WIS-CS-73-181 COMPUTER SCIENCES DEPARTMENT 1210 West Dayton Street Madison, Wisconsin 53706 Received May 2, 1973

BOUNDS FOR ITERATED NORMAL MATRICES*

by

Peter B. Wilson

Technical Report #181

May 1973

^{*}This work was supported by The National Science Foundation under grant numbers GJ-171 and GJ-29986X.

QUARTE MARIE
and the state of t
A M. O CAN, The said MARKATCH COMMISSION OF THE STREET AND ASSESSMENT OF THE SAID OF T

TO SELECTION OF SE
Andrew delicated and the Oracle Williams (Visco Color Street) — -
Co. 1. 1. 1.
Consequence to the Manual Inc.

ABSTRACT

Given a normal matrix A, asymptotic bounds are obtained for $||\underline{\mathbb{A}}^m||_{\infty} \text{ in terms of the spectral radius of A, the number of eigenvalues of A with modulus equal to the spectral radius of A, and the order of A. These results are extended to provide bounds for <math display="block">||\underline{\mathbb{A}}^m||_{\infty} \text{ for all } m \geq 1.$

I. INTRODUCTION

The spectral radius of any n x n matrix $\overset{\wedge}{\mathbb{A}}$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ can be defined by

$$\rho(\underbrace{\mathbb{A}}_{i}) \equiv \max_{1 \leq i \leq n} |\lambda_{i}|,$$

while the ℓ_∞ norm of $\overset{\mathrm{A}}{\sim}$ can be defined by

$$||A||_{\infty} \equiv \max_{1 \leq i \leq n} \sum_{j=1}^{n} |A_{ij}|.$$

In general, $||A||_{\infty}$ can be arbitrarily greater than $\rho(A)$ as is shown by the matrix

$$\mathbf{B} = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}$$

for which $\rho(\underline{B}) = 0$, while $||\underline{B}||_{\infty} = |\alpha|$. Defining ν_{m} , $m \ge 1$, by

(1)
$$v_{\mathrm{m}} = v_{\mathrm{m}}(\widetilde{\mathbb{A}}) = \frac{||\widetilde{\mathbb{A}}^{\mathrm{m}}||_{\infty}}{[\rho(\widetilde{\mathbb{A}})]^{\mathrm{m}}},$$

it is known that both $\sup \nu_m$ and $\nu=\nu(\mbox{\ensuremath{\underline{A}}})=\lim\sup \nu_m$ are finite. In general, no bounds can be placed on ν without specific knowledge of $\mbox{\ensuremath{\underline{A}}}$.

In contrast, a different situation arises for normal matrices—
Those matrices which commute with their adjoint (i.e. $A^*A = AA^*$).

An important property of a normal matrix is that it is unitarily similar to a diagonal matrix. A real symmetric matrix is orthogonally similar to a real diagonal matrix and is the most familiar example of a normal matrix (see [1], Chapter 9). For normal matrices, we will

obtain bounds for ν which depend only on the order of A and the number of eigenvalues of A with modulus equal to $\rho(A)$. Bounds are also obtained for $||A^m||_{\infty}$, $m \ge 1$, which depend only on $\rho(A)$ and the order of A.

This work derived some of its inspiration from Theorem 3.1, p. 65 of [3], which states:

Let $\begin{picture}(20,0)\put(0,0){\end{picture}} \begin{picture}(20,0)\put(0,0){\end{picture}} \begin{picture}($

$$\left|\left|\underset{\sim}{\mathbb{A}}^{m}\right|\right|_{2} \sim \bar{\nu} \begin{pmatrix} m \\ p-1 \end{pmatrix} \left[p(\underline{A})\right]^{m-(p-1)} \quad m \to \infty,$$

where p is the largest order of all diagonal submatrices \underline{J}_r of the Jordon normal form of \underline{A} with $p(\underline{J}_r) = \rho(\underline{A})$, and $\bar{\nu}$ is a positive constant.

The ℓ_2 norm of \mathbb{A} is defined by $\|\mathbb{A}\|_2 = [\rho(\mathbb{A}^*\mathbb{A})]^{1/2}$ and \sim is defined by

<u>Definition 1</u>. $h(m) \sim g(m)$, $m \to \infty$ if and only if $h(m)/g(m) \to 1$ as $m \to \infty$.

For convenience, we also define < by

<u>Definition 2.</u> h(m) \lesssim g(m), m \rightarrow ∞ if and only if there exists a function ϵ (m) such that

$$h(m) \leq g(m) + \in \{m\}$$

and $\epsilon(m) \to 0$ as $m \to \infty$.

The proof of this Theorem depends on the correct observation that, if $J = S^{-1}AS$ is the Jordan normal form of A, then

$$c_{m}^{-1} \| \mathbb{A}^{m} \|_{2} = c_{m}^{-1} \| \mathbb{S} \mathbb{I}^{m} \mathbb{S}^{-1} \|_{2} \sim \| \mathbb{S} \mathbb{M}_{m} \mathbb{S}^{-1} \|_{2};$$

where $c_m = \binom{m}{p-1} \left[\rho(A) \right]^{m-(p-1)}$ and M_m has the number $\left[\lambda_r / \rho(A) \right]^m$ in positions corresponding to the upper right-hand corners of those Jordan blocks J_r of J with $\rho(J_r) = |\lambda_r| = \rho(A)$ which are of maximal order p; and zeros everywhere else. Varga argues that M_m is a constant matrix (independent of m) and puts $\bar{\nu} = \|SMS^{-1}\|_2$. However, this is not always the case. For example, if

This phenomenon depends somewhat on the norm employed. For the ℓ_2 norm, which Varga used, $\bar{\nu}$ still exists for normal matrices, even though $\begin{tabular}{l} M_{\ m} \end{tabular}$ may not be constant. In this case,

$$c_{m} = \left[\rho(\underline{A})\right]^{m} \text{ and}$$

$$c_{m}^{-1} \|A^{m}\|_{2} = c_{m}^{-1} \|\underline{S}\underline{J}^{m}S^{*}\|_{2}$$

$$= c_{m}^{-1} \sqrt{\rho((\underline{J}^{m})^{*}(\underline{J}^{m}))}$$

$$= c_{m}^{-1} \left[\rho(\underline{A})\right]^{m}$$

$$= 1,$$

implying $\bar{\nu}=1$. However, for the ℓ_{∞} norm, $\bar{\nu}$ may not exist, even for normal matrices. The matrix $\underline{A}=\begin{pmatrix} 2 & -1 \\ -1 & -2 \end{pmatrix}$ is such that $\underline{A}^{2m}=5^m$ \underline{I} and $\underline{A}^{2m+1}=5^m$ \underline{A} . Thus $c_m=(\sqrt{5})^m$ and $c_{2m}^{-1}\|A^{2m}\|_{\infty}=1$ while $c_{2m+1}^{-1}\|\underline{A}^{2m+1}\|_{\infty}=3/\sqrt{5}$.

Varga's Theorem is true, however, if $\,\sim\,$ is replaced by $\,\lesssim\,$, since

$$c_{m}^{-1} \| \underline{A}^{m} \|_{2} \sim \| \underline{S} \underline{M}_{m} \underline{S}^{-1} \|_{2}$$

$$\leq \| \underline{S} \|_{2} \| \underline{S}^{-1} \|_{2}.$$

II. MAIN RESULTS

We first treat the case when only one of the eigenvalues of A has modulus equal to $\rho({\tt A})$.

Theorem 1. Let λ be an n x n normal matrix with eigenvalues $\lambda_1,\ldots,\lambda_n$ such that $|\lambda_1|>|\lambda_2|\ge|\lambda_3|\ge\ldots\ge|\lambda_n|\ge 0$ (i.e. only one eigenvalue of maximum modulus). Then

(2)
$$\|\underline{A}^{m}\|_{\infty} \sim \nu[\rho(\underline{A})]^{m}, m \rightarrow \infty$$

where ν is a positive constant and

$$(3) \quad v \leq \frac{\sqrt{n+1}}{2} .$$

<u>Proof.</u> Since $\overset{\text{A}}{\sim}$ is a normal matrix, there exists a unitary matrix $\overset{\text{S}}{\sim}$ such that (see [1], p. 273)

(4)
$$\overset{A}{\approx} = \overset{S}{\approx} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix} \overset{S^*}{\approx} .$$

Thus

(5)
$$\|\mathbf{A}^{\mathbf{m}}\|_{\infty} = \|\mathbf{S} \begin{pmatrix} 1 & \frac{\lambda_{2}}{\lambda_{1}} & 0 \\ & \ddots & \\ 0 & & (\frac{\lambda_{n}}{\lambda_{1}}) \end{pmatrix} \quad \mathbf{S}^{*}\|_{\infty} [\rho(\mathbf{A})]^{\mathbf{m}}.$$

Since $|\lambda_i| > |\lambda_i|$, j = 2, ..., n, we have

$$\|\underline{A}^{m}\|_{\infty} \sim \|\underline{S}\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & 0 & & \end{pmatrix} \quad \underline{S}^{*}\|_{\infty} \left[\rho(\underline{A})\right]^{m}, m \to \infty.$$

Defining ν by

$$\mathbf{v} \equiv \| \mathbf{S} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & & \\ 0 & & & \end{pmatrix} \quad \mathbf{S}^* \|_{\infty},$$

we see that

$$v = \max_{1 \le i \le n} \sum_{j=1}^{n} |S_{i}| |S_{j}|.$$

Since
$$S_{ij} = S_{ij} = S_{ij} = S_{ij}$$
, we have $S_{ij} = S_{ij} = S_{ij}$.

Thus we can bound ν by the maximum of the problem

subject to the constraints
$$g_1(\alpha_1,\ldots,\alpha_n) = \sum_{i=1}^n \alpha_i^2 = 1,$$
 and $\alpha_i \ge 0$, $i=1,\ldots,n$.

Now if $(\beta_1, \dots, \beta_n)$ solves (P1), then we must have $\beta_2 = \beta_3 = \dots = \beta_n$. If not consider $(\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_n)$ defined by

$$\hat{\beta}_1 = \beta_1, \hat{\beta}_2 = \hat{\beta}_3 = \dots = \hat{\beta}_n = \frac{\sqrt{1-\beta_1}}{\sqrt{n-1}} \qquad (\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_n)$$

satisfies the constraints and thus is a feasible point. Using Holder's inequality, we have

$$\sum_{i=2}^{n} \beta_{i} < \sqrt{n-1} \qquad \sqrt{\sum_{i=2}^{n} \beta_{i}^{2}}$$

$$= (n-1) \sqrt{\frac{1-\beta_{1}^{2}}{\sqrt{n-1}}}$$

$$= \sum_{i=2}^{n} \hat{\beta}_{i}$$

Thus $(\stackrel{n}{\Sigma}_{i=2}^{n}\beta_{i})<(\stackrel{n}{\Sigma}_{i=2}^{n}\hat{\beta}_{i})$, and since any solution to (P1) would have $\alpha_{1}>0$, we have $f_{1}(\beta_{1},\ldots,\beta_{n})< f(\hat{\beta}_{1},\ldots,\hat{\beta}_{n})$. Hence the objective function, f_{1} , is increased, contradicting the assumption that $(\beta_{1},\ldots,\beta_{n})$ is a solution to (P1).

It follows that the maximum of (P1) will also be the maximum of the problem

(P2) maximize
$$f_2(x,y) = x^2 + (n-1)xy$$
;
subject to $g_2(x,y) = x^2 + (n-1)y^2 = 1$,
 $x \ge 0$,
and
 $y \ge 0$.

Using the change of variables $x = \sin\theta$, $y = \cos\theta/\sqrt{n-1}$, we see that (P2) is solved by maximizing

(7)
$$f_{2}(\sin\theta, \cos\theta/\sqrt{n-1}) = \sin^{2}\theta + \sqrt{n-1} \sin\theta \cos\theta$$
$$= \frac{1}{2} (1-\cos 2\theta + \sqrt{n-1} \sin 2\theta)$$

over $\theta \in [0, \frac{\pi}{2}]$. For $\theta = 0$ and $\theta = \frac{\pi}{2}$, f_2 is 0 and 1 respectively. It is easily verified that $\frac{d}{d\theta} f_2(\sin\theta, \cos\theta/\sqrt{n-1}) = 0$ when

(8)
$$\tan 2\theta = -\sqrt{n-1} .$$

Since we require $\theta \in [0, \frac{\pi}{2}]$, (8) implies $2\theta \in [\frac{\pi}{2}, \pi]$ and we obtain $\sin 2\theta = \frac{\sqrt{n-1}}{\sqrt{n}}$ and $\cos 2\theta = -\frac{1}{\sqrt{n}}$. It is easily verified that

this yields

$$f_2(\sin\theta,\cos\theta) = \frac{1}{2}(1-\cos 2\theta + \sqrt{n-1} \sin 2\theta)$$
$$= \frac{1+\sqrt{n}}{2},$$

and thus maximizes (7), completing the proof of Theorem 1.

Equality can occur in (3). J. H. Halton (private communication) has point out that if

where
$$\alpha_i = \frac{1}{\sqrt{(n-i)(n-i-1)}}$$
, then for $\theta = \frac{\tan^{-1}(-\sqrt{n-1})}{2}$,

$$\theta \in (\frac{\pi}{4}, \frac{\pi}{2}), \text{ (see (7), (8))}$$

$$\parallel \cdot \mathbb{S} \begin{pmatrix} 10 \cdots 0 \\ 0 \\ \vdots & 0 \\ 0 \end{pmatrix} \qquad \mathbb{S}^{T} \parallel_{\infty} = \frac{\sqrt{n+1}}{2}.$$

Bounds for $\|\underline{A}^m\|_\infty$ can also be given as a consequence of Theorem 1.

Corollary 1.2. If \widetilde{A} is on n x n normal matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, then for $m \ge 1$

$$\|\underline{A}^{m}\|_{\infty} \leq (\frac{\sqrt{n+1}}{2}) (\sum_{j=1}^{n} |\lambda_{i}|^{m}).$$

Proof: Since $\tilde{A} = \tilde{S} \begin{pmatrix} \lambda_1 & 0 \\ \lambda_2 & \\ 0 & \lambda_n \end{pmatrix} \tilde{S}^*$ for some unitary matrix \tilde{S} ,

we have

$$\begin{split} \left\| \underline{\mathbb{A}}^{m} \right\|_{\infty} & \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} \sum_{u=1}^{n} \left| \mathbf{S}_{iu}^{\lambda} \mathbf{w} \, \bar{\mathbf{S}}_{uj} \right| \\ & \leq \max_{1 \leq i \leq n} \sum_{u=1}^{n} \left| \lambda_{u} \right|^{m} \left(\sum_{j=1}^{n} \left| \mathbf{S}_{iu} \right| \left| \mathbf{S}_{ju} \right| \right). \end{split}$$

Since $(\sqrt{n}+1)/2$ is the maximum of (Pl),

$$\|\underline{A}^{m}\|_{\infty} \leq \frac{\sqrt{n+1}}{2} (\sum_{i=1}^{n} |\lambda_{i}|^{m}).$$

We now consider the general case when there are $k\geq 2$ eigenvalues of $\mbox{\mbox{$\mbox{\mathbb{A}}}}$ such that $|\lambda_1|=|\lambda_2|=\cdots=|\lambda_k|>|\lambda_{k+1}|\geq \lambda_{k+1}|\geq \lambda_{k+2}|\geq \cdots \geq |\lambda_n|\geq 0.$ As in the proof of Theorem 1, (4) and (5) will still hold for some unitary matrix $\mbox{\mbox{$\mathbb{S}$}}$. We will not make use of the fact that $\sum_{j=1}^n S_{ij} \bar{S}_{\ell j} = 0 \ \mbox{if $\ell \neq i$ and this will lead to grosser bounds than if we did; but we thereby greatly simplify the analysis. Now,$

$$\|\underline{A}^{m}\|_{\infty} \sim \nu_{m} [\rho(\underline{A})]^{m}$$

where

for some $|w_i| = 1, i = 2, ..., k$. Hence,

$$\|A^{m}\|_{\infty} < \nu[\rho(A)]^{m}, m \rightarrow \infty$$

where $v = \lim \sup v_m$.

We can bound each $\,\nu_{_{\scriptstyle \! \! \, M}}\,$ (and hence $\nu)\,$ by the maximum of the problem

(P3) maximize
$$\sum_{j=1}^{n} |S_{11}| |S_{j1}| + \cdots + \sum_{j=1}^{n} |S_{1k}| |S_{jk}|;$$

subject to
$$\sum_{i=1}^{n} \left| S_{i1} \right|^2 = 1,$$

$$\vdots$$

$$\sum_{i=1}^{n} \left| S_{ik} \right|^2 = 1,$$
 and
$$\left| S_{k} \right|^2 + \left| S_{12} \right|^2 + \dots + \left| S_{1k} \right|^2 \leq 1.$$

Proceeding as in (6), we will have

$$\sum_{i=1}^{n} |\widetilde{S}_{i\ell}| < \sum_{i=1}^{n} |\widehat{S}_{i\ell}|$$

and so

(8)
$$\sum_{i=1}^{n} |\widetilde{S}_{1\ell}| |\widetilde{S}_{i\ell}| \leq \sum_{i=1}^{n} |\widehat{S}_{1\ell}| |\widehat{S}_{i\ell}|$$

with equality in (8) only if $|\hat{S}_{1\ell}| = 0$. Thus we have that either the \hat{S}_{ij} also solve (P3) in the case of equality in (8), or a contradiction to the assumption that the \tilde{S}_{ij} solve (P3). In either case, the lemma is proved.

Lemma 2. At the solution to (P3), all $|S_{ij}|$ such that $0 < |S_{ij}| < \frac{\sqrt{2}}{2}$, $j = 1, \cdots, k$, are equal to $\sqrt{\beta/p}$; where $p \ge 1$ is the number of $|S_{11}|$, $|S_{12}|$, \cdots , $|S_{1k}|$ in the interval $(0, \frac{\sqrt{2}}{2})$, and

$$\beta = 1 - \sum_{\ell \in \mathbb{R}} |S_{1\ell}|^2$$

where $R = \{\ell: |S_{1\ell}| \ge \sqrt{2}/2\}$.

<u>Proof.</u> Without loss of generality, we assume that any solution to (P3) has $|S_{11}|$, $|S_{12}|$, \cdots , $|S_{1p}|$ in the interval $(0, \frac{\sqrt{2}}{2})$, and for $k \ge p \ge 1$. The lemma will be proved by showing that for fixed $S_{1,p+1}, \cdots, S_{1n}$, (P3) is maximized when

$$|s_{11}| = |s_{12}| = \cdots = |s_{1p}| = \sqrt{\frac{\beta}{p}}$$
.

Holding $S_{1,p+1,\dots,S_{1n}}$ fixed and maximizing over

 $\left|\,S_{\,\,\,i\,\,j}^{}\,\right|\,$ for $\,l\,\,\leq\,\,i\,\,\leq\,\,$, $\,l\,\,\leq\,\,i\,\,\leq\,\,$ p $\,$ is equivalent, by Lemma l, to the maximization problem

(P4) maximize
$$|S_{11}|^2 + \cdots + |S_{1p}|^2 + (n-1)[|S_{11}|b_1 + \cdots + |S_{1p}|b_p];$$

subject to $|S_{11}|^2 + (n-1)b_1^2 = 1,$
 \vdots \vdots \vdots $|S_{1p}|^2 + (n-1)b_p^2 = 1,$
and $|S_{11}|^2 + \cdots + |S_{1p}|^2 \le \beta.$

Using the substitutions

(9)
$$\sin \theta_{l} = |S_{ll}|, \quad \cos \theta_{l} = \sqrt{n-l} b_{l},$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\sin \theta_{p} = |S_{lp}|, \quad \cos \theta_{p} = \sqrt{n-l} b_{p},$$

 $\theta_i \in (0, \frac{\pi}{4})$ i = 1, ..., p, the problem becomes

$$(P5) \quad \underset{i=1,\cdots,p}{\text{maximize}} \quad [\sin^2\theta_1 + \cdots + \sin^2\theta_p] + \frac{\sqrt{N-1}}{2} [\sin^2\theta_1 + \cdots + \sin^2\theta_p];$$
 subject to
$$\sin^2\theta_1 + \cdots + \sin^2\theta_p \leq \beta.$$

The first part of the objective function is bounded by $\,\beta$. The rest of the proof will consist of maximizing the second part of the objective function; and observing that when the second part is maximized, the first part is equal to $\,\beta$.

Maximization of the second part of the objective function is equivalent to the minimization problem

(P6) minimize
$$f_{6}(\theta_{1}, \dots, \theta_{p}) = -\frac{\sqrt{n-1}}{2} [\sin 2\theta_{1} + \dots + \sin 2\theta_{p}]$$

$$\theta_{i} \in (0, \frac{\pi}{4})$$

$$i=1, \dots, p$$
subject to
$$g_{6}(\theta_{1}, \dots, \theta_{p}) = \sin^{2}\theta_{1} + \dots + \sin^{2}\theta_{p} - \beta \leq 0.$$

The Kuhn-Tucker problem associated with (P6) is (see [2], p. 94) to find a $\bar{u}, \bar{\theta}_1, \bar{\theta}_2, \cdots, \bar{\theta}_p$ such that

$$-\sqrt{n-1} \qquad \begin{pmatrix} \cos 2\bar{\theta}_1 \\ \vdots \\ \cos 2\bar{\theta}_p \end{pmatrix} + \bar{u} \qquad \begin{pmatrix} \sin 2\bar{\theta}_1 \\ \vdots \\ \sin 2\bar{\theta}_p \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} ,$$

$$\sin^2\bar{\theta}_1 + \dots + \sin^2\bar{\theta}_p - \beta \leq 0 ,$$

$$\bar{u}[\sin^2\bar{\theta}_1 + \dots + \sin^2\bar{\theta}_p - \beta] = 0 ,$$

$$\bar{u}[\sin^2\bar{\theta}_1 + \dots + \sin^2\bar{\theta}_p - \beta] = 0 ,$$

and $u \ge 0$.

The first condition implies

$$\bar{\mathbf{u}} = \sqrt{\mathbf{n} - \mathbf{l}} \quad \cot 2\bar{\theta}_{\mathbf{i}} \quad \mathbf{i} = \mathbf{l}, \dots, \mathbf{p}$$
.

Thus we must have $\bar{\theta}_i = \cdots = \bar{\theta}_p$. By taking

 $\sin\bar{\theta}_1=\sin\bar{\theta}_2=\cdots=\sin\bar{\theta}_p=\sqrt{\beta/p}$, the other conditions are satisfied. Now the Hessians of f_6 and g_6 are

$$\nabla^{2} f_{6}(\theta_{1}, \dots, \theta_{p}) = \begin{pmatrix} 2\sqrt{n-1} & \sin 2\theta_{1} & 0 \\ 0 & \ddots & \\ 2\sqrt{n-1} & \sin 2\theta_{p} \end{pmatrix}$$

and

$$\nabla^{2} g_{6}(\theta_{1}, \dots, \theta_{p}) = \begin{pmatrix} 2\cos 2\theta_{1} & 0 \\ 0 & \ddots & \\ & 2\cos 2\theta_{p} \end{pmatrix}$$

By Theorem 2, p. 89 of [2], f_6 and g_6 are convex on the set $0<\theta_1<\frac{\pi}{4}$, i=1,...,p. Thus Theorem 1, p. 94 of [2] implies that the solution to the Kuhn-Tucker problem is also a solution

to (P6). Thus $|S_{11}| = |S_{12}| = \cdots = |S_{1p}| = \sqrt{\beta/p}$ at the solution to (P3), proving the lemma.

We are now ready to prove

Theorem 2. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be an $n \times n$ normal matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that

$$|\lambda_1|=|\lambda_2|=\cdots=|\lambda_k|>|\lambda_{k+1}|\geq |\lambda_{k+2}|\geq\cdots\geq |\lambda_n|\geq 0$$
 for $k\geq 2$. Then

$$\| \mathbb{A}^{m} \|_{\infty} \leq \nu [\rho(\mathbb{A})]^{m}$$

where

$$v \le 1 + \sqrt{n-1} \sqrt{k-1}$$
.

<u>Proof.</u> At most two of $|\mathbf{S}_{11}|, |\mathbf{S}_{12}|, \ldots, |\mathbf{S}_{1k}|$ are greater than or equal to $\frac{\sqrt{2}}{2}$. Thus we need show only three special cases—when either zero, one, or two of $|\mathbf{S}_{11}|, |\mathbf{S}_{12}|, \ldots, |\mathbf{S}_{1k}|$ are greater than or equal to $\frac{\sqrt{2}}{2}$.

Case 1. If none of $|S_{11}|$, $|S_{12}|$,..., $|S_{1k}|$ are greater than or equal to $\frac{\sqrt{2}}{2}$, then let p be the number of nonzero S_{1i} 's. By Lemma 2, the solution of (P3) has either $|S_{ij}| = \sqrt{1/p}$ or $|S_{1j}| = 0$, $j = 1, \ldots, k$. Thus the maximum is (see (P4), (9))

$$1 + (n-1) p \sqrt{\frac{1}{p}} \sqrt{\frac{p-1}{p}} \sqrt{\frac{1}{n-1}}$$

$$= 1 + \sqrt{n-1} \sqrt{p-1} .$$

It is obvious from this expression that (P3) is solved when p = k. Thus in this case

$$\nu \leq 1 + \sqrt{n-1} \sqrt{k-1}$$
.

Case 2. If exactly one of $|S_{11}|$, $S_{12}|$,..., $|S_{1k}|$ is greater than or equal to $\sqrt{2}/2$, say $|S_{1q}| = \frac{\sqrt{2+\epsilon}}{2}$ for $0 \le \epsilon \le 2$, then by Lemma 2 for $1 \le p \le k-1$, we have that the maximum is (see (P4),9)

$$1 + (n-1) \left[\frac{\sqrt{2+\epsilon}}{2} \frac{\sqrt{2-\epsilon}}{2} \sqrt{\frac{1}{n-1}} + p \sqrt{\frac{2-\epsilon}{4p}} \sqrt{\frac{4p-2+\epsilon}{4p}} \sqrt{\frac{1}{n-1}} \right]$$

$$= 1 + \sqrt{n-1} \left[\frac{\sqrt{2+\epsilon} \sqrt{2-\epsilon}}{4} + \frac{\sqrt{1-\epsilon/2} \sqrt{2p-1+\epsilon/2}}{2} \right].$$

Therefore

$$v \leq 1 + \sqrt{n-1} \left[\frac{\sqrt{2+\epsilon} \sqrt{2-\epsilon}}{4} + \frac{\sqrt{1-\epsilon/2} \sqrt{2p-1+\epsilon/2}}{2} \right]$$

$$\leq 1 + \sqrt{n-1} \left[\frac{1 + \sqrt{2p-1}}{2} \right]$$

$$\leq 1 + \sqrt{n-1} \left[\frac{1 + \sqrt{2k-3}}{2} \right]$$

$$\leq 1 + \sqrt{n-1} \sqrt{k-1} ,$$

and so in this case

$$\nu \leq 1 + \sqrt{n-1} \sqrt{k-1}$$
.

Case 3. If exactly two of $|S_{11}|, |S_{12}|, \ldots, |S_{1k}|$ are greater than or equal to $\sqrt{2}/2$, then each must be equal to $\sqrt{2}/2$ and the maximum is $1+\sqrt{n-1}$. Thus, since $k\geq 2$,

$$v \leq 1 + \sqrt{n-1} \sqrt{k-1}$$
,

and the last case is proved.

Corollary 2.1. If $\overset{\wedge}{\mathbb{A}}$ is an $n \times n$ normal matrix and $m \ge 1$, then

$$\|\underline{A}^{m}\|_{\infty} \leq n[\rho(\underline{A})]^{m}.$$

<u>Proof.</u> This follows from the fact that the solution to (P3) in the case k=n bounds the absolute row sums of $\frac{1}{\left[\rho(A)\right]^m}$ \underline{A}^m .

III. CONCLUDING REMARKS

We have shown that for a normal matrix A,

$$\|\underline{A}^{m}\|_{\infty} \leq \nu[\rho(\underline{A})]^{m}.$$

Bounds have been obtained for ν which depend on the order of \underline{A} and on the number of eigenvalues of \underline{A} with modulus equal to $\rho(\underline{A})$. If there is only one such eigenvalue, the bound can be attained.

In Corollary 1.2, we have a bound for $\|\underline{\mathbb{A}}^m\|_{\infty}$ which depends on the eigenvalues of $\underline{\mathbb{A}}$ and the order of $\underline{\mathbb{A}}$. In Corollary 2.1, the bound for $\|\underline{\mathbb{A}}^m\|_{\infty}$ depends only on $\rho(\underline{\mathbb{A}})$ and the order of $\underline{\mathbb{A}}$.

All the bounds have been stated using the ℓ_{∞} norm. However, the results hold equally for the ℓ_{1} norm since $\|\mathbf{A}\|_{1} = \|\mathbf{A}^{*}\|_{\infty}$ and \mathbf{A}^{*} normal implies \mathbf{A} is normal.

IV. ACKNOWLEDGEMENTS

The author wishes to thank $\mbox{J. H. Halton}$ and $\mbox{B. E. White for several helpful discussions.}$

REFERENCES

- [1] F. R. Gantmacher, <u>The Theory of Matrices. I</u>, Chelsea, New York, 1960.
- [2] O. L. Mangasarian, <u>Nonlinear Programming</u>, McGraw-Hill, New York, 1969.
- [3] R. S. Varga, <u>Matrix Iterative Analysis</u>, Prentice Hall, Englewood Cliffs, N. J., 1962.

BIBLIOGRAPHIC DATA SHEET	1. Report No. WIS-CS-7 -181	2-	3. Recipient's Accession No.
4. Title and Subtitle			5. Report Date
Bounds for Iterated Normal Matrices		rices	May 1973
7. Author(s) Peter B. Wilson			8. Performing Organization Rept.
9. Performing Organization	Name and Address	19 mars 19 mar	10. Project/Task/Work Unit No.
•	outer Sciences Department ersity of Wisconsin		11. Contract/Grant No.
	West Dayton Street		NSF GJ-171 and
Madi	son, Wisconsin 53706		GJ-29986X
12. Sponsoring Organization			13. Type of Report & Period Covered
	onal Science Foundation		
	G. Street, N.W. nington, D. C 20550		14.
15. Supplementary Notes			
16. Abstracts			
Asympt	otac bounds are obtained f	or powers of a nor	mal matrix in terms
	spectral radius, the numbe		
	spectral radius, and the or	-	
	ed to provide bounds for al		1
extende	sa to provide bounds for a	ir powers ir a norm	ar matra.
17. Key Words and Documer	nt Analysis. 17a. Descriptors		İ
	-1		
	al matrix		
	bound		
itera	ted matrix		
17b. Identifiers/Open-Ende	d Torms		
176. Identifiers/Open-Ende	d Telins		
17c. COSATI Field/Group			
18. Availability Statement			Class (This 21. No. of Pages
		Report) UNC	LASSIFIED 20 Class (This 22. Price
		20. Security	Class (This 22. Price
		LUNC	LASSIFIED