPSQR(A ); A' < GPSQR(A );
1 1 2 2

erase A , A ; B' « GPDIF(A',A'); erase A', A'
1 2 1 2 1 2

(3) [Finish.] B <« GPHAEX(B'); erase B'; return.
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2 2 2
Computing Time: = y L(a) + p L(u), where m = deg(a),
p=m+ 1, and a = |Aa] .
Prootf:
Step n t
i 1
1 1 < U
2 2 2 2
2 1 = L(a) + u L(p) + uL(pa )
3 1 < U
2 2 2 2E
]Alf_pa, |A| < ua
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4.3 Mappings

This section presents algorithms for mappings which
are used by later algorithms in order to locate roots in
areas other than the basic areas of upper and lower
half-planes and the real axis.

In most cases it will be obvious that the criteria
for suitable mappings as discussed in Section 4.1 are
satisfied; in those where it is not, an explanation will be
given.

The first four algorithms may appear to implement
somewhat trivial @'s. However, their major importance lies
expanded or contracted image (such as the unit circle to a
circle of radius r). Rather, as shown later, they make it
possible to work with rational, as well as integral,

expressions for other ¢'s,

n i
Let A(x) = I a X be a univariate integral or

i=0 i

Gaussian polynomial. Homothetic expansion by a non-zero

integer ¢ will be the polynomial B(x) = A(cx) =

n i i

) a ¢ x . Thus the mapping function ¢ is & (x) = cx.

i=0 i

Strictly speaking, it would seem that corresponding
contraction should be ®(x) = x/c. Note, however, that the

resulting A(%(x)) is a rational polynomial. Hence, using
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n
the terminology of Section 4.1, let D(x) = ¢ and B(x) =

n n-i i
D(x)A(d(x)) = I a c X , an integral polynomial. Thus,

homothetic contraction by a non-zero integer ¢ will be the

n
polynomial B(x) = ¢ A(x/c) for n = deg(A) .

The first two algorithms, then, perform homothetic
expansion.,

ALGORITHM PHOME:

B=PHOME (A, c)
Polynomial Homothetic Expansion
A is a univariate integral polynomial. ¢ is an
L-integer. B is the univariate integral polynomial

B(x) = A(cx).

Method:
m i
If A =0, then B = 0. Otherwise, if A(x) =7 a x ,
i=0 i
m i i
then B(x) = ¢ (c a )x
i=0 i
Description:

(1) [Initialize.] B <« 0; if A = 0, return; A' <«
CINV(TAIL(A)); i <« 0; 4 <« PFA(1,0).

(2) [Obtain term of A.] DECAP2(j,a,A").

(3) [Compute power of c.] If i > 3, go to (5).
(4) [Multiply.] d' < IPROD(d,c); erase d; d « 4d';

i+ 1+ 1; go to (3).



148
(5) [Compute term of B.] b + IPROD(d,a); erase a; B +
PFL(b,PFA(j,B)); if A' # 0, go to (2).

(6) [Finish.] Erase d; B < PFL(PVBL (A) ,B); return.

2 2 2
Computing Time: = u L(c) + i L(a)L(c), where m =
deg(A), ¥ = m + 1, and a = |A| .
Proof:
Step n t
i i
1 1 < U
2 <H v
3 < 2u v
2
b < u < UL (c)
5 <w & HL(a)L(c)
6 1. v
i-1
The i-th execution of Step (4) computes c c o,
i-1 H 2
thus the time t <« L(c JL(c) = Lc )L(c) = uL(c) .
3
m J
Let A(x) = L a x for m = deg(A). Then the
=0 3
j
i-th execution of Step (5) computes a ¢ for some i,
J
] M
0 < 3 < m, and hence t £ L(a)i(c ) = L{a YL(c ) =
b J J

b

HL(a)L(c).
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ALGORITHM GPHOME:

B=GPHOME (A, c)
Gaussian Polynomial Homothetic Expansion
A is a univariate Gaussian polynomial. ¢ is an
L-integer. B is the univariate Gaussian polynomial

B(x) = A(cx).

Description:

(1) [Initialize.] B« 0; if A = 0, return.

(2) [Obtain terms of A.] FIRST2(A ,A ,A).
1 2

(3) [Compute terms of B.] B <« PHOME(A ,c); B <«
1 1 2

PHOME (A ,cC).

2
(&) [Finish.] B <« PFL(B1,PFL(BZ,O)); return.
2 2 2
Computing Time: = v L(c) + v L(c)L(a), where n =
deg(A), Vv=n + 1, and a = IAI
Proof: )
Step n t.
i i
1 1 AV
2 <1 vl
2 2 2
3 < T | =v L{c) +v L{a)L(c)
b <1 v

Let A=A + iA . Then t follows directly since
1 2 3
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bkt ]

la |, A | < [A] and deg(a ), deg(a ) < deg(A).;
1 2

The next two algorithms perform homothetic contraction.
The method employed, as discussed previously, can be viewed
less formally by simply recalling that multiplying a
polynomial by a non-zero constant does not affect its roots.

n
Hence the integral polynomial ¢ A(x/c) has the same roots

as the rational polynomial A(x/c).

ALGORITHM PHOMC:

B=PHOMC(A,c,m)
Polynomial Homothetic Contraction
A is a univariate integral polynomial. ¢ is a non-zero
L-integer. m is a Fortran integer, with m > deg(A). B

m

is the univariate integral polynomial B(x) = ¢ A(x/c).
Method:
n i
If A =0, then B = 0. Otherwise, let A(x) = 3 a x
i=0 i
n m-i i
where n = deg(A). Then B(x) = ¢ (c a )x

Description:

il

(1) [Initialize.] B < 0; if A 0, return; A' <« TAIL(A);
i+ m; d <« PFA(1,0).

(2) [Obtain term of A.] ADV2(a,j,A").

(3) [Compute power of c¢.] If i < 3, go to (5).

(4) [Multiply.] 4' « IPROD(d,c); erase d; d « 4d';
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i*1i-1; go to (3).
(5) [Compute term of B.] b « IPROD(d,a); B <+ PFA(],
PFL(b,B)); i1f A' # 0, go to (2).

(6) [Finish.] Erase d; B < PFL(PVBL(A),INV(B)); return.

2 2
Computing Time: ¢ u L(c) + upvL(a)L(c), where u = m
+ 1, n = deg(d), V=n-+ 1, and a = }Af .
Proof:
Step n t
i i
1 1 N .
2 <V v
3 L Y o
2
) < u = UL (c)
5 < v = uL(a)L(c)
6 1 < v
i-1
The i-th execution of Step (4) computes c - C
i-1 M 2
and hence t <= L(c JL(c) = L(c )L(c) < uL({c) .
4
n ]
Let A(x) = L a x for n = deg(A). Then the
=0 j
m-j
i-th execution of Step (5) computes a c for some j,
J
m-7j U
0 < Jj<n. Hence t <= L(c )L(a ) = L(c )L(a) =
I 3

HL(c)L(a) .
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ALGORITHM GPHOMC:

B=GPHOMC (A, )
Gaussian Polynomial Homothetic Contraction
A is a univariate Gaussian polynomial. ¢ is a
non-zero L-integer. Let n = deg(A). Then B is the
univariate Gaussian polynomial B(x) = an(x/c).

Description:

(1) [Initialize.] B « 0; if A = 0, return; n < GPDEG(A) .

(2) [Obtain terms of A.] FIRST2(A ;A ,A).

1 2
(3) [Compute terms of B.] B <« PHOMC(A ,c,n); B < )
1 1 2
PHOMC (A ,c,n).
2
(4) [Finish.] B + PFL(B ,PFL(B ,0)); return.
1 2
2 2 2
Computing Time: = v L(c) + v L{c)L(a), where n =
deg(d), v=n+ 1, and a = Ia] .
Proof:
Step n t
i i
1 1 v
2 <1 AV
2 2 2
3 <1 = v L(c) + v L(c)L(a)
4 <1 AV

Let A = A + iA . Then t follows because |[A | ,
1 2 3 1T
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£
|a | < |A] and deg(a ), deg(A ) < deg(a). Lj
Combining these two concepts of expansion and

n
contraction, one can let ¢(x) = bx/c and D(x) = ¢ for n =

deg(Ad), giving the rational homothetic operation by r = b/c

n i n
on A(x) = % a x as the polynomial B(x) = c A(bx/c) =

o abc X . The following algorithm implements this
i=0 1

operation for Gaussian polynomials.

ALGORITHM GPRHCM:

B=GPRHOM (A, 1)
Gaussian Polynomial Rational
Homothetic Operation
A is a univariate Gaussian polynomial; r is a non-zero

rational number, ¥ = r /r . B is the univariate
1 2

n
Gaussian polynomial B(z) = r A(rz), where n = deg(a).
2

Description:

(1) [Initialize.] B « 0; if A = 0, return;

FIRST2(x ,r ,xr).
T 2

(2) [Compute polynomials.] A <« GPHOMC(A,r ); B <«
1 2

GPHOME(A ,r ); erase A ; return.
17 1 1
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2 2 2 3
Computing Time: « y L(r) + u L(rx)L(a) + p L(r )L(r ),
- 1 2

where m =deg(®), w=m+ 1, a = [A] , and r = r /r
o0 12

2 2 2
Proof: t (A,r ) =y L(r) + u L(r )L(a). a
GPHOMC 2 2 2 1

m 2 2
< |r | asot (A ,xr ) « y L(r ) +
1 2 GPHOME 1 1 - 1

!
>
A

2 m 2 2 3 2
M L(r )L(r a) « u L(r ) + p L(r )L(r ) + p L(r )L(a)
1 2 1 1 2 1

2 2 2 3 g
= u L(r) + p L(r)L(a) + p Lir )L(r ). &
1 2

Note that |B| < |r r }ma. This fact will be used in
© 12
later derivations.
The names of the algorithms attempt to indicate the
mapping function which they implement. As an example,

consider a point p in the complex plane expressed in polar

i6
form, p = be . The following algorithm performs a

"rotation" in the sense that such a point p is mapped onto

i(6 £ w/2)
point p* = be and hence in effect the plane is

o
rotated *90 about the origin. The mapping used is ¢ (z) =

tiz.
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ALGORITHM GPROT:

B=GPROT (A, s)
Gaussian Polynomial Rotation
A is a univariate Gaussian polynomial. s = 1 or s =
-1, a Fortran integer. B is the univariate Gaussian
polynomial B(z) = A(siz).

Description:

(1) [Initialize.] B <« 0; if A = 0, return; n <« GPDEG(A);

ifn=20, (B+ BORROW(A) ; return); FIRST2(A A LA);

1 2
if A # 0, A <« TAIL(A ); if A # 0, A <« TAIL(A );
1 1 1 2 2 2
B <« 0; B <« 0.
1 2
(2) [Obtain a .1 a <« 0; if A = 0, go to (3); n =+«

1 1 1 1

SECOND(A ); if n > n , go to (3); ADV(a ,A ); A =<
1 1 1 1 1

TAIL(A ).
1
(3) [Obtain a .] a <« 0; if A = 0, go to (4); n <«
2 2 2 2
SECOND(A ); if n > n , go to (4); ADV(a ,A ); A <«
2 2 2 2 2
TATL(A ).

2
(4) [Compute k¥ = n mod U and branch.] k + MOD(n,4);
k! < k + 1; go to (5,6,7,8),k'.

(5)[k = 0.] b <« BORROW(a )i b <« BORROW(a );
1 1 2 2

go to (9).
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(6)[k = 1.1 If s < 0, (b + BORROW(a ); b =« INEG(a );
1 2 2 1

go to (9)); if s > 0, (b « INEG(a ); b « BORROW(a ) ;
1 2 2 1

go to (9)).

(7)Ik = 2.] b « INEG(a ); b <« INEG(a ); go to (9).
1 1 2 2

(8) [k = 3.] If s < 0, (b <+« INEG(a ); b <« BORROW (a );
1 2 2 1

go to (9)); if s > 0, (b <+ BORROW(a ); b <« INEG(a )).
1 2 2 1

(9) [Prefix terms of B.] If b # 0, B <« PFA(n,PFL(b ,
1 1 1

B)); ifb #0, B <« PFA(n,PFL(b ,B )); n<« n - 1;
1 2 2 2 2

if n > 0, go to (2).

(10) [Finish.] If B # 0, B < PFL(GPVBL(A),INV(B ));

1 1 1
if B #0, B « PFL(GPVBL(A) ,INV(B )); B « PFL(B ,
2 2 2 1
PFL(B ,0)): return.
2
Computing Time: o« vL(a), where n = deg(np), v = n + 1,
and a = |A| .
Proof:
Step n t‘
i i
1 1 v
2 < v N
3 < v vl
4 < v v
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5 < v v
6 < v « L(a)
7 < v o L(a)
8 < v o« L(a)
9 < v AV
10 <1 = v

Translation is an often-used mapping, with o(xg) =
x + a for some integer a. The following two algorithms
perform this translation.

ALGORITHM PTRAN:

B=PTRAN (A, c)
Polynomial Translation
A is a univariate integral polynomial. c is an
L-integer. B is the univariate integral polynomial
B(x) = A(x + ).
Method:
If deg(A) =0 oxr ¢ = 0, then B = A. Otherwise,

Horner's algorithm is used as follows. Let A(x) =

n i
z a x with deg(h) = n. Let B (x) = a and B (%) =
i=0 i 0 n i4+1
B (x)-(x + ¢) + a for 0 < i < n. Then B = B

i n-i-1 - n
Description:

(1) [Deg(A) or ¢ zero?] If PDEG(A) = 0 or c = 0, (B «
BORROW (A); return).

(2) [Initialize.] x « FIRST(A); A' « TAIL(A);



ADV2(a,n,A'); B <« PFL(PVBL(A),PFL(BORROW(a),
PFA(0,0))); i <« 0.

(3) [Multiply by x + c.] B' « PMLMP(B,c); erase B;
B« B'; 1« 1 + 1.

(4) [Add coefficients.] If A' = 0, go to (5); j =«
SECOND(A'); if J # n - i, go to (5); ADV(a,A'):
A' « TAIL(A'); B' « PISUM(B,x,a); erase B; B « B!

(5) [Test for end.] If i < n, go to (3); return.

2 3 2
Computing Time: « y L(a)L(c) + v L(c) , where n =
deg(d), v =n + 1, and a = [A[ .
Proof
Step n t
i i
1 1 SV
2 < 11 n 1
- 2 2
3 < v| = vh(a)L(c) + v L(c)
4 < v f‘vL(c) + L{a)
5 < vl 1
n i
Let A(x) = ¢ a x where n = deg(dA). Define
i=0 1
B (x) = a and B () =B (x)*(x + c) + a for
0 n j+1 3 n-j-1
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.

0 < Jj <n. Thus B 1is the value of B at the beginning

J

of the (j + 1)-th execution of Step (3). Then B
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=B (x)-(x + ¢c) + a = {B (x)x + a } o+
3 n-7j-1 J n-j-1
c-B (x). Clearly ]B (%)% + a [ iAmaX{lB (x) x| ,
j J n=j=1 o j o
la |} < max{|B (x)| ,a}, and |c-B (x)] =
I'l"‘j"'1 :] oS} J ©
c*|B (x)]| for c* = |c|. Thus |B (x) | <
J 0 3+ co
max{|B (x)-x]| ,a} + c*|B (x) | . Hence if B (x) | <
J J ]
a(c* + 1) , then |B (x)| < af(c* + 1) + c*ra(c* + 1)
41w T
j+1 -
= af(c* + 1) . Since deg(B ) = j and 0 < j < v, then
5 =

v vV
t o« yL{af{e* + 1} YL (c) = VL(a)L(c) + VvL({c* + 1} )L(c)
3 —

2 2
< vL{(a)L(c) + v L(c) .

Y
Similarly, t = v 4+ L(a) + L(a{c* + 1} ) = VL(c)
4

ALGORITHM GPTRAN:

B=GPTRAN (A, C)
Gaussian Polynomial Translation
A is a univariate Gaussian polynomial. c¢ is an
L-integer. B is the univariate Gaussian polynomial

B(x) = A{x + ¢).
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" Description:

(1) [Deg(A) or c zero?] If GPDEG(A) = 0 or ¢ = 0, (B <«
BORROW (A) ; return).

(2) [Obtain terms of A.] FIRST2(A ,A ,A).

1 2
(3) [Compute terms of B.] B <« PTRAN(A ,c); B <«
1 1 2
PTRAN(A ,c).
2
(#) [Finish.] B <« PFL(B ,PFL(B ,0)); return.
1 2
2 3 2
Computing Time: = Vv L(c)L(a) + v L(c) , where n = )
deg(A), v=mn+ 1, and a = |A|
Proof:
Step n t
i i
1 1 WO
2 <1 N
2 3 2
3 <1 « v L(a)L(c) + v L(c)
4y < 1 o

Let A = A + 1A . Then t follows directly since
1 2 3

F
2 | . [a | < |A| and deg(n ), deg(a ) < deg(a). g
1 o 2 « o 1 2
When considering a Gaussian polynomial, it is possible
to do a "double translation" using ¢(z) = z + a + bi.

(Note, of course, one could also do this with an integral
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polynomial. However, the result would be a Gaussian
polynomial, and such modification of input to output
polynomial forms is avoided. Similarly, there is no PROT.
If necessary, one can easily form the Gaussian polynomial
A*¥ = A + 0i from integral polynomial A and use A%.)

The following algorithm implements double translation
of a Gaussian polynomial. WNotable simplification is
achieved by considering @ as a composition of functions

rather than forming z + a + bi directly. The functions

used are ¢ (z) = iz, ¢® (z) =z + b, & (z) = -iz, and & (z)
1 2 3 4 -
=z + a. Then @(z) =& (¢ (& (2 (2)))) =& (& (& (z + a)))
1T 2 3 4 1T 2 3
= ¢ (& (-i(z + a))) =% (-i(z + a) + b) = i(~-i(z + a) + Db)

1 2 1
= Z + a + bi.

ALGORITHM GPDTR:

B=GPDTR(A,a,b)
Gaussian Polynomial Double Translation

A is a univariate Gaussian polynomial. a and b are

L-integers. B is the univariate Gaussian polynomial
B(z) = A(z + a + bi).
Description:

(1) [Complex translation.] A +« GPROT(A,1); A <«
1 2

GPTRAN (A ,b); erase A ; A <« GPROT(A ,-1); erase A
1 1 3 2 2

(2) [Real translation.] B < GPTRAN(A ,a); erase A
3 3
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return.
3 2 2
Computing Time: « y L(ab) + p L(ab)L(d), where m =
deg(A), y=m+ 1, and 4 = |a] .
Proof: t (A,1) « pL(d) and d = |a | = 4.
GPROT - 1 1
2 3 2
t (& ,b) =y L(b)L(A) + p L(b) and & < (|b]| +
GPTRAN 1 - 2
m 2
1) 4. t (A ,1) = pL(d ) « p L(b) + uL(d) and d =
GPROT 2 - 2 3
2 3 2
A | =4 . t (A ya) = p L(d )L(a) + uL(a) «
3 2 GPTRAN 3 o 3
3 2 3 2 3
p L(a)L(b) + p L(a)L(d) + u L(a) o~ i L(a)L(ab) +
2 2 3 2
t L(a)L{d). So t (A,a,b) « y L(b)L(d) + u L(b) +
GPDTR -
2 3 3 2 2 %
u L(a)L(d) + p L(a)L(ab) ~ u L(ab) + u L{ab)L(d). &

This double translation is naturally extended to a
rational complex point a/b + ic/d. The first step is to
obtain a common denominator and put the coordinates into the
form (e + if)/g. Then a composition of functions can again

be used, ¢ (2) = z/g, & (2) =2 + e + if, and & (z) = gz.
1 2 3




163
ALGORITHM GPDRTR:

B=GPDRTR(A,r ,r )
1 2

Gaussian Polynomial Double

Rational Translation

A is a univariate Gaussian polynomial. r and r are
1 2
rational numbers. Let r = r /r and r =1r /r ’
1 1 12 2 21 22
¢ = lem(r ,r ), and n = deg(A). Then B(z) =
12 22
n
¢ A(z + r + ir ), a Gaussian polynomial.
1 2
Description:
(1) [ITnitialize.] If GPDEG(A) =0 or (r =0 and r =

1 2

0), (B « BORROW(A); return); CZRPCD(r ,r ,a,b,c).
1 2

(2) [Translate.] A <« GPHOMC(A,c); A + GPDTR(A ,a,b);
1 2 1

erase A , a, b; B « GPHOME(A ,c) erase A , c; return.
1 2 2

3 2 2
Computing Time: « py {L{r ) + L(r )} + u {L{(r ) +
- 1 2 1

L(r )}L(d), where m = deg(A), u =m + 1, and d = |al .
2 o

Proof: Let p =L(r ), p=p +p . t (r ,r ) «
i i 1 2 CZRPCD 1 2

pp <p . L(a), L(b), L(c) < p, so t (A, c)
1 2 - GPHOMC
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2 2 2 m
S lel dso L(d) = pp +
1 T oo 1

3 2 2
L{(d). Hence t (A ,a,b) « u L(ab) + p L(ab)L(d )
GPDTR 1 B 1

32 2 3 2 2
=up Fuwoolup + L(A) v p +popL(d). 4 = |a |

I m m m m
(la] + 1) (|p] + 1) a < (lal + 1) (|b] + 1) |c| 4
1

A

2 2
and L(d ) < up + L(d). Hence t (A ,c) < u L(c)
2 GPHOME 2

2 2 2 2 32
U L(e)L(d ) = pup + polup + L(A)) v u p +
2

2 32 2 g
B opL{d). So t (A,r ,r ) «u p + p pL(d). &
GPDRTR 1 2

m 2m

m m
Note that [B| < [c] d < (la] + 1) (|b]| + 1) lc] a
2

[e0}

8m
< (x + 1) 4, wherer =max(|r |, |r |, |z I, r ]).
11 12 21 22

The following algorithm, which maps the upper

half~plane to the unit circle, requires some documentation.

Let &(z) = (z - i)/(z + i) for z # =i, If w =

(z - i)/(z + i) then wz + wi = z - 1 so (w - 1)z = ~i(w +
1, w# 1, and z = ~i(w + 1/(w - 1). Conversely, if w # 1
and z = -i(w + 1)/(w - 1) then wz - 2 = —wi - i so {(z + i)w

=2z =i, 2% -i,andw = (z - i)/(2z + i). This shows that
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¢ is one-one from {z: z # -i} onto {w: w # 1}.

Let z = a + bi, where a and b are real, and z # —1i.
2 2
Then @(z) = {a + (b - D)il/{a + (b + )i} = {(a + b - 1)
2 2 2 4 2 2 4
- 2ail/{a + (b + 1) }. Hence |o(z)| ={a +2ab + Db +
2 2 4 2 2 4 2 2 2

2a + 1 -2b }/{a +2ab +b +2a + 1+ 6b + lLa b +

3 2 2
4b  + 4b} = u/v. Since v - u = t4b{a + (b + 1) }, |o(z)]|

il

<1 if b >0, [®(z)] =1 if b =0, and [&(z)]| >1 if b < 0.

1l

Hence ® maps the upper half-plane {a + bi: b > 0} onto
the interior of the unit circle {w: |w| < 1}, maps the real
axis {a + bi: b = 0} onto the cut unit circle {w: |w| = 1
and w # 1}, and maps the punctured lower half-plane {a +
bi: b < 0 and a + bi # -i} onto the exterior of the unit
circle.

Let C(z) = A(®(2)) = A((z - 1)/(z + 1)) and D(z) =

n
(z + i) where n = deg(A). Note that D(z) # 0 for z in the

upper half-plane.

Then B(z) = D(z)C(z) = (z + i)nA((z - 1i)/(z + 1)) is a
Gaussian polynomial which has the same number of zeros in
the upper half-plane as A(z) has in the unit circle and the
same number on the real axis as A(z) has on the unit circle
excluding point (1 + 0i).

The following algorithm computes the polynomial B(z) =

n
(z + i) A((z - 1)/(z + i)).
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ALGORITHM GPHPTC:

B=GPHPTC (A)
Gaussian Polynomial, Half
Plane To Circle Mapping

A is a univariate Gaussian polynomial. B is the

n
univariate Gaussian polynomial B(z) = (z + 1i) A({z -
i)/(z + i)), where n = deg(a).

M?thod:
n J
Let A(z) =7 a z and B (z) =a , D (z) =1,
i=0 3 0 n 0
D (z) = (z + 1)D (z), B (z) = (z - 1)B (z2) +
k+1 k k+1 k
a D (2z); then B(z) =B (z).
n-k-1 k+1 n

Description:

(1) [Initialize.] n + GPDEG(A); if n = 0, (B <

BORROW(A) ; return); a + GPLDCF(A); FIRST2(a ,a sa);
1 2

B + GPCONS(A,a ,0,a ,0); erase a; A' < GPRED(A); e <
1 2

PFA(1,0); £ « PFA(-1,0); D <« GPCONS (A,e,0,0,0); E «
GPCONS(A,e,1,e,0); F + GPCONS(A,e,1,f,0); erase e, f;
k <« 0.

(2) [Apply recurrence.] D' <« GPPROD(D,E); erase D; D <«
D'; B' « GPPROD(B,F); erase B; B« B'; n' « GPDEG(A');
if n' «n-k-1, go to (3); a « GPLDCF(A'); A'' «

GPRED(A'); erase A'; A' « A''; D' « GPSPRD(D,a,0);
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erase a; B' « GPSUM(B,D'"); erase B, D'; B <« B'.
(3) [Terminate.] k « k + 1; if k < n, go to (2);

erase D, E, F; return.

3 2
Computing Time: =y + vy L(d), where n = deg(a), v =
n+ 1, and d = |A]
Proof: deg(E), deg(F) = 1 and |E| , |F| = 1.

(o) (o]
Consider the j-th execution of Step (2). D = (z +

J-1 5-1
i) so deg(D) = j - 1 and |D| = 2 . Hence
1

t (D,E) = (j - NL(2 )
GPPROD

. Then

!
.
g
N
e
"y

deg(D') = j and |D'| =2 . B =3 a (z -
1

j=-1-k k 31
i) (z + 1) so deg(B) = § - 1 and |B] < jaz
1

3-1 2
Hence t (B,F) « (j - 1)L(3jd2 ) « JL(d) + j .
GPPROD - -

J
Then [B'| < jd2 and deg(B') = j. t (D,a) =«
(. GPSPRD

J 2 J
JL(A)L(2 ) « J L(d). |D'| < d2 and deg(D') < j.
, j i 2
So t (B,D') < jL(jd2 ) + jL(d2 ) « j + jL(d).
GPSUM - -

n 2
Hence the time for all executions is {7 +

3=1
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3 2 g
JL(d) } « + v L{d). i

n
Note that ]B[ < nd2
;-

. Thig fact will be used in later

computing time derivations.
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4.4 Applications

This section applies root squaring and mappings to
compute the number of roots of a polynomial in various
areas of the plane.

The first algorithm computes the number of roots in an
arbitrary vertical half-plane, that is, right of and on the
vertical line z = r for a rational number r. The mappings

o
required are a rotation of 90 and a translation to r, thus

taking the upper half-plane to the specified right
half-plane. Homothetic operations are used, of course, if

r is a non-zero rational number r = r /r . The successive

1 2
functions applied are ¢ (z) = z/r , & (z2) =z + ¢ , & (2) =
1 2 2 1 3
r z, and ¢ (z) = =iz, gilving a composition & (& (& (& (z))))
2 i 1 2 3 4
= ¢ (& (& (~iz))) = & (& (~ir z)) = & (~ir z + ¥ ) = (~ir z
T 2 3 1 2 2 1 2 1 2
+r)/r = -iz + r /r .
1 2 1 2

ALGORITHM CZNZVH:

CZNZVH(A,r, % ,m)
Complex Zero System, Number of
Zeros in a Vertical Half-Plane
A and r are inputs; % and m are outputs. A is a
non-zero square-free univariate Gaussian polynomial.

r is a rational number. & is the number of zeros of
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A on the line z = r, m is the number right of that
line. ¢ and m are Fortran integers.

Description:

(1) [Initialize.] If r = 0, (A <+ BORROW(A); go to (2));
3

FIRSTZ(h,k,r); A <« GPHOMC(A,k); A <+ GPTRAN(A ,h);
1 2 1

erase A ; A < GPHOME(A ,k); erase A .
1 3 2 2

(2) [Finish.] & =< GPROT(A ,-1); erase A ; CZNZHP(A r
4 3 3 4

2,m); erase A ; return.
4

+g 2
Computing Time: = p  {pL(phk) + L(d)} , where r =

h/k, m = deg(A), w=m+ 1, andd = |a] ; s = 0 if

[ee]
modular methods are used or the p.r.s.'s are normal, s
= 1T otherwise.

2

Proof: Letd = |a | . & (A,k) = p L(k)L(kd).
i i e GPHOMC
m 2 3 2
d <k dsot (A ,h) S p L(h)L(d ) + u L(h) o
1 GPTRAN 1 1
3 2 3 2 m m

HEMIL(K) + W L(h)L(@) + uL(h) . d < (|a]l + 1) k a
2

2 3
so t (A ,k) = p L(k)L(kd ) < U L(k)L(hk) +
GPHOME 2 2

2 3 3 2
H L(K)L(d). Hence t < p L(k)L(hk) + u L(h) +
1
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2 2 3 2 2
W L(k)L(kd) + p L(h)L(d) ~ p L(hk) + u L(hk)L(4).

m 2m 2
d < (|h] + 1) k dso t (A ) = u L(hk) +
3 GPROT 3
m 2m
pL(d). @ =d < (|h] + 1) k d so L(d ) « pL(hk) +
4 3 b
6+s 2 5+s
L(d). Hence t (A ) = q L(u)y +np L(WL{d )y +
CZNZHP 4 4
hts 2 6+s 2 6+s 5+s
po L{d) =w LW +u L(WL(hk) + p  L(p)L(4)
4
U+s 2 6+s 2 6+s 5+s .
+t o L(d) =p  L(w +p L(WL(hk) + u L{p)L(d)
6+s 2 5+s b+s 2 645 2
+ u L(hk) + u L(hk)YL(d) + n L(d) nvop L (uhk)
5+s htg 2 h+s 2 a
+ u o L{phk)L(d) + p  L(d) ~ oy {pL (phk) + L{a)} .
The next algorithm is for arbitrary horizontal
half-planes. It may seem that this should have been first,
since no rotation is required;-9¢(z) = z + ir. However,
translation by an imaginary value is difficult when
implemented directly. Hence, considerable simplification
and little loss of efficiency is achieved by rotating first

and then applying the preceding algorithm for vertical

half-planes. Then ¢ (z) = iz and ¢ (z) = -iz + r, giving a
1 2

composition i(-iz + r) = z + ir, as required.
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- ALGORITHM CZNZHH:

CZNZHH(A, v, %,m)
Complex Zero System, Number of Zeros
in a Horizontal Half-Plane

A and r are inputs; £ and m are outputs. A is a
non-zero square-free univariate Gaussian polynomial.
r is a rational number. & and m are Fortran integers.
% is the number of zeros of A on the line z = ri and
m is the number above that line.

Description:

(1) [Rotate and call CZNZVH.] A <« GPROT(A,+1);
1

CZNZVH(A ,r,4&,m); erase A ; return.
1 1

O+s 2
Computing Time: « y {uL(phk) + L(d)} , where m =

deg(d), w=m+ 1, d= |a|_, and r = h/k; s = 0 if
modular methods are used or the p.r.s.'s are normal,
s = 1 otherwise.

Proof: Letd = |[A ]| . t (A,+1) = pL(d) and d
1 T o GPROT 1

= d. Hence the time for the algorithm is the same as

for CIZNZVH. g

The following algorithm uses an algorithm of Heindel
[HEL70] to find the number of real roots of an integral

polynomial in a horizontal line interval.
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- ALGORITHM PNRHL:

n=PNRHL (A, r)
Polynomial, Number of Roots in
a Horizontal Line Interval
A is a non-zero square-free univariate integral
polynomial. r is a rational number, r < 0. n is the
number of roots of A in the interval (r,0].

Description:

(1) [Check degree and initialize.] If PDEG(A) = 0, (n <+
0; return); A' < PABS(A); I <« PFL (BORROW(r) ,PFL(0,0)) .

(2) [Compute value.] n « IRTS(A',I); erase A', I;

return.

3 2 4 44k 2
Computing Time: « y L(r) + u L(r)L(pd) + u L(ud) ,
where m =deg(A), u =m + 1, and d = [A]m; k=0 4if
the p.r.s. is normal, and k = 1 otherwise.

3 2
Proof: t (A) = uL(d), t (A',I) = u L(r) +
PABS IRTS
4 4+k 2

W L(r)L(ud) + u L (ud)

Rotation can now be employed to find the number of
roots in a vertical line interval. Using ®(z) = iz with
integral polynomial A gives A*(z) = A(iz), a Gaussian
polynomial. Recall, however, that any real roots of A%
must be real roots of B = symp(A*). Since B is an integral

polynomial, PNRHL can be applied to it.
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- ALGORITHM GPNRVL:

n=GPNRVL (A, r)
Gaussian Polynomial, Number of Roots
in a Vertical Line Interval
A is a non-zero square—-free univariate Gaussian
polynomiai. r is a rational number, r < 0. n is the
number of roots of A in the interval (ir,0].

Description:

(1) [Obtain values.] A% <+ GPROT(A,+1); n <«

GPNRHL (A*,r}; erase 2%; return.

3 2 4 5
Computing Time: « y L(r) + p L(r)L(d) + u L(r)L(u) +
4+k 2
u {uL(u) + L(a)} , where m = deg(A), p =m + 1, and
d = IA| ; k=0 1if the p.r.s. is normal, k = 1

[es]

otherwise.
Proof: Follows immediately from the time for GPMRHL

by noting that |A*| = |a] . Q

[ore)

Given the four preceding algorithms in this section, it
is an easy matter to compute the number of roots of a
Gaussian polynomial on the upper and right hand edges of an
arbitrary rectangle. These quantities are required in

major algorithm PRIR of Chapter 5.
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ALGORITHM GPNRER:

GPNRER(A, 2 ,2 ,% ,% ,n ,n ,n )
1T 2 3 4 1 2 3

Gaussian Polynomial, Number of
Roots on Edges of a Rectangle

A, &, 2 + % , & are the inputs. n , n , n are
1 2 3 i} 1 2 3

outputs. A is a non-zero square-free univariate

Gaussian polynomial. & , & , & , & are rational
1 2 3 4

numbers representing the following rectangle ih the

complex plane:

il
4

i

L L
1 2

Then n is the number of zeros of A on the top edge
1

(not including end points), n is the number at the
2

point & + if , and n 1is the number on the right hand
2 n 3

edge (not including end points).

Description:

(1) [Compute values.] A* + GPDRTR(A,% ,% ); GPSYMP (A%,
2 4

B,C); erase A*¥; n <+ PORD(B); B* <+ PWRAZR(B); erase B;
2
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% <« RDIF(R ,% ); & < RDIF(y ,% ); n < DPNRHL(B*,} );
1 1 2 3 3 4 1 1

n < GPNRVL(C,®& ) + PNRVL(B*,% ); erase B*, C, % , % ;
3 3 3 1 3

return.

L4k 2
Computing Time: « y {uL(px) + L(A)} , where m =

deg(A), uw=m+ 1, d = |a| , and for ¢ =24 /% , T
@ i it 12

= max {2 |, & }; k=0 if the p.r.s.'s are
1<i<6 i1 iz

noxrmal, k = 1 otherwise.
3 2 2 )
Proof: t (A, ,82) =y L(r) + p L(r)L(d) and a =
GPDTR 2 4

8m 3
| A* | < (r + 1) d. Therefore t (A*) « p L(u(r
® GPSYMP

gm 2 3 2 2m+1
+ 1) & = {uL(r) + L(pd)} and [B] , |c| <u a

(o) [oe)

2m+1 8m
< u (r + 1) d. t (B), t (B) = u.
PORD PWRAZR

2
t (2,2), t (2 ,2) = L(r) and L(g ), L(% )
GPDIF 1 2 GPDIF 3 4 1 2

= L(r). Thus, t (B¥, ), t (B*,9 ),
PNRHL 1 PNRVL 3

_ 3 2 4 2m+1 8m
t (Cy ) = u L(xr) + p L(xr)L(p (r + 1) d) +
GPNRVL 3

5 4+k 2m+1 8m 2
L)L + uw {pL(w) + L(u (r+ 1) a4} =

3 2 I 5 5
u L{r) + u L(r)L(d) + p L{r)L(ur) + u L(x)L(u) +
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U4k 2 b4k

U {pL(yw) + pL(ur) + L(4)} = | {puL(ury + L(d)}2.§j

Root squaring and mappings are next used in an
important algorithm which computes the number of roots of a
Gaussian polynomial in seven areas of the complex plane:
[0,01, (-=,0), (0,+»), {(-i®,0), (0,+i®), quadrants I and
ITT, and quadrants II and IV.

ALGORITHM CZRBA:

CZRBA(A,t,u,a,b,c,d,q)

Complex Zero System, Roots in

Bi-Quadrants and on the Axes
A is the input. %, u, a, b, ¢, d, and g are outputs.
A is a non-zero square-free univariate Gaussian
polynomial. t, u, a, b, ¢, d, and q are Fortran
integers, the number of zeros of A in seven disjoint
portions of the complex plane as indicated in the

following diagram:

a C

More precisely, t = t + t is the number of zeros in
1 3

the first and third quadrants, uw = u + u is the
2 )

number in the second and fourth quadrants. a and c are
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the numbers of negative and positive real zeros. b and
d are the numbers of imaginary zeros below and above
the real axis. g = 1 if A(0) = 0 and g = 0 otherwise.
Method:

Let A = BC where B is the symmetric part of A (that is,
the g.c.d. of its real and imaginary parts). Let the

zeros of B and C be distributed as follows:

B_ £
e d-e
v v u ~-v £ -v i
1 2 2 1 1 2
g
a o)
v v t -v u ~v
1 2 3 1 4 2
e b-e

Application of PORD and PWRAZR to B yield g and B.

Application of CZNNPA to B yields a, ¢, and v + v +
1 2

e . Let D(z) = B(iz). Then application of CZNNPA to

the symmetric part of D vields e, from which v + v =
1 2

v can be computed.
Let E(z) = C(iz) and E = FG, where ¥ is the
symmetric part of E. The zeros of F and G are

distributed as follows:
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_F G
w ' t -v -w u —~v ~-w
1 2 3 1 1 2 1 2
b-e d-e
W W u -v -w t ~-v -w
1 2 4 2 1 1T 2 2
Application of CZNNPA to F yields b' =b - e, d' = d

- e, and w =w + w from which b and d are computed.
1 2

Let H be the rootsquare of G. Application of CZABRA
to H yields u - v - w and t - v - w, from which u and
t can be computed since v and w are already known.

Description:

(1) [Compute g, a, ¢, e, and v.] GPSYMP(A,B,C); q <«
PORD(B); B + PWRAZR(B); erase B; CZNNPA(E,a,c,v');
B <« PFL(B,PFL(0,0)); D <+ GPROT(E,1); erase B;

GPSYMP(D,D ,D ); erase D, D ; CZNNPA(D ,e,e',v'');
1 2 2 1

erase D ; v +~ v! ~ e,
1

(2) [Compute w, b, and d.] E « GPROT(C,1): erase C;
GPSYMP (E,F,G) ; erase E; CIZNNPA(F,b',d',w); erase P
b« b+ e; d<+ d' + e.

(3) [Compute t and u.] H <« GPRSQR(G): erase G;
CZABRA(H,u',t'"); erase H; £t ~ t' + v + w; u + u' + v +

w; return.
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4+k 2
Computing Time: « y {uL(pw) + L(4d)} , where m =

deg(d), p=m+ 1, d = |A] ; k = 0 if modular methods

o
are used or the p.r.s.'s are normal, k = 1 otherwise.

3 2 3 2
Proof: t (A) = u L(ud) ~ p {L(p) + L(d)} . B|A
GPSYMP

so L(|B] ) « uL(p) + L(d). t (B), t (B) « p.
o PORD PWRAZR

B _ btk 2
IB] = |B] so t (B) = p {uL(p) + L(4)} and
o o0 CZNNPA

t (B, 1) = u{uL(y) + n(a@)}. |p| = |B| , so
GPROT o o

3 2
t (D) = u {uL(n) + L(d)} . D (-iz)|D(-iz), D(-iz)
GPSYMP 1

= B(z), B{(z)|B(z), and B(z)|A(z), so [D| =|D (-iz) |
1

fee) 1 [ee)

and L(|D | ) = puL{p) + L(d). Hence t (D) «
1 CZNNPA 1

l+k 2
B L) + L(d)} . ClAa so L(|C| ) = pL(u) + L(d)

foe]

and t (C,1) = p{puL(w) + L(d)}. |E| = lc]  so
GPROT 0 co

3 2
t (B) = p {uL(n) + L(A)} . F(z)|A(iz) so F|a,
GPSYMP

4+k
L(|F| ) = uL(n) + L(d) and t (F) « p {uL(u) +
© CZNNPA -

L(d)}. G|Aa so L(|G] ) = uL(y) + L(d) and t (G) =
e GPRSQR
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2 2 2
pLulel ) =w fun(u) + (@t . L(|H] ) = L(w) +
L+k
L(le] ) = uL(n) + L(d) and t (H) = u  {un(u) +
had CZABRA
2 7
L(ay} . g

The preceding algorithm is made more versatile by

allowing the coordinate system being considered to have its

origin at any rational point in the complex plane. This is

accomplished by the following algorithm, which applies the

double translation mapping.

ALGORITHM CZRABA:

CZRABA(A,r ,r ,t,u,a,b,c,d,q)
T2

Complex Zero System, Roots in Arbitrary
Bi-Quadrants and on Axes

A, r, r are inputs. t, u, a, b, ¢, d, and g are
1 2

outputs. A is a non-zero square-free univariate

Gaussian polynomial. r and r are rational numbers.
1 2

t, u, a, b, ¢, d, and g are Fortran integers, the
number of zeros of A in seven disjoint portions of the

complex plane, as indicated in the following diagram:
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Q

More precisely, t = t + t is the number of zeros in
. 1 3

the first and third quadrants of the translated

coordinate system, u = u + u is the number in the
2 4

second and fourth quadrants. a and ¢ are the numbers
of negative and positive real zeros. b and d are the
numbers of imaginary zeros below and above the real

axis. g =1 if A(r + ir ) = A*(0) = 0 and g = 0
1 2

otherwise, where A*(z) = A(z + r + ir ).
1 2

Description:

(1) [Translate.] A' <« GPDRTR(A,r ,r ).
1 2

(2) [Compute values. ] CzZzRBA(A',t,u,a,b,c,d,q); erase AT;

return.
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4+k 2
Computing Time: < . {un () + up + L(A)} , where m =

deg(d), w=m+ 1, p=L(r ) + L(r ), d = |a] , and k
1 2 o

= 0 if modular methods are used or the p.r.s.'s are

normal, k = 1 otherwise.
32 2
Proof: t (A,r yr ) =up + poL(d) « ufup +
GPRDTR i 2
2
LA} . n(la'] ) = up + L(d) so t (a') «
@ CZRBA

b+k 2 q

v {un(w) + owe + L)} Lk
If it is necessary to compute the number of roots in
individual quadrants rather than bi-quadrants, the following

algorithm can be used.

ALGORITHM GPNRQA:

GPNRQA(A,r ,r ,t ,u ,t ,u ,a,b,c,d,q)
1T 2 1 2 3 4

Gaussian Polynomial, Number of
Roots in Quadrants and on Axes

A, ¥ , and r are inputs. t , u, ¢t , u, a, b, ¢, 4,
1 2 1 2 3 4

and g are outputs. A is a non-zero square-free

univariate Gaussian polynomial. r and r are
i 2

rational numbers. t , u, t , u, a, b, c, d, g are
1 2 3 i

Fortran integers, the number of zeros of A in nine

disjoint portions of the complex plane, as indicated
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in the following diagram:

ixr

More precisely, t , u , t , and u are the number of
1 2 3 4

zeros in the first, second, third, and fourth quadrants
of the translated coordinate system. a and c are the
number of negative and positive real zeros. b and d
are the number of imaginary zeros below and above the

real axis. g = 1 if A(r + ir ) = A*(0) = 0 and g =0

1 2
otherwise, where A*(z) = A{(z + r + ir ).
1 2
Method:
Apply CZRBA to A* to obtain t =t + t , u=u + u,
1 3 2 i
a, b, ¢, d, and -+ . Apply CZNZHP to A* to obtain k =

t +d+u and h = a + g + ¢. Apply CIZNZHP to A(z) =
1 2




A*(-iz) to obtainm =t + c +u and & =d + q + b.
1 4
Let k' =k - dand m' =m - c¢. Then £t = (k' + m' -
1
u) /2, t =t -t ,u =k' -t ,unu =mnmn'" -t .
3 1 2 1 4 1

Description:

(1)A* = GPDRTR(A,r ,r ); CZRBA(A*,t,u,a,b,c,d,q);
1 2

CZNZHP (A%,h,k); A « GPROT(A*,-1); erase A¥*; CZNZHP (A,

%,m); erase B; k' + k ~d; m' «m -c¢c; £t <« (k' +m' -

1
w/2; t «t -t ;u «k' -t ;u «m -t ; returﬁ.
3 1 2 1 i 1
44k 2
Computing Time: « {pL(p) + up + L(&)} , where m =
deg(ad), p=m+ 1, p=1L(r ) + L(r ), d=|a|l , and k
1 2 o

= 0 if modular methods are used or the p.r.s.'s are
normal, k = 1 otherwise.

32 2
Proof: t (A,r ,r ) = up +uopn(d) = plup +
GPDRTR 12

2
L(d)} . n(la*| ) = up + n(d) so t (A%) «
o CZRBA -

b+ 2 h+k
! {uL(y) + pyp + LAY , t (A%) o {uL(y) +
CZNZHP -

2 2
po + L(@A)} , and t (A%*) « u p + uL(d). |&| =
GPROT ©

|a*] so t (&) = {un(u) + up + L(A)} . &
o CZNZHP
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On the other hand, considerable simplification can be
achieved in certain instances by grouping axes and quadrants
together into four areas, rather than the seven or nine
areas which the previous algorithms work with. To aid in
exposition, several definitions are now introduced.

An interval I is any set such that if a, b ¢ I and a <

x < b, then x € I.

The various kinds of intervals are (a,b), (a,bl, [a,b),
and [a,b], where a < b; {a}, a single point; (a,x), [a,®),
(-»,a), (-»,a], and (-=,x) = R,

A standard interval is an interval of one of the forms

(a,b] where a < b, {a}, (a,»), or (-=,a].

A rectangle S in the complex plane is a Cartesian

product I x J, where I and J are non-empty intervals in the
field R of real numbers.

A standard rectangle is a rectangle I x J, where I and

Jd are standard intervals.

The standard quadrants are the standard rectangles

(0,°) x (0,2), (=»,0] x (0,®), (-»,0] x (-»,0], and
(0,0) x (-o,0].

The following algorithm, then, computes the number of
roots in standard quadrants I and III, and standard

quadrants II and IV.
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ALGORITHM CZRSB:

CZRSB(A,t ,t )
13 24

Complex Zero System, Roots in
Standard Bi-Quadrants

A is the input. t and ¥ are outputs. A is a
13 24

non-zero square-free univariate Gaussian polynomial.

t and € are Fortran integers. t is the number
13 24 13

of zeros of A in the first and third standard

quadrants, t is the number of zeros of A in the
24

second and fourth standard quadrants.

Met@9§:

Let the number of zeros of A in the nine disjoint

regions of the complex plane be as follows:

t d t
2 1

———-—-—a-————q——.—c-—-———

CZRBA returns t + t , t + t , a, b, ¢, 4, g. Then
1 3 2 4

t =(t +t)+a+b+gandt = (t + t) + c
13 1 3 24 2 4

+ d.
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Description:

(1) CZRBA(A,t,u,a,b,c,d,q); € <« t + a + g + b;
13

t “~ u -+ d + ¢; return.
24

L+k 2
Computing Time: « y {uL(yw) + L(a)} , where m =

deg(A), u =m+ 1, d = |A|] , and k = 0 if modular

o
methods are used or the p.r.s.'s are normal, k = 1
otherwise.

As with CZRBA, the previous algorithm can be extended.
to arbitrary coordinate systems using double translation.

ALGORITHM CZRASB:

CZRASB(A,r ,r ,t ,E )
1 2 13 24

Complex Zero System, Roots in Arbitrary
Standard Bi-Quadrants

A, ¥, and r are the inputs. t and t are outputs.
1 2 13 24

A is a non-zero, square-free univariate Gaussian
polynomial. € and t are Fortran integers. Let

t be the number of roots of A in the standard
i

i

quadrants Q , Q = (r ,®) x (r ,®), Q (meo,x ] X
i 1 1 2 2 1

(r IOO)I Q = ("mlr ] x (_mlr ]I Q = (r Fo) % (~,x 1.
2 3 1 2 4 1 2

T o+ T
13 1 3 24 2 b,

I
ot
4
t
D
3
o)
t

[

Then t
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Description:

(1) [Translate.] A' < GPDRTR(A,r ,r ).
12

(2) [Obtain values.] CZRSB(A',t ,t ); erase A';
13 24

return.

h+k 2
Computing Time: = y {un () + up + L(d)} , vhere

m=deg(d), *=m+ 1, p=L(r ) + L(r ), d = |a] ,
1 2 o

and k = 0 if modular methods are used or the p.r.s.'s

are normal, k = 1 otherwise.

32 2
Proof: t (Ayr yr ) =up +u pL(d) = plup +
GPDRTR 1 2
2
L(A)} . L(|a'l ) = up + L(d) so t (A') =
o CZRSB
+k 2 a
woo un) + up + n(a)?

The simplification of using standard quadrants is
illustrated in the next algorithm, which computes the
nunber of roots of a Gaussian polynomial in a standard
rectangle.

ALGORITHM GPNRAR:

m=GPNRAR(A,B)
Gaussian Polynomial, Number of
Roots in Arbitrary Rectangle

A is a non-zero square-free univariate Gaussian
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polynomial. B is the list ((b ,b ),(b ,b )),

11 12 21 22
representing a standard rectangle R = (b ,b ] x
11 12
(b ,b 1, where the b are rational numbers. m is

21 22 i3

the number of roots of A in standard rectangle R.

Consider R and the surrounding area as nine standard

rectangles:
R R R )
1 2 3
47 52
R R R
4 6
r S
N O
o @
R R R
7 8 9

Let t be the number of roots of A in the standard
i

rectangle R (m roots in R). Consider applying
i

CZRASB at points p, ¢, r, s:

P =t +t +t +t ;
13 2 3 4 7

g =t +t +t +t ;
24 1 2 6 9

r =t 4+t 4+m+t +t

13 2 3 ) 7
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s =t +t +t +m+t
24 1 2 L 9
Thenm= (s +r =~-qgqg ~p )/2
24 13 21 13
Description:

(1) [Obtain endlines of rectangle.] FIRST2(b ,b ,B);
1 2

FIRST2(b ,b ,b ); FIRST2(b ,b ,b ).
1112 1 21 22 2

(2) [Apply CZRASB at the vertices.] CZRASB(A,b ,b ,
11 22

P ,p ); CZRASB(A,b ,b ,g ,g ); CZRASB(A,b ,
13 24 12 22 13 24 11

b ,r ,r ); CZRASB(a,b ,b ,s ,s ).
21 13 24 12 21 13 24

(3) [Apply formula.] m= (§ +TF -9 =-p )/2;
24 13 24 13

return.

4+k 2
Computing Time: = y {puL(u) + pxr + L(4a)} , where B =

(b ,b ),(b ,b )}, X =L{b ) +L(b ) +L{b ) +
111 12 21 22 11 12 21

L(b ), m= deg(A), w =m+ 1, d=1]al , and k = 0 if
22 @

modular methods are used or the p.r.s.'s are normal,
k = 1 otherwise.

2 2 4+k
Proof: The time to apply CZRASB is « 3 z {u .
— T i=1 §=1

2
ML () + u{L(b ) + L(b )P+ L(d@1 ) <
1,1 2,3
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h+k 2 2 2
v Wm0 oz 5 L ) + L )] + L(a))

i=1  J=1 1,1 2,7

h+k 2
Vo {pL () +oud + L(A) }

.
EIEUA

The final algorithm in this section computes the
number of roots of a Gaussian polynomial in a circle. Tt
is not quite as straightforward as might be expected
because, as discussed in Section 4.3, the half-plane to
unit circle mapping excludes the point (1 + 0i).

This point can be handled, however, by noting the

following about the mapping.

n 3 n
If A(z) = L a z then B(z) = (z + i) A((z -
=0 7
n 3 n-j n n
i)/(z + 1)) = & a (z - 1) (z + i) = {2 altz +
3=0 ] j=0 3
n _ n-1 n
{% {(n - 9i - jita }z + . . . =AMz + {na(1) -
j=0 3

n-1
2A' (1) tiz + ...

Hence deg(B) < deg(A) just in case A(1) = 0. More
precisely, since A is square~free, A and A' have no common
zeros; therefore if A(1) = 0 then A'(1) # 0 and deg(B) =
deg(A) - 1 . So A has a zero at (1T + 01) just in case
deg(B) = deg(a) - 1.

These observations plus the mapping of Section 4.3 are

used in the following algorithm for roots in a circle.
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ALGORITHEM GPNRIC:

GPNRIC(A,c,r,]J,k)
Gaussian Polynomial, Number
of Roots in a Circle

A, ¢, and r are inputs; j and k are outputs. A is a
non-zero square-free univariate Gaussian polynomial.
c is a Gaussian rational number. ¥ is a rational
number, r > 0. Jj is the number of zeros of A on the
circle with center at ¢ and radius r, k is the number

in the circle.

Method:
- n
Let A (z) = A(z + ¢), A (z) =r A (rz) for r =r /r ,
1 2 21 1 2
n
and A (z) = (z + i) A((z - 1)/(z + i)) for n = deg(A).
3

Then apply CIZINZHP(A ,j,k). If deg(dA ) < deg(d), then
3 3

there is a root at ¢ + r, so j « § + 1.

Description:

(1) [Translate.] If ¢ = 0, (A < BORROW(A); go to (2));
1

FIRST2(c ,c ,c); A <« GPDRTR(A,c ,c ).
1 2 1 12

(2) [Rational homothetic operation.] A <+ GPRHOM(A ,Ix);
2 1

erase A .
1

(3) [Half-plane to circle mapping.] A < GPHPTC(A );
3 2
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erase A .

2
(4) [Compute number of zeros. ] CZNZHP (A ,7j,k);
3
if GPDEG(A ) < GPDEG(A), j ¥ 3+ 1; erase A ; return.
3 3
4+k 2

Computing Time: < U {pnL(ure)+ L(a)} , where a =

lAl r M =deg(A), U =m+ 1, ¢c=c¢c Jc + ic /e ’
% 11 12 21 22

C = max {le |} r=x/r , T=max{|r |,
1<9,k<2 4,k 172 T

lr |}, x
2

0 if modular methods are used or the

i

p.r.s.'s are normal and k = 1 otherwise.

3 2 2
Proof: t (A,c ,c ) = u L(c) + u L(C)L(a).
GPDRTR 1 2

_ 8m 3 2
la | < |2+ 1 a, sot (A ,r) = p L(Y) +
1 GPRHOM 1

2 . 8m 3 2 3
L L(DL(lc + 1] a) & W L(r) + u L(r)L(c) +

2 m
HL(L(a. [a] <|z+1] [a] < (lr + 1]-]¢ +
o I 1
8 m 3 2 _
1l ) a. Hence t (A ) =pu +uL({|r+ 1]-|c+
GPHPTC 2
8 m 3 3 30 3
1} a) =y +p L(¥) +u L) + HL(a). |Aa| <
3
m _ _ 8 m
m2 |A | <m(2lr + 1]-|c + 11 ) a. so t (A ) =«

2 CZNZHP 3
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h+k _ _ 8 m 2 b+k
po fun(w) + w2z + tf-jc+ 1] }al =y {uL ()

o 2 b4k o 2 ]
+ L(y) + uL(rc) + L(a)} <= u {pL (prc) + L(a)} . &
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CHAPTER 5: ROOT ISOLATION AND REFINEMENT

This chapter presents the two major algorithms of the
thesis--Gaussian polynomial and integral polynomial root
isolation and refinement. L

The method used in these algorithms requires a bound
on the moduli of all of the roots of a Gaussian polynomial.
Hence the first algorithm computes such a bound.

ALGORITHM GPRBND:

B=GPRBND(A)
Gaussian Polynomial Root Bound
A is a non-zero univariate Gaussian polynomial. B =

b /b is a rational number, where b is a power of two
1 2 1

and b =1, such that if b is a root of A then |b| < B.
2

Method:

— | 13

Using [KND69] let B' = max {2]a /a | .

1<3<n n-j n

If'a li’a Ifor 0 < i < n, then let B' = 2. Otherwise,

i n

compute B' as follows:

log B' = max {log (2]a /a | ) 1
2 1 <3j<n 2 n-j n

A
+
=
v
™

{(1/3)1log (la /a |)}
n 2 ]

1 <3< n-j n
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2 2
= 1 + max {(1/1231)1log (]|a | /la | )}
1<3<n 2  n-j n

la 1> la |
l’l“J n

2 2
= 1 + max {(1/[(2(n-k)1)1log (la | /]la | )}
0 <k <n 2 k n

la | > |a |
k

I A

2
1 + max {(1/12(n-k)1)-(|1log Ja 1_1 -
0 <k <n 2 k

la | > |a |

k n
2
lf’g a 1J)}
2 n
2
f_ 1 + max {I‘-gl’zggzlakl_-—l —

0 <k <n

la | > |a |
k n
2
[iog la | J)/[Z(n—k)] }
2 n _
= 1 4+ h .
h+1

Then b = 2
1

Description:

(1) [Initialize.] a' +« GPLICF(A); b <« GPMSQR(a');

erase a'; A <% GPRED(A); h + 0; n « GPDEG(A);
1

if A =0, go to (5); ELPOF2(b,%,t).
1
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(2) [Compute next term.] a' <« GPLDCF(A ); A <
1 2

GPRED(A ); b' <« GPMSQR(a'); if ICOMP (b',b) < O,
1 —_

go to (4); ELPOF2(b',t,2'); t < 2(n - GPDEG(A ));
1

h! < (& - 2+ t - 1) /¢,
(3) [Compare.] If h' > h, h « h'.

(4) [Increment and check.] Erase b', a', A ; A <« A ;
1 1 2

if A # 0, go to (2).
1

(5) [Finish.] t <« PFA(2,0); a < PPOWER(t,h + 1)

w
+

RPOLY (a); erase t, b, a; return.

2
Computing Time: < uL(d) , where m = deg(ad), M =m + 1,
and d = [Al .
0
Proof:
Step n t
i i
2
1 1 = L(d)
2
2 S H | = L(d)
3 < u v
4 <u o1
5
5 1 < L(d)
2
L(a') < L(d), so t (a') = L(d) . L(b), L(b") <
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2L(d), so t (b), t (b') = L(d)z. t (t,
ELPOF2 ELPOF2 PPOWER
2 2 2 2 g

h + 1) =L(t) (h+ 1) = L(2)[L(d) + 1] <« L(d) .

The next algorithm, GPRIR, isolates all of the roots
of a Gaussian polynomial into disjoint squares and, if so
directed, refines these squares to a specified width.

Given a Gaussian polynomial A, one can use GPRBND to
compute a bound on the moduli of the roots of A, and thus
specify a square in the complex plane which contains all of
the roots of A. ‘

Since an algorithm for computing the number of roots of
a polynomial in a rectangle was previously explained, the
following straightforward approach to isolation and

refinement is suggested.

Initialize list L to the square containing all roots
1

of A and list L to zero. Now enter a loop. Take the next
2

square S off list I . If S contains no roots, discard it.
1

If S contains one root and its width is less than the

specified parameter €, or € = 0, prefix S to list L .
2

Otherwise, split S into four subsqguares and prefix these

subsquares to list L . The loop is repeated until list L
1 1

is empty. List L 1is then the desired output.
2
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The problem with this approach is the time required to
compute the number of roots in a rectangle, plus the large
amount of information which is repeatedly re-computed.
Although many improvements can be made, a different approach
proved more successful.
Recalling the discussion of intervals in Section 4.4,

define a standard horizontal strip in the complex plane as

(-2,) x (a,b] and a standard vertical strip as (a,b] x

(-,») for a,b real numbers. (Note that, if H and V are
standard horizontal and vertical strips, then H N V is a
standard rectangle.)

Some of the data structures in the algorithm are then

as follows. H = (h r « « « , h ), H = (h F e e e g
1 1,1 1,r 2 2,1
h ), Vo= (v r e e e 4V ), and V = (v r e e e g
2,r 1 1,1 1,t 2 2,1
v ) are lists in which (h h ) ‘represents a standard
2,t 1,3 2,3
horizontal strip H = (~wo,») x (h +h I and (v v }
j 1,9 2,7 1, 2,k
represents a standard vertical strip V = (v r Vv ) x
k 1,k 2,k
(~0,o). M= ((m S ) Yr ¢ < ., (m ;e e e g
1,1 1,t r,1
m )) 1s then a list in which m is the number of roots
r,t j.k

of A in standard rectangle H n v .
y k

Let b be a bound on the moduli of the roots of A.
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Initially, then, one has H = (-b,b) and V = (-b,b), with
1 1

M = ((deg(A))). Now, rather than directly splitting
squares into four subsquares, one proceeds by splitting the .
horizontal and vertical strips into two substrips each.
(Which, of course, accomplishes the same thing.)

In order to perform this as efficiently as possible,

the algorithm saves some additional information. H =
3

(h ;, . .. ; h )y and H = (h r - « « 5 h )} are
3,1 3,r 4 4,1 4,r

lists in which h is the number of roots of A below strip
3,3

H and h is the number of roots of A above strip H .
J 4,3 3

Similarly, V and V store the number of roots of A left of
3 b

and right of the corresponding vertical strips.

Hence, suppose one wants to split horizontal strip H ,
J

(h ' h ). (An exactly analogous process is used for
1,3 2,7

vertical strips.) Let h = (h +h )/2 and apply the
1,3 2,3

algorithm for arbitrary half-planes at h. Suppose the

result is k roots on line z = ih and k¥ roots above the
1 2

line. Then the following information is available.



204

k h
2 4,3
ih
2,3
ih == B e e e ———— (1)
k
1
ih
1,3
h
3,3
k roots on z = ih ;
1
k roots above z = ih ;
2
h roots below and on z = ih ;
3Ij 1’]
h roots above z = ih .
h,3 2,3

What is desired is the number of roots in strip (h ,h)
1,3

and (h,h ), say k and k .
2,3 3 L

iE oYY (2)
k
) I 3

Reference to the two diagrams shows that k = deg(a) - k -
3 2

h and k =k =~ h .
3,3 4 2 b3
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Suppose k = 0. Then the only operation required is
3

to replace h by h. Since ¥ =0, h remainsg the sane,
1,3 3 3,7

as does h . Consider the square H n V and let pu =y +
4,3 J k 1

4  be the number of roots of A in this square.
2

U
_ 2
H 1h e e (3)
J
u
1
v
k
Since there are no roots in the lower sub-strip, W = 0 for
1
all v . Hence ¥ = 1 and matrix M remains the same.
k 2
An analogous situation holds for k = 0; in this case
)
h is altered to h.
2,7
Now suppose k ,k # 0. Two strips must be set up, say
3 4
(h* ,h' ) and (h' h’ ) where h' = h ; h! = h,

1,9 2,3 1,3+1  2,3+1 1,3 1,9 2,7
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h! = h, and h' = h . Computing the other h
1,3+1 2,3+1 2,73

entries is easy; reference to diagrams (1) and (2) shows

that h' =h , h' =h +k , h' =h +k ,

3,3 3,7 4,3 4,5 4 3,3+1 3,3 3

and h' = h .
4,5+1 4,5

There is also an easy way of obtaining the new M

entries--apply the algorithm for rectangles. However, this

re-introduces the time problem created by that algorithm.

A

much faster alternative is doing a systematic scan and using

the algorithm for standard bi-quadrants.

Suppose the first strip split is the lowest one. Then

there are no roots below this strip. Consider the first

non-zero entry ¥ = 0 + U  in the first row of M.

1 2
v v
1,k 2,k
ih
2,1
n U
2 2
H @ e e e e ih
1
n U
1 1
ih
1,1
\4
k

n and n are the number of roots of A in (-, v 1 x
1 2 1,k

(4)
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(h ,h] and (-»,v ] x (h,h ], respectively. n =
1,1 1.,k 2.1 1

n = 0 here because y was the first non-zero entry.
2

Applying the algorithm for standard bi-gquadrants at point

v + ih , one obtains g and g , the number of roots of
2,k 13 240

A in standard bi-quadrants I + III and II + IV, respectively

(for the coordinate axes centered at v + ih). Combining
2,k

this with other known values, one has the following

situation!?
1
|
| v
| 4
i S
| ”~
i
ih - e e o e e o i
2,1 |
I B
lH : ., (5)
i
|
n 1 k
M
1 : 1 3
ih mmmme—— T S SRS SN
1,1 :
f h
! 3,1
i
i
1
v v
1,k 2,k

Then g , the number of roots in standard quadrant III, is
3

(deg(p) - v + h +k - g )/2. Since there are no
L 3,1 3 24
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roots below h and n =0, then p =g and g = y - .
1,1 1 1 3 2 1

Now add ¥ ton and ¢ to n . At the next rectangle
1 1 2 2

in this horizontal strip, then, the same process can be used

except 1 =g - n .
1 3 1

This gives a method for the entire lowest strip. On
subsequent strips, however, one must account for roots in
quadrant III below the strip. This can be done by adding
one additional step to the previous discussion. Before
beginning the split of horizontal strips, set up a list 8=

(s, « « «, 8 ), with each entry initialized to zero.
1 t

When the j-th horizontal strip is being processed, s will
k

be the number of roots of A in (~co,v 1 x (-»,h 1.
2,k 1,3

Initially, all entries in S are zero because there are

no roots below h - As each rectangle in a horizontal

strip is processed, s is updated by s «s +n +n + .
k k k 1 2

[See diagram (5).] When the processing of the next

horizontal strip again reaches vertical strip V , the
k

situation will be as follows.
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v v
1,k 2,k
i
|
!
7T : 1S
ih i J
1
i
1
n Y (6)
1 1 1
!
ih e —————— A L
1,3
s
k
Hence gy =g - n =-s .
1 3 1 k

The process just described for splitting horizontal
strips is alternately applied, with obvious modifications,
to the splitting of vertical strips. This method can be
repeated until the roots are isolated, that is, each square
contains no roots or one root. If a refinement parameter
g 1s specified, it can further be continued until each
square has width < ¢.

The following algorithm employs the method just
described for Gaussian polynomial root isolation and

refinement.
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ALGORITHM GPRIR:

L=GPRIR(A, &)

Gaussian Polynomial Root

Isolation and Refinement
A is a square-free univariate Gaussian polynomial of
positive degree m. € is a non-negative rational
number. L is a list of m disjoint standard squares
each containing exactly one zero of A. If € > 0, then
each square has width less than.s.

Description:

(1) [Initialize.] b < GPRBND(A); w < RSUM(b,b); b' <

RNEG(b); V <+ PFL(b',0); V < PFL(b,0); H =<
1 2 1

PFL(BORROW(b'),0); H < PFL(BORROW(b),0); V < PFA(O,
2 3

0); V <« PFA(0,0); H =« PFA(0,0); H <« PFA(0,0); h <«
4 3 4

RNUM(1,2); n < GPDEG(A); M <« PFL(PFA(n,0),0); A* <
GPROT (A,+1); I « 0; go to (25).
(2) [Initialize for rescan.] S <« 0; for g+~ 1, . . .,

LENGTH(V ), do: S < PFA(0,S); H' <« 0; H' <« 0; H' <~ 0;
1 1 2 3

H' <« 0; M' <+ 0.
b

(3) [Split strip.] DECAP (m,M); S' <« S; DECAP(h ,H );
T 1

DECAP(h ,H ); DECAP(h ,H ); DECAP(h ,H ); h <
2 2 3 3 b

RNAVER(h ,h ); CZNZVH(A*,h,k ,k ); k <« n -k - h ;
1 2 1 2 3 2 3
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k *k -h; ifk =0, go to (4); if k = 0,
4 2 4 3 4

go to (5); go to (6).
(4) [No roots in lower strip.] M' <« PFL(m,M'); erase h ;
1
H' < PFL(h,H'); H' =+ PFL(h ,H'); H' « PFA(h ,H'); H' <
1 1 2 2 2 3 3 3 4

PFA(h ,H'"); & * 0; go to (10).
o 4

(5) [No roots in upper strip.] M' « PFL(m,M'); erase h ;

2

H' <« PFL(h ,H'); H' <« PFL(h,H'); H' «~ PFA(h ,H'); H' <«
1 1 1 2 2 3 3 3 4 -

PFA(h ,H"); 2+« 0; go to (10).
4 4

(6) [Zeros in both strips.] H' « PFL(h,PFL(h ,H")); H' <«
1 1 1 2

PFL(h ,PFL(BORROW(h),H')); H' <« PFA(h + k ,PFA(h
2 2 3 3 3 3

r

H')); H' <« PFA(h ,PFA(h + k ,H")); m' <« 0; m' <« 0;
3 b4 4 b 4 4 1 2

VIV ; VI« V; Vi<V ; Vi« V;n «0;n <« 0.

[

1 1 2 2 3 3 b4 ) 1 2
(7) [Determine number in lower section of new strip.]

DECAP (1 ,m) ; ADV(v ,V'); ADV(v ,V'); ADV(v ,V'); ADV(v ,

1 1 2 2 3 3 4
V'); s € FIRST(S'); ifu =0, (¥ <« 0; go to (8));
L 1
ifn =k, (g « 0; goto (8)); ifn =%k , (u =<« u;
1 3 1 2 I 1
go to (8)); CZRASB(A,v ,h,g ,9 ); &<« n -v ; y« h
2 13 24 L 3
+k ;g <« (2+y -qg )/2;u <« g - n - s.

3 3 24 1 3 1
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(8) [Determine number in upper section.] y + u - p ;
]

n <n +pg;n «n +yu; ALTER(s +n + n ,S');
1 1 1 2 2 2 1 2

S' < TAIL(S'); m' « PFA(y ,m"); m' <« PFA(u ,m');
1 1 1 2 2 2

ifm# 0, go to (7).

(9) [Prefix pair and check for end.] M' <« PFL(INV(m'),
2

PFL(INV(m') ,M")); if M # 0, go to (3); go to (11).
1

(10) [Update S and check for end.] ADV(m ,m); & <« g +
1

m ; ALTER(FIRST(S') + £,S8'); S' <« TAIL(S'"); if s' # 0,
1

go to (10); if M # 0, go to (3).

(11) [Invert lists.] M' <« INV(M'); H <« INV(H'); H <+
1 1 2

INV(H'); H <« INV(H'); H < INV(H' ).
2 3 3 4 4

(12) [Prepare matrices for rescan.] M <« CZTRAN(M');
erase M', S.
(13) [Initialize for rescan.] S < 0; for 3+« 1, « . .,

LENGTH(H ), do: S < PFA(0,S); V' « 0; V' < 0; V' <« 0;

1 1 2 3

V' - 0; M' « 0.

i

(14) [Split strip.] DECAP(m,M); S' + S; DECAP(v ,V );

1 1
DECAP(v ,V ); DECAP(v ,V ); DECAP(v ,V ); v <
2 2 3 3 u u
RNAVER(v ,v ); CZNZVH(A,v,k ,k ); k <« n -k - v ;

1 2 1T 2 3 2 3
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k =k -v; if k =0, go to (15); if k = 0,
4 2 4 3 4

go to (16); go to (17).

(15) [No roots in left strip.] M' <« PFL{m,M'); erase v ;
1

V' « PFL(v,V'); V' « PFL(v ,V'); V' « PFA(v ,V'); V' <
1 1 2 2 2 3 3 3 4

PFA(v ,V'); 2 <« 0; go to (21).
4

(16) [No roots in right strip.] M' + PFL(m,M");

erase v ; V' « PFL(v ,V'); V' <« PFL(v,V'); V' <« PFA(vV ,
2 1 1 1 2 2 3 3

v'); V' <« PFA(v ,V'); 2 % 0; go to (21).
3 i b 4

(17) [Zeros in both strips.] V' +« PFL(V,PFL(v ,V'));
1 T 1

V' « PFL(v ,PFL(BORROW(V),V')); V' <« PFA(v + k ,
2 2 2 3 3 3

PFA(v ,V')); V' « PFA(v ,PFA(v + k ,V")); m' < 0; m'
3 3 4 4 4 b 4 1 2

< 0; H' «H ; H'«* H; H'*H; H'<*H;n < 0;
1 1 2 2 3 3 4 1) 1

n <« 0.
2

(18) [Determine number in left section of new strip.]

DECAP(u,m); ADV(h ,H'); ADV(h ,H'); ADV(h ,H"); ADV(h ,
101 2 2 3 3 4

H'); s < FIRST(S'); if u =0, (1 < 0; go to (19));
i} 1

ifn =k, (0 +=0; go to (19)); ifn =k , (4 * u;
1 3 1 2 4 1

go to (19)); CZRASB(A,v,h ,9 ,q9 ); & * n - h ;
2 13 24 4
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y© v +k;iqg < (4+y-q )/2;u +gqg -n - s.
3 3 3 21 1 3 1

(19) [Determine number in right section.] u <« p - u
2 1

n “n +Hd;n *n +yu; ALTER(s + n + n ,S"); S' <«
1 1 1 2 2 2 1 2

TAIL(S'); m' < PFA(M ,m'); m' < PFA(R ,m'); if m # 0,
1 1T 1 2 2 2

go to (18).

(20) [Prefix pair and check for end.] M' « PFL(INV(m'),
2

PFL(INV(m') ,M')); if M # 0, go to (14); go to (22).
1
(21) [Update S and check for end.] ADV(m ,m); & < & +
1

m ; ALTER(FIRST(S') + £,8'"); S' <« TAIL(S'); if s' # 0,
1

go to (21); if M # 0, go to (14).

(22) [Invert lists.] M' < INV(M'); V < INV(V'); V <+
1 1 2

INV(V'); V < INV(V'); V <« INv(v').
2 3 3 4 4

(23) [Prepare matrices for rescan.] M < CZTRAN (M') ;
erase M', S.

(24) [Compute width.] T < RPROD(w,h); erase w; w < T.
(25) [Test for isolation.] If I = 1, go to (28); M' + M.
(26) [Obtain next row.] ADV{(m,M").

(27) [Check for 0 and 1.1 ADV(m ,m); if m > 1,
1 1

go to (2); if m # 0, go to (27); if M' # 0, go to (26);

I+« 1.
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(28) [Check refinement.] If € = 0, go to (29);

if RCOMP(w,e) > 0, go to (2).
(29) [Erase intermediates and initialize.] L < 0;

erase w, h, A%, H , H , V , V .
3 4 3 4

(30) [Construct output.] V' « V ; V' <« V ; DECAP(m,6M);
1 1 2 2

DECAP(h ,H ); DECAP(h ,H ).
11 2 2

(31) [Scan row.] DECAP(m ,m):; ADV(V V') ADV(v ,V');
1 1 1 2 2

ifm = 0, go to (33).
1

(32) [Construct pair.] V « PFL(BORROW(V1),PFL(

BORROW(v ),0)); H <« PFL(BORROW(h ),PFL(BORROW(h ),0));
2 1 2

L < PFL(V,PFL(H,0)); L <« PFL(L,L).
(33) [Check end of row.] Ifm # 0, go to (31);

erase h , h .
1 2

(34) [Check end of matrix.] If M # 0, go to (30);

erase V , V ; return.
1 2

5+k 2
Computing Time: = u  L(bh){uL(pbh) + L(d)} +

2
L(e)L(bh) , where m = deg(A), p =m + 1, d = lal .
b is the positive integer bound on the moduli of the
roots of A computed by GPRBND, A = 1/b if m = 1 and 2

= sep(A) ifm> 1, § =X if ¢ = 0 and 6§ = min{A,e} if ¢
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>0, and h = [1/§]; k = 0 if modular methods are used

or the p.r.s.'s are normal, k = 1 otherwise.

Proof: Let n be the number of executions of Step (2).

Let w be the width of each square during the i-th
i

i-1
execution of Step (2). Then w = 2b/2 . Ifn >0,
i

then either € = 0 and V2w > A or e > 0 and w > g.
n n

n-1
In either case, Y2w > 8, that is, 2V/7b/2 > 8
n

n
Hence 2 < 4V2b/8 < 6bh and n « L(bh). If r = r /r
1 2

is the endpoint of any interval processed during the

i
i-th execution of the main loop then lr |,]x | < b2,

1 2

so L(r) = L(bh). This gives the following chart:

Step n t

i i

2
1 1 = uL(d)
2 n <
b+k 2

3 | 2 = u  {uL(ubh) + nL(a)}
4 < un o
5 < un v
6 < un "o




10
11

12

13

14
15
16

17

18

19

20

21

22

23
24
25

26

IA

IA

IA

A

I

A

A

H n

Hn

Hn
un
un

HUn

pi{n + 1)

|8

| 8

IR

[ R

In

X

|8

I8

i8]

eV}

h+k

u {uL(ybh) + L(d4)}

2
u

M

b+k

v {pL(ubh) + ()}

L+k

v {uL(ubh) + L(d)}

2

2

2

217



218

2
27 <u (n+ 1) AV
28 < n+ 1 = L(g)L(bh)
29 1 N
30 <u N
2
31 <u Nl
32 U v
2
33 < v
- 34 rf_u v
2
t (A7) < uL(d) and b < 2d so t (b,b),
GPRBND RSUM
2
t (b) = L{(d). t (A) = pL(d), so t <« pL(d) .
RNEG GPROT 1

d.

Note that |a%|,

length(V ) <m so t <« u.

1 2
length(M) < m so n < u¥n. L(h ),L(h ) = L(bh) so
3 1 2

t (h ,h ) = L(bh) 2. Similarly, for h = h /h ,

RNAVER 1 2 1 2
L(h),L(h ) = L(bh) so uL(uh h ) = uL(ubh) and

1 2 1 2
3 bk 2

t (A*,h) = {UL(ubh) + T(a)} .

CZNZVH

Steps (7) and (8) form an inner loop which can be

2

executed m“n times, since there can be m rows and

maximum row length is m. However, CZRASB can be
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applied at most mn times, since there are at most m

non-zero entries in M. For each execution, t (A,
CZRASB
_ b+k 2
v ,h) =y {uL(ubh) + L(d)} so T , the time for all
2 7
5+k |

executions of Step (7), is = L(bh) {uL (ubh) +

2
Ll .

Comments for Steps (2) through (12) apply for (13)
through (23) also.

In Step (24), h = 1/2, so t (w,h) « L(bh).
RPROD

In Step (28), t (w,e) = L(w)L(e) « L(s)L(bh).g
RCOMP
To give another idea of the computing time of GPRIR,
the following corollary is presented.

Corollary 5.1: t (A, =) « u7+k{uL(ud) + L(s)}B,
GPRIR

where m = deg(A), p=m + 1, and 4 = |a]| .

Proof: Using the notation of the algorithm, Collins

[COG73b] has shown that L([T/X])

IR

uL(pd) and hence L(h) <«
pL(ud) + L(e). Noting that L(b) < L(d) gives the
corollary.g

The algorithm for integral polynomial root isolation
and refinement is essentially the same. However, it
achieves a considerable gain in speed by using the fact that

any roots of an integral polynomial which are not real must
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occur as complex conjugate pairs. Therefore, only the real
roots and roots below the real axis are isolated and
refined. The resulting regions in the lower half-plane
containing a root are then used to generate the
corresponding regions in the upper half-plane containing the
conjugate of that root.

Several other comments should be made about differences
in the algorithms. Heindel's real zero system [HEL70al] is
faster than this algorithm for real roots. Hence Step (1)
checks if all roots of the polYnomial are real; if so, it_
calls Heindel's routine ANALR.

The bounds used to form the beginning area are (-b,0)
and (-b,b). Hence the region is not square. To be
consistent, an initial split of vertical strips is made.
Subsequent operations thus work with square areas.

Recall the n and n discussed with the preceding
1 2

algorithm. They designate the number of roots in the upper
and lower sub-strips which have already been located. The

total number of roots in each of these substrips, k and k ,
3 4

are also known. If at some point n = k , then there can be
1 3

no other roots in this substrip so all subsequent y must be
1

zero. A corresponding situation holds for n , k , and u .
A 2 4 2

When vertical strips are being processed in the following
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algorithm, an extension of this can be used. Each time
roots are located in the lower half-plane, the locations of
their conjugates are also specified. Hence, if there are

n roots in (a,b] X (-»,-c] there are also n roots in
1 1

(a,b] x [c,*). The number of roots yet to be located in

(a,bl] x (-c,c) is thus k3 - 2n1, sO processing can be
stopped when 2n1 = k3. Again, a corresponding situation
holds for n2 and ku. This fact is used in Step (18) of the
algorithm.

ALGORITHM PRIR:

L=PRIR(A,€)

Polynomial Root Isolation and Refinement
A is a square-free univariate integral polynomial of
positive degree m. ¢ is a non-negative rational
number. L is a list of m disjoint regions each
containing exactly one zero of A. Each region R is
represented by a list ((a,b),(c,d)), where a, b, c,
and d are rational numbers, as follows:
= (a,b) x (c,d) if a < b and ¢ < d;
= (a,b) x {c} if a < b and ¢ = 4d;

= {a} x (¢,d) if a = b and ¢ < d;

e B B s

= {a} x {c} if a = b and ¢ = 4.

If ¢ > 0, then each region has width w < g.
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Description:

(1) [Check for all real zeros and initialize.]

CZNRNA(A,k,q); if & = 0, go to (43); A <
1

PFL (BORROW(A) ,PFL(0,0)); b <« GPRBND(A ); w < RSUM(b,Db);
1

b' <« RNEG(b); V < PFL(b',0); V =< PFL(b,0); H <«
1 2 1

PFL(BORROW(b'),0); H < PFL(0,0); V <« PFA(0,0); V =
2 : 3 b4

PFA(0,0); H < PFA(0,0); H =< PFA(2,0); h < RNUM(1,2);
3 b

n < GPDEG(A ); M « PFL(PFA(n - £,0),0); A =«
1 2

GPROT(A ,+1); I « 0; go to (13).
1

(2) [Initialize for rescan.] 8 < 0; for 3«1, . . .,

LENGTH(V ), do: S <« PFA(0,S); H' <« 0; H' < 0; H' « 0;
1 1 2 3

H' « 0; M' <« 0.
4

(3) [Split strip.] DECAP (m,M); S' <« S; DECAP(h ,H ):
1 1

DECAP(h , H ); DECAP(h ,H ); DECAP(h ,H ); K <«
2 2 3 3 4y

RNAVER(h ,h ); CZNZVH(A ,h,k ,k ); k < n -k - h
1 2 2 1 2 3 2 3

~0

k «k -h; ifk =0, go to (4); if k = 0,
4 2 4 3 4

go to (5); go to (6).
(4) [No roots in lower strip.] M' <« PFL(m,M');

erase h ; H' « PFL(h,H'); H' « PFL(h ,H');
1 1 1 2 2 2
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H' « PFA(h ,H'); H' <« PFA(h ,H'); & <« 0; go to (10).
3 3 3 b 4 4

(5) [No roots in upper strip.] M' <« PFL(m,M');

erase h ; H' <+ PFL(h ,H'); H' « PFL(h,H'); H' <«
2 1 B 2 2 3

PFA(h ,H'); H' « PFA(h ,H'); & < 0; go to (10).
3 3 4 4o

(6) [Zeros in both strips.] H' <« PFL(h,PFL(h ,H"));
1 1 1

H' « PFL(h ,PFL(BORROW(h),H')); H' « PFA(h + k ,
2 2 2 3 3 3

PFA(h ,H')); H' « PFA(h ,PFA(h + k ,H")); m' <« 0; m'
3 3 4 b b4 4 4 1 2

< 0; VI =« V ; V' «+ V ; VI« V ; V'« V; n < 0;
1 1 2 2 3 3 4 4 1

n <= 0.
2

(7) [Determine number in lower section of new strip.]

DECAP (u,m); ADV(v ,V'); ADV(v ,V'); ADV(v ,V");
T 1 2 2 3 3

ADV(v ,V'); s « FPIRST(S'); if p = 0, (u =<« 0;
4 4 1

go to (8)); ifn =k , (u < 0; go to (8));
1 3 1

ifn =%k, (g «u; go to (8)); CZrASB(A ,v ,h,q ,q );
2 4 1 1 2 13 24

g2+« n-v;y+*h +k;qg « (g+y-9q9g )/2;
q 3 3 3 24

W+ g - n - s.
1 3 1

(8) [Determine number in upper section.] u <« u - u ;
2 1

n ¢*n +4WY ;n +*n + Uy ; ALTER(s + n + n ,8');
1 1 1 2 2 2 1 2
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S' « TAIL(S'); m' < PFA(u (m"'); m' <« PFA(u ,m');
1 1 1 2 2 2

if m # 0, go to (7).

(9) [Prefix pair and check for end.] M' « PFL(INV(m'),
2

PFL(INV(m'),M")); if M # 0, go to (3); go to (11).
1
(10) [Update S and check for end.] ADV(m (m); Lo« 2+
1

m ; ALTER(FIRST(S') + %,8'); S' <« TAIL(S'); if S' # 0,
1

go to (10); if M # 0, go to (3).

(11) [Invert lists.] M' « INV(M'); H < INV(H'); H <
1 1 2

INV(H'); H < INV(H'"); H < INV(H').
2 3 3 4 4

(12) [Prepare matrices for rescan.] M < CZTRAN(M') ;
erase M', S.
(13) [Initialize for rescan.] S +« 0; for 3«1, . . .,

LENGTH(H ), do: S <« PFA(0,S); V' < 0; V' <« 0; V' = 0;
1 1 2 3

V' <+« 0; M' « 0.
4

(14) [Split strip.] DECAP(m,M); S' +« S; DECAP (v ,V );
T 1

DECAP(v ,V ); DECAP(v ,V ); DECAP(v ,V ); Vv <
2 2 3 3 TR}

RNAVER(v ,v ); CZNZVH(A ,v,k ,k ); k <+n -k - v ;
1 2 1 1 2 3 2 3

k «k -v; if ¥k = 0, go to (15); if k = 0,
4 2 4 3 4

go to (16); go to (17).
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(15) [No roots in left strip.] M' « PFL(m,M'); erase v ;
1

V' « PFL(v,V'); V' « PFL(v ,V'); V' « PFA(v ,V'); V' «
1 1 2 2 2 3 3 3 i

PFA(vV ,V'); & < 0; go to (21).
4 4

(16) [No roots in right strip.] M' « PFL(m,M');

erase v ; V' « PFL(v ,V'); V' <« PFL(v,V'); V' <«
2 1 1 1 2 2 3

PFA(v ,V'); V' = PFA(v ,V'); & <« 0; go to (21).
3 3 ) 4 4

(17) [Zeros in both strips.] V' <« PFL(V,PFL(v ,V'));
1 1 1

V' < PFL(v ,PFL(BORROW(V),V')); V' <« PFA(v + k ,
2 2 2 3 3 3

PFA(v ,V')); V' « PFA(v ,PFA(v + k ,V')); m' « 0;
3 3 4 i i} 4 1

m'<« 0; H'< H ; H'«+ H ; H'"'« H ; H'« H ; n <« 0;
2 1 1 2 2 3 3 4 Uy 1

n <« 0.
2

(18) [Determine number in left section of new strip.]

DECAP(W,m); ADV(h ,H'); ADV(h ,H'); ADV(h ,H");
1 1 2 2 3 3

ADV(h ,H'"); s « FIRST(S'); if uw =0, (0 < O;
4 4 1

go to (19)); if 2n =%k , (¢ < 0; go to (19));
1 3 1

if 2n =%k , (4 < u; go to (19)); CZRASB(A ,v,h ,
2 4 1 1 2

q 9 J); & *n-h;yv*v +k;qg <« (2+y ~
13 24 i} 3 3 3

g )/2; 4« £ g -n - s.
24 1 3 1
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(19) [Determine number in right section.] p < u - [T
2 1

n «n +uWU;n <«n 4y ; ALTER(s +n + n /S ;
1 1 1 2 2 2 1 2

S' <« TAIL(S'); m' < PFA(p ,m'); m' < PFA(u ,m');
1 1 1 2 2 2

if m# 0, go to (18).

(20) [Prefix pair and check for end.] M' < PFL(INV(m'),
2

PFL(INV(m') ,M")); if M # 0, go to (14); go to (22).
1

(21) [Update S and check for end.] ADV{(m ,m); & <« 2 +
1

m ; ALTER(FIRST(S') + ¢ ,S'); 8' <« TAIL(S'); if S' # 0,
1

go to (21); if M # 0, go to (14).

(22) [Invert lists.] M' « INV(M'); V < INV(V'); V <«
1 1 2

INV(V'); V <« INV(V'); V <« INV(V').
2 3 3 4 4

(23) [Prepare matrices for rescan.] M <« CZTRAN(M');
erase M', 8.

(24) [Compute width.] T <+ RPROD(w,h); erase w; w « T.
(25) [Test for isolation.] If I = 1, go to (28); M' « M.
(26) [Obtain next row.] ADV(m,M') .

(27) [Check for 0 and 1.] ADV(m ym); ifm > 1,
1 1

go to (2); if m # 0, go to (27); if M’ # 0,
go to (26); I <« 1.
(28) [Check refinement.] If & = 0, go to (29);

if RCOMP(w,€) > 0, go to (2).
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(29) [Erase intermediates; initialize.] L. « 0;

erase w, h, A, H , 3, Vv, V.
2 3 4 3 04

(30) [Construct output.] V' « V ; V' « V ; DECAP(m,M);
1 1 2 2

DECAP(h ,H ); DECAP(h ,H ).
11 2 2

(31) [Scan row.] DECAP(m ,m); ADV(v ,V'); ADV(v ,V');
1 1 1 2 2

ifm =0, go to (41).
1

(32) [Obtain location of root.] GPNRER(A ,v ,v ,h ,h ,
1T 1 2 1 2.

n,n,nj); ifn =1, go to (34); ifn = 1, go to (36);
1T 2 3 1 2

ifn =1, go to (38).
3

(33) [Root is within rectangle.] R + BORROW(v ); R
1M1 1 12

< BORROW(v ); T < BORROW(h ); T < BORROW(h ); R
2 11 1 12 2 21

< BORROW(v ); R <« BORROW(v ); T < RNEG(h ); T <
1 22 2 21 2 22

RNEG(h ); go to (39).
1

(34) [Root is on upper boundary of rectangle.] R = =«
11
BORROW(V ); R + BORROW(v ); T < BORROW(h ); T <
1 12 2 11 2 12
BORROW(h ).
2

(35) [Check for real root.] If h = 0, go to (40);
2



228

R« BORROW(v ); R <« BORROW(v ); T <« RNEG(h );
21 1 22 2 21 2

T <« BORROW(T ); go to (39).
22 21

(36) [Root is at upper right vertex.] R < BORROW (v );
11 2

R + BORROW(v ); T < BORROW(h ); T < BORROW(h ).
12 2 11 2 12 2

(37) [Check for real root.] If h = 0, go to (40);
2

R + BORROW(v ); R < BORROW(v ); T < RNEG(h );
21 2 22 2 21 2

T + BORROW(T ); go to (39).
22 21

(38) [Root is on right boundary of rectangle.] R <«
11

BORROW(v ); R < BORROW(v ); T < BORROW(h ); T +
2 12 2 11 1 12

BORROW(h ); R < BORROW(v ); R < BORROW(vV ); T <
2 21 2 22 2 21

RNEG(h ); T + RNEG(h ).
2 22 1

(39) [Assemble conjugate interval.] R <+ PFL(R |,
2 21

PFL(R ,0)); T < PFL(T ,PFL(T ,0)); & < PFL(R ,
22 2 21 22 2 2

PFL(T ,0)); L + PFL(X ,L).
2 2

(40) [Assemble interval.] R =« PFL(R ,PFL(R ,0)); T
1 11 12 1

< PFL(T ,PFL(T ,0)); & < PFL(R ,PFL(T ,0Y); L <«
11 12 1 1 1

PFL(% ,L).
1
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(41) [Check for end of row.] If m # 0, go to (31);

erase h , h .
1 2

(42) [Check for end of matrix.] If M # 0, go to (30);

erase V , V , A ; return.
1 2 1

(43) [Obtain real zeros.] L + ANALR(A,£); y <
PFL(0,PFL(0,0)); L <= 0.

(44) [Check endpoint.] DECAP(R,L); FIRST2(Z ,% ,0);
1 2

if RCOMP(% , %) = 0, go to (45); if REVAL(A,Z ) = 0,
1 2 2

(erase & ; ALTER(BORROW(T ),2)).
1 2

(45) [Convert to PRIR output form.] & < PFL(Y,
PFL(BORROW(y) ,0)); L < PFL(&,L); if & # 0, go to (4l4);
erase y; return.

5+k 2
Computing Time: « u  L(bh){uL(ubh) + L(d)} +

2
L(e)L(bh) , where m = deg(A), w =m + 1, d = |a] , b

(o]

is the positive integer bound on the moduli of the roots
of A computed by GPRBND, A = 1/b ifm = 1 and A =
sep(d) ifm > 1, § = XA if ¢ = 0 and § = min{),e} if ¢ >
0, and h = FT/ET; k = 0 if modular methods are used or

the p.r.s.'s are normal, k¥ = 1 otherwise.

Proof: ©Let n be the number of executions of Step (2).

Let w be the width of each square during the i-th
i
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i-1
execution of Step (2). Then w = 2b/2 . Ifn >0,
i

then either € = 0 and V2w > A or € > 0 and w > . TIn

n n
n~1
either case, V2w > §, that is, 2/2b/2 > §. Hence
n
n
2 < U4y2b/§ < 6bh and n « L(bh). If r = r /r is the
- 1 2

endpoint of any interval processed during the i-th

i
execution of the main loop then |r |,|r | < b2 , so
2
L(r) = L(bh). This gives the following chart:
Step n t
~ j j
2
1 1 < pL(d)
2 <n ® U
b+k 2
3 < un < {uL(ubh) + L(d)}
4 < un v
5 < un v o1
6 < un v
btk 2
7 < u  {pL(pbh) + L(d)}
2
8 < pn v
9 < un < U




10
11

12

13

1h
15
16

17

18

19

20

21
22

23
24
25

26

27
28
29

30

I A

A

A

A

I A

A

A

I A

1A

A

un
un
Hn

un

p(n + 1)

u(n+1)

u

|8

[ 8

ny

IR

[

I8

)

2
1

u
4+k

v {uL(ubh) + L(d)}

1
1
1

h+k

u {unL(ubh) + L(a)}

1
L(e)L(bh)
1

1

2

2

231
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‘ 2
31 | < [~ 1
L+k 2
32 <u < U {uL (ubh) + L(4)}
33 | <u = L(bh)
34 < u N
35 < & L(bh)
36 <y v
37 | <n = I, (bh)
38 < u =< I,(bh)
39 <y v
4o <u v
2
01 <y O
42 <y v
5 2 4 3
03 1 < u L(ubh) + p L(bh)
2 2 2
Ly m <y L(bh) + u L{pd)L(bh)
45 m N
2
t (A) = uL(d) and b < 2d so t (b,b),
GPRBND RSUM
2
t (b) = L(4). ¢ (A) = uL(d), so t <« pL(d) .
RNEG GPROT 1 1
Note that A | = |a | = 4.

co 200

length(V ) <mso t = u,.
1 2

length(M) <mson < uyn. L(h ),L(h ) « L(bh) so
- 37 1 2
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t (h ,h ) = L(bh) .
RNAVER 1 2

Similarly, for h = h /h , L(h ),L(h ) = L(bh) so
1 2 1 2

pL(ph B ) = uL(u) + uL(bh) and t (a*,h) =
1 2 CZNZVH

Bk 2
U {pL(ubh) + L&)} .

Steps (7) and (8) form an inner loop which can be

2
executed m n times, since there can be m rows and

maximum row length is m. However, CZRASB can be :
applied at most mn times, since there are at most m
non-zero entries in M. For each execution,

O+k 2

t (2 ,v ,h) =u {uL(ubh) + L(A)} so T , the
CZRASB 1 2 7

5+k
time for all executions of Step (7), is =« u L(bh) -

2 2
{uL(uybh) + L(d)} + L(e)L(bh) .

Comments for Steps (2) through (12) apply for
(13) through (23) also.

In Step (24), h = 1/2 so t (w,h) = L(bh).
RPROD

In STEP (28), t (w,re) < L(w)L(€) = L(€)L(bh).
RCOMP

Step (32) is executed once for each non-zero

entry in M and hence t < U.

32
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Collins has re-analyzed the time for ANALR

[COG72b] and t is derived from this.

43
In Step (44), t (2 ,2) =L(Z )Ly ) =
RCOMP 1 2 1 2
2 _ 2 2 2 _
L(bh) . t (R,2 ) «w L) + v L(dL(y ) =
REVAL 2 2 2

2 2 2 g
B L(bh) + u L(ud)L(bh).

Corollary 5.1 obviously also holds for PRIR, since the

computing time and root separation are the same.
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CHAPTER 6: SYSTEM EXTENSIONS

6.1 Refining individual roots

The algorithms of Chapter 5 isolate the roots of a
polynomial and then refine all of them simultaneously. 1In
some instances, this is not desired. From knowledge about
the polynomial (perhaps from a prior application of an
algorithm in Chapter 5), one may have isolating rectangles
for certain of the roots and now want to refine only these
areas. A common example is the situation in which only thg
roots in the first guadrant are important. This section
presents algorithms for refining such individual roots.

The first algorithm inputs a standard rectangle
containing a single root and refines it once, producing a
sub-rectangle containing the root with sides 1/2 the
length of the input.

ALGORITHM CZREF:

L=CZREF (A, L)
Complex Zero Refinement
A is a non-zero square-free univariate Gaussian
polynomial. L is the interval representation of a
rectangle in the complex plane containing (in the
standard rectangle sense) one zero of A. That is, L

= ((& ,2),(% ,2)), & rational numbers, for the
1 3 4 6 i

following rectangle R:
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a l c
il

IJL
\
e
\ .

gy W
J
£
/

18

% L
1 3

The zero lies in the interior of the rectangle, on
line (a,cl, or on line (i,c]. Let R be divided into

the following four standard sub-rectangles:

a C
R R
6 7
ik o+ 2 )/2
6 4
R R
10 11
o . O 1
(2 + 2)/2
3 1

Then L is the interval representation of the standard

subrectangle R containing the zero.
]

Method:
Consider the surrounding standard rectangles as in

the following diagram:
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R R R R
1 2 3 4
a b c
iR —C— 4 O
6
R R R R
5 6 7 8
d J e J £
T N ‘\E 1?
R R R R
9 10 11 12
h i
ik vJ}g —0 L
n [
R R R R
13 14 15 16
2 2
1 3

Applying CZRASB at points a, b, d, e gives the

following, for t the number of zeros in R :

J J
a =t 4+t 4+t +t +t + ¢t ,
13 2 3 i) 5 9 13
b =t +t +t +t +t +t + ¢ + t ’
24 1 2 7 8 11 12 15 16
d =+ +t +t +t +t +t +E& + t ,
13 2 3 4 6 7 8 9 13
e =t +t 4+t +t + t + t + t + t .
24 1 2 5 6 11 12 15 16
Then t = (e +d -0Db -a )/2. 1If t = 1, then
6 24 13 24 13 6
L = R . Otherwise, from above,
6
b =t 4+t +t 4+t + t + t + +t ,

13 3 4 5 6 9 10 13 14
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e =t +t 4+t +t 4+t +t + t + t
13 3 i 7 8 9 10 13 14

Applying CZRASB at points ¢ and f,

c =t 4+t +t +t +t +t ,
24 1 2 3 8 12 16
f =t 4+t +t +t +t +t + t + t
24 1 2 3 5 6 7 12 16
Then t =(f +e -b =~-¢ )/2. If+t =1, then
7 24 13 13 24 7
L = R . Otherwise, from above,
7
d =t 4+t +t 4+t +tt +t +t +t
24 1 5 10 11 12 14 15 16
e =t 4+t 4+t 4+t +t + t +t +t .
13 3 i) 7 8 9 10 13 14

Applying CZRASB at points g and h,

g =t +t +t +t +t +t ,
24 1 5 9 14 15 16
h =t +t +t +t +t ++t ++t +¢t .
13 3 4 7 8 11 12 13 14
Then t =(d +e ~-g ~-h )/2. Ift =1,
10 24 13 24 13 10
then I, = R . Otherwise, . = R .
10 11
Description:

(1) [Obtain endlines.] FIRST2(% ,%& ,L); FIRST2(L ,
13 46 1

L£,% ); FIRST2(R ,% ,%& ); 2 <« RNAVER(Z ,% ); & =<
3 13 4 6 46 2 T 3 5

RNAVER( 2 ,2 ).
4 6

(2) [Check R .] CZRASB(A,&% ,% ,a ,a );
6 1 6 13 24
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CZRASB(A,% ,% ,b ,b ); CZRASB(A,2 ,% ,d ,d );

2 6 13 24 1 5 13 24
CZRASB(A,% ,% ,& ,e ); ife +4d -3 - b =0,
2 5 13 24 204 13 13 24
go to (3); B « 2 ; % <« L ; % «9 ;8 <28 ;
1 1 3 2 4 5 6 6

go to (6).

(3) [Check R .] CZRASB(A,% ,% ,C¢ ,c ); CZRASB(A,L ,

7 3 6 13 24 3

L, ,f£ ); if T +& -PF -g& = 0, go to (4);
5 13 24 24 13 13 24
L+ 8% +« 8 ;T <2 ;T <% ; go to (6).

1 2 3 3 4 5 6 6

(4) [Check R .] CZRASB(A,L ,% ,9 ,9 ); CZRASB(A,% ,

10 1 4 13 24 2

L, ,h );ifd +8 -3 -F® = 0, go to (5);
4 13 24 24 13 24 13
o Y&k c2 i <% <98 ;goto (6).

1 1 3 2 I 4 6 5

(5) [Zero is in R .1 % <« 8 ; & <8 ;8 <28 ; & =«

11 1 2 3 3 4 ] 6

QI.

5

(6) [Finish.] § < PFL(BORROW(T ) /PFL(BORROW(Z ),0));

13 1 3
%2« PFL(BORROW(Y ) ,PFL(BORROW(E ),0)); T « PFL(T ,
e i 6 13
PFL(% ,0)); erase & , & ; return.
L6 2 5
b+k 2

Computing Time: <y {uL(p) + uA + L(d)} , where L =

(@ 42 ), 2 )), =L ) + L@ ) +L(L) +L(&),
1 3 4 6 1 3 4 6

m=deg(hA), u=m+ 1, d = IAIm, and k = 0 if modular
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methods are used or the p.r.s.'s are normal, k = 1
otherwise.

Proof: t (2 r2) « L(g )L(g ) and t L ,2 )
RNAVER 1 3 1 3 - RNAVER 4 )

« L(g )L(g ). Let &2 =4 /% . Then L(2 ) =
- [} 6 i i1t i2 2

L((1/2)-(8 + 2)) < L(1/2) +L(& + &) <3 + L& +
1 3 1 3 1

2) =« L(&) + L(& ). Similarly L(& ) <« L(& ) + LR ).
3 1 3 5 4 6

Hence the time for applying CZRASB is «

3 6 4+k 2

X X o o) + pln(e ) + L2 )} + L@ } =-

i=1 =4 i 3 -
h+k 3 6 2
wo {un(u) + I % HIL(g ) + L(L )] + L(a)} ~

i=1  j=u i J
b+k 2
p o {un(u) + ud + L(d)} . Hence t (A,L) =
CZREF

h+k 2 a

o {un(w) + ud + n(ayl .

The preceding algorithm is satisfactory for a single
refinement. However, in many instances it will be necessary
to refine the rectangle repeatedly until its maximum
dimension is less than some specified value. The preceding
algorithm is not satisfactory for this because it must
recompute costly information which could have been saved
from the previous refinement.

The following algorithm alleviates this problem by

providing additional parameters which allow transfer of this
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information. It should be noted here that the user will
probably not call this algorithm directly. Rather, it is
employed as a sub-algorithm for CZRTSA which simplifies the
entire process of individual root refinement from the user
point of view.

ALGORLITHM CZREFA:

CZREFA(A,L,L,a ,¢c ,g )
13 24 24

Complex Zero Refinement with
Auxiliary Quantities

A, L, a , ¢ , g are inputs; T is an output; a , -
13 24 24 13

c , g are modified. A is a non-zero square-free

univariate Gaussian polynomial. L is the interval
representation of a rectangle in the complex plane
containing (in the standard rectangle sense) exactly

one zero of A. That is, L = ((& ,2),(% ,2)), &
1 3 4 6 i

rational numbers, for the following rectangle R:

a C
ig re O
i4 A A
s \f
4 F g i
£ £
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and the zero lies in the interior of the rectangle, on
line (a,c], or on line (i,c]. Consider four
subrectangles of R and surrounding standard rectangles

as follows:

1
R R R R
1 2 3 4
a b Cc
if ~<5 () O
6
R R R R
5 6 7 8
d e £
i(& + g )/2 O @ o—
4 6
R R R R
9 10 11 12
g h i
if ﬂ) O O
4
R R R R
13 14 15 16
2 2
1 3
(¢ + 2 )/2
1 3
Let t be the number of zeros of A in R . Then a ,
j J 13
C , g are the Fortran integers
24 24
a =t +t +t +t +t +t .
13 2 3 1) 5 9 13
c =%t 4+t +t +t +t +t ,
24 1 2 3 8 12 16
g =t +t 4+t +t +t +t .
24 1 5 9 14 15 16

The output L is the interval representation of the



standard subrectangle of R, either R, R, R ’

R , containing the zero of A.

11
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or

6 7 10

Let R be the one and
3

consider the following standard rectangles:

Then let s be the number of zeros in Q .

new values of a
13

a
13

c
24
g
24
Method:
Applying
b
24
d
13
=
214

J

=g -+
2

= g -+
1

=5 +
1

CZRASB

=t +
1

=t +
2

=t +

Then the
J

are
24

r € 4 g
24

at points b, 4, e gives

t +t +t + t
2 7 8

+t o+t o+t

11 12 15 16

t +t +t +t +t +t +t
3 4 6 7 8 9 13

t +t +t +t +t +t +t .
2 5 6 11 12 15 16
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Then t (e +d -b -a )Y/2. Ift =1, then

) 24 13 24 13 6

L =R, a is not changed, ¢ =< b , andg =<« d .
6 13 24 24 24 24

Otherwise, from above,

b =t +tt 4+t +t +t +t +t +t r
13 3 ) 5 6 9 10 13 14

e t +t 4+t +t +t +t +t + £ .

13 3 4 7 8 9 10 13 14
Applying CZRASB at point f,

f =t 4+t +t +t 4+t +t +t +t .
24 1 2 3 5 6 7 12 16
Then t = (f +e -b -¢ )/2. Ift =1, then
7 24 13 13 24 7
L=R,a <b , ¢ 1is not changed, g <~ e .
7 13 13 24 24 24

Otherwise, from above,

d =t + t + t + t + t + t + t + t
24 1 5 10 11 12 14 15 16

e t +t +t +t +t +t +t +t .

13 3 4 7 8 9 10 13 14
Applying CZRASB at point h,

h =+t +t +t +t +t + t + t + t .
13 3 i 7 8 11 12 13 14

Then t = (d + e - g -h )Y/2. Ift =1,
10 24 13 24 13 10

thenL=R ,a =<d ,c +e ,andg is not
10 13 13 24 24 24

changed. Otherwise L

i
vl
o
4
o]
o}
+
|

and g <« h .
24 24
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Description:

(1) [Obtain endlines.] FIRST2(% ,& (L); FIRST2(L% ,
13 46 1

2 +% )i FIRST2(L ,% ,% ); % < RNAVER(L ,& ); & <
3 13 4 6 46 2 1 3 5

RNAVER(L ,%2 ).
b 6

(2) [Check R .] CZRASB(A,% ,% ,b ,b ); CZRASB(aA,% ,
6 2 6 13 24 1

£ ,d ,d ); CZRASB(A,% ,% ,e ,e ); ife + 4d -
5 13 24 2 5 13 24 24 13

a ~-b =0,g0to(3); g *4; 0% “Lig g
13 214 1 1 3 2 Ty 5

L <« 9 ;¢ +«bH ; g «d ; go to (6).
6 6 24 24 24 24

(3) [Check R .] CZRASB(A, 8 ,% ,f ,F ); if ¥ + © -
7 3 5 13 24 24 13

b -¢c =0,g0to (#); B < 2; % < & ; % <4 ;
13 24 1 2 3 3 4 5
L o+ ;a «b ;g ~ e ; go to (6).
6 6 13 13 24 24
(4) [Check R .] CZRASB(A, ¢ ,% ,h ,h ); ifd + &
10 2 4 13 24 24 13

- g -h =0,g0to (5); T « & ;% <24 ; 4 =< Lo

a <«e ;¢ <+f ;g <«h .
13 13 24 24 24 24

(6) [Finish.] § + PFL(BORROW(Y ), PFL(BORROW(Z ),0));
13 1 3
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3 < PFL(BORROW(® ),PFL(BORROW(Z ),0)); L <
46 4 6

PFL(% ,PFL(R ,0)); erase & , & ; return.
13 Lo 2 5

B+k 2
Computing Time: <« pu  {uL(u) + px + L(d)} , where

L= ((2 ,2),(2 P2)), A =L(g) +L(g) + L(R) +
1 3 b 6 1 3 4

L(f ), m=deg(pd), u=m+ 1, d = |A[ , and k = 0 if
6 o0

modular methods are used or the p.r.s.'s are normal,

k = 1 otherwise.
Proof: t (2 ;%) =L(2 )L(& ) and t (&,
RNAVER 1 3 1 3 RNAVER 4
g) = L(g )L(g ). Let & =2 /& . Then L(& ) =
6 4 6 i i1 12 2

L(1/2)- (& + %)) < L(1/2) + L(% + &) < 3 + L(% +
1 3 1 3 1

2) = L&) + L(&L ). Similarly, L(g ) = L(2 ) +
3 1 3 5 4

L(% ). Hence the time for applying CZRASB is «
. =

3 6 44k | 2
z z {u () + w{L(2 ) + (2 )} + L(@1 } =
i=1 =4 i j

b4k 3 6 2
v {un(u) + 2 % HIL(2 ) + ()] + L(A)} =~
i=1 =4 i j

+k 2
u {pnL(p) + pux + L(4)} . Hence t (A,L) «
CZREFA
Bk 2 E
po {un(u) + pr + LA 71 .
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The following algorithm will probably be the one most
convenient to use for individual root refinement. It
determines how many refinements are necessary to achieve
the specified maximum dimension, and based on this applies
the method which will give the lower average computing
time.

The method to be used is selected according to the
probable number of applications of CZRASB, which will
comprise the major portion of computing time. Consider

the following rectangles and sub-rectangles.

R: a b c
fe! -0 o)
R R
1 2
e
d o 0 0 f
R R
3 4
o — -5
g h i

If CZREF is used, CZRASB must be applied at a, b, d, and e

to determine if the root is in R . If it is not, R
1 2

requires CZRASB at ¢ and £, and finally R requires it at
3

g and h. Since there is only one root in the rectangle,

R needs no additional applications--if it is not in R p
4 1

R, or R it must be in R . Assuming each area is as
2 3 4

likely to contain the root, the average number of
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applications of CZRASB is (4 + 6 + 8 + 8)/4 = 6.5 . Hence,
for n refinements CZRASB must be called an average of
6.5n times.

CZREFA requires three initial applications of CZRASB,
at a, ¢, and g. Subsequently, these parameters are
updated from information available in the computations.
Hence CZRASB must be applied at the following points: R ,
at b, e, and d; R, at £f; R, at h. Therefore the 1

2 3
average per refinement is (3 + 4 + 5 + 5)/4 = 4.25 . This
gives an overall average of 3 + 4.25n applications of
CZRASB for n refinements.

Hence, the following algorithm uses CZREF if only one
refinement is required, and CZREFA if more than one is

required.

ALGORITHM CZRTSA:

L=CZRTSA(G,L,e)
Complex Zero Refinement
to Specified Accuracy
G is a non-zero square-free univariate Gaussian
polynomial. I is the interval representation of a
standard rectangle in the complex plane containing

exactly one zero of A. That is, L = ((& ,% ),
1 3

(2 ,4%)), & rational numbers, for the following
6 i

rectangle R:
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a C
i 2' —.—_,,(\ )
’ ’ >
i 9 —y O
4 [ g [ i
L L
1 3

The zero lies in the interior of the rectangle, on
line (a,cl, or on line (i,cl. e is a positive
rational number. Let R be a subrectangle of R as in

the following diagram: -

ig
6 m—— —
a c _
Y i2
6
- o— ip
g T i 4
2 2
1 3
ig
I
2 L
1 3
where the zero of A in R is in R, (3 -~ ¢ )/ -
3 1 6

) =(8 - 2)/(% - &), and max{(y -2 ), (L -
4 3 1 6 4 3 1 6

)} <e. Then I is the interval representation of R.
i
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Method:
On the average, CZREF requires 6.5 applications of
CZRASB while CZREFA requires 3 initial applications
plus an average of 4.25 applications per subsegquent

call. Let d = max{(2 -2 ), (& -2 )}. Ifd < e,
3 1 6 i

then no refinement is necessary. Otherwise, k =

|log d/e| + 1 refinements are necessary to obtain
2

the required accuracy. If k = 1, then CZREF is used.
If kK > 2, then CZREFA is used. Note that d/e is a
rational number and hence ELPOF2 cannot be applied to

it. However, let k = |log d/e|, so that k <
2

_ k k+1  k
log d/e <k + 1. Then 2 < d/e < 2 r 2 < |d/e] <
5 = =

k+1
2 , kK < log |d/e| <k + 1, k < Liog L@/gJ_J <k + 1,
- 2 - 2

and k

Liogz Lé/gJ“J. Hence, ELPOF2 can be applied

to |d/e] to compute k and then k = k + 1.

Description:

(1) [Initialize.] FIRST2(% ,4% ,L); FIRST2(R ,% .% );

13 46 17 3 13
FIRST2(% 2,2 )i d <« RDIF(L ,% ); d <« RDIF(L ,
4 6 U6 1 3 1 2 6
2); if RCOMP(d ,d ) < 0, (d « d ; erase 4 ;
L 1 2 2 1

go to (2)); d <« d ; erase d .
1 2
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(2) [Compute number of refinements.] If RCOMP (d,e) < 0,
(L ~ BORROW(L); erase d; return ); r < RQ(d,e);

FIRST2(r ,r ,xr); g «~ IQ(r ,r ); ELPOF2(q,k,t); k <«
1 2 12

k+ 1; erase r, g, d; if k > 2, go to (4).
(3) [Use single refinement.] L < CZREF(G,L); return.

(4) [Use multiple refinements.] CZRASB(G,% ,% ,a ,
1 6 13

a ); CZRASB(G,% ,& ,C ,¢ ); CZRASB(G,% ,% +g .
24 3 6 13 24 1 4 13

g ); T <« BORROW(L).
24

(5) [Loop.] CZREFA(G,T,L,a ,c ,g ); erase T; k <
13 24 24

k - 1; if k < 0, return; T «+ L; go to (5).

2 L+k
Computing Time: = {A + L(e)} + nu {uL(u) + un + u)

2
+ L(a)} , where m = deg(A), uy =m+ 1, a = |al , L =

(o]

((2 IQ’ ),(2, L ))r A =L(«Q: ) +L(£) + L(g ) + L(g )r
1 3 b 6 1 3 b 6

d=max{(e -4 ),(6 -2 )}, n=max{0,|log d/e| +
3 1 6 4 2

1}, and k = 0 if modular methods are used or the
p.r.s.'s are normal, k = 1 otherwise.

Proof: Heindel has shown [HEL70] that if the
interval (p/q, r/s] is bisected j times then the
maximum numerator and denominator is at most

j+1 ‘ 2
2 (max{|p|,|a],|x].|s]|}) .
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Let L= ((2 ,2 ),(¥ ,% )) be the j-th input
j j1 33 j%  je

to CZREF or CZREFA. If 3 =3¢ /% then M =
31 i1 ji2 5

i2 i=1,3,4,6 1g=1 1ij J

+ 3 ) 2L(% ) = (5 + 1) + 2A v § + A.
i=1,3,4,6 =1 i

Since » =% L(% ) « j + A the time for any
5 Tk=1,3,4,6 4k ~ :

L+k
call of CZREF or CZREFA is « p  {uL(up) + un + pi +

2 h+k
L(a)} and the time for all is = nu  {uL(u) + un +

2
ux + L(a)}

2
t (2 ,2 ) « {L(2 ) + L(2 )} and t (& ,2 )
RDIF 3 1 — 1 3 RDIF 6 4

2
« {L(g) +L(2)} . L(d) = L(g) + L(L) and L(d) =
4 6 1 1 3 2

2
(%) + L{R ) so t (d ,d) =X and t (d,e)
4 6 RCOMP 1 2 RCOMP

2
M+ L)} .
2 b4k
Hence the total is = {A + L(e)} + nu {uL () +

*
un + pd + L(a)}
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The final algorithm in this section refines several
areas to a specified width.

ALGORLTHM CZMRSA:

I=CZMRSA(A,L,e)
Complex Zero System, Multiple Refinement
to Specified Accuracy
A is a non-zero square-free univariate Gaussian

polynomial. L is a list (L , L ¢ « « « 4 L), where
1 2 n

L is the interval representation of a standard
J

rectangle in the complex plane containing exactly one

zerc of A. That is, L = ((g , & ), (& , & )),
J 13 33 43 67

L rational numbers, for the following rectangle R :
ij J

a l c

ig #

673 I
ig o
45 g *T i

2 2
1j 3j

The zero lies in the interior of the rectangle, on

line (a,cl], or on line (i,c]. Let R be a
3

sub-rectangle of R as in the following diagram:
]
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18 —(> ()
67 _ _
a c
)\ i
I )
— — i
g |1 43
I %
15 33
ig ) O
B
2 R
14 33
where the zero of A in R is in R, (* -2 )/ -
j 3 37 13 67
)Y =(8 -2 )/(& -2 ), and max{(T -1 ),
45 33 17 67 4 3] 13
(2 - % )} <e. Then L is the list (L, T, ...,
67 4 1 2

L ) where L is the interval representation of R .
n | J

Description:

(1) [Initialize.] T <« 0; T < L.

(2) [Loop.] ADV(L ,T); L <« CZRTSA(A,L ,e); L < PFL(T ,
j j J J
L); if T # 0, go to (2); L <« INV(L); return.

2 b+k
Computing Time: = &{A + L(e)} + gnyp {uL(y) + pn .+

2
uA + L(a)} , where m = deg(ad), p =m + 1, a = |A]| ,

[oe)
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L=(L,L, ... ¢ L )r L ::,((94 r % )t (% )
1 2 L i 11 3i 43
g 1), X =L(L ) +L(L ) +L(y ) +L{g ), da =
G i i 11 3i 44 6i i
max{(e =~ 2 ), (2 - 2 )}, n = max{o, [log 4 /e
3i 14i 61 4i i 2 i
+ 1}, n = max {in}, X = max ix 1,
1<i<t i 1<i<2 i

and k = 0 if modular methods are used or the p.r.s.'s
are normal, k = 1 otherwise.

Proof: Follows immediately from the time for CZRTSA. g
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6.2 Square-free factorization

The concept of a square-free factorization of a
polynomial A was introduced in Section 2.2, where it was

defined as a sequence of polynomials A , A, . . . , A of
1 2 n

positive degrees and a sequence of distinct positive

n J
integers e , e , . . . , e such that A = 1 A and
1 2 n j=1 j
n
I A 1is square-free.
=1 3

Such a factorization is important in this system
because it provides a means for both isolating and refining
the roots of a polynomial and, in addition, specifying the
multiplicity of each root. The algorithms of Chapter 5

can be applied to each A , since it is square-free; the
]

multiplicity of the roots of A 1is then e .
3 J

The following two algorithms compute a square-free
factorization, using a method presented in Musser [MUD71].

ALGORITHM PSQFF:

L=PSQFF (A)
Polynomial Square-Free Factorization
A is a positive, primitive, univariate integral

polynomial of positive degree. L is the list (i ,
1
L. i
Q , +. « « s 1, 0 ) where II Q 1is the sgquare-free
i k i i=1 i
1 k
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factorization of the primitive part of A, 1 < i «<

1 2
i =g, and {i , . . ., i } is the set of all i,
k 1 k
1T <1 < g such that 9 # 1.
- - i
Method:
\ L i-j L
Let B =1 Q and C =1 Q for 1 < j <4&.
3 i=j+1 i j i=3 i - -
Then B = gcd(A,A') and ¢ = A/B . For 1 < j <4y
1 1 1 -
(which is eqguivalent to deg(B ) > 0), C = gcd(B ,
j 1T
cC), B =B /C s and Q = C /C . Finally,
;| J+1 g+ J j g+
Q =C .
2 L
Description:

(1) [Initialize.] L « 0; v < PVBL(A); A' <« PDERIV(A,vV);
erase v; PGCDCF(A,A',B,C,T); erase A',T; 3 <« 1;

go to (3).

(2) [Loop.]1 PGCDCF(B,C,C,B,Q); if PDEG(Q) > 0, L <

PFL (BORROW(Q) ,PFA(j,L)); erase B, C, Q; B « B; C « C;
jo« 3+ 1.

(3) [Check for end.] IFf PDEG(B) > 0, go to (2).

(4) [Finish.] Erase B; if PDEG(C) > 0, L <« PFL (BORROW(C),
PFA(]j,L)); erase C; L <« INV(L); return.

4 2
Computing Time: « y L(pd) , where m = deg(A), ¥ =m + 1,
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and d = max{|D|_: D|al.

Proof: B, C, and C divide A, so the time for each

: 3 2
application of PGCDCF is = u L(pd) . & < u, hence

there are at most u calls of PGCDCF. E

ALGORITHM GPSQFF:

L=GPSQFF (A)
Gaussian Polynomial Square
Free Factorization
A is a primitive univariate Gaussian polynomial of

positive degree. L is the 1list (i , Q , . . . , i,

1 i k
1
L i
Q ) where I Q is the square-free factorization of
i i=1 i
k
the primitve part of A, i < i < ., . . < i =4, and
1 2 k
{i , ..., 11} is the set of all i, 1 < i < & such
1 k
that Q@ # 1.
i
Method:
[ i~ %
Let B =1 0 and C =1 Q for 1< j < 4.
3 i=j+1 1 j i=y i
Then B = gcd(A,A') and C = A/B . For 1 < j < &
1 1 1 -
(which is equivalent to deg(B ) > 0), C = gcd(B ,
3 J+1 J

cC), B = B /C r and Q = C /C . Finally,
i3 g i3 3
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Description:

(1) [Initialize.] L + 0; v <« GPVBL(A) ; A' « GPDERV(A,
V) ; erase v; GPGCDC(A,A',B,C,T); erase A', T; j <« 1;

go to (3).

(2) [Loop.] GPGCDC(B,C,C,B,Q); if GPDEG(Q) > 0, I <
PFL(GPFQ(Q) ,PFA(j,L)); erase B, C, Q; B < B; C « C;
jo« 3+ 1.

(3) [Check for end.] IFf GPDEG(B) > 0, go to (2).

(4) [Finish.] Erase B; if GPDEG(C) > 0, L <« PEL(GPFQ(C),
PFA(3,L)); erase C; L + INV(L); return.

4 2
Computing Time: = u L(ud) , where m = deg(d), p =m +

1, and 4 = max{|D|_: D|A}.
Proof: B, C, and C divide A, so the time for each

3 2
applicatica of GPGCDC is = u L(ud) . 2 < yu, hence

there are at most py calls of GPGCDC. g
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6.3 Roots of multiplicity greater than one

As mentioned in Section 2.2, it is sometimes necessary
to know both the location and the multiplicity of the
roots of a non-square-free polynomial A. The algorithms of
that section provide a means for computing a greatest
square-free divisor of A, from which the locations of the
roots of A can be computed. However, the multiplicities are
ignored.

The algorithms in this section, on the other hand,

first apply the algorithms of Section 6.2 to obtain a

.
n J
square-free factorization of A, say I A . The
=1 3
algorithms of Chapter 5 are then applied to each A ,
]
obtaining a list of areas, say L = (L y » - -« L )
j j.1 jem,
3
where m = deg(A ). By pairing with each of these L the
] J 3
number e , one obtains a list (e , L, . . . , e , L ).
3 1 1 n n
The concatenation of the L , (L y o - » ¢ L r e s e ¢
3 1,1 1,m
1
L y « o« « 4+ L ), provides a list of the locations of
n,1 n,m
n

all of the unique roots of A. A similar list would have

been produced by applying the algorithms of Chapter 5 to
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the greatest square-free divisor of A. However, the

multiplicity, e , of the root in area L is now also

;| Jrk
available.

ALGORITHM PMRIR:

R=PMRIR(P, &)
Polynomial with Arbitrary
Multiplicity Roots, Isolation
and Refinement
P is a univariate integral polynomial of positive
degree. ¢ is a non-negative rational number. R is the

list (e , » , . . . r e, r),e <e <. ..<e.
1 1 3 3 1 2 r

Each r 1is a list (r r + e« « , T ) where r is
k. k[1 klz klp
k
the interval representation of a rectangle in the

complex plane, of the kind produced by PRIR,

containing exactly one root g of P. e is the
k,p k

multiplicity of each root g of P and {a roe e e g
k,p k,1

o } are all the roots of P of multiplicity e .

k,mk k

J
Hence for b = 1ldcf(P), P(x) = bJ An (x -

e
k

o )} . If ¢ # 0, then each rectangle containing a
k,p

root has width w < ¢.
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Method:
€5

n
Let bl A be the square-free factorization of P.

j=1 3

Then PRIR is applied to each A .
J

Description:

(1) [Initialize; obtain factors and multiplicities.]
R « 0; P + PPP(P); L « PSQFF(P); erase P.

(2) [Isolate and refine roots for each polynomial
factor.] DECAP2(m,Q,L); I « PRIR(Q,c); erase Q; R <«
PFL(I,PFA(m,R)); if L # 0, go to (2).

(3) [Finish.] R <« INV(R); return.

7+k 2 2
Computing Time: « p L{(dh)L(udh) + uL(e)L(dh) ,

where m = deg(A), p =m + 1, 4 = max{|D] : D|A}, A =

o
min{sep(a), 1/d} if A has more than one distinct root
and A = 1/d otherwise, § = X if ¢ = 0 and § = min{),
e} otherwise, h = [1/8], k = 0 if modular methods are
used or the p.r.s.'s are normal, k = 1 otherwise.

Proof: Let b be the bound on the roots of polynomial
i

Q computed by GPRBND, m

1l

deg(Q ), ¢ =m + 1, d =

.

i i i i i i
o] A =sep(Q) ifm > 1 and A = 1/b otherwise,
i o i i i i i
§d =i if e =0 and § = min{A ,e} otherwise, and h
i i i i i

= [T/87]. Then the time for all executions of PRIR, T,
i
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n 5+k 2
is T = X [u Lbh)-{pgp L(pbh) +L@)} +
i=1 i i i i i i i i
2
L(e)L{(b h )
i i

sep (A) < sep(Q ) if Q0 has more than one distinct
i i

root and b < 44 < 4d . Hence A/4 < A, &/4 <38,

i i i i

n 5+k
and 4h >h . Thus T « % [u L{(16dh) - {u L(16u dh)
i Ti=1 i i i

2 2 n 5+k .
+ L{4d)} + L(e)L(16dh) ] ~ % [ L(dh)-{p L(p dh)
i=1 i i i

2 2 n
+ L{(d)} + L(e)L(dh) 7]. L 'y <2y, so T «

n h+k 2 2
Z ] uw Iy L(dh)-{uL(pdh) + L(d)} ] + pL(e)L(dh) =
= 1

5+k 2 2
2y L(an) - {uL(udh) + L(d)} + pL(e)L(dh) =

5+k A 2 2 7+k 2
v L(dh) {pL(udh)} + pL(e)L(dh) =y  L(dh)L(udh)

*
+ pL(e)L(dh) . @

ALGORITHM GPMRIR:

R=GPMRIR(P, c)
Gaussian Polynomial with Arbitrary
Multiplicity Roots, Isolation
and Refinement

P is a univariate Gaussian polynomial of positive
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degree. € is a non-negative rational number. R is

the list (e , ¥ ;, . . . , @ , T ), e <e < ., ., .c<
1 1 3 3 1 2

e . Each r is a list (r T } where
J k k,1 k, %

r is the interval representation of a square in
k,p

" the complex plane containing exactly one root « of
kK,p

P. e 1is the multiplicity of each root o of P and
k k,p

Ha ; e . . 4, O } are all the roots of P of
k,1 k,m
k

multiplicity e . Hence for b = 1ldcf(P), P(z) =
k

i e ex
bll {1 (z - o )} . If € # 0, then each square
k=1 p=1 k,p

containing a root has width w < €.

Let bl A be the square-free factorization of P.

Then GPRIR is applied to each A .
J

Description:

(1) [Initialize; obtain factors and multiplicities.]
R+ 0; P <~ GPPP(P); L * GPSQFF(P); erase P.
(2) [Isolate and refine roots for each polynomial

factor.] DECAP2(m,Q,L); I < GPRIR(Q,¢c); erase Q;
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R < PFL(I,PFA(m,R)); if L # 0, go to (2).
(3) [Finish.] R <+ INV(R); return.

7+k 2 2
Camputing Time: <« p L(dh)L(pdh) + uL(e)L(dn) ,

1l

where m = deg(a),u =m + 1, d = max{|D| : D|a}, A

o«

min{sep(aA), 1/d} if A has more than one distinct root
and A = 1/4 otherwise, § = A if € = 0 and § = min{},
€} otherwise, h = fT/ET, k = 0 if modular methods are
used or the p.r.s.'s are normal, k = 1 otherwise.

Proof: Analogous to that for PMRIR.E
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6.4 I/0

This section includes algorithms to simplify the
conversion of results of previous algorithms from internal
form to some easily comprehensible external form. In
addition there is an algorithm for input of a standard
rectangle.

The finite standard areas used in this report are

represented internally by lists (I ,I ), where I and I
1 2 1 2

are intervals. The intervals, in turn, are represented .

internally by lists (r ,r ) and (r ,r ), where the r
11 12 21 22 ij

are rational numbers. The various types of standard areas

and their representations are as follows.

area internal forms
point a + ib ((a*,a*), (b*,b¥*))
line (a,b] x [c] ((a*,b*), (c*,c*))
line [a] x (b,c] ((a*,a*), (b*,c*))
rectangle (a,b] x (c,dl ((a*,b*), (c*,d*))

Here a, b, ¢, d are finite rational numbers and a*, b¥*,

c*, d* are their respective internal representations.
Rational numbers are classified according to their

denominators for use in the output routines. An arbitrary

rational number is 0 or has any positive denominator, while

a binary rational number r = r /r has a denominator r =
o 1 2 2
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k .
2 for k >0. r =20 is also considered a binary rational.

The output routines in this section are given in

pairs, one for rational output of the form +r /r where r
1 2 1

and r are integers, and one for decimal output of the form
2

rd . . . ded -+ . d . The rational output algorithms
1 j o j+1 k

may be used for an arbitrary rational number. The decimal
algorithms, however, may only be used for binary rationals.

Note that GPRBND computes a bound which is a binary
rational, and all splits of intervals in the root isolation
and refinment algorithms are by 1/2. Hence the vast
majority of rational numbers used will in fact be binary
rationals. The only non-binary rationals which occur will
be as a result of the input of a rectangle with non-binary
rational coordinates (for example, to be used with CZREF) .

The first pair of algorithms output a single standard
area.

ALGORTTHM CZSRRW:

CZSRRW (U, L)
Complex Zero System, Single
Rectangle Rational Write
U and L are inputs. U is an I/0 unit and L is the

internal representation ((r ' ), (s ,5 )) of a
1 2 1 2

rectangle (r ,r 1 x (s ,s 1, where r r ¥ , s , and s
1 2 1 2 1 2 1 2




are rational numbers. The rectangle is written on

unit U in the following form:
REAL INTERVAL

(r as a rational number)
1

(r as a rational number)
2

IMAGINARY INTERVAL

(s as a rational number)
1

(s as a rational number)
2

Description:

(1) [Initialize.] FIRST2(R,I,L).
(2) [Real part.] Write "REAL INTERVAL" on unit U;

FIRST2(R ,R ,R); RWRITE(U,R );

1 2 1

(3) [Imaginary part.] Write "IMAGINARY INTERVAL" on

unit U; FIRST2(I ,I ,I); RWRITE(U,I );

T2

return.

ALGORITHM CZSRDW:

CZSRDW(U, L)

Complex Zero System, Single
Rectangle Decimal Write
U and L are inputs. U is an I/0 unit and L is the

internal representation ((r ,r ),(s ,s )) of a

1

RWRITE(U,R ).

2

268

RWRITE(U,I );
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rectangle (r ,r ] x (s ,s ], where r , r , s , and s
2 17 2 1 2 1 2

are binary rationals. The rectangle is written on
unit U in the following form:
REAL INTERVAL

(r as a decimal number)
1

(r as a decimal number)
2

IMAGINARY INTERVAL

(s as a decimal number)
1

(s as a decimal number)
2

Description:

(1) [Initialize.] FIRST2(R,I,L).

(2) [Real part.] Write "REAL INTERVAL" on unit U;
IPRINT(U,R).

(3) [Imaginary part.] Write "IMAGINARY INTERVAL" on

unit U; IPRINT(U,I); return.

The output of algorithms such as PRIR is a list of
areas. In order to more easily distinguish these areas,
the following pair of algorithms number each area and

output this number along with the area.
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ALGORITHM CZMRRW:

CZMRRW (U, L)
Complex Zero System, Multiple
Rectangle Rational Write

U and L are inputs. U is an I/0 unit and L = (R ,
1

R, . . . ,R) is a list of the internal
2 n

representations of n rectangles in the complex plane.
The rectangles are written on unit U in the following
form:

RECTANGLE i1

(R in rational form)
i

Description:

(1) [Initialize.] i <+ 0; LT « L; go to (3).
(2) [Loop.] 1 « i + 1; write "RECTANGLE" and i on
unit U; ADV(R,L); CZSRRW(U,R).

(3)[Check for end.] If L # 0, go td (2); return.

ALGORITHM CZMRDW:

CZMRDW (U, L)
Complex Zero System, Multiple
Rectangle Decimal Write

U and L are inputs. U is an I/O unit and L = (R ,
1

R, . . .  ;R) is a 1list of the internal
2 n

representations of n rectangles in the complex plane.
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The rectangle coordinates are binary rationals. The
rectangles are written on unit U in the following form:
RECTANGLE i

(R in decimal form) .
i

Description:

(1) [Initialize.] i « 0; T <« 1; go to (3).
(2) [Loop.]1 1 + i + 1; write "RECTANGLE" and i on unit
U; ADV(R,L); CZSRDW(U,R).

(3) [Check for end.] If L # 0, go to (2); return.

The final pair of output algorithms are used with

PMRIR and GPMRIR, which generate lists of the form (e , L ,
1 1

- -+, e, L) where L is a list of areas and e 1is a
n n | 3

Fortran integer, the multiplicity of the roots in the area

specified by L. . Hence the following algorithms output
J

each multiplicity followed by the corresponding list of
areas.

ALGORITHM CZMMRW:

CZMMRW (U, L)
Complex Zero System, Multiple Roots with
Arbitrary Multiplicity, Rational Write
U and L are inputs. U is an I/0 unit. L is a list

(e , L, ... ,e, L ) where each e 1is a
1 1 n n i
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multiplicity and each L is a list of rectangles, each
i

of which contains exactly one root of this
multiplicity. The rectangles have arbitrary rational
coordinates. The rectangles are written on U in the
form
MULTIPLICITY e
ROOT i
REAL: INTERVAL

a / b

where (a /b ,a /b ] X (¢ /d ,c /d ] is the i-th
11 2 2 T 1 2 2

rectangle and each numerator and denominator is
expressed as a decimal integer.

Description:

(1) [Initialize.] L « L; go to (3).
(2) [Loop.] ADV2(M,C,L); write "MULTIPLICITY" and M on
unit U; CZMRRW(U,C).

(3) [Check for end.] If L # 0, go to (2); return.
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ALGORTTHM CZMMDW:

CZMMDW (U, L)
Complex Zero System, Multiple Roots with
Arbitrary Multiplicity, Decimal Write
U and L are inputs. U is an I/0 unit. L is a list

(e, L, ..., e, L) where each e is a
1 1 n n i

multiplicity and each L is a list of rectangles, each
i

of which contains exactly one root of this
multiplicity. The rectangles have internal
representation with each coordinate a binary rational.
The rectangles are written on U in the form
MULTIPLICITY e
ROOT i
REAT, INTERVAL

a
1

a
2

IMAGINARY INTERVAL

b
1

b
2

where (a ,a ] x (b ,b ] is the i-th rectangle and each
1T 2 12

coordinate is expressed exactly as a decimal fraction.
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Description:

(1) [Initialize.] L < L; go to (3).
(2) [Loop.] ADV2(M,C,L); write "MULTIPLICITY" and M on
unit U; CZMRDW(U,C).

(3) [Check for end.] If L # 0, go to (2); return.

In algorithms such as GPNRAR and CZREF, one is working
with rectangles which may be input rather than internally
generated by some other section of the program. Hence the
following algorithm inputs a rectangle specified
externally by rational numbers.

ALGORITHM CZRRD:

L=CZRRD(U)
Complex Zero System, Rectangle Read
U is an I/O0 unit on which are positioned the

coordinates of a rectangle (r ,r ] X (s ,s ] in the
1 2 1 2

orxrder ¥ , ¥ , s , s , where each coordinate is a
1 2 1 2

rational number. If end-of-file is encountered, L =
-1; if an invalid input is encountered, L = -2;
otherwise, the numbers are read and converted to the

internal representation of a rectangle.

Description:

(1) [Loop and check for valid inputs.] For § <« 1, 2,
« « « 5 4, do: (T[j] « RREAD(U); if I[j] < O,

go to (2)); R+ PFL(I[1],PFL(I[2],0));
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C « PFL(I[3],PFL(I[41,0)); L <« PFL(R,PFL(C,0)) ;
return.
(2) [End of file or invalid input.] k < j - 1; L <«
I{jl; 1f kx = 0, return; forn <« 1, 2, . . . ; k, do:

erase I[n]; return.
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6.5 Rational polynomials

Chapter 1 included some discussion of the fact that
too often integer systems are not used because the problems
concern polynomials with "real" rather than integer
coefficients. The quotes are used because in many cases
"real" is not meant in the usual mathematical sense, but
rather implies coefficients which are represented as
floating-point numbers. As was noted there, with
present-day machines these floating-point numbers are
actually rationals, not reals, and hence such "real™
polynomials can be handled by integer systems.

In order to facilitate the use of this integer system
for polynomials with rational coefficients, the present
section contains algorithms for input and output of rational
polynomials, and for converting from a rational polynomial

A to an integer polynomial A* which has the same roots as

A.
A non-zero rational polynomial A can be expressed in
n ]
the usual form A(v) = I a v , where n = deg(A), a # 0,
=0 3 n

and the a are rational numbers. As with integral
3

polynomials in SAC-1, this form can be compressed by

excluding terms with zero coefficients. Then A(v) =
e »

X av j, where e < e < . . . < e, e = deg(d), and
=1 3 1 2 m m
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a #0, 1 <J <m.

3
For input, the external form of this polynomial will
be _ _ _
((a )vxxe (a Y v'skxe < . . (a)vikke )
m m m-1 m-1 1 1

where the following conditions hold:

(1) e is an unsigned non-negative B-digit;
J

(2) v is a variable name of any length consisting of
letters and digits, beginning with a letter; v' is
either the same character string as v or is null;

(3) a is an arbitrary non-zero rational number (that
J

is, it is not necessarily in lowest terms or with a

positive denominator) expressed as a , where the
j1

denominator is assumed to be +1, or a /a ; the a
j1  j2 jk

are non-zero L-integers;

(4) blanks may occur anywhere in the character string;
they are ignored;

(5) the polynomial A(x) = 0 is represented as +0.
Rational polynomials output by the system have the

form

((a )vsse (& )vssxe v e (& )vrze )
m m m-1 m~1 1 1

where a =a /a , a >0, and gcd(a , a ) = 1. As
331 32 g2 i1 32

above, the polynomial A(x) = 0 is represented as +0.
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A rational Gaussian polynomial is represented on input
and output in the form

A
1

A
2

where A and A are rational polynomials and A = A + iA .
1 2 1 2

Internally, the non-zero rational polynomial A is
represented as the list

(v*, a*, e¥, . . . , a¥, e¥)
m m 1 1

where v* 1s the representation of variable v, a* is the
J

internal canonical form of rational number a , and e* is
J J
the Fortran representation of integer e . A = 0 is
]

represented as ().

A rational Gaussian polynomial A = A + 1A is
1 2

represented internally as (A*, A*), where A*¥ and A* are the
1 2 1 2

internal representations of rational polynomials A and A ,
1 2

respectively. A = 0 is represented as ().

It would have been possible to write the rational
polynomial input and output routines each as one large
algorithm. Instead, a number of simple routines were

written using a modular approach. A heirarchy is set up in
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which each module uses the previous ones to input or output
some basic part of the polynomial. Essentially, the
heirarchy is character, integer, rational number, and
finally the polynomial.

The first input algorithm, then, locates and returns
the next non-blank character in the input stream. 1In
addition, it divides the characters into classes to

facilitate later processing. These classes are as follows.

Character Class
0,...,9 1
Ayeee,Z 2 ‘
+ - 3
* 4
/ 5
( 6
) 7
r - = 3 8

ALGORITHM CZNCRD:

CZNCRD(U,I,c,C)
Complex Zero System,
Next Character Read
U and I are inputs. I is modified. c¢ and C are
outputs. U is an I/0 unit. I is a Fortran integer,
I > 0. The next non-blank chéracter beyond RECORD[I]

is located. If end-of-file is encountered, C = -1.
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Otherwise, c¢ is the character read, C is its class,
and I is its location in RECORD.

Description:

(1) [Locate character.] I « I + 1; i£ I > 72, (I < 1;
READ (U, RECORD) ; if RECORD[1] = -1, (C «+ =-1; return));
if RECORD[I] = 44, go to (1); c <« RECORD[I].

(2) [Determine class.] If c < 9, (C <« 1} return) ;

if ¢ < 35, (C <+ 2; return); if ¢ < 37, (C « 3; return);:;

if ¢ > 42, (C « 8; return); C « ¢ - 34; return.

The integer input algorithm needs a method of
incorporating the next digit d in the input stream into the
value of the integer obtained so far, say D. The obvious
approach is to compute 10-D + d. The following algorithm
does this, with the added benefits of performing
initialization and saving time by altering the input rather
than creating new lists which must later be erased.

ALGORITHM CZIMAD:

CzZIMAD(a,b,c)
Complex Zero System, L-Integer
Multiplied by a B-Integer,
Result Added to a B-Integer
a, b, and ¢ are inputs. a is modified. a 1is an
L-integer. b and ¢ are B-integers with abc > 0. a

is modified to represent ab + ¢, an L-integer.
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Description:

(1) [Check for zeros.] If a # 0 and b # 0, go to (2);
erase a; a <« 0; if ¢ # 0, a « PFA(C,O); return.
(2) [Multiply and add.] t < a; a « IMADD(t,b,c); return.

Computing Time: < L(a).

The following algorithm inputs the next integer in the
input stream. It is used by the rational number algorithm
for obtaining numerator and denominator, and directly by
the polynomial routine for obtaining exponents.

ALGORITHM CZNRD:

CZNRD(U,I,c,C,n)

Complex Zero System, Number Read
U, I, and ¢ are inputs. I and ¢ are modified. C and
n are outputs. U is an I/0 unit. I is a Fortran
integer, 1 < I < 72. ¢ = RECORD[I] is the first
character of an L-integer terminated by a ")", "(",
or "/". 1If end-of-file is encountered, C = -1. If an
invalid terminal character is encountered, C = -2.
Otherwise, n is the internal representation of the
L-integer. c¢ is the terminal character, C is its
class, and I is its location in RECORD.

Description:

(1) [Initialize and check signs.] s + 1; n < 0;
if ¢ <10, go to (2); if c = 37, s « -1;

CZNCRD(U,I,c,C).
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(2) [Incorporate next digit into n.] If C # 1,
go to (3); CZIMAD(n,10,c); CZNCRD(U,I,c,C); go to (2).
(3) [Check for termination validity.] If C < 8 and
C >4, go to (4); erase n; if C = -1, return; C <« -2;
return.
(4) [Check sign and return.] If s > 0, return;

t <+« INEG(n); erase n; n <« t; return.

The next rational number in the input stream is
obtained by the following algorithm. It accepts rational
numbers with or without a denominator, using algorithms of
Section 2.1 to convert them to SAC-1 internal canonical
form.

ALGORITHM CZRNRD:

CZRNRD(U,I,c,C,1)

Complex Zero System, Rational Number Read
U, I, and ¢ are inputs. I and c¢ are modified. C and
r are outputs. U is an I/0 unit. I is a Fortran
integer, 1 < I < 72. ¢ = RECORDI[I] = "(" is the first
character of a rational number terminated by a ")".
If end-of-file is encountered, C = -1. If an invalid
terminal character is encountered, C = -2. Otherwise,
r is the internal representation of the number. c¢ is
the terminal character, C is its class, and I is its

location in RECORD.
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Description:

(1) [Obtain and check second character.] CZNCRD(U,I,
c,C); if C# 1 and C # 3, go to (5).

(2) [No denominator. ] CZNRD(U,I,c,C,xr ); if C = 7,
1

(r <« RNINT1(xr ); erase r ; return); if C = 5, go to (3);
1 1

if C # 6, go to (5); erase r ; go to (5).
1
(3) [Check first character of denominator.] CZNCRD(U,

I,c,C); if C=1o0r C = 3, go to (4); erase r ;
1

go to (5).

(4) [Obtain denominator. ] CZNRD(U,I,c,C,xr ); if C # 7,
2

(erase r ; if C # 5 and C # 6, go to (5); erase r ;
1 2

go to (5)); r < RNINT2(r ,r ); erase r r ¥ ; return.
1T 2 1 2

(5) [Exror return.] If C = -1, return; C « -2; return.

Using the previous four algorithms, the next algorithm
performs the actual input of a rational polynomial.

ALGORITHM CZRPRD:

P=CZRPRD (U)
Complex Zero System, Rational
Polynomial Read
U is an I/O unit on which is positioned the external
representation of a rational polynomial. If

end-of-file is encountered, P = -1. If the polynomial
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is invalid, P = -2. Otherwise, the polynomial is read
and converted to internal form.

Description:

(1) [Initialize.] I <« 72; P + -1; CZNCRD(U,I,c,C);
if ¢ = -1, return; CZINCRD(U,I,c',C'); if C' = -1,
return; P <« -2; if ¢ = 36, (if c¢' # 0, return; P <« 0;
return); if C # 6 or C' # 6, return.

(2) [Obtain first coefficient.] CZRNRD(U,I,c,C,x);
if C# 7, (P« C; return); v + 0.

(3) [Obtain variable.] CZNCRD(U,I,c,C); if C = 4,
go to (4); if ¢ < 0, (P * C: erase v, r; return);
v « PFA(c,v); go to (3).

(4) [Check for valid termination.] CZNCRD(U,I,c,C);
if C =4, go to (5); ifEC# -1, C+ =-2; P *~ C;
erase v, r; return.

(5) [Process variable name.] v « INV(v); P < PFL(r,
PFL(PROSYM(vV) ,0)); erase v; go to (8).

(6) [Obtain next coefficient.] CZRNRD(U,I,c,C,r);
if C # 7, (erase P; P < C; return); P < PFL(r,P).
(7) [Go over wvariable.l] CZNCRD(U,I,c,C); if C < O,
(erase P; P <« C; return); if C # 4, go to (7);
CZNCRD(U,I,c,C); if C = U4, go to (8); if C # -1,

C « -2; erxase P; P <« C; return.

(8) [Check next exponent.] CZNCRD(U,I,c,C); if C = 1
or C =3, go to (9); if C # -1, C + =-2; erase P;

P « C; return.
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(9) [Obtain exponent.] CZNRD(U,I,c,C,n); if C < 0,
(erase P; P <« C; return); if C =7, ( if n = 0, n +
PFA(0,0); if TAIL(n) # 0, (erase P; P« =2; return);
SSUCC(P,n); P <« INV(n); return); if C = 6,
(if TAIL(n) # 0, (erase P; P < ~2; return); SSUcCC(p,
n); P+ n; go to (6)); if C = 5, erase n; if C # -1,

C + -2; erase P; P + C; return.

The following rational Gaussian polynomial input
algorithm simply applies the rational polynomial routine
twice.

ALGORITHM CZRGPR:

G=CZRGPR(U)
Complex Zero System, Rational
Gaussian Polynomial Read

U is an I/0 unit on which are positioned G and G ,
1 2

two univariate rational polynomials representing the
real and imaginary parts of a Gaussian polynomial. If
an end-of-file is encountered, G = -1. TIf the
polynomials are not valid SAC-1 representations, G =
-2, Otherwise, G is the internal representation of

the Gaussian polynomial G = G + iG .
1 2

Description:

(1) [Read first polynomial.] G + 0; G < CZRPRD(U) ;
1




286

if G >0, go to (2); G +« G ; return.
(. 1

(2) [Read second polynomial.] G < CZRPRD(U);
2

if G >0, go to (3); erase G ; G « G ; return.
2 1 2

(3) [Assemble parts.] If G # 0 or G # 0, G <«
1 2

PFL(G ,PFL(G ,0)); return.
1 2
The first algorithm of the output series is used for
an arbitrary list of characters.

ALGORITHM CZLSTW:

CZLSTW(U,I,L)
Complex Zero System, List Write
U, I, and L are inputs. I is modified. U is an I/0
unit. I is a Fortran integer, 1 < I < 72. L is a

first~order list, (& , & + - . . , & ), n > 1. For
1 2 n -

1 < 3j <n, RECORD[I + j - 1] is set to & . 1If at any
J

time all 72 elements of RECORD have been filled, then
it is written on unit U and the remaining elements of
L inserted beginning with RECORD[1]. I <« 1 + (I + n
- 1 (mod 72)), the next availlable entry in RECORD.

Description:

(1) [Initialize.] L' < L.
(2) [Loop.] ADV(L,L'); RECORD[I] * &; if I = 72, (I < 0;

WRITE(U,RECORD)); I <« I + 1; if L' # 0, go to (2);
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return.

The next algorithm outputs an integer by converting
it to a list of characters and then calling the preceding
list output algorithm.

ALGORITHM CZNWR:

CZNWR(U,I,n, )

Complex Zero System, Number Write
U, I, n, and f are inputs. I is modified. U is an
I/0 unit. I is a Fortran integer, 1 < I << 72. n is an
L-integer. The character code for n is entered into
RECORD beginning with the I-th element. £ is a Fortran
integer. If £ = 1, the sign of n is suppressed.
Otherwise, the sign is the first character entered into
RECORD. If during the routine all 72 elements of
RECORD are filled, then it is written on unit U and
the remaining characters of n are entered beginning
with RECORD[1]. The value of I returned is the next
empty element of RECORD.

Description:

(1)n' « IBTOD(n); if f = 1, DECAP(s,n'); CZLSTW(U,I,

n'); erase n'; return.

The following algorithm is used to output a rational

number.
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ALGORITHM CZRNWR:

CZRNWR(U,I,r)
Complex Zero System,
Rational Number Write
U, I, and r are inputs. I is modified. U is an I/O
unit. T is a Fortran integer, 1 < I < 72. r is a

rational number, r # 0. Let r = r /r and r¥ be the
17 2 i

character code for r . Then the characters "r* / r*"
i 1 2

are entered into RECORD beginning with the I-th
element. If during the routine all 72 elements of
RECORD are filled, then it is written on unit U and
the remaining characters are entered beginning with
RECORD[1]. The value of I returned is the next empty
element of RECORD.

Description:

(1) FIRST2(r ,r ,xr); CIZINWR(U,I,r ,0); L < PFA(44,
1 2 1

PFA(39,PFA(4L,0))); CZLSTW(U,I,L); erase L;
CZNWR(U,I,r ,0); return.

2
The next algorithm uses the previous three to output a

rational polynomial.
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ALGORITHM CZRPWR:

CZRPWR(U,P)
Complex Zero System, Rational
Polynomial Write
U and P are inputs. U is an I/0 unit. P is a rational
polynomial. P is written on unit U.

Description:

(1) [Check for zero.] If P = 0, (PWRITE(U,0); return);:;
v ¢ FIRST(P); p' <« TAIL(P); I « 1; p <~ PFA(40,0); E <«
PFA(0,0); V « CONC(ITOS(v),PFA(38,PFA(38,0))); V <
PFA(41,V); CZLSTW(U,I,p).

(2) [Output next term.] ADV2(r,e,P'); CZLSTW(U,I,p);
CZRNWR(U,I,r); CZLSTW(U,I,V); if e = 0, (CzZNWR(U,I,
0,13 go to (3)); ALTER(e,E); CZNWR(U,I,E,1);

if P' # 0, go to (2).

(3) [Finish output of characters.] Erase E; ALTER(41,p);
CZLSTW(U,I,p); erase p; if I = 1, go to (5); 3 < 73 -
i; L <« 0.

(4) [Fill RECORD to output last line.] L < PFA(44,1);
J«3-1; if § >0, go to (4); CzZLSTW(U,I,L);

erase L.

(5) [Finish.] Erase V: return.

As with the input algorithm, the rational Gaussian
polynomial output algorithm simply calls the rational

polynomial output algorithm twice.
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ALGORITHM CZRGPW:

CZRGPW (U, G)
Complex Zero System, Rational
Gaussian Polynomial Write
U and G are inputs. U is an I/O unit. G is a
univariate rational Gaussian polynomial. G is written
on U in the form

REAL, PART

IMAGINARY PART

G
2

Description:

(1) [Initialize.] G < 0; G < 0; if G # 0,
1 2

FIRST2(G ,G ,G).
1 2

(2) [Write G .] Write "REAL PART" on unit U;
1

CZRPWR(U,G ).
1

(3) [Write G .] Write "IMAGINARY PART" on unit U;
2

CZRPWR(U,G ); return.
2

The previous algorithms in this section provide for
rational polynomial input and output. The other facility

required is conversion of the rational polynomials to
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integral polynomials which have the same roots. Multiplying
a polynomial by a non-zero constant does not change the
roots, so the following algorithm can be used as the basis
of the conversion.

If the input list of rationals is (r /r . . . .,
11 12

r /r ), this algorithm obtains a corresponding list of
nl n2

integers by multiplying each rational by lem(r , . . .,
12

r )/gcd(xr , . . ., r ).
n2 11 nl

ALGORITHM CZRTIC:

B=CZRTIC(R)
Complex Zero System, Rational
to Integer Coefficients

Ris a list (r , r, . . . r ¥ ) of non-zero rational
1 2 n

numbers. Let r =r /r , T ged(r , ¥ , . . .,
i i1 di2 1 11 21

r );andr =lem(r , ¥ , ..., r ). IfRis
nt 2 12 22 n2

null then B = 0. Otherwise, B is the list (b , b,
1 2

+ « - rb), wvhereb = (r /T )(r /r ), an
n i i1 1 2 12

L-integer.

Description:

(1) [Initialize.] B <+ 0; if R = 0, return; R' +« R;

ADV(r,R"); ADV2(r ,r ,r); T < BORROW(r ):
1 2 1 1
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r <+ BORROW(r ); go to (5).
2 2

(2) [Obtain next number.] ADV(r,R'); ADV2(r ,r ,r).
1 2

(3) [Compute next gcd.] If PONE(r ) = 1, go to (4);
1

t + IGCD(r ,r ); erase r ; T <+ t.
1 1 1 1

(#) [Compute next lcm.lt « IGCD(r ,r ); if PONE(t) # 1,
2 2

(t <« IQ(r ,t); erase t; £ <« r ; r <« IPROD(E ,t ):
2 2 2 2 2 2 2

erase £ , t ; go to (5)); erase t; t « IPROD(T ,r );.
2 2 2 2

(5) [Check for end.] If R' # 0, go to (2).

(6) [Obtain absolute values.] t « IABSL(r ); erase T ;
1 1
r « t; t « IABSL(r ); erase r ; T + t; R' <« R.
1 2 2 2

(7) [Multiply each rational.] ADV(r,R'); ADV2(r ,r ,r);
1 2

t <« IQ(r ,xr ); t <« I0(r ,T¥ ); b <« IPROD(t ,t );
2 2 2 1 1 1 2 1

erase t , t ; B + PFL(b,B); if R' # 0, go to (7).
1 2

(8) [Finish.] B < INV(B); erase r , ¥ ; return.

1 2

Computing Time: « n L(r) , where R= (r , . . . ,r ),
- 1 n

r =r /r , r = max {lr |} if n > 0; ~ 1 if
i i i i n ij
2

|.J
}.l
—
}-.x
N
—
In A
}—a
IndA



293

n = 0.
Proof:
Step n t
i i
1 1 N
2 n ~- 1 AV |
2
3 n - 1 = L(r)
2
4 n -~ 1 = nL(x)
5 n v o1
6 1 = nL(r)
2
7 n = nL(r)
8 1 VI o

The times follow immediately from noting that L(T ) <
1

L(r) and L(r ) < nL(xr). %
5 =
The following theorem proves that if the rational
numbers in the input to CZRTIC were in lowest terms then
the integers computed are relatively prime.

Theorem 6.5.1: Let B and R be as described in

algorithm CZRTIC. If ged(r ,r ) =1 for 1 < i < n then
i1l iz2 - -

ged(b , . . . , b ) = 1.
1 n

Proof: Consider the prime factorization of r and
i1
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r for primes p > 1:

i2 ;|
e
ij
r = II o} ;
i1 321 3
£
ij
r = 10 e] .
12 3>1 3
Let e = min {fe } and £ = max {f }. Then
j 1< i<n 1ij 3 1 < i <n ij
e £ g
_ J _ J 1j
r =1 P and r = 1 P . Hence b =1 P
1 j>1 3 2 j>1 3 i j>1 3
where g = e -e +f - f . Ife #0, thene >0
ij ij j j ij J ij
for all i. But min{e ,f } = 0 for all i since gcd{r |,
iy ij i1
r } =1. So then f = 0 for all i, and hence T = 0.
i2 ij ’ 3
Thus either e =e =0 for all i or f = f = 0 for all
J ij J ij
i. In either case, min {g } =0. But if b =
1 <i<n ij
gi
j , |
ged(b , « . . , b)) =1 P then g = min {g 1}
1 n i>1 7 3 1 <i<n 1ij

= 0 and b ='1.g
The following algorithm uses CZRTIC to compute an

integral polynomial with the same roots as the input

rational polynomial. Note that CZRPRD reduces all rational

coefficients to lowest terms, and hence the result of



applying this algorithm to a polynomial obtained from
CZRPRD will be a primitive polynomial.

ALGORITHM CZRIP:

B=CZRIP (A)
Complex Zero System, Rational
to Integral Polynomial

A is a univariate rational polynomial. B is the

295

unique primitive integral polynomial which is similar

to A and has sign(B) = +1.

Description:

(1) [Initialize.] B + 0; if A = 0, return; A < TATL(A) ;

1

A <« A ; L <« 0.
2 1

(2) [Obtain coefficients.] ADV2(C,E,A ); L <«
1

PFL(BORROW(C) ,L); if A # 0, go to (2).
1

(3) [Compute list of integral coefficients.] M <
CZRTIC(L); erase L; M <« INV(M); B < PFL (PVBL(A),0) .

(4) [Construct B.] ADV2(C,E,A ); DECAP(C,M); B <
2

PFA(E,PFL(C,B)); if A # 0, go to (4).
2

(5) [Finish.] B <« INV(B); B « PABS(B); erase B; return.

2 2

Computing Time: « y L(d) , where m = deg(Aa), ﬁ = m

+ 1, and d = [A[w.

Proof: Steps (2) and (4) are executed at most u times
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2 "2
and t ,t ~ 1. t (L) =y L(d) . t (M) « Y.
2 4 CZRTIC INV
— £
t (B) = u. t (B) « uL(d).g
INV PABS ‘

The last algorithm of this section uses CZRTIC to
convert a rational Gaussian polynomial to a Gaussian
polynomial with the same roots.

There is an interesting aspect to note about this

n
algorithm. Suppose A(z) = & (a + ib )z 1is a
=0 7 ]

Gaussian polynomial. Define the integer content of A to

be gcd(a , b, 2, b, ..., a, b). Application of
0 0 1 1 n n

CZRTIC does yield a Gaussian polynomial whose integer
content is one. However, this does not imply that its
content is one. A simple example is (1 + 3i)z + (3 + 41y,
whose integer content is one but whose content is 2 + i.
This is why the following algorithm must apply GPPP in the
last step.

ALGORLTHM CZGRIP:

B=CZGRIP(A)
Complex Zero System, Gaussian Rational
to Integral Polynomial
A is a univariate Gaussian rational polynomial. B is
the unique primitive Gaussian polynomial which is

similar to A and has ldcf(B) in the first guadrant or
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on the non-negative real axis.

Description:

(1) [Initialize.] B « 0; if A = 0, return; FIRST2(A ,
: 1

A ,A); if A #0, A <« TAIL(A ); if A #0, A =<«
2 1 1 1 2 2

TAIL(A ); L « 0; A* « A ; A* « A .
2 1 1 2 2

(2) [Obtain coefficients from A .1 If A* = 0,
1 1

go to (3); ADV2(C,E,A*); L < PFL (BORROW(C) ,L) ;
1

go to (2).

(3) [Obtain coefficients from A .1 If A% = 0,
2 2

go to (4); ADV2(C,E,A*¥); L < PFL (BORROW(C) ,L) ;
2

go to (3).
(4) [Compute list of integral coefficients.] M <«

CZRTIC(L); erase L; M <« INV(M); B <« 0; B <« 0.

1 2
(5) [Compute B .] If A = 0, go to (6); ADV2(C,E,A );
1 1 1
DECAP(C,M); B <« PFA(E,PFL(C,B )); go to (5).
1 1
(6) [Compute B .] If A = 0, go to (7); ADV2(C,E,A );
2 2 2

DECAP(C,M); B <« PFA(E,PFL(C,B )); go to (6).
2 2

(7) [Construct B.] If B # 0, B < PFL (GPVBL (&),
1 1

INV(B )); if B # 0, B + PFL(GPVBL(A),INV(B ));
1 2 2 2
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B < PFL(B ,PFL(B ,0)); B +« GPPP(B); erase B; B + B;
1 2

return.

2 2
Computing Time: « u L(d) , where m = deg(ad), u =m + 1,

and d = |A]| .

oo

Proof: Steps (2), (3), (5), and (6) are executed at

most B times and £, £, t, £ ~ 1. t (L) =
2 3 5 6 CZRTIC
2 2 2 2
21 L(d)y v u L{d) . t (M) = 2u v u. t (B ),
INV INv 1
. 2 g
t (B ) v u. t (B) « pL(d) . H

INV 2 GPPP
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CHAPTER 7: CONCLUSION

7.1 Deck structure and sample run

As an aid in system application, this section presents
a complete sample run of the polynomial root isolation and
refinement routine.

The sample program is shown on the following two
pages. It should serve as a guideline for the general deck
structure of a program using routines from this system.
Note, however, that the actual parameter values such as
BETA will depend on the particular installation at which
the program is run.

AVAIL is the location of the available space list and
STAK the location of the pushdown stack. These values are
initialized by subroutine BEGIN. RECORD is used by the
I/0 routines, and need not be initialized. SYMLST is used
for polynomial variable names, and is initialized to zero.
BETA is the modulus of the integer arithmetic

representations. PRIME is the list of primes, each of which

PEXP
must be greater than 2 .

TR6 is the block of particular interest to users of
this system. METHOD is set to zero for computing the
p.r.s.'s with integer methods, and it is set to one for
computing them with modular methods. PRINV is the list of

primes and inverses used by the modular methods.
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ZETA and KAPPA are used for Gaussian integer division
and for the new version of PGCDCF presented in this thesis.

Lines 21 through 27 of the program set up the I/0.
This program was run on a PDP-10 from a remote terminal
with video screen display. Hence there are always two
outputs, one to the terminal for monitoring the computation
and one to the disk for later printing or other hard copy
production.

The next three lines compute and write the length of
available space. The same thing is done at the end of the
program, and comparison of the values will indicate if ani
cells were lost.

The input to the program consists of four simple
rational polynomials with obvious roots. In lines 35
through 49 these polynomials are read, converted to
corresponding integer polynomials, and multiplied together.
The result is an integral polynomial which is large enough
in degree and coefficients to provide an interesting
example, and at the same time one which has known roots for
checking the system output.

The accuracy to which the roots are refined is 1/10.
The internal representation for this rational number is
created using RNUM in line 55. For more flexibility, an
arbitrary value could have been read with RREAD.

Recall that the root isolation and refinement routines
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produce lists whose components are binary rationals. Hence
either the rational or decimal output routines can be used.
In this example, decimal is selected. CZMRRW could be
substituted in lines 63 and 64 to obtain rational output.

The actual program output for one run is shown on the

following two pages.
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7.2 Empirical data

This section presents empirical data to augment
previous theoretical discussions and assist in application
of the system. The data includes selected subprogram
computing times and core requirements, and a study of
polynomial coefficients in a sample run of the Gaussian
polynomial root isolation and refinement routine.

Computing times will of course vary greatly depending
on machine and installation. The times given here were
obtained on a PDP-10 at an installation primarily
concerned with interactive programming and not large,
long-running Fortran batch jobs. Hence there was
considerable swap time overhead. In addition, the SAC-1
implementation had only the primitives written in assembly
language. Comparison to a Univac 1108 doing mainly batch
scientific computing with many of the SAC-1 list processing
routines in assembly language indicated a virtually
constant time reduction factor of 13 to 1.

Hence the times are useful relative indicators.
However, it should be realized that they are not in any
sense minimum, and that in other environments much larger
cases could be run in reasonable time.

Core requirements listed include the routine itself,
all of the other routines it causes to be loaded, and

approximately 5K of system overhead accompanying every
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Fortran run. It does not include data or code for the main
program, the major portion of which will probably be
allocation of available space. As a guideline for available
space, no example in this report required more than 3200
cells,

Some routines in this system display fairly consistent
relationships between certain parameters of the inputs and
the computing times. For example, applying GPROT to a wide
spectrum of randomly generated polynomials should give
computing times which are a consistent function of degree
and infinity norm.

With the major system routines, however, times for
inputs with the same defining characteristics can vary
greatly. An immediate example is root isolation, where
polynomials with the same degree and infinity norm can
have vastly different root separation and hence computing
time.

Therefore, this section presents illustrative examples
of the computing times of the major routines, rather than
timing tables based on randomly generated polynomials with
incremental defining characteristics.

Norms are given in decimal digits (dd) and times in

seconds (s).
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GPRIR: 24K

n J
Isolation of the roots of I (z + 1)
3=0
n time
(s)
1 .100
2 6.53
4 30.9
6 115.
10 365.
12 643.
n 3
Isolation of the roots of L (z + i) and
j=0

refinement to less than .01

« N T time 1
(s)
1 9.12
2 27.4
4 130.
6 363.
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PRIR: 26K
n
Isolation of the roots of I X
3=0
n time
(s)
1 .266
2 1.52
4 5.42
6 41.2
10 138.
12 220, -
J 4
n
Isolation of the roots of I x and
j=0

refinement to less than .01

n 4 time
(s)

1 .266

2 11.7

4 64.0

6 181.
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GPMRIR: 27K

n 2 2 3
Isolation of the roots of szl(x - 2jx + 23 )
n time
(s)

1 5.42

2 13.0

3 22.0

4 34.7

5 52.6

6 84.8

PMRIR: 28K
n J
Isolation of the roots of 1 (x - j - 1i3)

j=1

n time

(s)

1 4.48

2 13.5

3 27.8

4 46.1

5 80.6

6 136.




CZREFA:

GPNRAR:

GPNRIC:

22K

Successive refinements of one root of the
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n J
polynomial Z X , initial rectangle width 1.0
3=0
. refinement time, n=4 time, n=6
(s) (s)
1 12.0 27.5
2 15.8 25.6
3 11.4 46,2
4 13.2 43,5
5 24.4 41.9
22K
Number of roots in a rectangle
deg(G) = 5, |G| =3 dad, time = 15.1 s
deg(G) = 13, |G|_ =9 dd, time = 69.8 s
22K
Number of roots in a circle
deg(G) =5, |G|lo = 9 dd, time = 8.05 s
deg(G) = 13, |G| _ = 26 dd, time = 39.4 s
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The second part of this section is a study of the
coefficients of polynomials comprising certain p.r.s.'s
computed during a run of GPRIR. Coefficient size is of
interest because it is a primary factor in determining
available space requirements and computing time.

5 4 3
The polynomial used was x + (-4 + i)x + (6 - i)x +

2
(-16 - i)x + (41 - 15i)x - 60. This polynomial has roots

at -1 + 2i, +3, 1 + i, and 2 - 2i. Setting € = 1/3 resulted
in seven iterations of the main loop of GPRIR, four to
isolate the roots and three to further refine them.

In each of these iterations, one p.r.s. stood out as
having maximum coefficient sizes. (All p.r.s.'s were
normal so degree sequences were the same.) These selected

p.r.s.'s are presented in the following tables. P , P ,

1 2
p,P, P, P is the p.r.s., with polyncmial P =
3 4 5 6 J
6-7 k
z p x . Coefficient sizes are given in decimal digits
k=0 k

(dd) . Note that the successive reductions of horizontal
and vertical strip widths during the iterations were 32 to
l6, 16 to 8, 8 to 4, 4 to 2, 2 to 1, 1 to 1/2, and 1/2 to

1/4



Pass p P p P P P
5 4 3 2 1 0
(dd) (dd) (dd) (ad) (ad) (da)
1 1 4 6 9 11 13
3 6 8 10 12
8 11 13 15
17 20 22
36 39
51
2 1 1 3 3 5 4
2 2 4 4 5
7 6 8 7
14 14 15
30 29
38
3 1 1 3 4 3 3
2 2 3 3 4
5 6 6 6
12 12 12
22 21
27
4 1 1 2 2 3 2
2 1 3 2 3
5 4 5 4
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4 11 10 11
5 17 16
6 20
1 2 3 3 3
2 2 3 3 3
3 5 5 5 5
4 11 11 11
5 18 18
6 22
1 4 4 4 4
2 4 4 4 4
3 8 9 9 9
4 13 13 13
5 17 17
6 16
1 5 5 6 5
2 4 5 5 6
3 12 12 13 12
4 18 16 18
5 29 28

36

314
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7.3 Closing remarks

This section presents brief discussions of two
sﬁbjects——empirical and theoretical computing times;
modular and integer methods.

The theoretical computing times of the main algorithms
include terms in which the degree of the input polynomial
is raised to a high power. Investigation of the empirical
data, however, indicates much smaller exponents for these
terms.

One important reason for the discrepancy is that the
derivations of the theoretical times involve compcunding
several upper bounds on polynomial norms.

For example, suppose polynomial A is obtained from

2
polynomial A by some operation such as translation. Let
1
A =f (A). Then abound b on a = |A | is computed
2 1 1 2 2 2
from A , say b =g (A ). By definition, a < b ; but what
1 2 1 1 2 2

else can be said? For most of the basic algorithms in this

thesis, b is a tight bound but one which is only rarely
2
attained. That is, for certain inputs a could be close to
2

or equal b ; however, in the majority of cases a will be
2 2

considerably less than b .
2
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Now suppose several successive operations are

performed, with A = £ (f (.. . £@A)...).
J+1 i -1 11

Then b = g (g (.. .g (@A) .. .)) , and it is
41§ -1 11

clear how the situation discussed in the preceding

paragraph compounds itself. Thus in most cases b will
j+l

be much larger than |A | . Correspondingly, the empirical
J+1 e

computing times will usually follow curves described by
functions with much smaller expénents than in the
theoretical expressions.

Another factor in the theoretical computing times for
root isolation and refinement is minimum root separation.
One can expect the development of better bounds for this
separation. In any case, however, it is likely that the
vast majority of polynomials will have far larger
separations than the computed minimums.

As an example of the differences between empirical and
theoretical, the computing time of GPRIR for a polynomial

11
of degree m has the term (m + 1) . So far, all empirical

2 3
evidence indicates that the term is (m + 1) to (m + 1) .

A second concern is the decision of whether to use
modular or integer methods when applying the system. The

theoretical times for modular and integer methods are the
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same, unless the p.r.s.'s are not normal; in such cases,
the times for integer methods increase. Empirical evidence,
however, has so far indicated the integer methods to be
superior in all cases.

It must be noted, of course, that these examples are
fairly small, a limitation imposed by the speed of the
system on which the test cases were run. Further study
with much larger degrees and coefficients may alter the
present indications.

In addition, further research will be done on obtaining
better bounds for the coefficients of the polynbmials in the
p.r.s.'s . This would in turn lead to better estimates for
the number of primes required, and hence possibly improve

the times for the modular methods by a significant amount.
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