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Techniques and methodology for the automatic inference of semantic

deep structure rules in generative semantic grammars. The key conceptual
devices include a representation of semantic deep structure in the notation
of a b-dimensional network with properties of at least the 2nd-order predicate
calculus, and also in the notation of a compiler-driven behavioral simulation
language that describes and modifies the linguistic and extra=-linguistic
conceptual universe of speakers. The system is able to make grammatical-
semantic inferences within the frameworks of all current generative semantic

linguistic models, including the case grammar of Fillmore, the presuppositional

model of Lakoff, and the 1972 semantic theory of Katz.






AUTOMATIC INFERENCE OF SEMANTIC DEEP STRUCTURE RULES
IN GENERATIVE SEMANTIC GRAMMARS

Sheldon Klein

Computer Sciences Department

University of Wisconsin

Madison, Wisconsin 53706
U.S. A,

Introduction

This paper represents something unique in linguistics and computational
linguistics in that it introduces a global linguistic theoretical model of
such logical complexity that it can only exist as a computer model, This
model is capable of assimilating and representing the formulations of all
current linguistic generative theories, including those of generative semantics.
It is capable of incorporating rules of complex discourse and socio-linguistic
usage, and above all, it includes a model and methodology for inference of all
the rules and data in the system.

The primary purpose of this paper is to explicate the inference of
the semantic deep structure rules in the model., Of necessity, the topic
must include an explication of the total model and system. However, only
an abbreviated sketch sufficient for comprehension of the primary topic

is presented in this paper.

Historical Background

The first successful programs for learning context-free phrase structure
grammars and transformational grammars were developed by Klein and co-workers,
and are described in Kiein,1967, Klein et al,1967,1968, and Klein & Kuppin, 1970.

The phrase structure learning program was demonstrated live, to all volunteers

* Research sponsored by National Science Foundation Grant No. GS~2595, and
the Wisconsin Alumni Rescarch Foundation.



at the December 1967 Meeting of the Linguistic Society of America, in Chicago,
via a teletype linkage to a B5500 computer in Madison, Wisconsin. The programs
were also demonstrated via a similar teletype link in 1968: at Carnegie-Mellon
University, UCLA and USC; and in 1969 at the University of California, Berkeley.
Other researchers developed inference programs for context-free phrase
structure grammars somewhat later. These include Feldman et al, 1969,
Horning, 1969, Crespi-Reghizzi, 1970 and wharton, 1973 (the list is not exhaustive).
Work involving automated semantic networks includes the early dependency
approximations of Klein, 1965a,b,Klein et al,1966; Quillian,i1966, Schank,1959,1972,
Mel'chuk, 1970,1972, Simmons, 1970, 1972, and Klein et al,1971, Klein,1972
(the 1ist is not exhaustive). Morphological analytic work includes Klein & Dennison 197,
Work involving variants of the lst order predicate calculus as part of
the semantic base component in natural language systems includes McCawley, 1968,Bach &
Harms,1968, lakoff, 1969, Green & Raphael, 1969, Coles, 1969, and Pet8fi, 1973
(the list is not exhaustive).
Work involving natural language compiling either into semantic representations,
inference languages or simulation languages includes Kellogg,1968,Klé¢in et al,1971,Kein,1972,
Heidorn, 1972, Simmons (in preparation), as well as Green & Raphael jbid and

Coles, ibid. (Again the list is not exhaustive.)

Components of the System

All the components of the system except the inference mechanisms for
generative semantic grammars are programmed in FORTRAN V and partially
operational on a UNIVAC 1108 computer, Klein et al, 1971, Klein, 1972, Klein et al,

1973.




The key conceptual devices include a representation of the semantic
deep structure in the notation of a 4-dimensional network with properties of
at least the 2nd order predicate calculus, and also in the notation of a
compiler driven behavioral simulation language that describes and modifies
the linguistic and extra-linguistic conceptual universe of speakers,
The ultimate power of the system arises from the use of constructs in the
semantic deep structure network to generate new rules in the behavioral simulation
language, which then control new conceptualizations and behavior of the speaker.
The methodology draws upon meta-compiler theory. These features enable
the system to assimilate and represent all current generative semantic
linguistic theoretical models, including the case grammar of Fillmore,

the presuppositional model of Lakoff, and the semantic theory of Katz, 1972,

Semantic Network

The semantic network consists of objects and relations linking those objects.
The object nodes and relations have no names in themselves, only numbers.,
But they are linked to lexical expression lists that contain lexical variants
as well as other expression forms. In examples of semantic network representations
of deep structures bracketed lexical items selected from the associated lexical
lists are provided with the objects and relations for convenience in reading.
As an example consider the discourse:
"The man in the park broke the window with a hammer,"
"John knows that."
The deep structure network representation might resemble:
(')(man) =R (break;-1)-0(Wwindow)
?(hﬂ é@ﬁth)

{
0(park) 0(hammer)



(where the -1 represents a time early than present)

But the actual representation of the semantic deep structure is more
subtle and has properties not obvious in this example illustration., The
network is actually composed of semantic triples. A semantic triple can
consist or any sequence of 2 or 3 objects and relations. Every object
in the system has a unique number or address., Every triple in the system
also has a unique number and is also associated with its time of creation,

The network is actually stored in the form of a hash table, wherein the
actual semantic network is implied and computable rather than overtly listed,
The time of creation of each triple makes the application of tense transformations
easy: the simulation system maintains a clock representing 'now'. Accordingly
the relative time sequence among deep structure triples is readily computable,
and serves as data for generation of surface structure expression of tense, etc.
The actual representation of this sentence is closer to:
1. O(man)- R(break,~time) - 0(indow)

R(break,~time)- R{with)- 0 (hammer)
2. O(man) -R(in) ~0(park)
where the second triple in 1.is not actually listed separately; multi-place
predicates are indéxable through the primary triple.

It is worth repeating that the objects and relations are actually numbered
locations with links to other objects and relations. They contain no associated
content expression form other than what appears on their lexical expression lists
that are also linked to them. However, a lexical expression list may contaln
other data than just pointers tolexical stems in a dictionary., These |tems
Include semantic triples that are not in the network (for expression of idomatic

type structures) and pointers to triples that are in the network,




The objects and relations in these triples have their own links to their
own lexical expression lists. The lexical expression list of an object
or a relation may contain pointers to triples in the network that include
triples of which it is a member.
Consider now the second sentence of the sample discourse:
""John knows that!!
encoded in the semantic network as,
3. 0(John)- R{know)~ O0(that)
The O(that) is a complex predicate object., Its lexical expression list
contains pointers to semantic triples | and 2, The representation could be
self-referential; if the lexical expression list of O0(that) contained a pointer to
triple 3,the network would represent a message approximating:
""John knows that he knows that the man in the park broke the window
with a hammer,"

This feature helps to qive the system the logical power of the 2nd order

predicate calculus (at least). Complex logical predications are represented

with such predicate nodes linked by logical connective relations. Thus

the statement , if A then B, where A and B are complex bodies of semantic

discourse representing large portions of the semantic network, is represented

simply as,  0(A)- R(implication)- 0(B), where 0(A) and 0(B) each point to

lists of semantic triples that may also be of the same time~-predications

linking predicate objects that have pointers to triples on their lists.

(Always these lists may contain self~referential pointers--serving to justify

the claim that the system has the power of at least the 2nd order predicate calculus.)
(Other logical devices involving classes of objects and quantifiers are assoclated

with the simulation language manipulates and modfies the semantic network)



A final schematic of the relevant data structures:

Semantic lexical Expression List

Mt::::::::::”””"

triple pointers =

network
triples

0 P —————

lexical indices -

\\\\\\\\\\\ lexical dictionary

Generative Rules: surface structure // semantic network

The phrase structure rules in the system are part of more complex rules
that compile the semantic deep structure network from surface structure--
and which also serve the function of generating surface structure from the
network, The general form of such a rule is:

phrase structure rule // canonical form of semantic triple
where the phrase structure rules are of the usual sort, where linked mappings
between nodes in the right half of the phrase structure rules and elements
in the network specification are indicated. Strictly speaking the network
specification need not be limited just to a semantic triple, as will be seen

in the section on inference of rules. Some examples of rules:

SYNP VP // 0= R NPP= ad’j NPP // O -R(a.ttribute)—v(‘)
vy NP // R -0
Note that items may occur on elther side of the // marks that are not linked
to items on the opposite side.
Full comprehension of these rules can best be obtained through an example

of generation of surface structure from deep structure, Generalized mechanisms



for context sensitive rules and transformations are part of the model,
But they are of a type more basic and primitive than in most exisiting
linguistic generative models., They can represent more complex types of

transformations when properly combined,

A Generation Example

Assume a grammar containing the following surface//semantic rules:

r———— e
r L - -
1. 5= NL\LP // 0= R 7. VPP y Nt}i.{_/ R MJO
[ 1
2, NP+ NP PP // 0=~ R 8. VPP terminal
| S J
. Frem————y
3. NP-> Det NPP // O 8. V= terminal
oy | RS |
L4, NPP+ adj NPP// 0~ R - 0 10, PP> prep NP // R = 0O
[ H I
5. NPP+ terminal 11, prep= terminal

S RE—
6. VP-> VPP PP// R~ R
[ S .}

Assume that the semantic deep structure triple set to be used in the generation
is: O(man)~ R(ride) -0(icycle)

R(ride)- R(in) - 0(park)

O(man)- R(is)~ O(tall)
The overlap of various objects and relations in more than one triple is known
to the generator by various link markings. The time associated with each
triple is also part of the data. A starting symbol § is selected. A prior
selective mechanism has placed the triple representing the main predication
of the sentenceat the top of the triple list. The generative component inspects
all S rules whose right hand network description is of the same canonical form
as that of the first semantic triple. Here the condition is not satisfied by
the only § rule, 1. The triple is then broken into two overlapping parts,

O(man) - R(ride) and R(ride) - O(bicycle). The S rules are then inspected

for matches with the fractioned canonical forms, The first matches rule 1,



At this point lexical stems are selected from the lexical expression lists
associated with the objects and relations in the matched triple fraction.

A selected lexical item is tenatively assigned to the node indicated by the
1ink in the syntactic//semantic rule. Grammatical information associated
with the lexical item in the dictionary indicates whether or not it can

serve as the head of a construction dominated by the node under which it

was selected. In this case:
S . -
NPT T yp Lexical Dictlonary
oan  pide NP VP PP ADV
man ] 1 0 1
ride 1 ] 0 0

A bit vector in the dictionary indicates the applicability of a particular

node, Note that both man and ride could serve as nouns or verbs,

The grammar also marks the forms when appropriate for application of low level
transformations at a later stage. If man were selected as a stem to

fill a slot defined by an adverb node, ADV, it would at this time be marked for
later application of a transformation that would add -ly to it. If the

lexical dictionary should prevent the selection of a form, an alternate from

the lexical expression list is tried. If none on the list are acceptable,
another  surface//semantic rule is selected to express the semantic triple.
Number for objects is indicated directly in the lexical expression list associated
with the particular object (some objects may be inherently plural, as in the case
of objects that represent classes). As soon as the lexical items are selected
and accepted (the stage in the preceeding diagram), a test for applicability of

a high level transformation is made, This transformation uses as Its

Index information that never becomes more complex than the subtree indicated




in the above diagram--''a nuclear family tree''- a parent node and its immediate
descendents. Often, as in this case, the lexical items are not relevant

to the transformation, that here marks the VP.with the same number as the NP.

_— SN\\\\“
NP VP
man ride
$g. pres. 59g.

Low level transformations that operate only on terminals and their immediate parent
nodes will actually convert the stems to the appropriate words at the end of
the generation process. The transformation markings supplied by the high level
transformations are carried with the lexical items and may serve as part of
the data for defining the applicability of other high level transformations.
This breaking up of the transformational component into two types of limited
environment primitive operations permits extremely rapd transformational
generation and parsing algorithms. The complex labor of searching for
applicable environments common to most other automated transformational systems
is avoided,

Tense information is obtained from the time marking of the triple.
The simulation system maintains a clock, and the relative time order of
the triples in the deep structure generation list can be computed, so that
the proper items may be marked for application of transformations handling

tense,

Continuing the generation process, the system saves the remainder of the
first triple and skips to the second because of a special link betwecen their
relations indicating simultaneity. No VP rule matches the second triple, and
it is split Into the fractions R(ride) - R(in) and R(in) = R{park), The first

fraction matches rule 6. After lexlical item in is selected, the tree appears as:
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/S\\

NP VP

man ride ~.

sg pres. sg. ™.

N

VPP PP
ride in
pres. sg.

The second triple fraction matches rule 10, yielding after lexcal selection:

PEIaN

prep NP
in park
5g.

At this point, the second fraction of the first triple is matched against rule 7,

and, after lexical selection, the entire tree appears as:

— S -
o —
- TP

NP

man /////////rid

Sg. pres. sg.

VPP
/////rnd ln\\\\\
res. sg.
prep
rlde bicycle in park
pres. Sg. 5g. sg.
No rule matches the remaining triple Ofman) - R(is) - O(tall). Rule 2 matches
the first fraction, but the lexical list for the relation R(is) contains no item
acceptable as a PP node descendant. Accordingly, rule 3 is selected, At this
point a high level transformation marks the Det for conversion to an appropriate
form at the final stage. (If the lexical item had been a proper noun, the Det
node would have been marked for deletion. )
At this point rule 4 applies to the entire, unfractionalized, remaining
triple, yielding the subtree:
///////,4NP —_—
_ man ——
Det sg. NPP
man\
adj sg, N

tall man
$g.
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At this point rule 3 is applied to the NP nodes dominating bicycle and park.

The resultant tree is:

s —_—
NPT =

//////maﬁ\\\\\ _— rid;\\\‘\\\\\
D . NPP VPP . $g. s
o >? ////man\\\\ /////ridé\\\\\\ pres. =9 ////?:\\\\

adj sg N Vv pres. sg. “np prep NP
tall man ride bicycle in park
9 pres. sg.  pef S9.  NPP Det S9-  NPP
bicycle ark
sqg. 9.

The final, low level transformations are applied, yielding the sentence:

“The tall man rides the bicycle in the park"

Note that the semantic triple set might have generated more than one sentence
to express the content--either by deliberate stylistic design, or because the
rules might not have permitted a grammatically correct construction incorporating

the entire semantic structure,

Semantic Parsing

The recognition process is the inverse of the generation process.
Exactly the same rules are used, but they are applied in the reverse direction,
The surface structure string is reduced to lexical stem variants. Each lexical
entry in the dictionary also contains a back pointer to each semantic object or
relation that might contain it on its lexical expression list. In general,

the mappings are complex:

Semantic objects and relations:

lexical 1tems
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Ambiguities arise as a matter of course in the parsing process. But the

surface structure// semantic network compiler rules are embedded in a larger
system that includes a semantic network description of a universe of discourse,
and potentially, a universe representing the semantic world of a speaker,

The disambiguation process may use this information as well as the rules

of socio-cultural behavior encoded in the simulation language. The amount

and kind of data available for ambiguity resolution is greater than that

in any current automated or theoretical linguistic model, for it can even include

informatio obout physical environment and universe of the speaker,

The Behavioral Simulation Language

The system contains another surface structure  semantic network grammar.
But this grammar is for the generation of sentences in the behavioral simulation
language-~sentences that are rules governing the modification of the semantic
network itself--written in a language that is compiled into executable program
code by yet a third grammar-- that of the simulation language compiler. The system
is described in Klein et al, 1971, Klein, 1972 and Klein et al, 1973.

The same semantic deep structure is used to generate in natural languages
and in the simulation language, Thus it is possible to represent the rules
of socio-cultural behavior descriptively in the semantic network, and to generate
discourse about them in a natural language. At the same time, the rules of the
simulation can be used to create new semantic network structures that can then
be used to generate brand new simulation rules, etc. . This feature provides a

natural lanquage meta-compiler capability and completes the claim that the system

has the logical power of at least the 2nd order predicate calculus,
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Rules in the simulation language enter and delete semantic triples from
the network, Deleted triples remain, but are associated with a time of
termination as well as a time of creation, The rules may enter semantic
triples subject to complex logical conditions pertaining to the existence
or non-existence of other semantic triples already in the network.

The conditions may be probabilistic or deterministic. The rules may
refer to classes of objects, including objects that are themselves complex
predicate variables. They are capable of encoding contary-to-fact,belief
information without confusion with the accepted reality of the network.
(e.g. '"John thinks that A' where A is contrary to fact). Negation is
handled in various ways~-either as just indicated, or computed from the
existence of a termination time for a triple.

These rules of behavior may be learned through verbal description from
an informant. Information provided by an informant that involves objects and
relations not in the network can stimulate a process that enters new objects
and relations into the data base. (Facilitating the modelling of presuppositional

grammatical theories)

INFERENCE OF GENERATIVE SEMANTIC RULES

Everything in the preceeding may be treated as introduction to the following
exposition. The germ of the inference techniques have been described in
Klein, 1967, Klein et al, 1968, Klein and Kuppin, 1970.

At this point a comment on the use of a Universal Semantic Component is
nessary. For inference purposes it is easier, but not necesseary, to assume
such a component. Techniques can be described for inferring a non-universal,
arbitrary semantic component, However, in this exposition, 1 shall assume a
universal semantic component that is assumed to be common to the informant

and the grammatical inference device. This is equivalent to the assumption that
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there exists a program for converting English translations of productions
in the language under analysis into their deep structure representation.

It is not important for the exposition of the learning mechanisms whether
or not a good or correct universal semantic component is used--only that

it be conmon to both the informant and the inference device., But even this

°

assumption is not entirely necessary; even with the initially assumed common
component it is possible to introduce the learning of additional deep structure
that is not common to both informant and the inference device (an indication

that the assumed universal component was faulty).

An_Analytic Example (hand simulated solution)

The following example uses an amended version of a problem in Koutsoudas, 1966,

Problem 59: Japanese

l. nara wa hanasi o kiita
Nara heard the story,

la. (added) jon wa hanasi o kiita 1b. (added) nara wa jon o kiita
John heard the story. Nara heard John,

2, anata wa nara o kiita
You heard MNara,

3. jon wa hanasi o sinzita
John _believed the story.

L, nara wa jon o sinzita
Nara believed John.

5. anata wa nara ga hanasi o kiita to sinzita
You believed that Nara heard the story.

6. nara wa jon ga hanasi o sinzita to kiita
Nara heard that John believed the story.

7. jon wa siawase da 7a. (added) daigakusei wa siawase da
John was happy. The student was happy.

8. anata wa jon ga siawase da to kilta
You heard that John was happy.




9. nara wa daigakusei da
Nara was a student.

10, jon wa nara ga daigakusei da to sinzita
John believed that Mara was a student,

11. nara wa anata ga daigakusei da to kiita
Nara heard that you were a student.

12. daigakusei wa nara ga siawase da to sinzita
The student believed that Nara was happy.

13. jon wa anata ga siawase da to kiita
John heard that you were happy.

But not:
*hanasi wa nara o kiita *apata wa jon ga kiita to siawase da
“hanasi wa siawase da *jon wa nara ga kiita to daigakusei da

*jon wa hanasi da

This hand simulation of an analysis will avoid some powerful devices available
to the system, Remember that the semantic deep structure of the English
glosses is assumed to be available, These could be used to generate queries
in English far simpler forms than the complex constructions offered in the example.
Except for the added inputs such aids are net used,

The notation for the rules coined deserves comment. Each rule
begins with the letter S followed by a number. The name of a rule is the
complete alpha-numeric descriptor., This convention is used because it conforms
somewhat to a similar convention used in earlier writings on grammatical
inference (Klein et al, ibid), and facilitates comparisons with earlier work,

After input sentence 1, the following partial rule is formulated:
1. SI% nara wa hanasi o kiita // 0(Mara) - R(hear) - O(story)

(tense is ignored as their is no contrast in the problem)

Input sentence la at first ylelds the rule:
2, S2- jon wa hanasi o kiita // 0(John) - R(hear) - O{story)

But a double mismatch
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in otherwise identical rule structures permits the following grammar revision:

1. S1> $2 wa hanasi o kiita // 0 - R(hear) - O(story)

2, S2<y terminal

S2
and the addition to the lexical dictionary : nara [
jon 1

On the basis of this embryonic grammar, input lIb parses to:

2 wa S2 o kilta // 0 - R(hear) ~ 0

The information permits matching with rule 1 and the identification
of 'hanasi' asa lexical expressant of O(story)

The tenative grammar:

1. Sl S2 wa S2 o kiita // 0 = R(hear) - 0 Lexical Dictionary
52
2, S2-» terminal nara 1
jon 1
hanasi 1

is posited and then rejected after it is used to produce the test sentence:
““hanasi wa jon o kiita" which is rejected by the informant.

Accordingly, the equivalent of a sub-category is created,yielding the grammar:

1. S1= S2 wa S3 o kiita // 0~ Rlear) - 0

Lexical Dictionary

2. S2-¥y terminal $2 3
3., S3-» terminal nara i 1
jon 1 ]
hanasi 0 i

Ignore input sentence 2 for the moment and accept instead input 3, which

parses to:

¢ -
$2 wa $3 o sinzita // 0 - R(believe) - 0

wWhen compared with rule 1, the mismatch kiita/sinzita is obtained, permitting
their identification as lexical expressents of Ofhear) and R(pelieve). A class

S4 1s created, and the forms are added to the lexical dictionary ylelding:
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} — ]
1. Sl S‘2wa53051+//9-—R-0

Lexical Dictionary

2., $2= terminal 52 53 Sk
3, 532 terminal nara I 1 0
jon 1 1 0
L, Sk« terminal hanasi o 1 0
kiita 0 0 1
sinzita 0 0 i

At this point a comment on pronouns is warranted. A pronoun may be on
the lexical expression list of any number of objects, Its precise form
is subject to modification by transformation. The form is entered in the
lexical dictionary in the inference process provisionally in a full form.
If variants are encountered, the lexical dictionary may list only one or
a few, with transformations handling other variants, Thus the only impact
on the grammar caused by input sentence 2, is the addition of the lexical
dictionary entry: 52 $3 Sk

anata 1 1 0

Input sentence 4 is completely parsed as far as the current grammar is concerned--

§ ———— 1
reducing to: 52 wa S3 oSk //0Q0-R=-0 which is identical with rule 1,

Mre interesting things happen when input sentence5 is added, At first

it yields the partial parse:

S2 wa S3 ga S3 o Sk to Sk // Olyou) - Rlbelieve) - Qlpredicate object)
l ] S J R _';___/-‘—’N-.._. N v M‘..\_\'
“0(Nara) =~ R(heard) - q(story)\\\
1

(or more precisely, 0 - R -ﬁ

N
D-R-0

This is added as rule S5 , but a rejected test production would force the first

$3 to be changed to S2, yielding:

5. $59 S2wa S2 ga S3 o Sk to b /7 G- R- 0
l Q. 0
) !

- R -

2
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At this polnt a new type of semantically based heuristic is used.
The mappings from the syntactic side of S5 to the two linked semantic triples
permit a powerful syntactic//semantic decomposition and matching. On the basis
of the condition that the syntactic string, S2 ga S3 o S4 contains mappings
only to a single semantic triple, that string and the relevant triple are

extracted to form the rule S6, yielding the changes:

5, S5 S2 wa S6 to Sh // 0 - R~ 0

6. 6% S2ga S3 o Sh // 0- R~ 0

r

At this stuge rule 6 is matched against rule 1, yielding the discrepancy, wa/ga .

it is now possible for the system to make a chain of complex inferences, which
if valid, permit a global solution to the problem, but which if invalid permit
the analysis to continue at a less general stage. (The system always maintains
its data in such a way that tenative complex inferences may be undone, and
earlier states of the grammar restored.)

An attempt is made to combine rule 6 and rule 1. A commitment to coin
a transformation accounting for the wa/ga discrepency is noted. Rule 6

is deleted, but now the occurence of the $S6 node in rule 5 must be replaced by Sl:

1. S1=2 $S2 wa S%oSl%// Q-ﬁ-d

°

¥ 7

o '——-——-—-—-—«——_—.._-.—.7
5. S5 S2 wa S| to Sh // 0-R=~-0

Two high level transformations are posited to account for the wa/ga variation:

Tl. 55 (52 wa S1 to Sh) => $5(52 wa S1 T2 to S4)

T2. S1T2(S2 wa S3 o S4) => S1(S2 ga S3 o Sh)

Note that if there are other environments that also yield a wa/ga variation,
the process might be divided with the low level transformations. In that case

T2 would merely flag 'wa' for later application of a low level transformation to

convert it to‘ga.
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The remaining inputs have a major effect on the grammar., Skipping

Input sentence 6, and entering Instead, input sentence 7, yields the rule:

6. S6- S2 wa siawase da // 0 - R(is) - 0 (happy)
Input sentence 7a has only the effect of adding 'daigakusei' to the lexical

dictionary (after verifying test productions):
$2 83

daigakusei ] 1

The addition of input sentence 9 (skipping 8) permits the revision of rule 6:

6. S6~ S2 wa S3 da /(:Efff“k -0

and the addition of lexical entry: s2 $3

siawase 0 1
(only after appropriate testing with implied test sentences)
An attempt is now made to combine rule 6 and rule 1 on the grounds that

the rules are identical except for 'o', and that this 'o' is without any

link to the semantic portion of the rule. (The absence of 'o' would imply the
addition of 'da' to Sh.) The resultant changes affect rules 1 and T2, replace

rule 6, add rule 7, and also enter 'da' in the lexicon, yielding the final grammar:

1. S1=> S2 wa $3 ng// 0-R~-0 lexical Dictionary
S2 S3 sS4 S6
2, S2- terminal nara 1 0 0
. jon 1 ! 0 0
3. $3- terminal hanas i 0 ] 0 0
kiita 0 0 1 0
L“o SL{'“\? tel‘minar] e - Sinzita O 0 ] 0
T daigakusei I i 0 0
! - -
5. S5 S2 wa Sl to Sk // O - R~ 0 s iawase 0 1 0 0
6. S6= o Sk /7 R da ° 0 o
7. S6<% terminal High level Transformations

Tl. $5(52 wa S1 to S4) =3 55( S2 wa SI1'% to Sh)
T2. S1T2(s2 wa $3 S6) - SI(S2 ga S3 S6)
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This grammar is now sufficient to account for all the remaining input
sentences, Consider input 8, By phrase structure rules this parses to:
SF S? %3 Sﬁ sk

anata wa jon ga siawase da to kiita
By the inverse of Tl and T2, this reduces to:

S2 wa S2 wa S3 S6 to Sh
then by phrase structure rule 1 to:

S2 wa S1 to Sk
which reduces to $5 (by rule 5), completing the parse.

All the remaining inputs have identical parses.
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