WIS-CS~-73-179

COMPUTER SCIENCES DEPARTMENT
The University of Wisconsin
1210 West Dayton Street
Madison, Wisconsin 53706

IMPLEMENTATION OF A GENERATIVE
COMPUTER—-ASSISTED INSTRUCTION
SYSTEM ON A SMALL COMPUTER

by
Rick LeFaivre

Technical Report #179

April 1973

Received April 17, 1973

This research was supported in part by NSF Grant GJ-36312.

ABSTRACT

This paper gives a brief overview of several
"tpraditional" approaches towards computer-assisted in-
struction (CAI). A new CAI language is then described
which allows the user to write programs which generate
both questions and answers with a minimum of programming
effort. An implementation of the described system 1is
discussed in detail, followed by a description of a
sample program which drills the student in German-English
translation by generating sentences whose complexity 1is

a function of performance.

IMPLEMENTATION OF A GENERATIVE
COMPUTER—ASSISTED INSTRUCTION
SYSTEM ON A SMALL COMPUTER

I. INTRODUCTION

Computer-assisted instruction (CAI) has long been
visualized as a viable means of increasing the level of
individualization in the educational process. It has also
been regarded disparagingly as having a dehumanizing ri-
gidity which makes meaningful interaction between "teacher"
and student impossible. One of the major goals of current
research in CAI is to find ways to reduce this rigidity by
making the computer more responsive to the needs and de-
sires of the individual student. This paper consists of a
brief review of several different major thrusts in the
development of CAI, followed by a detailed description of
a generative system developed for the Digital Equipment
Corporation PDP-12 Mini-Computer.

Traditional CAT

The traditional CAI system consists of a data base
of frames to be presented to the student and an executive
program to select the particular frames to be presented
and check the student's replies. The sequence of frames
may be predetermined (linear) or may be determined dynam-
ically as a function of the student's replles and past
history (branching). The frames of information, the
anticipated answers, and the detailed branching structure
(if any) must all be specified by the teacher before the

student may use the program. Clearly, if the instruc-
tional sequence 1s to be at all "tailored" to the indi-
vidual student, a tremendous amount of effort must be ex-
pended in frame preparation and answer antlcipation. For
example, consider an instructlonal network layed out as a
binary tree--each node in the tree constituting one frame,
and each frame having two possible replies. In this setting,
a modest instructional sequence of 20 questions would neces-
sitate the preparation of 1,048,575 frames! Of course,

such highly individualized teaching sequences are rarely
implemented using conventional CAI techniques. Normally
there are from one to several major "strands'", with pro-
vision made only for branching from strand to strand or up

and down a strand.

In what we are calling a "traditional" CAI system,
the role of the computer is limited to four major tasks:
selecting a frame to present (using some pre-supplied

selection algorithm); presenting the frame to the student;

accepting the student's reply; and comparing the reply to

a list of pre-supplied answers. Note that nowhere in this
select-present-accept-compare cycle is the computer re-
quired to do any actual computing. The power of the com-
puter as a computational device is essentially being wasted,
while the teacher is required to spend hours preparing a
sufficient variety of frames to assure an interesting
teaching sequence. [Note that "interesting" is typically
defined in terms of the "normal" student. The particularly
slow (or advanced) student is apt to find that not enough
easy (or hard) problems were provided to tailor the in-

structional sequence to his needs.]

Generative CAI

The recognition of the limitations of traditional

CAI led to the development of generative CAI systems-~--—

systems where the computer is used to generate instruc-
tional material as a function of student interaction.

Instead of preparing a sequence of frames such as:

TADD 1 4+ 1' <'2'>
"ADD 5 4+ 8' <'13'>

the teacher may prepare a generative "program":
'ADD' NUM1 '+' NUM2 <SUM>

[where NUM1l and NUM2 might be functions which generate
increasingly harder (or easier) problems as a functlon
of student performance]. Thus in generatilive CAI, the
data base is expanded to a potentially infinite number
of frames, any one of which may be "selected" for an

individual student as a function of his unique history.

Historically, generative CAI as described above
has tended to be used with quantitative problem areas
where simple algorithms for question and answer genera-
tion are known (e.g., arithmetic, algebra and set theory).
Note in particular the work of Uhr [1, 2], Hoffman and
Seagle [3], Peplinski [4], Wexler [5], Uttal, et. al.
[6], Siklossy [7] and Koffman [8]. Many of the high-
level CAI languages developed to assist teachers in CAIL
program preparation contain at least a minimal genera-
tive capability. (Perhaps the most common element in
generative systems is a random number generator coupled
with the ability to do simple arithmetic.) Zinn [9, 10]

has published several excellent reviews of these CAI

languages.

"Intelligent" CAI

A related, but much more complex and possibly more
important, form of generation is that present in the sys-
tems of Wexler [11, 12] and Carbonell [13, 14]. These
systems are "intelligent" in the sense that they have
knowledge of the particular subject being taught. This
knowledge is stored in the form of a structured network
of facts and relationships. Carbonell's system, in
particular, relies heavily on the concept of a semantic
network as developed by Quillian [15]. The network is
used both to generate questions for the student (and
check his replies), and to answer questions asked by
the student. The systems are able to converse in (re-
stricted) natural language, and allow for comparatively
realistic student/"teacher" dialogues. The major effort
required on the part of the teacher is initially building
the semantic network. As research in related areas such
as computer question-answering, natural language pro-
cessing, and automatic construction of semantic networks
progresses, this approach promises to have a major ef-
fect on CATI.

An Experimental CAI Language

The purpose of the research reported in this paper
was to investigate the use of generative CAI techniques
on small (mini) computers. Although the author feels
that "intelligent" systems such as Wexler's and Carbonell's
ultimately offer the most promise to the development of
CAI, such a system was not attempted here. The storage

space required to build up a semantic memory of interesting

complexity would seem to preclude the use of anything
but a relatively large computer for such a system.
Indeed, there are still many important artificial in-
telligence problems which must be solved before such
systems may be seriously considered for large-scale CAI
use. Instead, the system described here provides an
interpreter for a CAI language which offers a blend of
simplicity of use and generative power. This language,
called GLEE (Generative Language for Educational Experi-
mentation), allows complex instructional sequences to be
generated with a minimum of programming effort. It
demonstrates that interesting and useful generative CAI
systems may be developed on small (and therefore rela-

tively inexpensive) computers.

II. OVERVIEW OF THE GLEE LANGUAGE

Facilities for Branching

The two major statement types in the GLEE langu-

age are frame definitilon statements and function defini-

tions. A frame definition statement is composed of three

basic segments: a label; a message expression; and a

list of answer groups. For example, consider the fol-

lowing:
#PROB1 'ADD 2 + 2' <'4,FOUR':RIGHT,PROB2><:WRONG,PROB1>

Execution of this statement, which is identified as
PROB1 to the rest of the program, will cause the string
"ADD 2 + 2' to be presented to the student, after which
the system will wait for the student's reply. If the
student answers by typing either 'U4' or 'FOUR', a branch
will be made to the statement labeled RIGHT, followed by
a branch to PROB2. Any other answer will cause a branch
to WRONG, followed by a repetition of the current prob-
lem. WRONG, for example, might be a simple feedback

statement:
#WRONG '"INCORRECT. TRY AGAIN.'

In general, when a branch is made to a statement, the
message expression 1s evaluated (see below) and the re-
sultant string is presented to the student. The answer

expression in each answer group is then evaluated and

the alternative answers (separated by commas) are com-

pared with the student's reply (the answer-matching al-
gorithm will be discussed in detail in Section Iv). If
a match is found, the labels present in the answer group
(following the ':') are put on the top of the branching

stack and a branch is made to the first label on the
stack. If there are no answers in an answer group (e.g.,
<:WRONG,PROB1>) the student's reply is ignored and the
assoclated labels are placed on the branching stack as

if a match were found. Such an answer group 1s termed

a default answer group.

Facilities for Generation

Given just what has been described thus far, a
GLEE user could write a branching CAI program in the
traditional sense (i.e., with all the frames (messages)
and expected answers pre-programmed). A generative
capability, however, may be added in a relatively pain-~
less manner through use of variables and functions.

Consider the following statement:
#ADDGEN '"ADD ' #NUM1 ' + ' #NUM2 <#SUM:RIGHT><:WRONG>

The number sign (#) is a unary operator which causes

the value of its operand to be converted to a string
(e.g., the result of evaluating the expression #(43) is
the string '43'). [Note: The '#' preceding ADDGEN
above 1is not an operator, but serves to identify ADDGEN
as the label of this statement.] When the above message
expression is evaluated, a string is built up consisting
of the characters 'ADD' followed by the value of NUM1,
followed by '+' followed by the value of NUM2. Evalua-
tion of the answer in the first answer group results in
a string representing the value of SUM. There is no

way to know at this point whether NUM1l, NUM2 and SUM

are variables or functions. If they are variables,

they could be initialized at some point earlier in the
sequence by calling a function 1like the following:

$SET NUM1 = RAND
NUM2 = RAND
SUM = NUMI1+NUMZ2
EXIT = O

where SET calls a random number generator RAND. [As
can be seen, the convention used to return from a func-
tion is to assign a value (which will be the value of
the function) to the system variable !'EXIT.] If in the
above example NUM1l, NUM2 and SUM are functions, they
might be defined as follows:

[THIS IS FUNCTION NUM1
$NUM1 N1 = RAND
'EXIT = N1

[(THIS IS FUNCTION NUM?2
$NUM2 N2 = RAND

TEXIT = N2
[THIS IS FUNCTION SUM
$SUM 'EXIT = N1+N2

[Note the use of comments to annotate the GLEE program.]

Expression Evaluation

It might be well to pause at this point and re-
flect upon the relationship between the evaluation pro-
cess and the string ultimately used as a message or

answer. An expression may appear in a GLEE program as

a message, an answer, or, as will be seen, in assignment
and if statements in function definitions. The expression
(consisting of variables, function calls, and the op-
erators '+', '¥V_r_v_ v/t agnd '#') is evaluated as would
be expected (except that operator precedence must be
indicated explicitly through use of parentheses) with

the following extensions:

1) A quoted string (e.g., '"ABC') has the value 0.
When encountered during the evaluation process,
the characters between the quotes are added to
the current message or answer string being built.

2) The unary operator '#' returns as a value the
value of its operand; it also has the side ef-
fect of converting the value of its operand to
a string of digits and adding it to the current
message or answer string.

3) When two operands appear next to one another,
the addition operator is inferred (e.g., A B
is equivalent to A+B).

Using these rules, and assuming that the next two calls

to RAND return the numbers 4 and 7, the actual value of
the message expression in ADDGEN is O+4+0+7, or 11. This
value is incidental, however, as the reason for evaluating
the expression is actually to build up the message string
'"ADD 4 + 7'. To further belabor the point, the following
GLEE program segment would have exactly the same effect

as the above:

#ADDGEN NUMS <SUM:RIGHT><:WRONG>

$NUMS N1 = 'ADD ' #RAND [BUILD UP LEFT HALF OF STRING
N2 = ' + ' #RAND [BUILD UP RIGHT HALF
EXIT = O [RETURN (WITH VALUE OF 0)
$SUM EXIT = #(N1+N2) [BUILD UP ANSWER STRING

Summary of Baslic Syntax

At this point the basic syntax of the GLEE langu-
age should be relatively clear. FEach frame definition
statement must be labeled, with the label preceded by
a '"#'. The message segment may be any expression. This
expression will be evaluated, the value will be discarded,
and the resultant string (built via evaluation of guoted
strings and use of the '#' operator) will be presented
to the student. A list of answer groups appears next,

each answer group consisting of a '<', an answer

10

expression, a ':', a list of labels to be branched to
in case a match 1s found, and a '>'. Functions are
defined by placing an entry point on the first line

of the function definition, where an entry point con-
sists of a '$' followed by the function name. A func-
tion is evaluated by successively executing the state-
ments in its definition, with the wvalue being the value
assigned to the system variable !EXIT. Functions may
not have parameters, but may be recursive. All vari-

ables are global, and may take on any integer wvalue in

the range -8,388,607 to +8,388,607. Labels, entry points

and variable names consist of 1 to 6 alphanumeric char-
acters, with the first character alphabetic. A single

GLEE program may contain up to 204 labels, entry points
and variables. Comments, initiated with a '[', may

appear almost anywhere in a GLEE program.

Function Definition Statement Types

There are three basic types of statements which
may appear in function definitions. Any of the three
may be labeled with an entry point. The first is the

assignment statement:

VARBLE = EXPR

This statement causes the expression (EXPR) to be
evaluated, with the (integer) value stored in the vari-
able (VARBLE).

The second major statement type is the goto

statement:

!GOTO NAME

11

This statement causes evaluation of the current function
to continue with the statement labeled with the entry
point (NAME).

The other major function definition statement type

is the 1f statement:
!IF (EXPR1 OP EXPR2) STMNT

EXPR1 and EXPR2 may be any expressions. OP may be one

of the relational operators <, =, >, <=, >= or <> (i.e.,
not equal). STMNT may be an assignment statement, a

goto statement, or another if statement. STMNT will be
evaluated only if the value of EXPR1l is in the proper
relation to the value of EXPR2. If not, STMNT is skipped
and execution continues with the next statement, For
example, the following function returns the factorial

of the number stored in N:

$FACT ITF (N<=1) !EXIT=1
N=N-1
IEXIT = (N+1)¥FACT

12

ITII. OVERVIEW OF THE GLEEFUL SYSTEM

The system described in this paper was implemented
on a Digital Equipment Corporation PDP-12 computer with
8192 12-bit words. This computer is somewhat unique 1in
that it has a built-in CRT and two random-access LINCtape
drives. The CRT and Teletype are used for interactive
I/0, while the tapes are used for bulk storage of GLEE
programs and student data. The system exists as a pro-
gram (called GLEEFUL--GLEE For Useful Learning) which may
be loaded by LAP6W, an interactive editor/filer/assembler
system for LINC-class computers [16]. The editing and
filing capabilities of LAP6W are utilized to prepare
GLEE programs, file them on tape, and list them on the
Teletype or line printer. Once given a name and filed
on tape, the GLEE program is accessible to the GLEEFUL
interpreter. GLEEFUL is written in WISAL, LAP6W's LINC
assembly language, and occuples approximately 7K of core
(the remaining 1K being reserved for LAP6W's resident

trap processor).

Loading Procedure

The GLEEFUL system is started by loading a LAP6W
system tape on unit 0, placing a tape containing GLEEFUL
and the GLEE program(s) to be run on unit 1, and typing

~LB GLEEFUL,1

After striking RETURN, the following display appears on
the CRT:

ENTER NAME OF COURSE MANUSCRIPT.
TERMINATE ALL DISPLAYS BY STRIKING 'RETURN'.

(1)

13

The name of the GLEE program to be run is entered,
appearing as typed at the bottom of the scope. RUBOUT
may be struck at any time to delete the last character
entered. After striking RETURN, the named program is
located in the file of the tape on unit 1 (if not pre-

sent, the above display reappears).

Student History File

After locating the desired program, the following
display appears:

ENTER PRE-ASSIGNED STUDENT NUMBER IF
(2) REPLIES ARE TO BE ADDED TO YOUR FILE.

STRIKE 'RETURN® IF NOT.

A file may optionally be maintained for each student
giving a trace of the student's activities during the
course of the instructional sequence. This file is as-
sumed to exist on unit 1 as a manuscript filed under the
name ¥STU¥NNN, where NNN is the pre-assigned student
number (000 to 999). A student is "signed on" to the
system by creating (using LAPG6W) a manuscript containing
his name and other pertinent data and saving this manu-
script on unit 1. A cumulative record may then be main-
tained giving the name of the GLEE program executed, the
label of each frame displayed to the student, and his
reply. [The gquestion presented to the student may also
be retained by placing sense switch 2 on the computer
console in a down position. This feature 1s qulte use-
ful when the questions are being generated randomly,

and need to be seen to understand the student's replies.]

The student fille may later be printed out by the teacher,

14

and 1s accesible to data analysis and compression pro-
grams for summary.

Program Execution

After answering display (2), a pass is made over
the GLEE program to be executed to bulld up a label/
entry point table. Execution then commences with the
first frame definition statement in the program. Eight
blocks (4096 characters) of the GLEE program are kept
in core at once, with additional blocks read in when
required. This reading of overlay blocks, and the
writing of the student history file (LAP6W's manuscript
working area on unit 0 is used for scratch storage),
constitute the only tape accesses during the instructional
process. Since a tape access takes only about one-half
of one second, occasional delays are considered tolerable.
GLEEFUL may also be run from a disk, so that even these
minor delays are eliminated. 1In order to faclilitate the
use of GLEEFUL from a remote Teletype, all questions and
answers willl be typed out if sense switch 0 on the con-

sole is down.

Error Handling

If an error is detected during execution of the
program (e.g., branching to a non-existent label, syntax

errors, etc.) a display of the following type appears:

***AN ERROR HAS BEEN DETECTED.
(3) CONTEXT:
JIF (A JBLT. B) !GOTO C

15

The last line of the display shows the segment of the
program where the error was detected, with a solild
block inserted immediately following the error. Strike
RETURN to return to LAP6W, at which time the error can

be corrected.

Student Control

Using only the facilities described up to this
point, the student is essentially a slave to the pro-
gram. He can cause only those branches to occur which
the teacher specifically allowed for in the GLEE pro-
gram. It 1s felt, however, that often it is desirable
to give the student somewhat more flexibility as to
when he starts a new sequence of steps, and exactly
what sequence is to be performed. To allow for this,
there are two special commands which may be entered by
the student in lieu of a normal answer. The first
command consists of a '4' followed by the label of a
frame definition statement in the GLEE program. This
causes the branching stack to be re-~initialized to
contain only that label, and an immedlate branch to
the corresponding statement is made. Thus by giving
him the labels of several major sub-sections of the
program, the teacher may allow the student to branch
at any time without having to add a 1list of possible
branches to every statement. If the student attempts

to branch to a non-existent label, the display

(4) | ***THERE IS NO SUCH LABEL

appears and the attempted branch 1s ignored.

16

The second special command which the student may
enter consists of a "!' followed by the name of a GLEE
program. This command causes the current program to
be terminated and the named program to be entered.

Thus to branch to program "NAME", the student may enter
'"INAME' at any time. If program "NAME" is not found

on unit 1, display (1) appears requesting a program to

execute. If only the single character '!' 1s entered,

a return is made to the LAP6W system on unit 0.

17

IV. ADDITIONAL SYSTEM FEATURES

When implementing a system with limited resources
available, it is inevitable that certain arbitrary deci-
sions must be made regarding the features which are to be
included. The GLEEFUL system is certalnly not lacking in
such decisions. Desirable features which were omitted
from the implementation because of space limitations in-
clude parameterized functions, arrays, and string-valued
variables. There are, however, some additional features
which adhance the usefulness of the system. These ex-
tensions will be described in this section.

Answer-Matching Mechanism

Perhaps the most important feature yet to be described
is the answer-matching mechanism. The answer string entered
by the student is matched character-for-character with the

generated answer string, with the following exceptions:

1) If the character '?' appears in the generated an-
swer, it will match any single character in the
student's reply. For example, 'R4N' matches any
three-character string starting with 'R' and end-
ing with 'N'. Thus the strings 'RAN' and 'RUN'
would match, while 'RN' and "RAIN' would not.

2) If the character '!' appears in the generated an-
swer, it will match an arbitrary string of zero
or more characters in the student's reply. For
example, 'R!N' matches any string starting wilth
'R' and ending with 'N'. Thus the strings 'RN',
'"RAN', 'RAIN' and 'RAGAMUFFIN' would all match.
This feature may be used to "unanchor" the match
from either the left or right side. For example,
'"A!'" matches any string which starts with an 'A',
and '!'A' matches any string ending in 'A'. When
a '!" is appended to both the left and right of
a generated answer, we obtain a keyword search.
For example, '"!WORD!' will match any reply con-
taining the string 'WORD'. Several ordered key-
words may be searched for, as in '!MADISON!WISCONSIN!',

18

which matches any reply in which the string
'"MADISON' appears, followed (eventually
the string 'WISCONSIN'.

3) If the character '.' appears in the generated
answer, 1t matches the entire remalning reply
and re-sets the scan pointer to the first
character in the reply. For example,
"TWASHINGTON.ADAMS,JEFFERSON!' will match any
reply containing (in any order) the three
specified strings. After a '.' is encountered,
the ensuing search will be unanchored on the
left, i.e., "A.B' 1s equivalent to 'A.!B'.
This special character may be thought of
as an "and" operator, in that all substrings
separated by '.'s must match for success.

4) An "or" operator is also available via the
character ','. If any substring delimited
by ','s matches, the answer match 1s considered
successful. For example, '!GERMANY!,!DEUTSCHLAND!'
will match an answer in which either of the
two substrings appears. Note that the '.'
operator has precedence over the ',' operator.
Thus '!LEWIS.CLARK!,!ROGERS.HAMMERSTEIN!'
willl match any string which contains both
'LEWIS' and 'CLARK', or any string which
contains both 'ROGERS' and 'HAMMERSTEIN'.

5) Finally, if the character '"' appears in the
generated answer, the next character is taken
"as is". This allows the above special char-

acters to be searched for in an answer. A
double-quote character is represented by the
pair [IRARL .
Although these conventions are relatively slmple, the
author feels they give the GLEE user a rather powerful

answer-matching capability.

Setting Time Limits

Another important feature which has not yet been
mentioned is the ability to specify the amount of time
avallable to the student to answer a question. The timing

feature is enabled by setting sense switch 1 on the

19

computer console into a down position. Once this is
done, the alloted time may be controlled by setting the
system variable !TIME to the desired time in hundredths
of a second. For example, calling a function which

contains the statement
TTIME = 1000

would cause the time 1limlt to be set to 10 seconds. If
the student does not complete hls answer in the specified
time, the system proceeds as if he answered with the
character '\'. This character (which may be used in
place of 'RETURN' in a message, and cannot be entered
directly by a student) may be used in an answer group

to explicitly check if the alloted time was exceeded.

For example, the following GLEE segment gives the student

20 seconds to type his name:

#NAME SETIM 'TYPE YOUR NAME' <"\ '":TIMOUT><:0K>
#TIMOUT CLRTIM 'YOU TOOK TOO LONG!' <:NAME>
$SETIM !TIME = 2000
'EXIT =
$CLRTIM !TIME = 0
EXIT =

The computation of the alloted time 1is performed modulo
4096, so that the maximum alloted time is 40.95 seconds.
However, if !TIME is set to 0, or if sense switch 1 is
not down, the student may take as long as he likes to

answer the display.

Program Branching

Another useful feature provided to the GLEE user
is the abllity to branch to another GLEE program. This
1s done by preceding the program name with a '!' and

placing it at the end of the label list of an answer

20

group. For example, <:GOO0ODBY,!ARITHTIC> would cause

a branch to be made to the frame labeled 'GOODBY', fol-
lowed by a branch to the program 'ARITHTIC' on tape unit
1. The branching stack will be cleared, and all labels,
entry points and user-defined variables in the original
program are lost. However, the system variables !TIME,
'REM and !VAL (see below) retain thelr values and may

be used to pass information to the called program (these
variables, along with all user-defined variables, are
initialized to zero when entering the system from LAP6W).
Execution continues with the first frame definition
statement in the new program. If the specified program
is not found on unit 1, display (1) of Section IIT will
appear, asking for a program name. Executing a branch
to the single character '!' will cause a return to the
LAP6W system on unit 0 to be made. If student replies
are being saved, it is recommended that a return to
LAP6W be made (either via branching to '!' or via the
special student command '!') to assure that the student

history file is properly closed.

Additlonal System Variables

In addition to !TIME and !EXIT, which have already
been discussed, there are several other system variables

which are available to the GLEE user:

'REM: Always contains the remainder of the
last integer division.

'VAL: Contalins the integer conversion of the
last answer. I1f the answer was non-
numeric, VAL contains zero.

'ANS: The value of this variable is the same
as !'VAL. When !ANS appears in an ex-
pression, however, the string entered
as the last answer 1s added to the cur-
rent message or answer being built. For
example, the following always displays
the answer to the previous question:

21

#DLAST 'LAST ANSWER: \' !ANS <:DLAST>

'L8W: Contains the value currently set in the
left switches.

'RSW: Contalns the value currently set in the
right switches.

All system variables (as well as the system command
!GOTO) may be abbreviated to their first three char-
acters (!'EX, !GO, !RE, etc.).

Missing Statement Segments

The only remaining system conventlons to be dis-
cussed concern what 1s done when required statement
segments are missing. For example, 1t has already been
stated that when there are no answers 1n an answer
group (e.g., <:G0>), any reply is considered a match
and the associated branches are made. [We now know that
this is equivalent to including the answers '!' or
'ANS in the answer list. Note that this is not the
same as the null answer '', which matches only if the
student struck RETURN with no answer string.] If no
labels are present in an answer group (e.g., <'A':>)
and the answer matches, the label of the next frame
to be executed is taken off the branching stack (if
the branching stack is empty, the error display appears).
If there are no answer groups present in a frame de-
scription statement, it is as if the null answer group
<:> were present. If there is nothing present where
an expression 1is required (e.g., 'EX=), a value of

zero 1s assumed.

Finally, if the message in a frame description
statement evaluates to the null string, nothing is pre-

sented to the user, but answer checking and branching

22

proceeds as usual. If the message expresslon evaluates
to a value of zero (including the case where no ex-
pression is present), the student's reply to the previous
frame is used for answer checking. If the value of

the message expression is non-zero, 1t is converted to

a string, preceded with a '\' (for uniqueness), and used
for answer checking. This is a rather ad hoc method of
providing a computed branch ability. Branches may be
made on the basis of a computation rather than being
solely based on the student's answers. For an example
of the use of this feature, consider the following

program segment:

#BRANCH TEST <'\1' :LOW> <'"\2' :AVRAGE> <'\3' :HIGH>

$TEST 'IF (RIGHT<10) !EX=1
'IF (RIGHT<20) !EX=2
TEX=3

BRANCH will cause a branch to LOW, AVRAGE or HIGH to
occur as a function of the current value stored in the
variable RIGHT.

23

V. AN EXAMPLE

Several sample GLEE programs have been written to
illustrate various aspects of the system. They include
an arithmetic drill which uses the time feature to con-
tinually "push" the student; a drill routine in the
parsing of simple English sentences (generated randomly);
a program that leads the student step-by-step through
the solution of (randomly generated) simultaneous linear
equations; and a drill in English-to-German and German-
to-English translation which generates sentences whose
complexity is a function of student performance. This
last program was selected for inclusion in this paper
to illustrate the relative ease with which simple genera-
tive programs may be written even in non-numeric problem

domains.

The program, which appears in Appendix A, generates
either a German or English sentence and asks for a
translation into English or German. If the reply is
correct, a positive feedback comment 1s displayed to
the student. If the reply 1s wrong, the correct trans-
lation is given. The simple grammar given below 1s used

for sentence generation:

English:
Sentence: S -+~ NP VP
Noun Phrase: NP -+ AR N / AR A N
Verb Phrase: VP - PAD IV / PAD TV NP
Possible Adverb: PAD - (NULL) / AD
Article: AR - 'THIS' / '"THE' / 'EVERY'
Adjective: A + 'FUNNY' / 'BIG' / 'LITTLE' / 'PRETTY'
Noun: N > 'WOMAN' / 'CAT' / 'TEACHER' / 'COW'
Adverb: AD -+ 'ALWAYS' / 'OFTEN' / 'SELDOM' / 'NEVER'
Intrans. Verb: IV -+ 'SLEEPS' / 'RUNS' / 'PLAYS'
Trans. Verb: TV - 'KISSES' / 'SEES' / 'HITS'

24

German:
Verb Phrase: VP > IV PAD / TV PAD NP
Article: AR - 'DIESE' / 'DIE' / 'JEDE'
Adjective: A - '"LUSTIGE' / 'GROSSE! / 'KLEINE' / 'SCHONE'
Noun: N - 'HFRAU' / 'KATZE' / 'LEHRERIN' / 'KUH'
Adverb: AD - 'IMMER' / 'OFT' / 'SELTEN' / 'NIE'
Intrans. Verb: IV - 'SCHLAFT' / 'RENNT' / 'SPIELT'
Trans. Verb: TV » 'KUSST' / 'SIEHT' / 'SCHLAGT'

This grammar is probably overly simple for realistic use
(e.g., umlauts on German words are ignored, and the
gender problem has been suppressed by selecting all
feminine nouns), but it serves to illustrate what can

be done with such a technique. [I might note that even
with this simple grammar, we have moved well beyond the
limits of "tabled" teacher-supplied problems--the program
can generate 109,800 different sentences to be trans-
lated.]

The program generates a random number for each
decilsion which must be made during the generation pro-
cess, including the choice of which language to initially
generate for a given frame. The choices for NP, VP and
PAD in the above grammar are constrained by the level
of student performance. Simple sentences will ge gen-
erated initially (e.g., "The cat plays."), with the
sentences gradually becoming more complex as performance
improves (e.g., "This funny teacher kisses every pretty
cow."). Once these parameters have been determined, a
call to the function 'S'" will cause a sentence to be
generated and output. The type of sentence generated
is controlled through the variable ENGERM (-1 for
English, 1 for German). Once the above grammars had
been worked out, the translation to GLEE code was a
purely mechanical task. The entire program took about

one hour to code.

25

It should be noted that the answer-checking per-
formed by this program is minimal. The answer must be
entered exactly as generated for a match to occur.
(Actually, since the answer is surrounded by a '!...!'
pair, the student could type something like "I THINK
IT TS <ANSWER> BUT I'M NOT SURE" and still have a cor-
rect reply). The answer-checking could be extended to
check for keywords and partially correct answers, but
it was felt that this would obscure the generative

aspects of the program.

A sample run of the program (with sense switch 0O
down for Teletype output) is included in Appendix B.
The corresponding student history file which was gen-
erated is given in Appendix C (sense switch 2 was
placed down so that the questions appear in the file

along with the answers).

26

VI. CONCLUSIONS

The author feels the described system represents
a viable demonstration of the feasibility of generative
computer-assisted instruction on a small computer. As
mentioned earlier, it has several limitations (a humbling,
though by no means unique, situation). In addition to
the lack of parameterized functions, arrays and string-
valued variables, the major remaining problems have to
do with the rather small number of labels, entry points
and variables permitted (204), and a relatively slow
response time when a lot of computation must be done (up
to several seconds). The first problem is somewhat al-
leviated by the abllity to chain to another program--a
large program may be sub-dlvided into several smaller
segments. The occasional slow response time is due to
the fact that the code is interpreted. This could be
helped somewhat by writing a semi-compller version of
GLEEFUL which would perform all symbol table lookups

before execution begins.

Even with limitations such as these, it is felt
that a system of the kind described in this paper could
be a useful tool for the small computer user. Small
computers often lack a usable high-level language capa-
bility, and even when a FORTRAN or BASIC-like language
is available, the necessary text storage requirements
for CAI usage usually call for an inordinate amount of
overlay programming. The advantage of using a system
like GLEEFUL is that the user needn't worry about such
programming matters as answer-matching and accessing
mass storage directly. In this sense, the described
system is, indeed, "gleeful" (after all, the language
wasn't called the Generative Language for Use on

Machines, was 1t?).

27

VII., ACKNOWLEDGEMENT

I would 1like to thank Professor Leonard Uhr of
the University of Wisconsin Computer Sciences Department,
both for initially introducing me to the possibilities
of generative CAI languages, and for gently prodding me
into writing this paper.

28

VIII. REFERENCES

[1] Uhr, L., "The compilation of natural language text
into teaching machine programs," Proceedlngs
Fall Joint Computer Conference 1964, 35-01k,

[2] Uhr, L., "Teaching machine programs that generate
problems as a function of interaction with
students," Proceedings 24th ACM National Conf-
erence, 125-134, 1969.

[3] Hoffman, R. and Seagle, J., "A program oriented
computer-based instructional procedure," Pro-
ceedings 24th ACM National Conference, 97-110,
1969.

[4] Peplinski, C., "A generating system for CAI teaching
of simple algebra problems," Technical Report
No. 24, Computer Sciences Department, University
of Wisconsin, 1968.

[51] Wexler, J., "A self-directing teaching program that
generates simple arithmetic problems," Technical
Report No. 19, Computer Sciences Department,
University of Wisconsin, 1968.

(6] Utall, W., Pasich, T., Rogers, M. and Hieronymus, R.,
"Generative computer assisted instruction,"
Communication No. 243, Mental Health Research
Institute, University of Michigan, 1969.

[7] Siklossy, L., "Computer tutors that know what they
teach," Proceedings Fall Joint Computer Conf-
erence 1970, 251-255.

[8] Koffman, E., "A generative CAI tutor for computer
science concepts," Proceedings Spring Joint
Computer Conference 1972, 379-389.

(9] Zinn, K., "A comparative study of languages for
programming interactive use of computers 1n
instruction," EDUCOM, 1969.

[10] Zinn, K., "Programming conversational use of
computers for instruction,” in Atkinson, R.
and Wilson, H. (eds.), Computer-Assisted
Instruction, Academic Press, 1969, 253-268.

[11]

[12]

[13]

[14]

[15]

[16]

29

Wexler, J., "A generative remedial and query system
for teaching by computer," Ph.D. Dissertation,
University of Wisconsin, 1970.

Wexler, J., "Information networks in generative
computer-assisted instruction," IEEE Transactions
on Man-Machine Systems, Vol. MMS-11, No. 4,
Dec. 1970, 190-202.

Carbonell, J., "Mixed-initiative man-computer
instructional dialogues," Bolt Beranek and
Newman Report No. 1971, 1970.

Carbonell, J., "AI in CAI: an artificial intelligence
approach to computer-assisted instruction,"
IEEE Transactions on Man-Machine Systems, Vol.
MMS-11, No. &, Dec. 1970, 181-189.

Quillian, M. R., "Semantic Memory," in Minsky, M.
(ed.), Semantic Information Processing, M.I.T.
Press, 1968.

LAP6W Manual, Laboratory Computer Facility,
University of Wisconsin, 1972.

30

APPENDIX A

A Sample GLEE Program

31

PM OF ENG=-GERM PAGE @1
LN=0@01

61 [SAMPLE DRILL IN ENGLISH-GERMAN / GERMAN-ENGLISH TRANSLATION.
pon2 [USES A SIMPLE GRAMMER TO GENERATE SENTENCES TO RE TRANSLATED.
@0n3 [PROBLEM DIFFICULTY A FUNCTION OF PERFORMANCE.

po04

2085 #START °*THIS IS A DRILL IN ENGLISH-GERMAN TRANSLATION.
povo6 UMLAUTS ON GERMAN WORDS SHOULD BE IGNORED.®

DaB7 <¢MAIN>

po10e

B211 #MAIN "TRANSLATE FROM ° LANGLI °® TO ° LANGZ2 *:\\°* § °,°
po12 <TRANS:RIGHT,MAIN> <sWRONG,MAIN>

o013

A@14 [THIS ROUTINE GETS THE RANDOM PARAMETERS AND
015 [OUTPUTS THE NAME OF THE FIRST LANGUAGE.

316 SLANGL RLIM=4 [(I-.kEe» GENERATE RANDOM #°'S IN RANGE £, 31)
oaLT RA1=RAND {{2 VALUES ARE SAVED FOR ALlL NP PARAMETERS
pe20 RAZ=RAND { SINCE THERE MAY RE TWO CALLS TO NP)
goel RN 1=RAND

poae RN2=HAND

Y23 RAD=RAND

poz4a RLIM=3 LCSET RANGE TO [3-21)

goes RARI=RAND

PE26 RAR2=RAND

pa27 RIV=RAND

7a30 RTU=RAND

pO31 RLIM=2 CCSET RANGE TO [@,11)

pBR32 RNP1=0 [CIN CASE NOT READY FOR MORE COMPLEX NP)
PO33 ITF (COUNT>1> RNP1=RAND

o34 RVUP=0

pB35 'TF (COUNT>2) RUP=RAND

Bo36 RNP2=0

2037 IIF (COUNT>3) RNP2=RAND

Bo4ao RPAD=0

poal ITF (COUNT>4> RPAD=RAND

goaz EINGERM=2%RAND- 1 [C-1: ENGLISH FIRST? l: GERMAN FIRST)
pB43 ITF (ENGERM==1) !EX=°"ENGLISH®

po4L4 TEX="GERMAN"

ae4as5

po46 LTHIS JUST OUPUTS THE NAME OF THE SECOND LANGUAGE.

2047 SLANG2 I'IF (ENGERM=1) f(EX='ENGLISH®

o580 TEX="°GERMAN®

@051

@52 [THIS GENERATES THE ANSWER (COULD BE EXPANDED TO CHECK FOR
#B53 € PARTIALLY CORRECT ANSWERS).

054 STRANS 'EX = SWITCH °!° § °¢°

poas55

@p56 CTHIS SIMPLY SWITCHES FROM ONE LANGUAGE TO ANOTHER.

057 3S5WITCH ENGERM=-ENGERM

2060 TEX=

po61

pp62 [COME HERE FOR A RIGHT ANSWER.

@B63 #RIGHT °*RIGHT.® UPWT

go64

pB65 [COME HERE FOR A WRONG ANSVWVER.

P66 #WRONG °*NO-\'" SWITCH S °".\TRANSLATES TO\" SWITCH S '« DOWNWT
po67T

32

PM OF ENG-GERM PAGE g2
LN=0B70

@@7¢ [(THIS UPWEIGHTS OR DOWNWEIGHTS THE COUNTER WHICH
@671 CONTROLS SENTENCE COMPLEXITY.
gaT72 SUPWT COUNT=COUNT+ 1

@a73 TEX=

Bo74 SDOWNWT COUNT=COUNT-1
9275 TEX=

Ba76

aaTT

9199 [THE FOLLOWING IS THE SENTENCE GENERATOR FOR ENGLISH (ENGERM=-1)
101 T AND THE EQUIVALENT GERMAN (ENGERM=1) SENTENCES.

@elrgz

G103 CSENTENCE:

G184 %S RNP=RNP I L(SET PARAMETERS FOR 1ST NP)
21085 RAR=RAR1

a106 RA=RA1

gi1a7 RN=RN1

6116 'EX = NP °* ' VUP

111

112 [NOUN PHRASE:

B113 SNP ITF (RNP=@) fEX = AR * °* N
Bli4a IEX = AR " " A * " N

pri1s

2116 CVERR PHRASE:

@117 $VP RNP=RNP2 C(SET PARAMETERS FOR 2ND NP)
z129 RAR=RAR2

plel RA=RAR2

graz2 RN=RN2

pla3 {IF (ENGERM=1) (GO VPGERM
gle4 IIF (RUP=0) 'EX = PAD IV
@125 1EX = PAD TV * * NP

@126 $VPGERM !IF (RVUP=@) !EX = IV PAD
@127 IEX = TU PAD ° ¢ NP

9130

@131 [POSSIBLE ADVERB (EI THER NULL OR A LEADING OR TRAILING ADVERB):
p132 SPAD tIF (RPAD=@) !EX =

#3133 fIF (ENGERM=-~1) !EX = AD ° ° [(TRAILING °® ° FOR ENGLISH)
9134 {EX = ° " AD [(LEADING ° ° FOR GERMAN)
0135

0136 CARTICLE:

@137 S$SAR ITF (ENGERM=1) !GO ARGERM

@140 ITF (RAR=0) I!EX = °"THIS®

@lal IIF (RAR=1) IEX = "THE?®

@l1az2 {EX = "EVERY’

2143 $ARGERM !IF (RAR=0®)Y IEX = °'DIESE’

Glaa ITF (RAR=1) !EX = °*DIE’

@145 'EX = 'JEDE®

glae

0147 [ADJECTIVE:

7158 %A ITF (ENGERM=1) !GO AGERM

B151 ITF (RA=() 'EX = °FUNNY*®

pis52. IIF (RA=1) !EX = °'BIG®

@153 IIF (RA=2) IEX = °*LITTLE®

#8154 !EX = °*PRETIY®

@155 $AGERM 'IF (RA=@) 'EX = °‘LUSTIGE®’

0156 ITF (RA=1) !EX = °*GROSSE®

PM OF ENG-GERM PAGE 73
LN=0157
B157 ITF (RA=2) IFY
0160 'TEX = ?SCHONE®
A161
P162 [NOUN:
@163 3N 'TF (ENGERM=1)
Ble4a 1ITF (RN=@) 1EX
P165 TIF (RN=1) IEX
8166 1ITF (RN=2) !EX
2167 TEX = °COU°
P17 SNGERM IIF (RN=@) !EX
M171 ITF (RN=1) IEX
p172 ITF (RN=2) IEX
2173 IEX = 'KUH®
p174
@175 [ADVERB:
@176 $AD ITF (ENGERM=1)
0177 'IF (RAD=@)Y I1FX
B2na 'TF (RAD=1) I1EX
geal ITF (RAD=2) [EX
g202 IEX = °'NEVER®
#2063 $ADGERM !IF (RAD=G)Y !EX
P04 ITF (RAD=1) 1F¥
pees ITF (RAD=2) 1EX
P206 IEX = 'NIE?
B207
0210 [INTRANSI TIVE VERRB:
@211 $1V IIF (ENGERM=1)
Gate IIF (RIV=0) [EX
p213 'IF (RIV=1) IEX
pe14 IEX = °*PLAYS®
@215 $IVGERM !IF (RIV=0) (EX
p216 ITF (RIV=1) $EX
B217 ITEX = "SPIELTS®
@220
@221 [TRANSITIVE VERB:
p222 STy 'TF (ENGERM=1)
pe23 '1IF (RTU=0) [EX
@esa 1IIF (RTVU=1) !EX
@225 TEX = °HITS®
@226 $TUGERM !IF (RTV=0) I(EX
ges7 IIF (RTU=1) I1EX
G230 I1EX = 'SCHLAGT?®
p231
@232 [RAND - RAL, 1/72
?233 [GENERATES RAVDOM #°S I
@234 { WHERE RLIM < 10601
0235
@236 SRAND RSAVE =
2237 RSAVE = (RIM
po4ap VEX =
@oal
@242 [END RAND
@243
@e4as [END ENG-GERM (7/72)

"KLEINE®

IGO0 NGERM
*WOMAN°®
"CAT®
*TEACHER®

non

*FRAU?
*KATZE?®
‘LLEHRERIN?®

nou

i

1GO ADGERM
'ALWAYS®
POFTEN®
*SELDOM?®

i

o

"IMMER’
"OFT?
" SEL TEN®

i n

IGO0 IVGERM
"SLEEPS®
'RUNS®

it

f

*SCHLAFT®
"RENNT?®

o

"GO0 TVGERM
*KISSES?
*SEES®

L]

*KUSST?
SIEHT®

i ou

N RANGE [@,RLIM=-13]

(B21*%RSAVE + 2113>/10000

= RSAVE/(10000/RLIM)

34

APPENDIX B

Output from the Program in Appendix A

35

ENTER NAME OF COURSE MANUSCRIPT.

TERMINATE ALL DISPLAYS BY STRIKING °'RETURN?.

>ENG-GERM

ENTER PRE~-ASSIGNED STUDENT NUMBER IF

REPLI ES ARE TO BE ADDED TO YOUR FILE

STRIKE "RETURN® IF NOT.
>123

2

THIS IS A DRILL IN ENGLISH-GERMAN TRANSLATION.
UMLAUTS ON GERMAN WORDS SHOULD BE IGNORED.

>

TRANSLATE FROM ENGLISH TO GERMAN:
THE TEACHER PLAY 5.
>DIE LEHRERIN SPIELT.

RIGHT.
>

TRANSLATE FROM GERMAN TO ENGLISH:
DIE KUH RENNT.

>THE COW RUNS-

RIGHT.

>

TRANSLATE FROM GERMAN TO ENGLISH:

JEDE L EHRERIN RENNT.
>EVERY LEARNER RUNS.(?)

NOs

JEDE LEHRERIN RENNT,

TRANSLATES TO

EVERY TEACHER RUNS.

>0Hs, SO 'LEHRERIN' MEANS *'TEACHER®S

TRANSLATE FROM GERMAN TO ENGLISH:
DIE KUH RENNT.
>THE COW RUNSe

RIGHT.
>] KNOWs I KNOWs.

NOT

‘LEARNER"!

36
TRANSLATE FROM GEEMAN TO ENGLISHS
DIESE KLEINE LEHRERIN RENNT.
>THIE LITTLE TEACHER RUNS+eeeeersercerrreccceeeeS LITTLE

RIGHT.

>

TRANSLATE FROM GERMAN TO ENGLI SH:
JEDE SCHONE KUH SPIELT.

>HOW ABOUT °*EVERY PRETTY COW PLAYS'?

RIGHT.

>

TRANSLATE FROM GERMAN TO ENGLI SH:
JEDE KUH SCHLAGT DIE FRAU.

>EUVERY COW HITS THE WOMAN.

RIGHT.
>

TRANSLATE FROM GERMAN TO ENGLISHS
DIE GROSSE LEHRERIN SPIELT.

>THE BIG TEACHER PLAY S.

RIGHT.

>

TRANSLATE FROM ENGLISH TO GERMAN:

FUERY LITTLE TEACHER SEES EVERY LITTLE WOMAN.
>TOO HARD FOR ME!?

NO»
EVERY LITILE TEACHER SEES EVERY LITTLE WOMAN -

TRANSLATES TO
JEDE KLEINE LEHRERIN SIEHT JEDE KLEINE FRAU.

> OH
TRANSLATE FROM GERMAN TO ENGLISH:

DI ESE FRAU SCHLAFT.
> 1

TEACHER RUNS.

37

APPENDIX C

Sample Student History File

38

PM OF #STU*123 PAGE 61
LN=00201

OBl [SAMPLE STUDENT HISTORY FILE (STUDENT NUMBER 123).
peae
AP@3 {STUDENT INFORMATION GOES HERE.

6oa4

@@05 [EVERY THING AFTER THIS LINE IS GENERATED BY GLEEFUL.
aR0e6

oB0T

9010 [ENG-GERM

go1il

P@12 #START °THIS 1S A DRILL IN ENGLISH-GERMAN TRANSLATION.
013 UMLAUTS ON GERMAN WORDS SHOULD BE IGNORED.’®
gol4 v

pa15 #MAIN " TRANSLATE FROM ENGLISH TO GERMAN:
@gol1é6

go17 THE TEACHER PLAYS.®

pae2e ‘DIE LEHRERIN SPIELT.'

po21 #RIGHT °*RIGHT.'

poe2 o

g@e3 #MAIN * TRANSLATE FROM GERMAN TO ENGLISH:
po24

pB25 DIE KU RENNT.®

BB26 ‘THE COW RUNS.'®

@27 #RIGHT °*RIGHT.?

BO36 ve

931 #MAIN *TRANSLATE FROM GERMAN TO ENGLISH:
pga3e

o33 JEDE LEHRERIN RENNT.’

pa34a "EVERY LEARNER RUNS.(?2)°

pB35 #WRONG °NO»

B@36 JEDE LEHRERIN RENNT.

0837 TRANSLATES TO

o440 EVERY TEACHER RUNS.®

go4al "OH, SO °LEHRERIN® MEANS °TEACHER®'s NOT °‘LEARNER®!’
Go4a2 MAIN " TRANSLATE FROM GERMAN TO ENGLI SH:
o433

Do4as DIE KUH RENNT.®

Bo45 "THE COW RUNS.’

@046 #RIGHT °"RIGHT.’

Doay T KNOW, I KNOW. '’

0050 #MAIN " TRANSLATE FROM GERMAN TO ENGLISH:
2651

pos52 DI ESE KLEINE LEHRERIN RENNT.®
pB53 *THIS LITTLE TEACHER RUNS.

PE54 #RIGHT °'RIGHT.®

BO55 ve

pH56 #MAIN " TRANSLATE FROM GERMAN TO ENGLISH:
8857

go60 JEDE SCHONE KUH SPIELT.®

o6l 'HOW ABOUT °EVERY PRETTY COW PLAYS'?’
062 #RIGHT °"RIGHT.®

0063 ve

go64 #MAIN * TRANSLATE FROM GERMAN TO ENGLI SH:
@65

B6B66 JEDE KUH SCHLAGT DIE FRAU.'’

BRo67 "EVERY COW HITS THE WOMAN.®

39

PM OF *STU%x123 PAGE @2

LN=0070

PB70 #RIGHT °*RIGHT.'®

BOT71 v

gp72 #MAIN *TRANSLATE FROM GERMAN TO ENGLT SHs

2073

Ba74 DI E GROSSE LEHRERIN SPIELT.'

paTs 'THE BIG TEACHER PLAYS.®

pp76 #RIGHT °*RIGHT.®

aoTT e

0106 #MAIN *TRANSLATE FROM ENGLISH TO GERMAN:

2101

ploe2 EVERY LITTLE TEACHER SEES EVERY LITTLE WOMAN. °
2103 "TO0 HARD FOR MET!®

p1o4 #WRONG °NO»

2185 EVERY LITTLE TEACHER SEES EVERY LITTLE WOMAN.
@106 TRANSLATES TO

17 JEDE KLEINE LEHRERIN SIEHT JEDE KLEINE FRAU.'
2110 ‘OH’

2111 #MAIN *TRANSLATE FROM GERMAN TO ENGLI SH:

i1z

?113 DI ESE FRAU SCHLAFT.®

gl14 A

Report No. 2.
WIS-CS-73-177

BIBLIOGRAPHIC DATA 1-
SHEET

3. Recipient’s Accession No.

4. Title and Subtitle

IMPLEMENTATION OF A GENERATIVE COMPUTER-ASSISTED
INSTRUCTION SYSTEM ON A SMALL COMPUTER

5. Report Date
April 1973

6.

7. Author(s)
Rick LeFaivre

8. I\P‘]et(oxming Organization Rept.
o.

9. Performing Organization Name and Address
Computer Sciences Department
The University of Wisconsin
1210 West Dayton Street

10. Project/Task/Work Unit No.

11. Contract/Grant No.

Madison, Wisconsin 53706 GJ-36312
12. Sponsoring Organization Name and Address 13. Type of Report & Period
Covered
National Science Foundation
Washington, D. C. 20550 i

15. Supplementary Notes

16. Abstracts

This paper gives a brief overview of several "traditional"

approaches towards computer-assisted instruction (CAI).

A new

CAI language 1is then described which allows the user to write
programs which generate both questions and answers with a minimum

of programming effort.
i1s discussed in detail,

An implementation of the described system
followed by a description of a sample

program which drills the student in German-English translation
by generating sentences whose complexity i1s a function of

performance.

17. Key Words and Document Analysis. 17a. Descriptors

Computer-Assisted Instruction
Generative CAI

Mini-computers

17b. Identifiers/Open-Ended Terms

17¢. COSATI Field/Group

18. Availability Statement
Report)

19. Sccurity Class (This

21. No. of Pages

UNCLASSIEIED 39

Page

20. Security Class (This
UNCLASSIFIED

22, Price

FORM NTI5-35 {10-70)

USCOMM-DC 40329-P71

