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CHAPTER 6 NONLINEAR PROGRAMMING THEORY AND COMPUTATION

6.1 INTRODUCTION

The basic nonlinear programming problem is to

minimize f(x,.%.,...,%X_)

172 n
. < .
subject togj(xl,xz,...xn) £0, j=1,...,m (6.1)
hj(xl,xz,..,,xn) =0, j=1,...,k

By using vector notation the above problem can be written more

succinctly as

minimize f(x)
subjectto g(x) £ 0 (6.1)

hix) =0

where ‘E:Rn — R, g:Rn —»Rm and h:Rn — Rk, thatis f, gandh
are functions which map each point of the n dimensional real
Fuclidean space R" into R , R™ and Rk respectively.

Problems such as (6.1) arise frequently in the decision
[Dantzig & Veinott, 1968] and physical sciences [Fox, 1971,
Stark & Nichols, 1972] and their systematic study beginning in the
late 1940's [John, 1948] has grown into the discipline of nonlinear
programming. In this survey we shall be concerned with the theory

and computational algorithms of nonlinear programming. In



section 6.2 we shall discuss various optimality conditions.
Besides their intrinsic importance optimality conditions play an
important role in the computational algorithms also. In section
6.3 we shall dwell briefly on one type of duality in nonlinear
programming. Beginning with section 6.4 we shall be discussing
various computational algorithms of nonlinear programming. In
section 6.4 we shall discuss one dimensional minimization
problems. In section 6.5 we shall discuss unconstrained mini-

mization algorithms, that is the problem: minimize £(x). Finally
xeRD

in section 6.6 we shall discuss a variety of algorithms for solving
problem (6.1).
We begin with a few paragraphs on notation and definitions.
We shall be interested in various types of "solutions" of
problem (6.1). A point x in R" satisfying g(x) £ 0 and h(x) = 0

is said to be: a solution or global solution of (6.1) iff f(;c) = f(x)

for all x satisfying g(x) £ 0 and h(x) = 0; a local solution of

(6.1) iff f(x) = f(x) for all x satisfying g(x) £ 0, h(x) = 0 and
1
2

|x-x|| = & for some 5> 0 where |[x-x| = (
j

M3

l(xj*;cj)z) i a




unique local solution of (6.1) iff £(X) < f(x) for all x satisfying

g(x) S 0, hix) =0 and |x-x|| £ & for some &> 0.
We shall also make use of the concepts of convex and

concave functions. More general concepts can be found in

[Mangasarian, 1969]. A function f defined on a set X in r"
is said to be convex at x (with respect to X) iff
xeX, 0 A<L]l, (I-Mx+A%e X, imply:
~ (6.2)
1-MER) + AE(x) B F(L-A)X + Ax)
If the last inequality of 6.2 is strict (>) for x # x then f is

strictly convex at x , and if it is reversed () then f is concave

at x . The function f is convex on X if it is convex at each
x in X.

We shall use vector notation quite frequently. If x and

. n . . ,
y are in R, then xi and yi,1=l, ...,n, denote their regpective

n

components, xy = X Xiyi is the scalar product of x and vy ,
iz]

and xyT is the n X n matrix whose ijth element is Xiyj

1 2
Superscripts will denote specific vectors such as x and x in

Rn say. Exponentiation will be distinguished by enclosing the
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quantity raised to a power by parentheses. If f:Rn—*- R is

differentiable at x then Vi(x) = (6513(;:) s e ,ag(::)) and if f is
1

twice differentiable at x then sz(;c) is the n X n Hessian matrix

2%£(x)

whose ij element is S 3% We shall say that a function is

differentiable (twice differentiable) around x if it is differentiable

(twice differentiable) in a neighborhood of x . The symbol

will mark the end of a statement of a theorem or of an algorithm.




6.2 OPTIMALITY CONDITIONS

Necessary optimality conditions are those conditions which
some type of solution of (6.l) must satisfy. Sufficient optimality
conditions are conditions which when satisfied guarantee that the
point is some type of solution of (6.1). We give first some of
the best known optimality conditions which involve first deriva-

tives only and hence are called first order optimality conditions.

6.2.2  First Order Kuhn Tucker Conditions [Kuhn & Tucker 1951,

Mangasarian 1969] (Necessity) Let x be a local or global solution
of 6.1 and let f, gand h be differentiable at x . Let g and

h satisfy a first order constraint qualification at x [Mangasarian,
1969] such as this: h is continuously differentiable at x ,

Vhi (x) ,i=l,...,k, are linearly independent and there exists a z

in R" satisfying Vgi‘(;c)z > 0 for i=l,...,m such that g, (%) =0,

and th(}-c)z =0 for j=1,...,k, then x and some u in Rm and

v in R]< satisfy the Kuhn-Tucker conditions

m _ _ k _ _ j
Vix)+ = u, Vg, (x) + 2 v,Vh,(x) =20
, i 7l . i i
i=l i=1
Gigi(;c) = 0,i=l,...,m
_ > (6.3)
gx) £ 0
h(x) = 0
u g 0. J
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(Sufficiency) Conversely if f and g are differentiable and
convex at x , h is linear and conditions (6.3) are satisfied,

then x is a global solution of (6.1).

The Kuhn-Tucker conditions (6.3) are merely a statement
that a linear combima tion of the gradients of the objective function
with positive weights, the gradients of the active inequality
constraints (gi(;i) = 0) with nonnegative weights, and the gradients
of the equality constraints must vanish at X . A constraint
qualification is imposed to rule out singular solutions at which the
Kuhn-Tucker conditions cannot hold. For example the origin in

R2 is the global solution of the problem minimize x, subject to

1
(Xl)4 - X, = 0 and -—(xl)3 + X, £ 0, but neither a constraint
qualification nor the Kuhn-Tucker conditions (6.3) are satisfied
there. In the absence of convexity, conditions (6.3) cannot rule
out stationary points such as the origin for the function (x)3. To

rule out such stationary points, conditions involving second order

derivatives have been developed [Fiacco & McCormick, 1968].

6.2.3 Second Order Kuhn-Tucker Conditions (Necessity) Let x

be a local or global solution of 6.1 and let f, g and h be twice
continuously differentiable around x . Let g and h satisfy a

first order constraint qualification such as that of 6.2.2 and a




gsecond order constraint qualification such as:
Vg (%), i€ {ilg;(x) = 0,i=,...,m} and th(i), j=1,...,k, are
linearly independent. Then x and some u in R and ¥

in Rk satisfy (6.3), and for every vy in R™ such that

ngi(-;c) =0,1i€e{i ‘gl(}z) =0,i=l,...,m}, and y\7hj(}_() =0 for
i=1,...,k, it follows that
yVllL(i'{,ﬁ,\?)y g 0 (6.4)
where
m k
Lix,u,v) = fx)+ 2 ugx + 2 vh(x) (6.5)
=] L1 j=p L1

and V llL is the n x n Hessian matrix of second partial derivatives
of I with respect to its first argument x . (Sufficiency) Conversely,

let f, g and h be twice differentiable at x , let x and some u in R™ and

v in Rk satisfy (6.3), and let for every nonzero y € R” such that

ngi(.;c) =0 for i=l,...,m, gi(;c) = (0 and ﬁi >0
ngi(Si)g 0 for i=l,...,m, g.(x)=0 and u, = 0 (6.6)
yvhj(,;é) =0 for i=1,....k,

it follows that

YV, L, v)y > 0 . (6.7)

Then x is a unique local solution of (6.1).



The second order sufficient optimality condition plays an important
role in some of the superlinearly convergent algorithms that we will
discussg in section 6.6. It should be noted also that second
order sufficient optimality conditions can also apply to linear

programming problems in which case, since VHL(;,u,v) = 0,
the conditions (6.6) must imply that y = 0. For such a case x
would be the unique solution to the linear program. Condition
(6.4) is trivially satisfied by all solutions of linear programs.
More recently there have been efforts [Rockafellar, 1971,
1972a, 1972b, 1973, Buys, 1972, Mangasarian, 1973] directed
towards relating solutions of nonlinear programming problems to
solutions of nonlinear equations. The objective of such relation
is to employ the vast machinery for solving nonlinear equations
[Ortega & Rheinboldt, 1970, Ostrowski, 1966] in attacking nonlinear
programming problems. One such relationship is embodied in the

following optimality conditions which involve no inequalities what-

soever.

6.2.4 TFirst Order Modified Lagrangian Optimality Conditions

[Mangasarian, 1973] (Necessity) Let x be a local or global

solution of 6.1 and let f, g and h be differentiable at % . Let
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g and h satisfy a first order constraint qualification at x such

k

as that of 6.2.2. Then x and some (y,z) in R™ x R® constitute a

stationary point of the modified Lagrangian function M(x,vy,2z)

v PO 4 4 3
(x,y,2) = £(x) + 77 iill ((rc_Ji(><)+yi)+ “(y) )+
(6.8)
K r 2 >
T2 GG+ zh ()
i=1 ' .

where r is any fixed positive number and the notation (B)i denotes
0 if B < 0 and (ﬁ)4 if B 2 0. In particular we have that

v M(x,7,2) = 0, V,M(x,y,2) = 0, V;M(x,y,2) = 0 (6.9)
where ViM denotes the gradient of M with respect to its ith

argument, i =1,2,3. (Sufficiency) Let f and g be differentiable

and convex at x , let h be linear and let conditions (6.9) hold.

Then X is a global solution of (6.1).
Note that the conditions (6.9) involve no inequalities of any
sort, neither inequalities on any of the variables nor constraint
inequalities. Thus, tools of nonlinear equations theory [Ortega &
Rheinholdt, 1970] can be employed directly to solve (6.9). The
relation between the optimal Kuhn Tucker multipliers {3, v of 6.3

and the optimal ;r, z of 6.9 are given by
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o
0
<

b
i
ot
3

(6.10)

I
1

v, = z ,i=1l,...,k
l ll 1 ’

For more details concerning the modified Lagrangian see [Mangasarian,
1973, Arrow et al, 1971, Rockafellar 1971, 1972a, 1972b, 1973].

Another optimality condition that may be useful computationally
is that associated with exact penalty functions. An exact penalty
function from R into R associated with problem (6.1) is a function
whose local or global minima for finite values of a parameter that
it contains are associated with local or global minima of (6.1).

In general such functions are continuous but only piecewise
differentiable [Zangwill, 1967, Pietrzykowski, 1969, Howe,

1973, Evans et al, 1973]. However some exact penalty functions

are differentiable locally [Fletcher, 1972]. We shall confine ourselves

here to a simple piecewise differentiable exact penalty function.

6.2.5 Exact Penalty Optimality Conditions (Necessity)

Let x be a local or global solution of (6.1) and let either: (a) f,

g and h be continuously differentiable around x and let one of

the following constraint qualifications hold (1) the system
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Vi(x)y £ 0, Vg, (x)y £ 0, i€ (ilg(x) = 0,i=l,...,m}, Vh(x)y = 0

has no solution y # 0 in R, (2) Vg;(®), i€ {ilg(® = 0,i=1,...,m},
Vhi(i) A=l,...,k are linearly independent, (b) orlet f and g be
convex on Rn, let h be linear and let the Slater constraint
qualification hold, that is there exists an X such that g(X) < 0

and h(X) = 0 . Then there exists a real number Ty > 0 such that

forall r = ry: P(ii,r) = P(x,r) for all x in some open neighbor-

hood of x , where

m k
P(x,r) = f(x)+r | = g,(x) + = [hi(x)l
i=] + i=]

and gi(x)+ denotes gi(x) if gi(x) ; 0 and 0 if gi(x)<0 .

(Sufficiency) If forall r 2 ro >0, P(§,r) s P(x,r) forall x in

some set S containing x and some feasible point of (6.1),
then x solves (6. 1) subject to the extra condition that x e S.
(Note that S may be taken as Rn or a sufficiently large neighbor-

hood of ;{.)

Note also that in the sufficiency part, no differentiability,
convexity or even continuity was assumed on f, g or h.
Finally we give one additional optimality condition which will

be useful in connection with gradient projection algorithms.
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6.2.6 First Order Gradient Projection Optimality Conditions

[Levitin & Polyak, 1966] (Necessity) Let x be a solution of
(6.1), let g be continuous and convex on Rn , let h be linear
and let f be differentiable at x . Then for any n X n symmetric

positive definite matrix H the gradient projection condition

Q(x - LWHYE(x)) = x foreach L Z 0

holds, where Q(z) is the projection of z on X = {x|g(x) = 0,
h(x) = 0} , that is
L HY f(x) || = mini}n{mm ||x-pHV £(x) - v|| foreach p & 0
ve

(Sufficiency) If under the same assumptions, the gradient projection
condition holds for some K > 0 and f is convex at x , then

x is a solution of (6.1).
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6.3 DUALITY

Associated with the minimization problem (6.1) is a maximiza-
tion problem which under suitable conditions gives the same
extremum as (6.1). In particular we have the following dual

problem [Wolfe, 1961} to the primal problem (6.1)

m k “
maximize L(x,u,v) =£f(x)+ 2 uigi(x) + 2 v,h. (%)
i=1 =] Yt
m k
subjectto VlL(x,u,v) = Vi(x) + = ungi(x,) + = vthi(x) =0 &(6.11)
i=] i=]
ug O
o

There are also other dual formulations [Rockafellar, 1970,
Mangasarian & Ponstein, 1965]. The dual problem can give rise to
lower bounds to the minimum value of (6.1) and also to computational
algorithms for solving (6.1) [Buys, 1972]. For more details concerning

duality theory as presented here see [Mangasarian, 1969].

6.2.5 Weak Duality Theorem Let f and g be differentiable on

Rn and let h be linear. Then

g(x) = 0, hix) = 0

2 2 2 2 2
VlL(xz,u ,v })=0,u imply f(xl) z L(xz,u Vo).

m
o

f and g convex at x
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6.2.6 Duality Theorem Let f, gand h be differentiable on

R" , let % be a local or global solution of the primal problem

(6.1) and let a first order constraint qualification such as that of

6.2.2 be satisfied at x . 1f f,g and h are twice differentiable
- - - = m k \ .

at x , then x and some u, v in R X R~ satisfy the first

order Kuhn Tucker conditions for the dual problem (6.11) and

f(}?):L(:e_{,ﬁ,\—/). If f and g are convex on R" and h is

linear, then x and some L_l, v in Rm X Rk constitute a global

solution of the dual problem (6.11) and f(;:) =

6.2.7 Strict Converse Duality Theorem Let f, g and h be

differentiable on Rn and let (;{,L—l,\_l) be a local or global solution

of the dual problem (6.11). Ifthe n x n Hessian matrix

V“L(x,u,v) is nonsingular, then (;c,ﬁ,;z) gsatisfy the first order

Kuhn Tucker conditions (6.3) of the primal problem (6.1). If in

addition f and g are convex at x and h is linear, then x

is also a global solution of the primal problem (6.1).
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6.4 ONE DIMENSIONAL MINIMIZATION ALGORITHMS

Because many algorithms of unconstrained and constrained
optimization require the minimization of a function along a line we
give in this section algorithms for solving the following problem
minimize f(x)
(6.12)
subjectto as= x= b
where f is a function defined on the real line segment [a,b].
Often in using one dimensional minimization as part of an n-dimensional
optimization algorithm, the upper bound b will be missing from
problem (6.12). However it will be known that the del;ivative f'@)< 0.

For such problems we first search for b such that f'(b) > 0 and then

solve (6.12).

6.4.1 Golden Section and Fibonacci Search Algorithms [Wilde, 1964,

Kowalik & Osborne, 1968]. Let aO = a, bO = b. Having al,bi,

determine al"-l,bﬂ-l as follows:
(i) Define
fo=p -1 (]ol - al), rl = al + 7 (bl - al)

where for golden section

== (/5-1)/2 = 0.618
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and for Fibonacci search

Pn—i-l ) n-2 l+e l-g
"‘E—“‘—, i=0,1,...,n-3, T = T5oor

n-i

i
T =

where n(nz2) is a prescribed number of allowable function evalua-
tions, € is any small positive number less than 1, and FJ, are

the Fibonacci numbers: F_=F, =1, F, =F _+ Fj—z’ jig 2

0= 1 i = Fa
(ii) Set
N N S NP
R T R R AR S

6.4.2 Convergence of Golden Section and Fibonacci Search Algorithms

Assume that f has a minimum solution x in the interval [a,b] and
that f is unimodal on [a,b], thatis for £,r in fa,b] and £< r,
if £(8) > f(r) thenx e [£,b], if f(4) < f(r) then x e [a,r] and

if f(£) = f(r) then x € [£,r]. After n(ng2) function evaluations the
minimum solution x is in [an-l'bn—l] where

(0.618)n_l(b~a) for golden section

n-1 n-1 1 - lte
F a) T
n n

(b-a) for Fibonacci search

Fibonacci search has the property of giving the smallest final interval

length bn-—l - an—l for a fixed number n of allowable function
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evaluations. However golden section is in general preferred because

it is simpler to implement and it does not require a knowledge of n

in advance. For other methods see [Danilin, 1971}. Since bi - at

is the maximum error in the ith step, an estimate of the rate of

convergence is given by the relation between p' - &t and

bl_l - alul. We have then b -~ a = 0.6.18(b1~1 - al'“l) for golden
i i F -1 i-1 i-1
section b’ -a' = E;-—n*—— (b - a ") for Fibonacci search where
n-i+l

it can be shown that 'Fn-l/Frr approaches 0.6l18 as i and n

~i4-1
approach e« , Because of the foregoing linear relation between

(bl_l - al-l) and (bl - al) we say that golden section has a linear

convergence rate and Fibonacci search has an asymptotic linear

convergence rate. To improve on these rates, we would like to get

a ratio between the errors at the ith and (i-l)th steps which tends

to zero rather than to a positive constant. Such rates of convergence a
are termed superlinear because they are better than any linear con-
vergence rate. One such method is the secant method (also called
sometimes regula falsi). This is a discrete version of Newton's

method for finding a zero of the derivative f' of f in [a,b]if it exists.
Newton's method itself consists of linearizing f' around the current
point and taking the zero of the linearized function as the next point

of the iteration. In particular we have the following secant algorithm.
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6.4.3 Secant Algorithm [Ortega & Rheinboldt, 1970, Shampine &

Allen, 1973] Start with two distinct points xO,xl in [a,b] such that

0 — .
' (x )%f'(xl). Having xl,x1 1 compute x1+1 as follows

i+l i £ (x')
*OEE T i-1
f'ix) - ' {(x )
i -l
X - X

6.4.4 Convergence of the Secant Algorithm  Let

f III(X)

| £ M for some M andall x,y in some interval [a',b']

1 -

2f"(y)

containing [a,b] and let MI?{-&{O[ < 1 and Ml?{—xl! < 1 where %
is a zero of f' in [a',b'], that is f'(X) = 0. Then the sequence
[xl} converges to % . If in addition f''(x) > 0 for all x in

[a',b'], then the unique solution x , of min f(x), 1is given by
xela,b]

b, x=a if % <a,and x=b if %

A
A

- Pal
x=% if as Xk

It can be shown that a bound on the error of the secant algorithm

is given by
F,
. i
— X S———————
<

|

where 0 = max [M(x0~?<), M(xl—?c)} < 1 and Fi is the ith Fibonacci
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number defined earlier under Fibonacci search. If we let el denote

this error bound then

i-1
For large i, B -1 tends to 60‘724(1.61 8)

which approaches
zero as 1 approaches o . Hence the convergence rate is super-
linear and is of order 1.618 per function evaluation. This is better

than the order ﬁ = 1.414 per function evaluation of Newton's method

for one dimensional problems.
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6.5 UNCONSTRAINED MINIMIZATION ALGORITHMS

We shall be concerned here with the problem

minimize f(x) (6.13)

n
xeR

where f:Rnw R. Because of space limitations we shall limit our-
selves to two of the most effective algorithms for solving (6.13):
the Davidon-Fletcher-Powell variable metric method and the method
of conjugate gradients. Both of these methods have two important
properties: (i) They have a superlinear rate of convergence and

(ii) They find the minimum of a strictly convex quadratic function

in n steps or less. The variable metric algorithm imitates the
Newton method by computing Xi+l - Xi = —KiHin(xi) where Hi

is an approximation in a certain sense to sz(xi)”l and >\i is a

stepsize. The approximation is achieved by forcing H to satisfy

1 ¥l i

the quasi~-Newton condition Hl+ (v f(le) - Vf(xl)) =X =X
which must hold if f were a strictly convex quadratic function.

The conjugate direction methods, on the other hand, picks directions

p1 in R® which satisfy the conjugacy relation pr Zf(xl)pl—l =

0.

For a strictly convex quadratic function, the n first such directions

are linearly independent and are orthogonal to Vf(xn), the gradient
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at the nth point, which must then vanish, so that %D is

optimal.

6.5.1 Variable Metric Algorithm  (Davidon-Fletcher—-Powell)

[Fletcher & Powell, 1963] Start with any xo in R" . Let

HO=I, the n x n identity matrix. Having x and H'

determine xl+l and H1+l as follows:

(1) Let pl = —HlV f(xl). Compute x1+l = xl + Klpl where >\1
is the first nonnegative root of Vf.(xl+>xp1)p1 = 0, or, >\1 z 0

and .f(x1+>\‘1p1) ig the first local minimum of f(xl+Xpl) subject

to A g 0.

(2) If y1 =0 or z' = 0 where z = x1+l - x and
o= vicTY) - vE(xl) set x = X and stop. Else compute
i P it
i+l i,2zz  (Hy)}Hy)
ii iid
zy y HYy

6.5.2 Convergence and Rate of Convergence of the Variable

Metric Algorithm [Powell, 1971, Broyden et al, 1972] If

f(x) = lz-xCx + ax and C is positive definite, then algorithm
6.5.1 arrives at the unique minimum solution x in n or less steps.

More generally if f is twice continuously differentiable on R
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2 2 , n
and afly||® 2 yv f(x)y for some « > 0 and all x,y in R,
then the sequence {xl} generated by 6.5.1 terminates at or
converges to x , the unique solution of problem (6.13). If, in

addition, nvzf(y) - VZf(X) I

A

R|y-x| for some R > 0 and all
4] -
x|l

A

x,y in R7, then |x & Hxi—;?ll, where lim & =0,

] 00

that is {xl} converges superlinearly to X .

6.5.3 Conjugate Directions Algorithm [Flecher & Reeves, 1964,

Polyak, 1969b, Polak & Ribiere, 1969] Start with any xo in R"
and set p0= —Vf(xo). Having xi,pi determine le,le as
follows

(1) xi'*'l = xi+ Xipi, where xi is the first nonnegative root of

Vf(xl-i-)\pl)pl = 0, or, A 2 0 and f(xl+xlpl) is the first local
minimum of f(xl + Xpl) subject to A 0.

(2) If Vf(xl) =0, set x = x and stop. Otherwise compute

pM-l I f(le) + a1+1pl
where
, i+l 2
ozl+l = MKJZ-U— (Fletcher~Reeves)
|V £
or

@6t - s puredt!
- .~
V£ |l

) (Polyak-Polak-Ribieére
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6.5.4 Convergence and Rate of Convergence of the Conjugate

Gradient Method [Zoutendijk, 1970, McCormick & Ritter, 1970,

A

1972, Cohen, 1972] Let ||V f(y) - Vf(x)]| M ||y-x|| for some

M >0 andall y and x in R . If f(x) =—12" xCx + ax and C

is positive definite, then the conjugate direction algorithm

arrives in n or less steps at x , the unique minimum. More
generally: (a) If the set {x]f(x) = f(xo)] is bounded, then

the Fletcher-Reeves algorithm either terminates at a stationary

point x , that is Vf(}?) = 0 or at least one accumulation point x

of the sequence {_xi} is stationary. (b) If f is twice continuously
differentiable on R" , then the Polyak—Polak—Ribiére algorithm

6.5.3 either terminates at a stationary point x or each accumula-
tion point x of the sequence {xi} is stationary. If in addition

the set {x|f(x) = f(xo)} is bounded and aHyHZ < yvzf(x)y p MHyH2
for some Mg @ > 0 andall x,y in R" , then the Polyak-Polak-
Ribiére conjugate directions algorithm 6.5.3 is n-step superlinearly

convergent, that is

1% s 8 -x]|, lm sl =o0

i——»OO

fIA

provided that p1 is reset to -Vf(xl) after each n steps. i
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6.6 CONSTRAINED MINIMIZATION ALGORITHMS

Constrained optimization problems form the core of nonlinear
programming and the typical programming problem is that given by
(6.1). The difficulty of the problem depends on whether the functions
f, g, h are linear, quadratic or neither. In particular we can

distinguish the following classes of programming problems:

Programming
12 ¥
Linear Programming Nonlinear Programming
(Finite Algorithm: Simplex Method l
[Dantzig 1963])

Unconstrained Constrained

\Z
Quadratic Nonqua\gratic Linearly Constrained Nonlinearly
Constrained

W
Quadratic Minimand Nongquadratic Minimand
(Finite Algorithm for Convex
Case, [Lemke, 1962, Cottle & Dantzig, 1968])

[ Increasing Difficulty >

We shall concentrate here on algorithms for solving the rightmost
problems given in the above table, that is, problems which are nonlinearly
constrained, and,linearly constrained problems with a nonquadratic
minimand. We shall give a number of algorithms for solving such

problems.
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We begin with penalty function algorithms. The basic idea here
is to reduce the constrained problems to a sequence of "unconstrained"
problems, the solutions of which approach a solution of the original
problem. This is done by combining the constraints with the objective
function in such a way that minimizing the combined "penalty function"
penalizes constraint violation. Penalty function algorithms can be

classified as follows:

Penalty Function Algorithms

)

) Exact Asymptotic
(Parameter Remains Finite) (Parameter Tends to 0 or «)
Unconstrained Unconstrained Interior Mixed Exterior
Minimum Penalty Stationary or Saddle
Function Point Penalty Function

Each of these methods has its advantages and disavantages which

we shall mention after describing each algorithm,

6.6.1 Asymptotic Interior Penalty Algorithm [Fiacco & McCormick, 1968]

. . i .
For any decreasing sequence of real positive numbers {r } converging
to zero, find solutions, x , of the problems minimize Pl(x) subject to

g(x) < 0 where
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i I
P(x) = f(x) ~r = ——- , forall i
(%) = £(x) 2 gj(x) o i

or
; m
P(x)=f(x)-r 3 log(-g,(x)), forall i
j=1 :
If the set X' = {x |g(x) < 0} is not empty and

infimum £(x) = infimum f(x), where X = {x]g(x) = 0}, andif f and

< €xO xeX

g are lower semicontinuous on X , then every accumulation point of
the sequence {xi} igs a solution of minimize f(x) subject to

g(x) = 0 (which is problem (6.1) but without equality constraints
hx) = 0). [

The main difficulties with the above algorithm are that equality
constraints cannot be handled and the penalty parameter ri must
approach zero which creates conditioning problems [Lootsma, 1969,
1972, Murray, 1969]. To avoid the former difficulty we consider
exterior penalty function algorithms which can handle both equa lities

and inequalities.

6.6.2 Exterior Penalty Algorithm [Fiacco & McCormick, 1968] For

; . . i .
any increasing sequence of real positive numbers {r } which tends

to 4 , find solutions x1 of the unconstrained problems:
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e i
minimize P (x) , where
xeRD

i i 0 2 K 2
Plx)=fx)+1 [ = (g,(x),) + = (h(x)]
. ] + - J
j=1 j=1
where gj(x)+ denotes gj(x) if gj(x) £ 0, and 0 if gj(x) < 0.

If £f and g are continuous on R” and problem (6.1) possesses a

solution, then every accumulation point x of the sequence {xl}

is a solution of (6.1).
Again the exterior penalty algorithm suffers from conditioning

difficulties as ri approaches o . To overcome these difficulties

exact penalty function methods will be discussed shortly. However the

parameter ri need not approach +« if we are willing to accept some

feasibility tolerance € > 0 for the accumulation point X , that is

k

-2
(9.(x),) + 2
g =1

™M

-2 :
(hj(x)) < & . Then the sequence [rl} need not
j
i 2|f®) - f(xon
tend to +« but rather lim r > -

j_.-—»oo

”~ [}
, where x is any

feasible point, thatis g(X) = 0, h(X) = 0, and %% is a solution of

the first iteration min Po(x) . Mixed penalty methods [Fiacco &
xeRM

McCormick, 1968] are a combination of exterior and interior penalty

method. A typical mixed penalty function for problem (6.1) is given by
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. , k
Pl = 10 - ' % log(-g, (x) v | o= (gj<x)+)2 + 3 (h(x)
jel, 2| e, j=

where Il is any subset of indices of the inequality constraints for
which there exist an interior, that is there exists an X such that
gj(x) £ 0, for je Il . IZ igs the set of indices of the remaining
inequality constraints. The subproblems to be solved here are:
minimize Pi(x) subject to gj(x) < 0,j¢ ]1 and the sequence
{ri] is a decreasing sequence tendingto 0 . If f, gand h are

continuous and -« < infimum f(x) = infimum f(x) where
xeX xexlﬂxz

X = {x|g(x) £ 0,h(x) = 0}, X' = (x[g,(0 <0, j € )} and

A

X2 = {xlgj(x) 0,jc¢ Iz,h(x) = 0}, then each accumulation point
of the sequence [xi} solves (6.1).

More recently there have been attempts at inventing penalty
functions in which the parameter remains finite. Such penalty
functions are called exact. Unfortunately exact penalty functions
are in general nondifferentiable [Zangwill 1967, Pietrzykowski, 1969,
Howe, 1973] or only locally differentiable [Fletcher, 1972], or an
unconstrained stationary or saddle point must be found rather than

an unconstrained minimum [Rockafellar 1971, 1972a, 1972b, 1973,

Arrow et al, 1971, Mangasarian, 1973].
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6.6.3 Exact Minimum Penalty Algorithm [Zangwill, 1967,

Pietrzykowski, 1969, Howe, 1973] For an increasing sequence of real
numbers {ri} find unconstrained local (global) minima xi of
P(x,ri) where P(x,r) is defined in 6.2.5. Stop when xi is feasible,
that is g(xi) £ 0 and h(xi) = 0, xi is a local (global) solution
of 6.1). @

Note the advantage of this algorithm over asymptotic penalty
methods is the finiteness of ri .

The main disadvantage is that P(x,r) is in general piecewise
differentiable at most. Special methods must be used to minimize
it [Polyak, 1969a].

We turn now to the final type of penalty function methods

namely the exact stationary point penalty algorithm.

6.6.4 Exact Stationary Point Penalty Algorithm  For some positive

number r > 0 find a root (x,y,z) of the m+n+k equalities (6.9).

The vector x and the vectors u and v given by (6.10) satisfy the
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first order Kuhn Tucker conditions (6.3). If in addition f and g
are convex at x , and h is linear then X is a global solution of

(6.1).

Specific methods for solving the equalities (6.9) are given in
[Mangasarian, 1973]. For a compendium of methods for solving
nonlinear equations see [Ortega & Rheinboldt, 1970].

We next turn to the method of feasible directions. The basic
idea here is to find a direction which simultaneously decreases the
minimand and at the same time remains feasible. A tolerance ei
to prevent jamming or zig-zagging must be introduced in the
algorithm [Zoutendijk, 1960]. Note that in this method g can be

nonlinear but h must be linear.

6.6.5 TFeasible Directions Algorithm [Zoutendijk 1960, Zangwill, 1969]

Start with an xo € X = {xlg(x) = 0,h(x) =0}, where h is linear,

. " 0 o i i .
and some fixed positive number € > 0. Having x ,& determine

x1+l, €1+l as follows. Solve the linear program

1A

minimize {6 |Vi(x')q = &, ng(xl)q <6, e IN(xl,z—:l)
6.9

ng(xl)q <0, jel (x,e),vh(x)q = 0]

L

where
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A

(l-¢'

H

IN(Xl,El) gj(xl) £ 0, and gj is nonlinear}

I

il

A

L(xl,El) {j!-—sl gj(xl) £ 0, and gj is linear}

Call a solution of the linear program bl,ql. If 61 = 0 stop, else

set
i , i
i+l £ if ¢ £ -9
£ = )
E:l i i
> if € > -8B
i id i 11 i i
Set p" = vqg where v =max{l,'2',z,...} such that x + Wwp € X

for all p e [0,1]. Determine x1+l =x + lel such that

f(x:L + lel) = minimum f(xl+Xpl) or >\1 = max {1,;2“,;‘,
0=l

...} such that
f(xi) - f(xi+>\.ipi) 2 —%1'\7 f(xi)pi . If f has continuous first partial
derivatives, g has Lipschitz continous partial derivatives and h

is linear, then either the sequence [xi} terminates at a stationary
point or every accumulation point X in stationary, that is there exist
no feasible direction p at X satisfying Vf(i)p <0, ng(;c)p <0,

je {j|gj(;-<) = 0} and Vh(x)p = 0. Ifin addition f and g are convex
on R" and there exists some ¥ such that g(X) <0 and h(X) =0
then X solves (6.1). [§

We consider next a gradient projection algorithm which is

useful for linearly constrained problems. The algorithm we present
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here is a variation of the Levitin-Polyak algorithm [Levitin &
Polyak, 1966] which in our version here includes provisions for
considering only a subset of the constraints and also provisions
for introducing a matrix whichcan play the role of the inverse of the

Hessian of the objective function or an approximation thereof,

6.6.6 Gradient Projection Algorithm [Levitin & Polyak, 1966]

Start with any <ex = {x|g(x) = 0, h(x) = 0}, where g is convex

and h is linear, and some fixed number 50 > 0. Having xl,gl

determine x1+l,el+1 as follows. Solve the quadratic programming
problem
i 3 o 2
minimize ||x - H(x) Vi) - YHH(xi)
yext

where |z HIZ—I = zHz, H(x') is any continuous symmetric, positive
definite matrix and X = {x]gj(x) <0, e I(x',€), hix) = 0],
1, ey = (] - e = gj(xl) < 0}. Denote the solution of this

. i i i i+l o
quadratic programby y . If y = x stop, else take € g E>O

where & is an arbitrary positive number. Set p1 = vl(y —xl)

where v1 = max {l,lz—,%, ...} such that xl + Mpi ¢ X for all
KL e [0,1]. Determine xl+l = x + lel such that f(x1 + )xlpl) =

minimum f(:»{:1 + >\p1) or \' = max {1,%‘,%, ...} such that
0=A=1
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f(xi) - f(xi + Kipi) z —%;Vf(xi)pi . If f is convex and has

continuous first partial derivatives on Rn , g has Lipschitz
continuous gradients on R™ and there exists an % ¢ X such that
h(X) = 0 and g(%) <0 and M, HZHZ < zH(x)z < M, ||zn2 for all i,

all z ¢ Rn and some M I\/I1 > 0 , then either the sequence

=
2=

{3{1} terminates at a solution of problem (6.1) or every accumulation

point solves (6.1).

We observe that most of the work in the above algorithm is
contained in solving a quadratic program for determining y:'l
For linearly constrained problems this can be quickly performed by
principal pivoting or related methods [Lemke, 1962, Cottle &
Dantzig, 1968] for which efficient computer codes are available
[Teorey, 1972].

We terminate by giving a Newton algorithm for nonlinearly
constrained problems for which local quadratic convergence can be
established. The algorithm was originally proposed in [Wilson,
1963] and its quadratic convergence rate was established by Robinson

{Robinson, 1973]. See [Robinson, 1972] for a related algorithm.

6.6.7 Newton Algorithm for Nonlinearly Constrained Problems

[Wilson, 1963, Robinson, 1973] Start with any (xO,uO,vO) € Rn X Rm X Rk.



—34 -~

A . i+l i+l i ,
Having (x ,ul,vl) determine (x ¥ ,u * v +1) to be the closest solution to
(xl,ul,vl) of the following linearly constrained quadratic programming problem

min Vf(xl)p + 'lz“pv L(xl,ul,vl)p
D 11

HA
<

subject to g(xi) +V g(Xl)P

0

il

hed) + v hix)p
where L is the Lagrangian defined in (6.5). Call the solution

p1 , the optimal Lagrange multipliers ui+l,v1+l, and set

xi+1 = xi + pi . If (xo,uO,vO) is sufficiently close to

a point (;c,ﬁ,\-;) which satisfies the second order sufficiency
condition of 6.2.3, and at which strict complementarity holds that
is \._li > 0 for gi(;:) = 0, and th(;:),j=l,..,,k and in(EE) for
ie {ilgi(i) = 0} are linearly independent, and f, g and h are

twice continuously differentiable around x , then the sequence

{xl,ul,vl} converges quadratically to (52,11,\7) , that is
2l
iodii === oL
I ut v = w5 0 )

where ¢ is some constant.
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