WIS-CS-184-73

Computer Sciences Department
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

Received June 13, 1973

A FORMAL DEFINITION UNIVERSE FOR
COMPLEXES OF INTERACTING DIGITAL SYSTEMS

by
D. R. Fitzwater

and
Pamela Z. Smith

Computer Sciences Technical Report #184

June 1973

A FORMAL DEFINITION UNIVERSE FOR
COMPLEXES OF INTERACTING DIGITAL SYSTEMS

by

D. R. Fitzwater
and
Pamela Z. Smith

ABSTRACT

A language is presented for describing any asynchronous
complex of interacting digital systems at any level of abstraction.
The resulting representation is a definition of the complex of
systems which is both formal, and effective, meaning that it is
interpretable by a deterministic automaton. Thus it can be used
to study system structures and develop practical design tools.

After the explanation of the formal definition universe,
annotated examples of system representations are given. Their
usefulness for proving assertions about systems is established
in an outline of present and future research, with the ultimate
goal of providing assistance for the total design process.

A FORMAL DEFINITION UNIVERSE FOR
COMPLEXES OF INTERACTING DIGITAL SYSTEMS

I. INTRODUCTION

A. The Need for a Formal Universe

Each of the physical sciences hypothesizes a particular
abstraction of the real universe, which is the theoretical universe
of the science. Even though conclusions are validated by measure-
ments on the real universe, progress of the science consists of
contributions to the theoretical one.

If computer science has not achieved the status of the
physical sciences, it is because there is no general theoretical
universe--each research effort is carried out in the arbitrary
environment of a particular machine architecture, with the
vocabulary of problem and solution being defined by that machine.
With no common language in which to define systems, we cannot
study their general properties: we cannot achieve inter-system
compatibility, and we cannot avoid the continual process of re-
inventing problem solutions for each new machine that comes along.

A common universe of systems would provide us with a means
to define them formally, study--and prove--their properties, and
develop design tools that would be useful in any practical context.
We could communicate our ideas in a form as familiar to our
listeners as it is to us. Finally, we might free our imaginations
from the bounds of existing ways of doing things, which are derived
from assumptions about computers past and present, so that we
could design for computers of the future.

In short, a formal universe of systems is needed to elevate
our field to a true design science. The concepts involved are
discussed in a fascinating book by Herbert A. Simon, The Sciences
of the Artificial [SI].

It is certainly true that formal schemes for describing
computation have been devised before, and that they have proven
useful. None of them, however, has all the properties that we
fee]l to be essential to the making of a systems universe.

B. The Essential Properties of a Formal Universe

1. Generality

We must be able to define, in our formal universe, all digital
systems of interest; the term "digital" refers to a system that
enters a sequence of well-defined, observable states, separated
by transition periods of finite duration.

Clearly we must be able to model complexes of interacting
asynchronous digital systems. Without this ability we cannot
write a valid description of a single third-generation computer,
let alone a cross-country network. Basic as this property of a
formal definition scheme is, it is the grounds for rejection of
nearly every existing candidate.

2. An Interpretable Representation

Much effort has gone into specifying procedures in formal
representation-independent notations, so that they could be im-
plemented exactly on different computers. Real system processes,
however, consist of manipulations of a representation, and they
are always representation-dependent. The system designer has the
very real problem of choosing a suitable representation and defining
efficient transformations on it.

Representation-independent definitions may lead to some
theorems about systems, but since they are not effective (meaning
that a mechanical interpreter can "run" the system), they provide
no feedback to the designer as to the consequences of his design
decisions. The designer may learn that his system has or doesn't
have a few special properties, but to Tearn anything else about
it, he has to implement it.

For these reasons, a formal universe must be based on a
primitive automaton which interprets representations of complexes

of systems specified in a description language. If the represen-
tation medium is abstract, it should still be possible to implement
it exactly on different computers.

3. The Right Level of Abstraction

The choice of an abstract representation medium is an impor-
tant one, because inessential detail will obscure concepts, but too
much abstraction will deprive us of the ability to study what is
interesting. We can take the Turing machine as a bad example. It
is too abstract in the sense that it eliminates time and bounded
space, yet the transformations that the automaton makes on its
representation medium are excruciatingly primitive.

There is also another kind of transformation with which we
must be concerned. A given system should have many equivalent
representations in the formal universe, each one describing it at
a different level of abstraction. Much of the informal design
process is concerned with transformation between these equivalent
representations, and we can hope to automate--or at least study
and aid--this difficult procedure, if and only if our single ab-
stract representation medium is such that these transformations
are facilitated.

Some possibilities for the representation medium are integers
(via Godel numbers [MI]), strings, and graphs. GoOdel numbers and
bit strings are like the tape of a Turing machine in that simple
operations require elaborate coding and decoding. This blocks
structural insights, and makes design changes difficult. Graph
representations certainly allow general objects and transformations,
but they are rather far in advance of current linear computer
memories. The generality of graphs introduces complications of
its own, and it may be that a full graph-structure representation
medium would be as unbalanced a choice as Gddel numbers.

Fortunately, the string representation is a happy medium.
Its practicality is approved by current technology, and yet it can
be used to represent objects as compiex as trees. When we base
our transformations of the medium on the concept of pattern-
matching, we are choosing an operation that is easy for people,
but difficult (or "high-level") for machines. This is exactly
the property we must have in an effective research and design
tool.

4, Neutrality

Since the formal universe is to be used to study possible
system structures, it must not impose structure on the systems
defined in it, or even bias them toward any structure. A good
example can be found in control structures. The only way to avoid
biasing our study of them is to insist that, in the formal universe,
all possible transformations must occur simultaneously--unless the
system designer has defined explicit constraints to prevent this.
Thus all degrees of parallelism and sequentiality are available to
him, which would not be so if the the transformations in the formal
universe were predetermined to be sequential.

C. Desirable Properties of a Formal Universe

One of the most important criteria on which system designs
are judged is their efficiency. Because the cost of a design is
ultimately dependent on the implementation (and the computer), we
can make no direct requirements of the formal universe concerning
this, but it seems important that there be some useful relation-
ship between a formally-defined system and the efficiency of its
implementation.

For instance, we would hope to find a correlation between
the time it takes to interpret a formally-defined system, and the
time consumed by an implementation of that structure. Most prom-
ising is the idea of finding bounds on formally-defined systems
that have some validity for common implementations, and then ex-
ploring the ways in which design principles affect these bounds.

Ideally, a formal universe should be such that the simplest
and most elegant systems have the most efficient implementations.

D. Presenting ABSTRACT

We have devised a formal universe which consists of a primi-
tive automaton to "run" system representations, and a description
language in which to specify system representations. The present
version is the result of several years of use, which revealed the
need for minor improvements over the original scheme [FH]. Strictly
speaking, ABSTRACT is the name of a program (written in Fortran V
on a Univac 1108, but now being made, we hope, portable) which
implements the primitive automaton, but it may serve as a name for
the primitive automaton itself, or the entire formal universe.

The starting point of this effort was with Post production
systems [MI], a formalism beautifully suited to our needs in string
manipulation. Because we value this bridge between our efforts
and previous formal work, we wanted to change the characteristics
of Post's systems as little as possible. Two major extensions
were inevitable: (1) the formalism had to be extended to include
such "real system" concepts as time, space, and inter-system com-
munication, and (2) transformations could no longer be actions
that were permitted to happen; they had to be actions that would
definitely be carried out, deterministically, by the primitive
automaton. Nevertheless, the formal universe contains all Post
systems, and a Post system so expressed retains all its observable
properties--which is to say that the formal universe is a true
extension of Post systems, specifying only additional properties
that are irrelevant to the original formalism.

What are the credentials of our own scheme as a formal sys-
tem? This is a good question, because our subsequent description
will be highly informal. It has been shown, however, by Robert T.
Johnson [J0], that the transformations made by the primitive auto-
maton on a system representation can be defined rigorously in terms
of functional notation. We feel that this would not be a good way

to present the concepts, but it does establish our right to call
ABSTRACT a formal universe,

We believe that this formal universe has all the essential
properties mentibned, and, hopefully, the desirable ones also.
It is offered as a hypothesis of our science--but our only claim
is that it is the best hypothesis we have yet.

II. THE FORMAL UNIVERSE AND ITS DESCRIPTION LANGUAGE

A. Basic System Representations

A system representation (henceforth abbreviated SR) has
three parts: (1) a set of process states, (2) an alphabet, and
(3) a set of productions. Each process state is a character
string, and the set of them represents the observable state of
the system--the set of process states is the only changeable part
of an SR. The alphabet specifies the set of characters which
can be matched by a variable in a pattern. The productions are
rules by which the primitive automaton will transform the process
states. Thus the overall appearance of an SR is:

{o: <process state set> y: <alphabet> m: <production set>}

It may be worth noting that all the special characters we use,
e.g., "{" and "g:", are arbitrary choices. A more formal treat-
ment might use a vocabulary of abstract terminal symbols and then
define our characters as print equivalents. As long as we under-
stand that we can do this, there seems to be no reason for actu-
ally doing it.

The process states (separated by "and") which are written
in the SR form the initial process state set, also called the
o-set or just o. Once the system goes into execution, o may
never again be the same as the initial set. The null string is
a valid process state, and is always recognized by context. For
instance,

{o: START and x:

shows a o with two process states, "START" and the null string.
If "g:" ds immediately followed by "x:", o© consists of just
the null string; we know that an empty initial o-set was not

10

intended because (as we shall see) an SR with an empty o-set has
halted forever.

The alphabet is just a string of characters, with no delim-
iters between them. Characters can be used in a process state
without appearing in the alphabet.

The productions in the production set, or m, are separated

or

by A simple production might have the form:

a9 $ a; $ a; by 5, $, by

where the a's and b's stand for literal strings. Each "$"

in the antecedent (the part to the left of "»") is a pattern
which matches the null string or any string consisting only of
characters in the alphabet. Each literal string in the antecedent
is a pattern which matches only itself. Each "$i” in the con-
sequent (the part to the right of "“»") represents the string
which was matched by the ith "$" din the antecedent. There are
no restrictions on the number or sequence of variables or literal
strings in antecedents or consequents.

Since o, m, and the alphabet are sets, the order in which
their elements are given is irrelevant. SR's which differ only
in the ordering of set elements are formally equivalent.

The finite interval of time between two adjacent time spans
that the system is in a discrete, observable state, is called a
system step, and it is during this time that the primitive automaton
transforms o . Thus it produces a sequence of o-sets or system
states. The meaning of a production is this: For every different
way in which the antecedent can match a member of the o-set with
which the system step begins, a process state goes into the next
0. It is formed according to the consequent, with literal strings
copied and "$."'s replaced by the substrings matched by the
corresponding "$" . Each o contains only those process states

11

formed from the application of productions on the preceding system
step. Otherwise a process state, once in the set, would have to
stay there forever. If o becomes empty, it is not possible that
the system could ever change state again (how could a production
be applied, with nothing for its antecedent to match?) and so it
halts.

It is very important that, during a system step, the results
are put in a buffer called o' ; at the end of the step o' be-
comes the new o . This means that there is no interaction between

the results being generated and the o they are being generated

from: all productions are applied simultaneously to all the pro-
cess states in o that their antecedents can match in some way,

but the system state does not change until the end of the step.

A flowchart (Figure 1.) may clarify all this.

BEGIN
SYSTEM
STEP

no

.
,//is theré\\\\

yes

from C(m)

no

////;7<::\\i\new way . o' « 0' u consequent
to apply P 7 generated
remove P

m JzEIi;; //

Figure 1.

12

This flowchart represents an algorithm for simulating what it

is not possible for any conventional computer to do, i.e., apply
all productions in all ways simultaneously. It is possible to

do the computation sequentially and get the same result simply
because o' is kept strictly separate from o. At the beginning
of a step o' s initialized to the empty set (denoted by "@")
and a consumable copy of m, called C(m), is made. "Remove

P from C(m)" indicates the random selection of a production
from C(m) ; next there is a Toop in which P 1is matched to the
process states in o in all possible ways. After leaving this
Toop we go back to test if C(m) is exhausted, which would mean
that all productions have been tried. If they have not, we select
another. If they have, we check for a halting condition, update
o, and end the step.

As a simple example we have:

{o: STATEO and THIS-IS-SYSTEM-NUMBER-1
x: ABCDEFGHIJKLMNOPWRSTUVWXYZ
T

$0 > $;1 or
$1+$,0)

A11 that this system does is keep track of whether it has gone
through an even or odd number of system steps, as represented by
a 0 or 1 appended to the "STATE" process state. At the end of
the first system step, o will have only "STATET" in it, since
the other process state cannot match any antecedent ($ cannot
match a string with "-" in it); thereafter o will alternate
between "STATEQ" and "STATET".

Now we can explain some additional features. In the ante-
cedent, a character with a bar over it, e.g.; A", is a pattern
that matches one character different from the given character.
This could be just a shorthand for a great number of slightly dif-

13

fering antecedents, but we want the ability to recognize a non-

match built into the primitive automaton, for the sake of efficiency.
In the consequent, each "not-character" is treated as a different
kind of pattern, so that “Z}” calls for the use of the character
that matched the ith occurrence of the particular pattern "A",

and not just any "not-character" pattern. Another such convenience
is that a "$" 1in the antecedent may have a subscript--indicating
the maximum length of the character string this pattern can match.
These subscripts have no effect on indexing in the consequent.

Most important of all is that a production can have one or
more antecedents (separated by "and"). This allows interaction
between processes and a much more powerful, flexible modeling of
real systems than would otherwise be possible. A production is
used to generate a consequent only when all its antecedents match
process states in o (they could all match the same one, of
course). In a multiple-antecedent production, indexing in the
consequent refers to the patterns in all the antecedents in left-
to-right order:

a, $ 2a; and a, T a; $ +-_-_T3 Tz $

thus we have drawn the lines to show correspondence in variables
between antecedents and consequent. Null strings are valid ante-
cedents or consequents; once again, they are recognized by context.

14

B. Inter-System Communication

A system in isolation is not good enough for us. We want to
observe it, we want to make it interact with other systems. For
these purposes a message facility was designed.

The collection of all existing systems (in the frame of
reference of each user of ABSTRACT) is called the system complex.
Each system in the complex runs on its own time scale and is
completely asynchronous with respect to all other systems in the
complex--it is never possible to make any assumptions about the
relative rates of any two systems. The system designer must al-
ways keep in mind, when he is planning inter-system communication,
the indeterminacy of timing to be contended with; the message
facility, however, is sufficient for him to enforce any coopera-
tion that is necessary.

A production may have the form
<antecedents> -+ <consequent> - <consequent>

where the first consequent is a pattern for the generation of a
message, and the second consequent is a pattern for the generation
of the name of the channel on which it is to be sent. During the
system step, the (channel name, message) pairs generated are put
in a buffer called B dinstead of in o'.

At the end of a system step, the primitive automaton gathers
all the pairs in B which have the same channel name into sets,
so that we now have (channel name, message set) pairs. Each sys-
tem has a message-receiving buffer called o¢". The pairs are now
transmitted to the o"-sets of every system in the complex (in-
cluding the o¢" of the transmitting system), and B 1is reset to
@. This is how messages are sent, once every system step.

The actual transmission of messages must be regarded as a
process with some unknown duration. It can also be different

15

for each o¢" to which messages are transmitted. The only certainty
is that messages a system sends to itself arrive instantaneously.
Therefore, even if we observed a complex of systems relative to a
global clock, we could not make any assumptions about the arrival
times of messages sent at global time t at the various o"'s,
except that each arrival time would be some number a >t on the
global clock (and would be equal to t at the sending system).

Each system also accepts its messages once every system step--
in fact, accepting messages is the very last thing that the primitive
automaton does before completing a system step. This operation is
called updating ¢ from ¢" , because the messages will change the
contents of o. First, a consumable copy of o¢" 1is made, called
C(o") , and the buffer is set to @ so that it can begin receiving
messages afresh. The seizure of the contents of ¢" 1is defined to
take place at one instant in time, so that o¢" is never unavailable
to receive messages. This is not unreasonable, since a real imple-
mentation could produce the same logical effect, and it is necessary
to prevent message loss. Thus each C(¢") contains all the messages
that were received by this system between this seizure of ¢" and
the preceding one--with an important exception.

If a set of messages is received under a certain channel name,
and ¢" already contains a set of messages sent on that channel,
then the previous set of messages is over-written and therefore
disappears. This makes it possible to model real-time computations.
We assume that there is a conflict-resolver in the mechanism of
each o", so that it is always clear which of the two message sets
arrived first.

Having made C(¢"), the primitive automaton updates o as
follows: 1if a channel name in C{(c") matches a process state
in o exactly, then that process state is replaced by the set of
messages associated with the channel name. Messages sent on
channels that do not appear in o are discarded. To carry out

16

this updating, we use an algorithm that flags the original members
of o. Then the channel names can be compared to the process
states sequentially, instead of simultaneously, without any risk
of confusing a newly-accepted message with an original process
state. This is shown on the flowchart of the primitive automaton
in Section II.E.

It may seem strange to accept messages at the end of a sys-
tem step instead of at the beginning. Consider, however, a system
which sends a message to another system eliciting a response, and
at the same time sends itself a message which is the channel on
which the response is to be received. If the other system is very
quick, and sends the response before the originating system begins
its next step, and if the originating system accepts its messages
just before starting a step, then the message to itself will be
accepted at the same time as the response (in the same C(c")).
Since the channel to receive the response will not be in o, the
response will be lost. In other words, systems accept messages
at the end of their steps so that they can communicate to them-
selves "instantaneously" or "faster than any other system."

We mentioned that the message facility could be used to
observe a system. As an example of what was meant, our implementa-
tion of the primitive automaton includes in every system complex
two informally defined systems, READS and PRINTS, to serve as
interfaces between formally defined systems and the environment.

A message sent on the channel PRINT is accepted by PRINTS and
printed. A message sent on the channel READ is accepted by READS,
which reads a message from the input medium, and sends it out on
the channel supplied in the message it was sent.

17

C. Restricted Processors

We consider the concept of a system step to be an important
one, because it is the basic measure of time in a system, and ought
to be used to create optimum patterns of synchronization and para-
1lelism between systems. To do this, however, it is necessary to
provide for system steps of arbitrary complexity. For this reason
we introduce restricted processors, which are special invariant
systems residing in antecedents as patterns to be matched, and which
can be used to perform computational details where they will not
be observable outside the system. They are also useful for writing
incomplete SR's (an algorithm buried in an RPR can be written Tater)
so that the designer's tasks can be factored conveniently.

A restricted processor representation (abbreviated RPR) ap-
pears in an antecedent, and looks exactly Tlike an SR except that,
instead of an initial set of process states, it has a single, fixed
pattern. This is why we say than an RPR is an invariant system.

When the production containing an RPR is being applied to a
process state, the pattern of the RPR functions almost exactly as
it would if it were just part of the antecedent, with no RPR at-
tached (except that it cannot usually contain RPR's itself). In-
dexing of variables in the consequents is not affected by the fact
that the pattern segment is in an RPR. The only difference is that
the alphabet used to determine which characters a variable can
match is that of the RPR rather than that of the SR.

In fact, one is free to attach any alphabet to any variable
in an antecedent. The default alphabet is that of the immediately
surrounding SR or RPR, but if that is not satisfactory, one can
change it by surrounding a particular variable with an RPR that
has no productions:

. XYZ {$ x: ABC m:} XYZ » ..

18

So that the same thing can be done to variables in RPR patterns,
we allow RPR's with no productions to appear in patterns.

Between the time that an antecedent containing an RPR matches
a process state, and the time that the consequents of the match
are formed, the RPR is executed. This "minor cycle" of the primi-
tive automaton is a whole computation, which may require many steps,
embedded within the step of the SR--and because it is embedded, its
steps are not directly observable outside the SR. An RPR cannot
receive messages, and although it can send them, all messages gen-
erated by the RPR are put in 8 of the SR, and not transmitted
until the end of the SR's system step.

Now we will describe the execution of an RPR. First the
substring of the process state which matched the RPR's pattern is
used to create an initial o with a single member. Then the pri-
mitive automaton begins to compute successive steps. There are two
main differences between the step-by-step computation of an RPR
and an SR: (1) all members of the o of an RPR must match its
pattern, and (2) we believe that when an RPR generates a process
state that matches the RPR pattern but no antecedents in the RPR,
it is meant as a legitimate result of the RPR, and so it will be
saved (in contrast to a process state of an SR, which always dis-
appears in the time of one system step if there is no antecedent
that matches it).

What happens when a consequent generates a process state that
doesn't match the pattern? This is one of the two ways that an RPR
can halt--the other is by having an empty o', just like an SR.
Remember that each RPR execution should halt, or the surrounding
SR will have an infinitely long system step (bad design!), and so
this generation of a maverick process state is likely to prove
useful. If it happens, o 1is updated from o' minus any process
states that don't match the pattern, and o is returned as part
of the result set of the RPR.

19

To find and save all RPR results that are generated before the

RPR halts, we must flag each process state in o at the beginning
of each RPR step. When a process state is used in the successful
application of a production (or even when it matches an antecedent
of a multiple-antecedent production, but the production is not ap-
plied because the other antecedents cannot find matches), its flag
is removed, so that at the end of the step all those process states
that are still flagged must be saved. We have a buffer called =

to hold them. The contents of Tt are included in the result set
returned when the RPR halts.

When the consequents of the production containing the RPR are
generated, a different consequent is formed for each result of the
RPR, i.e., for each distinct correspondence of variables in the
consequent to substrings in RPR results. The value of a consequent
variable which refers to an antecedent variable in an RPR pattern,
is determined by the match between the RPR pattern and the RPR result
(which may be quite different from the match between the RPR pattern
and the initial o of the RPR). If an RPR has an empty result set,
no consequents to the production are generated, even if its consequent
pattern has no variables.

AN RPR can appear in the antecedent of a production in an RPR,
and this nesting can go on to any depth. Obviously, execution of
the various RPR's will be nested accordingly.

It only remains to mention that an antecedent can contain
any number of RPR's. The consequents generated from such an ante-
cedent must use every possible combination of results from the
several result sets. For example, if a production

* <RPR]> * <RPR2> * $] $2
matches a process state (the pattern of each RPR is "$") and

produces the result set {A,B} for RPR] and {X,Y} for RPRZ,
the consequents generated will be {AX, AY, BX, BY}.

20

A typical situation where one might want to use an RPR is the
incrementation of a counter. This little bit of arithmetic is
obviously subordinate to the process which contains it, and yet it
might take several steps, during which the whole system could be
needlessly delayed. The following RPR will increment a binary
number by 1 each time it is matched in the application of a pro-
duction:

(. §x 011 §0. 5.5 185, or
ST1.$+$8 .08, or
].$’*.]O$]}

Note that the "." 1is a marker necessary in the computation. When
the RPR pattern is first matched the binary number to be incre-
mented will be on the left of the ".", and when incrementation
s complete it will be on the right (so no more antecedents can
match, and the RPR halts). Also note that the A is used as a
pattern which must match one character, hence not the null string.
If we abbreviate this RPR by <inc>, we can see how it might fit
into a clock system:

fo: 0. x:01
m: $. > time or

<inc> - $2 .+~ time}

This system keeps a binary number which it increments once each
time it takes a system step. Any system in the complex interested
in knowing this value need only put the process state “time" in
its o-set.

21

D. A Grammar for System Representations

Now that we have presented all elements of the description
language for SR's, we give for reference an almost-context-free
grammar of it. The only reason it is not really context-free is
that the language generated is not completely linear--subscripts
and bars over not-characters have been incorporated.

22

<SR>

<process state set>

<process state>

<char>
<processor>

<alphabet>

<production set>

<production>

<antecedents>

<ante>

<antechar>

<variable>

<subscript>

<non-zero digit>
<digit>
<RPR>

{o: <process state set> <processor>}

<process state>
<process state set> and <process state>

<process state> <char>
any non-special character

X: <alphabet> m: <production set>

<alphabet> <char>

<production>

<production set> or <production>
<antecedents> -+ <consequent>

<antecedents> + <consequent> - <consequent>

<ante>
<antecedents> and <ante>

<ante> <antechar>
<char>

<variable>

<RPR>

$

$ <subscript>
<char>

<non-zero digit>
<subscript> <digit>

1lalslalslelslgls

olailalslalsleglslgly
{<pattern> <processor>}

<pattern>

<patchar>

<nu11-RPR>
<consequent>

<conschar>

<pattern> <patchar>

<char>

<variable>

<nul1-RPR>

{<variable> x: <alphabet> m:}

<consequent> <conschar>
<char>

$ <subscript>

<char> <subscript>

23

24

E. A Flowchart of the Primitive Automaton

We present a flowchart (Figure 2.) summarizing the actions of
the primitive automaton while computing a system step on an SR.
Most of the chart should be satisfactorily explained by the pre-
vious text, but we will make some comments on it here.

There are several references to an object called STACK.
Because of the necessity for nesting (to an arbitrary depth) sys-
tem steps of RPR's within this step of the SR, the algorithm will
be entered recursively. The variables o, o', x, 7™, C(m),
P, B, Bp (an auxiliary message buffer used to collect (channel
name, message) pairs generated by RPR's while RPR execution is
still going on), T, and SR (a Boolean variable: true if com-
putation on the SR is going on, false if an RPR is being executed)
are local to each call on the algorithm, and must therefore be
kept in a stack. "Push STACK" means "put a new entry, including
all the local variables, on top of the stack," and "pop STACK"

means to remove the entire top entry.

It is assumed that new entries on the stack are initialized
to @#. o, x, and 7 are stack entries because they can be
superseded by the o, x, and w of an RPR, but they are also
global characterizations of the SR which must be saved between
system steps. For this reason we initialize the stack entries to
the saved values on entering the algorithm, and save the values on
exit. If exit from the algorithm occurs via "STOP," these values
are not saved because there will be no further use for them. S
and ¢" are global variables which continue to belong to the SR
both during and between system steps.

The "remove" primitive, as in "remove P from C(w) ," means
to select a production from C(w) at random, and assign it to
the temporary variable P. "Remove S from C(g") works the
same way. When the "yes" branch is taken from "is there a new

25

way to apply P to o ?", we assume that the patterns in the
antecedents of P have all been bound to matched substrings of
process states.

The "transmit" primitive gathers (channel name, message)
pairs into message sets before sending them, as previously described.

Remember that flags are just distinguishing marks on process
states which can be added or erased at any time--they have no sig-
nificance outside the portion of the algorithm they facilitate.

26

es
y > pop STOP
STACK
push STACK ; no
initialize O, % ,7; save O
SR + TRUE X, and T3 ¢ «a'
pop seize @" ; C{o") +o"
STACK o" «@; free "
flag all
clm) +m elements of O
i
yes 'Y\ ves erase all flags <yes
Clw) = @2 SR = TRUE? on elements of ©
no no
g P no ny .
erase flags remove remove S from Ccbt")
on any from C{w)
elements of
¢ that no
matched an unflagged
antecedents element
of P fleg messages in

erase flags
on elements of}
0 being used

there an

unexecuted

RPR in
P 5

generaté all

0 + substring
matched by
RPR pattern

consequents
N\
o' + o' u {process

states generated}

B+BuB
{{channel name,
messege) pairs
generated}

transmit B to all o

<

%

S ; replace matched
element of ¢ with
then

T + 1t v {all elements
of o that sre flagged}

do

all elements
of o match

gxo!

pattern

7 :
yes
push STACK; 1o
i initialize O, X,
T3 SR + FALSE
o+1
g + (o' - {all elements
of ¢ that did not match
save O as result &—| pattern}) u T
set; BP (top~1)
pop .
STACK By (top-1) u
B (top)

Figure 2.

27

ITI. EXAMPLES

A. A System Complex

We will illustrate how the formal definition universe can be
used to describe a complex of systems which must synchronize some
of their actions. Our complex has three systems. One is a parser
for the simple precedence expression grammar

E = D

D ::= D+U|U
U = T

T = T*F|F
Fowoe= (E) | T,

This parser is supposed to be able to make each reduction within
nine units of time, where the units are defined as cycles of a
clock system. There is a third system which sends an initiating
signal to the parser and the clock simultaneously, and monitors
them to decide who won the race.

We hope that this example will point out that processes at all
levels of abstraction are easily described and coordinated. We
are presenting a binary clock (essentially a bit manipulator), a
parser, and a high-level control process, all in the same notation.
Here is the simple precedence parser:

28

{o: ready and F(I*T+1)*T*I*(1+1) 4

xi ()* F 4 DEFTUI
m: parse and § > A §, or [1]
5078 [RPRY1} >y By 8 %, or [2]
o055 425, or [3]
{$588>[RPR} §~ 8, 88,8%,>3%30r [4]
$16 $ «$ = [RPR;I} § ~ 5,8, %5, o [5]
:$ > parsing step completed » receive or [6]
i$ > 8, or (7]
:$ - ready or [8]
ready - ready or [9]
ready and § - $, } [10]

The numbers in [] are just line numbers, and not part of the SR.
[RPRi] stands for the processor part of an RPR, which will be given
later, for readability. We give the initial state of the parser as
it would be just before starting on a new reduction: there is the
process state "ready" and the string to be parsed (the delimiters
are required by the parsing algorithm, not our notation; also, the
restriction to one-character non-terminals in the string to be
parsed is made only to keep the example short). When the control
system sends the message "parse” on the "ready" channel, production
[1] can be applied. Until then, [9] and [10] will cause the system
to preserve its state as it cycles, waiting.

Once the string has a "A" marker in it, the parsing pro-
duction [2] can be applied. The whole RPR] is:

ATx ()*+F{DEFTUI>
m$Da) S8, DA>) S, or)

29

The RPR is essentially a table of the relation ©: the production
shown belongs because D®), and the RPR contains a similar pro-
duction for every pair of symbols i, j such that i® j. The
purpose of production [2] is to move the scan pointer "A" to the
right, looking for the leftmost * relationship between two char-
acters, which will define the end of the handle. If the production
is applied when the "A" s between an i and Jj which do not
have i< j, the RPR does nothing, and the production moves the
scan pointer one character to the right. If the scan pointer has
reached the right place, however, the RPR will introduct the marker
">'" at the end of the handle, and the resultant consequent will
have the scan pointer just to the right of the '"™". Production
[3] straightens that situation out by moving "A" to the left of
“>" . where it can begin to move leftward looking for the other end
of the handle, via production [4].

In production [4], RPR2 is:

FA>x ()*+FDEFTUI <
x> $(AD$>~ $] (<AD $2 Soor ...}

It works much the same as production [2]. RPR, has a production
for every pair of symbols i, j such that i <j, and if the
scan pointer is between any such pair, the resulting consequent
will have the form "$ A < handle = $". Otherwise the pointer
will just move one character to the Teft.

Production [5] actually makes the reduction. RPR3 is:

{A$< $> x2()*+F 4 DEFTUI
m A< T*Fo>AT<e T*Fs> or}

with one production for every reduction rule of the grammar. The
string that the handle reduces to is placed between the "A" and
the "<"; the consequent generated has only relevant parts--markers

30

and the old handle disappear. The ":" s the signal that the
reduction has been made, so a response is sent to the control sys-
tem. Then the parser goes into a waiting state until the next
“parse" command comes.

The clock system is similar to the one we showed before, ex-
cept that it overflows on the eighth cycle (after one initialization
cycle) and sends a message to the control system. It, like the
parser, is initiated by the command "parse" coming in on the
"ready" channel:

{o: ready x: 01

T: ready -+ ready or
parse ~ 0 0 0. or
{$.8 x201
m: $0. %~ . $] 1 $2 or
51.§-% .08, or
.000 -+ overflow } - $2. or
111. » timeout + receive or

111. -+ ready}

Notice that the third production in the RPR generates a consequent
not matching the pattern on the same system step that the clock
starts at "111." and sends the "timeout" message. Because the
result set of the RPR is empty, no consequents are generated.

This clears the system of the clock register until it gets another
“parse" command.

Finally we come to the control system:

{o: startparse yx:
startparse » parse - ready

=N

startparse + receive
receive - receive

S 131313

timeout > parse failed > to whom it may concern

31

parsing step completed -+ receive
parsing step completed ~ wait for clock
receive and wait for clock » wait for clock

ooloo
S s s s

timeout and wait for clock - parse -+ ready
timeout and wait for clock - receive}

amt———

The system sends out the "parse" command, then puts itself in a
receiving state and cycles until another system responds. The
resolution time of this system, in judging the outcome of races,
is its own system step time. Since this would be so regardless
of whether the competing systems reported on the same channel or
not (the system only looks at messages once every system step),
here the competing systems use the same channel. This means that
if both respond during the same step of the control system, the
later one will actually win, by over-writing the other message--but
if time units smaller than the system's resolution time were im-
portant to the designer, he should have made the resolution time
smaller.

If the "timeout" message wins, a message that the parse failed
will be broadcast. At the end of the step, o' is empty, and the
system dies. If the parse succeeded, however, another reduction
is to be initiated. The control system waits for the response from
the clock (otherwise a stray "timeout" message, generated after
the parser finished, could ruin the next parsing step), then sends
the "parse" command and again goes into the "receive" state.

32

B. Comments on "Programming"

One useful operation that may seem difficult to express in
the formal definition system is comparison. For instance, suppose
we had a process state "X <integer]> Y <1nteger2> 7" and we
wanted something to happen if and only if the two integers were the
same. Assuming the digits are in the alphabet, and that the action
we want is to erase the integers, this can be accomplished by:

XYZXYZ>X $1 Y $1 Z

The message will not be accepted unless its channel name is present,
which will be so only if the integers are equal.

Perhaps it does not seem right that one should need to know
such tricks, when we claim that our formal definition universe is
so abstract and general. Clearly the fact that some transformations
are easier to make than others is the price you have to pay for
having any representation at all. If we have chosen our representa-
tion well, the transformations that are hard to make will be the
ones that are inherently complex from some meaningful point of view,
and this seems to be the case.

Finally, it may seem that designing a large system in this
unfamiliar notation would be hopeless. We hope we will convince
you, in the next section, that it would be worthwhile. As to
any programming difficulties, a design tool like this 1is exactly
as much convenient as there is effort put into making it so. The
addition of a macro processor to the ABSTRACT implementation, for
instance, would be a tremendous help to the user, as would a
library of RPR's. After enough features of that kind are added,
any programming system becomes a pleasure to use.

33

IV. RESULTS, PRESENT AND PROMISED

A. Methods of Proving Assertions

We believe that this formal definition universe affords Tim-
itless possibilities for studying system structures. We will at-
tempt to demonstrate this by presenting some of the methods which
can be used to formulate and prove assertions about systems. The
remainder of the paper will be a brief outline of current results
and ideas for future research, indicating how we hope to apply the
results to problems of system verification, system equivalence,
implementation efficiency, and the iterative design process.

Syntactic analysis of an SR is only the first source of feed-
back to its designer, but we can offer him a good deal of informa-
tion from it. The same type of syntax checking, formatting, and
generation of diagnostics that is performed by any good compiler
should be carried out; however, the simplicity of representation
in an SR makes it possible to discover much useful execution in-
formation besides. For instance, by examining the pattern of an
RPR and all the consequents inside it, we can decide whether the
RPR can ever generate a process state which does not match the
pattern. Another example, particularly important, is described
in IV.B.1.

The next thing we can do with a complex of SR's is simulate
it. This is just normal testing, using sets of trial data, but
when the design is expressed in the formal universe it can be
tested before it is implemented--and at many levels of abstraction!

Exhaustive testing of any system design, implemented in any
form, is seldom a finite procedure. Thus our most powerful tool
for proving assertions about SR's is the one that gives us finite
characterizations of the potentially infinite computations of an
SR or SR complex.

34

The set of strings matched by any antecedent is a regular
language, as is the set of strings which can be generated from any
consequent. The regular language is an excellent characterization
of a set of process states, finite or infinite--its descriptive
power can be impressive. Most important, though, is that regular
languages are the largest class of languages for which there are
algorithms for determining the equality, containment, and emptiness
of languages, or for performing such operations as union, inter-
section, and difference on pairs of languages.

Because we have these algorithms, our assertions can be
proved without any necessity for theorem provers based on un-
bounded search trees. It is true that operations on general
regular expressions can grow exponentially, which could be worse
than potential unboundedness, but the regular expressions one
derives from an antecedent or consequent are greatly restricted.
Computations on them are of reasonable size.

The essence of the testing problem is that a computation of
a non-trivial system or complex is likely to consist of an infinite
sequence of process state sets, a form of description not amenable
to proof. If we can cast an assertion about the computation in
the form of a statement about the regular languages the process
states belong to, however, proof or disproof of the assertion will
be algorithmic. It seems that the class of assertions that can be
expressed in this way is very rich.

For the computation of such proofs, we have the R-model in-
terpreter or simulator (as opposed to the F, or finite, model
interpreter which has been described up to now). The R-model
interpreter executes SR's which have regular languages instead of
strings as their representation of state information. The result
of the application of a production to a regular language L] is
another regular language L2 containing all the strings which would

35

have been generated as consequents by the F-model interpreter
applying that production if it were given all the strings in L1
to start with. The R-model interpreter is described in detail,
and its validity is proved, in Johnson's thesis [JO].

36

B. Some Early Results

1. The Antecedent Language Assertion

Examining the text of an SR provides a basic assertion about
the control flow of processes in the system. Since each antece-
dent and consequent has a corresponding regular language, we can
compute the intersections of all pairs of antecedent languages
and consequent languages. A production P] can apply to a process
state generated by the consequent of production P2 only if the in-
tersection of the antecedent language of P] énd the consequent
language of P2 is not empty.

The assertion for a particular SR can be expressed as a
directed graph in which each node is a regular language. An arc
from node L] to node L2 indicates that there is a production with
an antecedent that can match a string in L] and a consequent that
can produce a string in LZ' The assertion is "sequence-dependent"”
because it characterizes the sequences in which process states can
appear during computation.

We are using this assertion to optimize F-model simulation.
An analysis of the SR is carried out before execution begins, so
that the number of unsuccessful attempts to match antecedents to
process states can be reduced. This is a good example of the
expected usefulness of such assertions. In the typical SR this
optimization will eliminate most unsuccessful match attempts,
leading us, hopefully, toward a simulation time which is fairly
independent of the size of the SR. Also, since channel names and
messages have their own regular languages, we can apply the same
technique to inter-system communication.

2. The System State Language

A system designer may be interested in properties of the
process state lTanguages which hold throughout the entire history

37

of the processes. A typical instance would be an assertion (a
sequence-independent one) that, regardless of any transformations
under productions, the process states are always contained in a
given regular language which we call a system state language.

With the R-model interpreter, this assertion is proved about
an isolated system very simply: we initialize the SR's o-set to
the asserted regular language, and apply the R-model interpreter
for one step. Then we check to see if the resulting regular
language is a sublanguage of the asserted language. If it is,
we have proved the assertion, because no number of system steps
will generate a process state outside the asserted language--the
R-model interpreter is designed to guarantee this.

If the resulting language is not a sublanguage of the as-
serted language, then there are two possibilities: either the
assertion is false, or there are some strings in the asserted
language which cannot exist in any process state, but which
caused the test to fail. In either case, the regular language
chosen is lacking in some respects, and needs adjustment. Of
course, if the assertion is false because the system can generate
some process states that the designer did not expect and does not
want, then the trial will have served as a valuable debugging
aid.

3. The State Graph of a System Complex

We would 1like to extend the concept of a state Tanguage--now
understood as a regular language containing all the process states
in a system at one instant--to an asynchronous complex of com-
municating systems. The state of a complex of n systems could
be represented by a vector of n regular languages such that the
ith component was a state language for the ith system, containing
its o-set at the instant described by the vector.

38

Assume that we have a finite set of state languages for
each system such that each possible state of the system is in one
of these state languages, and that the amount of time that the
state of any system is undefined (while o 1is replaced by o'
as updated from o" s unobservably small. Then the state of
the complex, at any instant, can be represented by one of these
vectors, with all the system state languages in it selected from
the finite sets mentioned above. Unless each finite set has only
one member, there is more than one possible vector; they can be
arranged as the nodes of a state graph whose arcs indicate suc-
cessor relationships. The usefulness of this approach is suggested
by the work of Gilbert and Chandler [GC], who use a state graph
to analyze co-operating sequential processes.

Difficulties arise, in computing the successor relation,
because the next state of the complex is dependent on which sys-
tem completes a step next, and on the (unknown) transmission time
of each message that is sent. This intrinsic indeterminacy is
troublesome, but it can be overcome by associating with each state
vector a vector of o'''-sets, containing, for each system, all
the messages sent to it minus the messages that have "arrived"
by being received into ¢" . The details are worked out in [JO].

The resultant graph is called rate-dependent because it con-
tains information about the relative rates of the systems in the
complex. To specify the relative rates of all the systems and the
transmission times of all the messages is to select a subgraph
describing the action of the complex under those conditions. If
only certain subgraphs are acceptable to the designer, he can
formulate his conditions for correct functioning of the complex
as a rate-dependent assertion about it, based on what he has seen
in the state graph.

39

C. Finite Process Structures and System State Graphs

1. A Classification of Graphs

The directed graph whose nodes represent regular languages
turns out to be an important tool for organizing information given
by the R-model interpreter. Such a graph, made by analyzing an
isolated SR or a complex of SR's, is in itself an assertion about
the system--and a model of it.

There are a number of ways of forming such graphs; presumably
each will prove useful in the study of some system characteristic
or another. A major division is between graphs called finite
process structures and system state graphs.

A finite process structure of an isolated SR consists of a
collection of nodes representing different regular languages, such
that the union of these languages contains the system state lan-
guage. A directed arc from node L] to L2 means that there is a
single-antecedent production in the SR whose antecedent can match
a string in L], and when it does, the consequent generated will
belong to L2. Multiple-antecedent productions require interaction
between processes. An n-antecedent production thus generates n-
arcs in the graph: an n-arc has n labeled components, one for
each antecedent, each component originating at a node-language
the antecedent could match, and leading to the node-Tanguage of
the consequent. The components of an n-arc share a label unique
to the arc. The general interpretation of an arc in the finite
process structure of an SR is that, if a o contains a process
state in each of the arc's origin nodes, the succeeding o can
have process states contained in its destination node.

If a finite process structure was derived using a particular
regular language as the initial state of the SR, then it is initial-
state-dependent; an initial-state-independent process structure

40

would be the result of considering all strings to be possible in-
itial process states. Most process structure graphs will be sequence-
dependent, meaning that information about sequencing of process

states is present, but a graph with only one node can be called
sequence-independent. It is worth looking at because the language

of the single node is a state language of the system.

With a Tittle attention to detail, it is possible to fuse
process structures of communicating SR's into one finite process
structure, so that the processes which proceed across SR boundaries
are represented in a uniform manner with those that do not. The
details of the fusion procedure determine whether the resulting
graph is rate-dependent or independent, i.e., contains or does not
contain information about the relative rates of the systems.

A system state graph can represent exactly the same informa-
tion as a finite process structure, but the information is organized
by a scheme orthogonal to that of the process structure. Each node
of the system state graph for an isolated SR is a language contain-
ing all of o at some possible point in the 1ife of the system.
Thus the system state graph is a finite automaton representing the
succession of states that the SR can pass through; it reduces the
SR to a finite automaton by grouping a possibly infinite number of
real states into a finite number of regular languages. To find a
language containing all of some possible o 1in a finite process
structure, we would have had to take the union of the languages of
a scattered collection of nodes.

System state graphs fall into categories much as finite pro-
cess structures do. The graphs of individual communicating SR's
can also be fused into a single state graph, but in this case it
seems more useful to make the nodes represent vectors of state lan-
guages, one for each SR in the complex. The rate-dependent form
of these graphs has occupied our attention up to now: the current
version is the state graph described in IV.B.3.

41

2. The Concept of Resolution

The following discussion applies to any particular kind of
finite process structure or any particular kind of system state
graph; for convenience we will use the general term "process
structure."”

The first thing to notice about process structures is that
any non-trivial system can be described by an infinite number of
different ones. When any specific property is being studied, how-
ever, only a finite subcollection will be of interest--those outside
the subcollection will differ from those in it only in ways that
do not provide any information about the property (or in ways that
provide additional information by singling out, one by one, an in-
finite sequence of special cases).

Within the finite subcollection, process structures vary in
their degree of resolution; they range from the graph of least
resolution, which has only one node (representing a system state
language), to (possibly) a canonical maximum-resolution process
structure, which has enough nodes and enough detail to convey all
the information about this property in the system which is capable
of finite characterization. To explore the variety of process
structures, we define resolution operators that transform process
structures themselves. An operator for raising the resolution of
a finite process structure defines a procedure for "splitting"
some nodes of the process structure, i.e., making new nodes by
partitioning the language of the old node, and re-computing the
arcs to make a new process structure. This is done in such a way
that the new process structure offers some more detailed information
about the property under study than the old one did. An operator
to Tower resolution does just the opposite: node-languages are
fused to form a simpler, less detailed, finite process structure.

42

If we group these operators into pairs (one lowering and one
raising in each pair, each the inverse of the other) we will find
that some pairs can be used to define a partial order on the set
of process structures describing an SR or SR complex, and at least
one pair that is known can be used to define a lattice. Thus we
have a scheme for organizing all finite characterizations of the
system which give any information about the property we wish to
study.

It is easy to see how useful this could be. Canonical process
structures (minimum-resolution, maximum-resolution, and perhaps
others, for example, one in which all parts of the graph are at a
uniform given level of resolution) could be generated simply. MWe
know that there is a graph which describes any part or parts of
the system in any level of detail; the partial or lattice ordering
should make it possible to arrive at any desired one algorithmically.

3. Initial Investigations

Finite process structures can have some properties which would
be extremely valuable in verifying characteristics, detecting flaws,
and evaluating the designs of the systems they model. We want to
study these properties so that we can find the process structures
which have them: these will undoubtedly become the most useful

system characterizations.

The most obvious one is determinism, i.e., whether an arc
in the graph will be followed whenever there is a process state
in each of its origin nodes. Determinism is fundamental to a
number of inquiries, and it may also lead into the area of para-
11elism: we would like to feel free to re-arrange the implementa-
tions of finite process structures (the exact assignment of pro-
cesses to RPR's and SR's) so as to maximize some notion of least
time constraints on a physical implementation, but not all such
re-arrangements preserve the computation that the process structure
was extracted from. A knowledge of deterministic paths through

43

the graph may illuminate the interactions that permit some altera-
tions and forbid others.

Time bounds on processes are absolutely necessary for any
verification of real-time properties. We can identify (loosely)
a process with a path through the graph. Suppose we could prove--
based on the essential simplicity of the matching operation--that
any step (a single arc) can be completed in a bounded time in any
reasonable implementation, as long as the production causing it
contains no RPR's that do not halt. Any path will then take a
bounded amount of time as long as all its steps are bounded, and
the length of the path itself is bounded. A proof that a path is
time-bounded is a strong statement about the real-time capabilities
of the system!

Space being the other fundamentally bounded resource in com-
puter systems, we might also wish to search out steps and paths
that are space-bounded. A space-bounded path is one with only
space-bounded steps (it must also be finite, if we are assuming
that the history of the process is saved). A space-bounded step
is one which requires a provably finite amount of space to complete,
including scratch storage and space for the newly-generated o-set.

At the date of this writing these ideas have not been studied
in detail, but they indicate that the finite process structure is
a very promising research tool. We hope to compute process struc-
tures in the study of sizeable system complexes, which calls for
a remark on the problem of combinatorics--and significant demands
for computer time--we will face. It seems that the combinatoric
problem could be solved if the process structure analysis could be
factored, perhaps by using as system state languages subsets of a
true system state language which leave large parts of the graph
unvisited. A number of such partial analyses, done serially, could
be put together to make the whole process structure, as long as it
could be proved that such a procedure was valid. Another possible

44

approach would be to factor the analysis by hiding computations in
RPR's which the R-model can deal with separately. Eventually we
may discover design principles using which the designer can avoid
such problems entirely--surely the most effective solution.

45

D. Total System Design

The ultimate goal of this research effort is to make the
formal definition universe into a total design tool, one with faci-
lities to aid or automate every aspect of system development. We
are beginning to see how this might be done.

The designer will need to make many F-model simulation runs,
for testing various stages of the design, and many R-model runs,
for computing process structures. This should provide feedback
about what design traits facilitate efficient simulation, easy
computation of process structures, and maximum observation of
provable system characteristics. Considering how valuable all
these things are likely to be to the designer, he would do well
to follow the design constraints that develop from the feedback.
We can also look forward to having sophisticated pre-simulation
processors; these could be used to provide macro facilities or
personalized syntax to the user, to do static program checking
and enforce design constraints, and to analyze and re-arrange SR's
for the optimization of the simulation.

We offer to the designer many ways of representing his design:
process structures, system state graphs, SR complexes completely
or incompletely specified, etc. (the final design step, the imple-
mentation of an SR complex in hardware and software, is beyond
the scope of this research because it is machine-dependent). We
must also offer him the means to pass from any one to any other,
because a design cycle may begin with any representation. Design
is an iterative process, which must proceed at many levels simul-
taneously; our variety of representations, offering a complete
range of resolution and information content, can perhaps provide
him with useful tools at each stage of his work.

Finally, we hope to arrive at some solutions to the problem
of system equivalence. Recognizing equivalence classes of SR com-

46

plexes and process structures is extremely important in itself, as
a means of system verification, but it is also a step toward design
automation. If we knew, for instance, that certain transformations
of process structures yielded equivalent process structures (where
equivalence must be defined, perhaps as "performing the same com-
putations"), then we could describe an equivalence class, closed
under those transformations. If we further understood how such
general criteria as parallelism and redundancy operate to make one
process structure in an equivalence class better than another, we
would be able to take any process structure a designer gave us, and
return to him the equivalent process structure best suited to his
needs! Finding the best complex of SR's to implement a process
structure appears to be a similar problem. Here all the members

of an equivalence class will be implementations of the same process
structure, and the best will be chosen according to some different
criterion, perhaps even efficiency on the F-model interpreter--if
we can establish our claim that this is related to the efficiency

achievable in a physical implementation.

[FH]

[&c]

[J0]

[MI]

[SI]

47

REFERENCES

Fitzwater, D. R., and Hintz, C. A. "A System for the Formal
Definition of Digital Systems." Comp. Sci. Tech. Report
141, University of Wisconsin, Madison, Wisconsin, 1971.

Gilbert, Philip, and Chandler, W. J. "Interference Between
Communicating Parallel Processes." Comm. ACM 15, 6 (June,
1972), 427-437.

Johnson, Robert T. Proving Assertions About the State
Structure of Formally-Defined, Interacting, Digital
Systems. Ph.D. Thesis, University of Wisconsin,
Madison, Wisconsin, 1973.

Minsky, M. Computation: Finite and Infinite Machines.
Prentice-Hall, Englewood Cliffs, N.J., 1967.

Simon, Herbert A. The Sciences of the Artificial. The M.I.T.
Press, Cambridge, Massachusetts, 1969.

BIBLIOGRAPHIC DATA 1. Report No. 2. 3. Recipient's Accession No.

SHEET WIS-CS-184-73
4. Tule and Subtitle 5. Report Date
A FORMAL DEFINITION UNIVERSE FOR COMPLEXES OF June 1973
INTERACTING DIGITAL SYSTEMS 6.
7. Author(s) 8. Performing Organization Rept.
D. R. Fitzwater and Pamela Z. Smith Ne-
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

The University of Wisconsin

Computer Sciences Department 11. Contract/Grant No.
1210 West Dayton Street
Madison, Wisconsin 53704

12. Sponsoring Organization Name and Address 13. Type of Report & Period

Covered

14,

15.

Supplementary Notes

16.

Abstracts

A language is presented for describing any asynchronous complex of interacting
digital systems at any level of abstraction. The resulting representation is a
definition of the complex of systems which is both formal, and effective, meaning
that it is interpretable by a deterministic automaton. Thus it can be used to study
system structures and develop practical design tools.

After the explanation of the formal definition universe, annotated examples
of system representations are given. Their usefulness for proving assertions about
systems is established in an outline of present and future research, with the ulti-
mate goal of providing assistance for the total design process.

17.

Key Words and Document Analysis. 17a. Descriptors

digital systems process structuring
formal systems extensions to Post systems
language semantics debugging aids

asynchronous communication
design automation

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement 19. Security Class (This 21. No. of Pages

Report)
UNCLASSIEIED 49

Available to public 0. Security Class (1his 22. Drice
Page

P‘UN(Z LASSIFIED

FORM NTi5-35 (10-70)

USCOMM-DC 40329-P 71

