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ABSTRACT

Given a normal matrix A , asymptotic bounds are obtained for
HémHm in terms of the spectral radius of A , the number of eigen-
values of A with modulus equal to the spectral radius of A, and
the order of A . These results are extended to provide bounds

for HémHm for all m = L.






I. INTRODUCTION

The spectral radius of any n x n matrix A with eigenvalues

xl,xz, .o ’Xn can be defined by

p(d) = max x|,
l<isn

while the 1500 norm of A can be defined by

n
1all, = max 3 [a]
[s¢] . . l]
l<isn j=1
In general, |[|All_ ~ can be arbitrarily greater than p(A) as is

shown by the matrix

0 «
for which p(B) = 0, while HEHOO = |a|. Defining VM Z 1, by

a™ (]
@) = ———,

(1) v =
o)™

m vm

it is known that both sup Vi and v = v(A) = lim sup Vi are finite.

In general, no bounds can be placed on v without specific knowledge

of A .

In contrast, a different situation arises for normal matrices--~
Those matrices which commute with their adjoint (i.e. Zi*!}’ = !il;\‘*).
An important property of a normal matrix is that it is unitarily similar
to a diagonal matrix. A real symmetric matrix is orthogonally similar
to a real diagonal matrix and is the most familiar example of a

normal matrix (see [1], Chapter 9). For normal matrices, we will
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obtain bounds for v which depend only on the order of A and the
number of eigenvalues of A with modulus equal to p(A) . Bounds

are also obtained for Hf}me, m 2 1, which depend only on p()
and the order of A .

This work derived some of its inspiration from Theorem 3.1,

p. 65 of [3], which states:

Let A be an arbitrary n xn complex matrix such that

p(A) > 0. Then,

LI S I T

I

where p is the largest order of all diagonal submatrices Ir of the
Jordon normal form of A with p(Lr) = p(a), and v is a positive

constant.

~

2

The [, normof A 1is defined by | & ”Z = [p(é*lé)]l/ and
is defined by

Definition 1. h(m) ~ g(m), m— « if and only if h{(m)/g(m) —1
as m-— o,
For convenience, we also define < by

Definition 2. h{m) < g(m), m — o if and only if there exists
a function €(m) such that

h(m) < g(m) + €{m)

and €(m)-—- 0 as m— ©,
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The proof of this Theorem depends on the correct observation

that, if T = §—1§S~ is the Jordan normal form of A , then

~

! e s, ~ s, 8T

2 m "~h = Z.;

where ¢ =( m ) [p(‘}v\)]m"(p—l) and M_  has the number
m p~1 ~"m

D /@]

corners of those Jordan blocks J. of ] with p(J) = ]Xrl = p(A)

in positions corresponding to the upper right-hand

which are of maximal order p ; and zeros everywhere else. Varga
argues that M, is a constant matrix (independent of m) and
puts v = HSMS—]‘ ”2 However, this is not always the case.

For example, if

SRR

2
then it is easily verified that A =1, A = A, and C, = 1.

1

Thus || §M, § |l,=1 and s M

= al,=p@TA) =,129+/16640 > l6.

This phenomenon depends somewhat on the norm employed.
For the EZ norm, which Varga used, v still exists for normal
matrices, even though M, may not be constant. In this case,
]m

Co = [p@a)]" and

I

-1 m s
o sg™s* 1,
e /o (™™

-1 m
o [p@®)]

-1y, m
c Ia™il,

I

i

=1,



.

implying v =1. However, for the £ norm, v may not exist,
2 -1

even for normal matrices. The matrix A 2(-—1 >

) is such that

2™ =s™1 and 2™ = S0 AL Thus o= ¢/5)" and
-1 2m , -1 2m+l - .
o A7), =1 while C o tl A l]oo = 3//5.
Varga's Theorem is true, however, if ~ is replaced by <y
since
-1 m -1
cMatll, ~ liswm 871,




II. MAIN RESULTS

We first treat the case when only one of the eigenvalues of

A has modulus equal to p(a) .

Theorem 1. Let A be an n x n normal matrix with

eigenvalues X X such that ]Xl[ > IA‘Zl > !>\,3{ >

1,..., n

(i.e. only one eigenvalue of maximum modulus). Then
m m
) a7l ~vip@], m—e
where v is a positive constant and

n+l

3y v = >

Proof. Since A is a normal matrix, there exists a unitary matrix

S such that (see [1], p. 273)

~

%. \‘\
lxz 0 \
(4) A =5 : s
0o . )
n
Thus
Yo o)
m _ N 3 4 m
&y e, = s e Slle@d
oo
0 M
Since ;xll> ix].l, i=2,...,n, we have
10...0 .
2™~ s |o s I [p@]1", m—o .



Defining v by

10...0
v=ls |7, s 1,
0
we see that
n
"7 m 28y
. 2 2
Since § 8% =8"5=1, we have ji ]§ji| =1.

Thus we can bound v by the maximum of the problem

n
(P1) mal‘x‘imize fl(ozl, . ,an) = .Z aflai H
O!ieR,1=l,...,n i=1
12
subject to the constraints g/ {o ,...,a )= = a =1,
1M1 n (=] &

and oziz 0,i=1,...,n.

Now if (ﬁl, e ,ﬁn) solves (Pl), then we must have

BZ = ﬁ3 = .., = Bn. If not consider (B, ,B .,ﬁn) defined by

ll Zl"

B =B B, =B =...=B = BB, B

n)

satisfies the constraints and thus is a feasible point. Using

Holder's inequality, we have




n no,
% B, < /n-1 b Bi
i=2 i=2
2
= (n-1) -
v n-l
n N
= > ﬁ_
i=2 *
n n -
Thus (2 ﬁi) < (2 Bi ), and since any solution to (Pl) would have
i=2 i=2

N

a > 0, we have f(B.,...,B )< f(B ,...,/f\i ). Hence the objective
1 11 n 1 n

function, fl, is increased, contradicting the assumption that
([31, cen ,ﬁn) is a solution to (Pl).

It follows that the maximum of (Pl) will also be the maximum

of the problem

2
(P2) maximize fZ(x,y) = x_ + (n-l)xy;
2 .
SU.bjeCt to gZ(XlY) = x + (n_l)yz = l,

and

Using the change of variables x = sin®, vy = cosd/f/n-1 , we

see that (P2) is solved by maximizing

R 2 —
(7) fz(sint),cose)/\/n-—l ) = sin"0 +,/n-1 siny cosu

H

'12 (1~-cos2g + \/IT-T sin2g)
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. fz is 0 and 1 respectively.

™=

over ac[o,%. For o =0 and 6 =

It is easily verified that a%‘ fZ(sinQ,cose/\/ﬁ_—T ) = 0 when

(8) tan 20 = —-./n=1

T
Since we require 0 € [O,'Z"] , (8) implies 20 € [%,zr] and we obtain

- . 1
n-1 and cos 28 = - . It is easily verified that

/o /o

this yields

sin 26 =

fz(sine,cosé) = 712(1 - cosio 4./ n—-f sin2aQ)

1+4./0
2 4
and thus maximizes (7), completing the proof of Theorem 1.

Equality can occur in (3). J. H. Halton (private communication)

has point out that if

siné cos@ 0 0 0
cosg :Slrf. (n—Z)al 0
Va:! -1 n-l1
~ /n -1 \/n-l -a, T, 0
: : . : -a
. . n-2
cosg -sing o o —
- 1 2 ‘ n-2

\/n ~1 n-1




— -
where «, = 1 , then for 6 = tan 1)

V/(n-i)(n-i-1)

T 1T
o € (7.3, (see (7), (8)
10¢+.0
0 Ty a/nl
H§ : 0 § “oo B 2
0

m ‘
Bounds for [|A" ||~ can also be given as a consequence
of Theorem 1.

Corollary 1.2. If A is on nxn normal matrix with eigen-

values A, ,A,,...,» , then for m=1
172 n
A = (Lt Ly (3o
—~ o) - 2 ) (. i ) .
j=l
)x.lk 0 .
Proof: Since A =38 2 S for some unitary matrix S ,
0 "
n
we have
n n -
1™, = max 3 = |5 AT |
lsisn  j=1 u=l ' J
n m D
< max = |n | (=2 Isiui ]sju\).
l<izsp u=l j=1

Since (/n+l)/2 is the maximum of (P1),

2™, =
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We now consider the general case when there are k = 2

eigenvalues of A such that Ikll = lkzi = eee o= kal > D\k+ll >
Kk_!_zl > = ixnl > 0., As in the proof of Theorem 1, (4) and
(5) will still hold for some unitary matrix § . We will not make use

. =0 if £ #i and this will lead to grosser

n
of the fact that % S..S
i 4j

j=1
bounds than if we did; but we thereby greatly simplify the analysis.

Now,
m m
a1, ~ v, [e@)]
where
1
(wy )™
. 0
v = |'s ()™ sl
m ~ 0 k 0 (3]
"0
for some ]Wi[ =1,i=2, ..., k. Hence,

m
AT < vlp@], m—
where v = lim sup v_ .
m

We can bound each Vi, (and hence v) by the maximum of the
problem

(P3) maximize |S

1

™MD

l Isjll+ SOREE D !

j=1




n

subjectto % |8, !Z:‘l,
. il
i=1
n «
2 s, 1% =1,
i=1
2 2 2
and ]sk| +1le1 +---+]slkl <1,
Lemma 1. For some constants bl, 2""’bk’ (P3) is solved
when lSle = lS.Sli = .. o= lSnl‘ :bl’.“’lSZkl = 133]([ = ... = |8

Proof. Let ‘gij |, 1<i,j< n,bea solution to (P3). If for some

1< £ < k we do not have !ézgl = l§3zl = o= |§nzl; then define

. , -~ A l/—Inlglglz
85l 1=t i=n by [Sy,[=8 )| =--=15 ] = T
ISMI = ISM|, and [Sijl =18,.| for j £ 4 .

Proceeding as in (6), we will have

2 [5,,1 < = 18,

i= i=1
and so

no. ~ n A A
(8) 28,1 I8, 1= 2 15,1 I8,

i=1 i=]

with equality in (8) only if lglﬁ! = 0. Thus we have that either the
N
Sij also solve (P3) in the case of equality in (8), or a contradiction to

the assumption that the gij solve (P3). In either case, the lemma is

proved.
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Lemma 2. At the solution to (P3), all lSijI such that

JH—

0< isi].1< L2

> j=1,+++,k, are equal to /B/p ; where

pz 1 is the number of |S

(O,"[Z:‘), and

2

1 L, !SlZ R lSlkl in the interval

p=1- NG

oer Bu

where R = [E:ISMI = /2/27 .

Proof. Without loss of generality, we assume that any solution to

(P3) has {sll\, tslzt, ,lslpl in the interval (0,%3~), and

for k= p=z 1. The lemma will be proved by showing that for
fixed Sl £l e S. , (P3) is maximized when

, 1n
=/E

=+ = |§
llp p

Holding Sl,p+l, .. Sln fixed and maximizing over

*

IA

ISijl for 1 =i ,1=<1i=< p is equivalent, by Lemma l, to

the maximization problem

i i Z 2 — -« o = -
(P4) maximize tslll + + 1slp| + (n 1)[{31111@1 + + lslp!bp],
. 2 2 _
subject to ISHI + (n l)bl =1,
2 2
S + (n-1b" =1,
8,17 + (n-1b ]
2 2
and IS”] Foeee t [slpi < B.
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Using the substitutions

l— ]Sll|, cos@1 = ./ n-l bl’

ST

l

(9 sind

I

IS

sing |, coseo
P P

1p

T
Qi € (0,) i=1,+++,p, the problem becomes

2 2 -1
(P5) maximize [sin"6, + -+ + sin Qp] +“ﬁ§—i[sinzel+- . -+sin29p]:

1
'
916(0’2")

i=l,-+-,p

. , 2 L2
subject to  sin 91+ «++ 4+ gin Qp <p.

The first part of the objective function is bounded by B . The
rest of the proof will consist of maximizing the second part of the
objective function; and observing that when the second part is

maximized, the first part is equal to B .

Maximization of the second part of the objective function

is equivalent to the minimization problem

(P6) minimize f6(91, “os ,Qp) = - ﬁ;l— [sin291+- . -+sin2(ﬁp]
m
916(0,4)
i=l,.-+,p
. 4 . 2
subject to GRS *10,) = sin"gk- - -+sin o, - B < 0.

The Kuhn-Tucker problem associated with (P6) is (see [2], p. 94)
to find a 5,5 ,0 ,-'-,5 such that
1772 D
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005251 _ sinZél \ 0
- \/n"l . +u . = :
cos2 6 sinzé 0
Y p
2- D
sin8+---+sin29 -B =0,
1 p

- . 2= 2

u[sin O+ <+ +sin ep - gl =0,
and uz= 0.
The first condition implies

ﬁ:x\/r_l—:I cot2§i i=l,**°,p .

Thus we must have éi = oee.e = ép' By taking

sinél = siné2 = oe e = Sinép = \/ﬁ/p , the other conditions are

satisfied. Now the Hessians of f6 and g, are

n-l SinZ@l 0
2 .

Vi (6, 0. ) = .

6™l p 0 2./n-1 sin26

P
and
ZCOSZGl 0

Vi, (0, .0 ) = o

671 p Zcoszep

By Theorem 2, p. 89 of [2], f6 and 9 are convex on the set

0 <o, < g‘, i=l,-..,p . Thus Theorem 1, p. 94 of [2] implies

that the solution to the Kuhn-Tucker problem is also a solution
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to (P6). Thus

Sl =1Is,l == 81,1 = vB/p  at
the solution to (P3), proving the lemma.

We are now ready to prove

Theorem 2. Let :va be an n x n normal matrix with

eigenvalues A .,xn such that

=2 :

|>‘l|=|>\zl="'zlkk'>[>‘ IZI)\

k41 razl 2

for k = 2. Then

< vip@)I™

Iy,

where
v<14+ V/h-l vﬁ?ﬁ“

Proof. At most two of |[S,.],]S

12

11 P {Slkl are greater than

2
or equal to ‘Z‘Z“—- . Thus we need show only three special cases--

when either zero, one, or two of |S,.],]S ... s are

11 12"' lkl

—
greater than or equal to AZZ:——

Case 1. If none of |S S .. s are greater

ll[lllzl"" lki

2
than or equal to ‘42“ , then let p be the number of nonzero

Sli's. By Lemma 2, the solution of (P3) has either

|Si].1 = \/hl‘/‘pﬁ or lsljl =0,j=1,...,k. Thus the maximum

is (see (P4), (9))
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l+(n—lp/‘ /E—— 1

=1+,/n-1 p-1

It is obvious from this expression that (P3) is solved when p = k.

Thus in this case

v = 1+./01 k1

Case 2., If exactly one of ISlll,S12 e, ISlkI is greater
than or equal to .,2/2, say lslql = :\Z.zgi_E_ for 0<ses2,

A

then by Lemma 2 for 1 < p < k-1, we have that the maximum is

(see (P4),9)

N/ 2+eE 2-€ 2~ 4p 2+e
L+ (ol | 357 35 4 /73

—— | V/2¥e - \/l -€/2 \/2p~l+e/2

Therefore

<
1A

L+ AT V2tre /2= \/1 e/Z /2p-lte/2

1A

e i v

2
< l+./nd 1+y/2k=3
2
<1+..n-1 Jk-1 ,

and so in this case
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Case 3. If exactly two of |8 S .. |8 are

11|I|12|l" lkl

greater than or equal to ﬁ/Z , then each must be equal to ﬁ?z
and the maximum is 1+ /n-1 . Thus, since k 2 2,

v 1l 4 \/m \/];-—-I—,
and the last case is proved.

Corollary 2.1. If A isan n x n normal matrix and m >1,

then

1™, = nlp@I™.

Proof. This follows from the fact that the solution to (P3) in the

case k = n bounds the absolute row sums of —1 m

@)™
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IIT. CONCLUDING REMARKS

We have shown that for a normal matrix A ,
m
12", < vip@I™.

Bounds have been obtained for v which depend on the order of A
and on the number of eigenvalues of A with modulus equal to p(8) .

If there is only one such eigenvalue, the bound can be attained.

In Corollary 1.2, we have a bound for [[A™|| ~ which depends
on the eigenvalues of é and the order of A. In Corollary 2.1,

the bound for H%mHm depends only on p(A) and the order of A .

All the bounds have been stated using the ﬁoo norm. However,

the results hold equally for the ﬂl norm since HAHl = HxA* Hoo and

* y s K
A  normal implies A is normal.

~
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