Computer Sciences Department
1210 West Dayton Street
University of Wisconsin
Madison, Wisconsin 53706

Received April 15, 1973

EASEy=~2: AN ENGLISH-LIKE
PROGRAM LANGUAGE

Leonard Uhr

Technical Report #178

June 1973

EASEv-2: An English~Like Program lLanguage

by

Leonard Uhr

CONTENTS

Overview of the EASEy-2 Programming Language

A Primer for EASEy-2, An Encoder for Algorithmic Syntactic English that's easy

I. A Simple EASEy-2 Program (A)
II. EASEy-2 Constructs Described

Introduction: Combining Objects and Names onto Strings,
Lists, Graphs and Arrays

Basic Statement Types for Manipulation of List Structures
Types of Objects Used

Functions

Flow of Control

Flexible Constructs

mouQw>

III. Summary of EASEy-2 Constructs
IV. Appendix

A. A Detailed Description of Program A
B. The Relationship between EASEy and SNOBOL
C. Variant and Short Forms of EASEy=2, for Easier Coding

BIBLIOGRAPHY

This research has been partially supported by grants from the National
Institute of Mental Health (MH-12266), the National Science Foundation
(GJ-36312), NASA (NGR-50-002~-160) and the University of Wisconsin
Graduate School.

EASEy-2: AN ENGLISH-LIKE PROGRAM LANGUAGE

OVERVIEW OF THE EASEy-2 PROGRAMMING LANGUAGE

The following gives a program in, and then explains, an English-
like programming language called EASEy-—Z* (an Encoder for Algorithmic
Syntactic English that's easy—-Version 2). EASEy is modelled after
pattern matching languages like SNOBOL (Farber, Griswold, and
Polonsky, 1964; Griswold, Poage, and Polonsky, 1971) and Comit
(Yngve, 1961). It is, essentially, a simplified English-like version
of SNOBOL, with constructs added to make list processing more con-
venient, as in LISP (Weissman, 1967) and IPL (Newell et al, 1960).
At present it exists in the form of a SNOBOL4 program that translates
an EASEy program into an equivalent SNOBOL4 program that can then

be executed by a SNOBO1L4 translator.

EASEy is designed primarily for easy reading, to be understood

by someone who knows nothing about programming. It also can tolerate
a number of alternate constructs, to give flexibility in coding. EASEy
programs are stilted and occasionally awkward. But they should give
the reader at least a general idea of what the system is doing, along
with the opportunity to study the actual code, when desired, until it

is understood. Most of the difficulties in reading will result from the
logical structure of the program's processes, rather than the peculiar-

ities of the program's language=-that is, from content and not form.

"‘EASEy—l (see Uhr, 1971, 1973) is a proper subset of EASEy-2
(except that parentheses around gotos must be changed to brackets),
and will run under the EASEy~-2 translator. EASEy-2 is more powerful,
more flexible, and more understandable.

A concise explanation of EASEy follows the example program in
the primer. But the reader should first try to read the program without

the primer.

Here are the essentials: EASEy allows the user to name lists, and
then manipulate them. EASEy defines a list by assigning a string of ob-
jects as the contents of a name (e.g.: list TODO = LAYERS CHARS, or
set X=X +1). Objects are got from lists (e.g.: from TODO get ...)
and added to lists (e.g.: on MAYBE list NAME WEIGHT).

"Goto" a label is indicated at the right of a statement, in brackets.

Comment cards start with '(' and continuation cards start with '+ °'.

Most other conventions are quite natural, except for the very con-
fusing construct that means "the contents of the contents of this name ",

which can be indicated by $name (or, alternately, what's under name).

E.qg.:

Code Meaning Result
set R=R+1 Add 1 to the contents of R R contains 1
set $('L."' R) =R' *0011' Assign '1%0011' as the L.] contains

contents of ('L. ' R) 1%0011

List structures and graphs can now be handled by storing a string of
names, getting a name, and looking at the string it points to, using

the $name construct.

The user is given a number of options as to constructs. Thus there
are long forms, more suitable for casual reading, and short, more succinct
forms that are more easily read and coded by an experienced programmer.

E.g., the following two statements are equivalent:

on TO-DO list the next TEST, and its WEIGHT.
TO-DO list TEST WEIGHT

A PRIMER FOR EASEy=-2, AN ENCODER FOR ALGORITHMIC SYNTACTIC

ENGLISH THAT'S EASy

EASEy=-2 is a list processing, pattern-~matching language that

uses simple English formats designed to be easy to understand.

An EASEy program is a sequence of statements that construct
and rearrange lists of information, find items on these lists, compute
transformations on these items, rearrange information within and be-
tween lists, and input and output information. Statements are exe-
cuted from top to bottom except when GOTO's indicate otherwise.
A GOTO may be conditional on the success or failure of the state-

ment's search for a pattern, or test for an inequality.

The following program will introduce the reader to EASEy, giving
him a feeling for the language. Then EASEy's basic constructs and
variants will be described. Finally EASEy's constructs will be sum-

marized, and compared to SNOBOL.

5

I. A Simple EASEy=2 Program

(Program A. An example pattern recognizer.
(Positioned n-tuples imply weighted names.

(Initializes CHARacterizers, LOOKFOR. Inputs PATTERN.
TINIT Tset CHARL = '0111 2 1000 9 1111 24 B 6 F 9
CHARZ = '001111111 3 00000000 18]5 E 9 '

set CHARN= . . .

SENSE set LOOKFOR = '"CHAR1] CHAR2 . . . CHARN '
erase MAYBE.
IN input the PATTERN till '/* [~to end]

(Gets each CHARacterizer's DESCRiption and IMPLIEDS)

RESPOND from LOOKFOR get the next CHAR. erase. [- OUT]
from $CHAR get DESCR till] and IMPLIEDS till the end

(All HUNKS must be found for the CHARacterizer to succeed.)

R1 from the DESCR, get HUNK and its LOCATION. = [-to IMPLY]
at the start of PATTERN, get and call LOCATION symbols

+ LEFT, and get that HUNK. [+ Rl. - RESPOND]

{Merges IMPLIED NAMEs onto MAYBE.

IMPLY from the IMPLIEDS, get the next NAME and its WT.

+ erase. [~to RESPOND]
from MAYBE, get # that NAME # and its SUM. replace by

+ NAME and SUM + WT [+to TEST]

on MAYBE list the NAME and its WT [goto IMPLY]

(OUTPUTs the first NAME whose SUM of WeighTs exceeds 30,
(Or the last name implied.)

TEST is the SUM + WT greater than 30? [~to IMPLY]

OuT yes - output the PATTERN ' IS A ' NAME [SENSE]

(The end card, and 3 patterns to be read in on data cards follow.)
end [goto INIT]

0001111111000010101010101011000/ (first two hunks of CHARI
will succeed, third fails)

0001111111000101010101011111/ (CHARI] succeeds)

00000111111100001000000000/ (CHAR2 succeeds)

“A number of the right margin refers to a statement in Program A that
illustrates the construct being discussed. C = Comment, I = data program
Inputs, M = Memory initialization. The appendix describes program A.

TLower case letters indicate system words (those not underlined are
optional), capital letters indicate program names. To run a program, lower
case words may be keypunched in caps; underlined words must be.

I

Cl*
C2

C3
M1 *
M2

10
c7

11
12
C8
13
I1

12
I3

II. EASEy-2 Constructs Described

Introduction: Combining Objects and Names onto Strings, Lists,
Graphs and Arrays

This introduction briefly examines some key issues.

1. Manipulating Structured Sets of Objects

EASEy uses a number of constructs designed to handle sets of
objects or names that have been put together into strings, lists, graphs
and arrays. This allows for convenient building and manipulating of
such things as perceptual and cognitive "chunks, " natural language
phrases and sentences, sensory patterns in several dimensions, cog- -
nitive networks for models and maps, and other types of compounds.

It is therefore a very convenient language for problems in artificial

intelligence, pattern recognition, natural language processing, and

modelling of cognitive processes.

Objects are set onto strings, or listed onto lists. Objects, strings,
or lists are also combined into arrays, trees, list-structures, and graphs.
An object can be treated as a name, and that name can be used to get its
contents (what it names, or points to). Thus any object, name,
string, list, or array can be given a name, and then accessed through

that name.

2. Constructing and Using Structures of Lists of Names

EASEy is designed to make it as easy as possible to handle struc-
tures of lists - by getting an object from a list, using that object as the

name of another list, getting an object from that list, and so on.

As a simple example, Program A sets up a CHARacterizer as a
list of a DESCRiption (HUNK LOCATION pairs) followed by a] and
then IMPLIEDS (NAME WeighT pairs)(see statements M1, M2). The M1, M2%*
CHARacterizer names (CHAR1, CHAR2, etc.) are then set onto the

list named LOOKFOR (1). Each CHARacterizer is got from LOOKFOR 1
(4), then its DESCRiption and IMPLIEDS got (5), and then each HUNK 4,5

and LOCATION got from the DESCRiption (6). Such a procedure can 6

continue to any depth.

3. Matching Patterns of Objects

EASEy uses all the SNOBOL pattern match techniques (see Griswold etal,
1968, for details). Essentially, a set of objects is to be looked for in '
a named string. If these objects are found, as specified, then, optionally,

they are deleted and, optionally, any specified replacements are made.

The pattern match of the objects looked for starts at the left of the
named string and moves to the right (as in statements 4, 5, 7). 4,5,17
Essentially, the first possible assignment of an object is made, then
the next object is assigned, and so on. Whenever it is impossible to
make an assignment, the matcher moves back to the last object assigned,
unassigns it, and gets the next possible assignment. This procedure
continues until all objects have been assigned (which will be the left-

most possible assignment), or the pattern match has failed.

4, Using Delimiters to Get Names from Lists

Delimiters are used to allow convenient access of names. EASEy
assumes that a name to be assigned will be followed by one space,

and it handles spaces automatically (as in statements 4 and 8). The 4,8

“Numbers in the text and right margin refer to statements in
program A, See the previous footnote for Program A.

programmer can specify several other delimiters, including],

and ; (as in 5). A general delimiter, #, can be specified to mean

jon

any of the delimiters (including #). Since EASEy handles the nec- 9
essary details, this allows for quite convenient, and clean and read-

able, code for handling lists.

5. Using Names

Once a name has been got (as the name CHAR is got from
LOCKFOR in 4), its contents can be looked at by using the dollar- 4
sign ($) construct, which looks at the string whose name is preceded
by the $. (An alternate way of saying this in EASEy is 'what/s under"

- that is, $CHAR is equivalent to what/s under CHAR.) Thus in 5, 5
$CHAR means "get the contents of CHAR (which, the first time state-
ment 4 has pulled CHAR from LOOKFOR, will be CHAR1), and look at

N

its contents."

This kind of "indirect addressing"” makes list processing very
easy and convenient, especially when used with the delimiters intro-
duced above. But the reader should not feel uneasy if he finds these
topics confusing. They are; but the detailed examination that follows,

with references to Program A, and some practice, should clear things

up.

A. Basic Statement Types for Manipulation of List Structures

1. Lists are initialized and added to:
a. Names can be assigned to strings of objects:
set (name) = (objects) [general form] M1,1%
E.g.: set Cl = '00111' [example of code]
set LOOKFOR=C1 '' Cc1 '' C1 "'

*See footnote for program A.

assigns '00111' as the contents of Cl1, and then
assigns '00111 00111 00111 ' as the contents of
LOOKFOR.
(Note that set is optional (see M2). M2
Objects can be added to the end of a named string:

on (name) set (objects)
E.g.: on COUNTRIES set COUNTRY] AREA]
adds the contents of COUNTRY followed by], the
contents of AREA,], to the end of COUNTRIES.
Objects can be added to the start of a named string:

at start of (name) set (objects)
E.g.: at start of DESCRIPTORS get DESCRIPTOR ' * WT ' '~
Objects can be formed into linear lists:

list (name) (objects)
E.g.: list LOOKFOR =Cl C2 C3
creates a list consisting of the contents of C1l . C2 and
C3, each followed by one space, and names this list LOOKFOR.
Objects can be listed at the end of a named list:

on (name) list (objects)
E.g.: on IMPLIED list NAME WT 10

List is much like set, except that it automatically

puts a delimiter (one space) after each object listed,
unless that object is a literal string (those enclosed in
quotes), or is 1itself a single-symbol delimiter (#, 1.
L, or '),
Objects can be listed at the start of a named list:

at start of (name) list (objects)

E.g.: at start of DESCRIPTORS list DESCRIPTOR WT

10

2. Information is got, erased, and replaced in lists:

a. Objects can be got from a named list:
from (name) get (objects)
E.g.: from SENTENCE get WORD 4,5,6
will assign the name WORD to the first string on
SENTENCE, ending with the space delimiter (but
without changing SENTENCE).
b. Objects can be got and erased from a list by extending
the get command:
from (name) get (objects) erase
E.g.: from LOOKFOR get CHAR erase 4,8
c. The objects can be replaced by other objects: .
from (name) get (objects) replace by (objects)
E.g.: from LOOKFOR get CHAR WT replace by TRANS 9
An equal sign (=) can be used instead of 'erase' or 'replace by'. 6
d. All contents can be erased from named lists:
erase (names)
E.g.: erase R C MAYBE 2
3. Information is input and output:
a. One card of data can be input and names assigned to
its contents:
input (objects)
E.g.: input TYPE till] PHRASE till '. ' LINEtill * ' 3
b. Lists can be printed out:

output (objects)
E.g.: output LOOKFOR ' ="' $LOOKFOR 12

B.

11

Types of Objects Used

An object is a string of symbols followed by one or more spaces.

Such a string is often a name whose contents are some other string

of objects to which it points. Several different kinds of strings are

used, as follows:

1. Names: A name is an alphanumeric string that points to (names)
some contents. 1,4
2. Literals: When a string is in quotes (either single (') or double
(") it is a literal ikon that signifies itself.
E.g.: from SENTENCE get 'AND' 3
means that the thing in quotes-- 'AND ' should be found in '
SENTENCE.
3. Specified Objects: that string will look for the contents of the
string.
E.g.: set PHRASE = 'THE TABLE'
from TEXT get that PHRASE 9

will see whether 'THE TABLE ' (the contents that has been
assigned to PHRASE) is in TEXT, whereas:

from TEXT get WORD
assigns the name WORD to the first string that ends with a space
in TEXT.

Indirect and Compound Names: $string will treat the contents

named by that string as a name, and look in the string it names.
Parentheses can be used to compound together a sequence of
several literals and named strings.
E.g.: set R=1

set $('ROW."' R) = '1001100'

&

will set Row.1 to contain 1001100 (since R contains 1).

12

5, Using Delimiters to get Names from Lists: A name is broken

out of a string of symbols (to which another name has pointed)
by finding a delimiter, and then using the entire substring up

to that delimiter as the name. Note how statement 1 puts a
space after each name of a characterizer ('CHAR]1 CHAR2 ...
CHARN '). This allows statement 4 to get each CHARacterizer
from LOOKFOR - because built into EASEy are procedures that
look for the space delimiter, when it is asked to assign a name
(as by 'get the next CHAR'). Then erase eliminates the space
delimiter, and the entire string up to it. (This string, which is
itself a name, e.g., CHARI], has now been assigned as the con-

tents of CHAR).

In addition to the space, EASEy uses the end-bracket (]),
semi-colon (;), and colon (:) as delimiters. These must be spec-
ified (as in statement 5). The programmer can use other symbols
for delimiters, but they must be enclosed in quotes. Finally, a
general delimiter, the pound (#) can be used, which will match

any particular delimiter, including itself (see statement 9).

When the # delimiter is used, the delimiter is returned to
the list if the name it delimits is returned (e.g., a # preceding
NAME is returned to MAYBE in 9), and the first name on a list
will be got whether it actually has a delimiter preceding it or not
(9), and the last name will be similarly treated with respect to
its end bound - that is, the bounds of the list are treated like

delimiters.

6. Variable Names: A string of symbols that comes after get is

treated as a name to be assigned some contents. It will be as~

signed the string in the named list up to the next space delimiter,

unless it is followed by a specified object (that NAME), a

Ne)

13

literal object, or a specified delimiter (], :, ; or #) in which
case it is assigned the string up to that object. Till end will as-
sign the rest of the list, till its end, to the variable name.

E.g.: From SENTENCE get MODIFIER, NOUN till ' IS '

+ OBJECT till end

NN
o
o

7. Matching from the Start of the List: at start of insists that the

match begin at the very start of the list.
E.g.: at start of SENTENCE get 'THE' 7
looks for 'THE' only at the very start of the SENTENCE.

8. Specifying the Length of a String: call length symbols (name)
will get a string exactly length symbols long, and assign the
string following the word symbols as its name.

E.g.: from PATTERN get and call N + 6 symbols PIECE
will assign PIECE as the name of the first N + 6 symbols in
PATTERN.

1~3

C. Functions
1. Arithmetic is handled in the conventional way. Parentheses

are not needed if ordinary precedence of operators is desired. + = add,

- = subtract, * = multiply, / = divide, *%* = exponentiate.
E.g.: set WEIGHT = WEIGHT + 100 / WEIGHT 9,11
2. Tests for inequalities are of the form: is (Objectl) test
(Object2)? The tests are a) numeric: greaterthan, lessthan, or
equalto and b) string-matching: sameas.
E.g.: is SUM lessthan THRESHOLD? 11

3. The built-in function size((object)) will count the symbols
inthe object (if it is a literal) or the list named (if the object is a
name).

The function random((number) }will get a random number between

14

1 and the number specified.

4. The user can define his own functions by saying define:

followed by the function, with its arguments as they are named
within the function. When the function name is then used in a
statement, the program goes to the statement with that name as its

label, executes the function, and exits using return and freturn (for

failure) in gotos.

E.g.: DEFINE: ABS(EXPRESSION)

(The code for the ABSolute value function must be written by the

programmer, €.g.:
ABS at start of EXPRESSION get '=' = [return]
D. Flow of Control.

1. A label can be used to name a statement. All labels must

start in column 1. No two statements can have the same label. 1,3

2. Statements are tied together by gotos at the right of the
statement which name labels at the extreme left of the statement
to be gone to. Unconditional gotos are of the form: [goto (label)]. 10=8
Gotos conditional on the success or failure of the statement (either
a pattern match or a test) are specified by [+to (label)] and 9=>11
[-to (label)]. Alternately, parentheses, and succeedto +, or sto, 11=8

and failto, -, or fto, can be used.

3. A program statement too long for one line can be continued

by starting the next card with a plus, space ('+ ') in column 1. T
4. A comment card must start with a left parenthesis ('(') in
column 1. Cl

5. A program must be followed by a card that has end in its
first three columns. Optionally, a goto can be given, to specify the 13
first statement to be executed; otherwise execution starts with the

first statement in the program.

15

6. An EASEy program is a) a sequence of statements (each
card can contain up to 72 columns; the last 8 columns are reserved
for identification), b) an end card, and c¢) cards with data that

will be input (all 80 columns can be used). 11

E. Flexible Constructs

1. A number of words and punctuation marks are ignored, so
that they can be used as filler by the programmer, to make statements
easier to read. (The programmer cannot use these words to name lists.)
These include the words (when between two spaces) at, and, into, it,
its, next, no, of,the, till, yes, and the punctuation marks (only when

followed by a space) . - and ,

7

2. Several spacing variants are allowed: a) One or more
spaces must bound all names and objects, except b) No spaces

are needed in gotos, or around arithmetic operators when within par-

entheses.

3. A number of alternate forms are possible, as shown in the
summary which follows. These need not be examined when reading
code. But they allow a user to write code using contructs that he
finds congenial. And they allow for code that is a good bit more
compact (by sacrificing mnemonics, which are a help in reading but

can become cumbersome in writing).

16

ITI. Summary of EASEy~2 Constructs

A, Basic Statement Types for Manipulation of List Structures:

B.

1. Build lists:

a. Assign strings: set name = objects
b. Add: (at end) on name set objects
c. Add: (at start) at start of name set objects
d. Assign lists: list name = objects
e. List: (at end) on name list objects
f. List: (at start) at start of name list objects
2. Get, erase, replace:
a. Get: from name get objects
b. Get and erase: from name get objects erase
c. Get and replace: from name get objectsl replace by objects2
d. Erase: erase names
3. Input and output:
a. Input: input objects (inputs one data card) -
b. Qutput: output objects '
Types of Objects Used
1. Names: alphanumeric strings
2. Literals: strings surrounded by quotes
3. Specified objects: that name specifies the contents of the name
4, Indirect and compound names: $name, $(name literal...)
5. Delimiters: for breaking out names from lists

a. one space (handled automatically)
b.] (or) : (or) ; (must be specified)
c. # (matches any delimiter or bound)
6. Variable names: to be assigned contents up to either
a. if a literal or specified object or delimiter follows, that object;
b. if end or till end follows, the end of the list
¢c. otherwise the next delimiter space
7. To match from the start: at start of name get objects
8. To specify length: from name get and call length symbols name

. Functions:

1. Arithmetic: +, -, %, /, ®%. E.g.. RESULT=A+B-C %D / E *«F
2. Inequalities: is numberl ineg number 27
(where ineq is greaterthan, lessthan, equalto)
is objectl sameas object2? (objects must match exactly)

3. Built-in:

a. size(objects) (counts symbols)

b. random(number)
4. User defined: define: FUNCTION(Arguments)

17

D. Flow of Control:

1. Labels start statements at the left, in column 1.

2. Gotos at the right in brackets name labelled statements to be branched to:

a. Always: [goto label]

b. On success: [+to label]

c. On failure: [-to label]
. Continuation cards start '+ ' (or)
Comment cards start ' ' (or) '*'
end starts the card that ends the program
. Program structure:

a) Program (72 cols);

b) end card;

c) data (80 cols).

oy Ul i W

E. Flexible Constructs:
1. Filler words that are ignored: ‘at', 'and', ‘into', 'it', ‘its', 'next',
Inoll Iofll Ithel‘f ltilll’ lyesl’ I.I, l’l' l_l'
2. One or more spaces must bound names and objects, except gotos and

arithmetic operators in parentheses. '=' can replace 'erase' or
'replace by'.
3. Equivalent alternate forms:
a., start = <
b. that =>
c. $ = what/s under
d. is numberl ineq number2 = ineq(numberl, number2);
e. erase name = name =
f. greaterthan = greater than = GT
g. lessthan = less than = LT
h. sameas = same as = ident
i. +4to = succeedto = sto = yesto = +
j. =to = failto = fto = noto = -
k. to = goto = (nothing)
1. end=4##=%=]]
m. get ... erase = pluck = pl = take
n. = = replace by (or) erase
o. from=in=on
p. get = find
g. both get and find are actually optional (could be written get

or find, and not used in the punched program)
r. call=@
s. symbols =@

F. Forbidden Words that the programmer cannot use:
1. filler words (see E.1. above)
2. system words (list, set, on, from, get, erase, replace, by, input,
output, end, that, start, call, symbols).
3. inequalities and built-in functions (see C.2. and C.3. above)
4. (within the goto brackets only) the gotos (see D. 2. above)

18

IV. Appendix

A, A Detailed Description of Program A

Program A is a fairly typical, albeit simple, pattern recognizer.

Statements M1 through MN #*INITialize the program's memory,
setting each CHARacterizerI to contain a DESCRiption (5%) of the
specified HUNKs to be looked for, and their exact LOCATIONs (6=7),
in the unknown pattern, and the IMPLIEDS (5) NAMEs and their
WeighTs (8) to be merged into the MAYBE list (8-10) if the entire
DESCRiption is found.

Statement 1 sets the LOOKFOR list to contain the names of all)
the CHARacterizersl in memory, 2 erases the MAYBE list, to initialize -
it, and 3 inputs the unknown pattern from the next data card in memory,
up till the first '/'. 4 gets and erases the next CHARacterizer from
LOOKFOR, failing to OUT when no more are left. 5 gets the DESCRiption
and IMPLIEDS from the string stored in the characterizer name stored
in CHAR. 6 gets and erases each HUNK and its LOCATION from the
DESCRiption, failing to IMPLY when no more are left. 7 gets LOCATION
symbols, from the start of the PATTERN, and tries to get that HUNK at
that point (if it succeeds it goes to Rl, to get the next HUNK; if it
fails, it gives up on this characterizer and goes to RESPOND, to get

the next characterizer).

Statement 6 fails to statement 8 if all HUNKs have been found in
their specified LOCATIONs = that is, if the characterizer has succeeded.
8 gets and erases each next NAME and its WeighT from IMPLIEDS. 9
sees if that NAME and its SUM of weights is already on MAYBE and, if
it is, replaces it by SUM + WeighT (to add the new WeighT of the new
implication of this name into the grand SUM), and goes to TEST whether
to choose this name. If not, 10 lists the new NAME and its WeighT on

*Caps refer to program constructs. Numbers refer to statement
numbers.

19

MAYBE. 11 TESTs whether the new SUM + WeighT is greaterthan 30
(a pre-set level for choosing) and, if it is, 12 outputs that the
PATTERN '"ISA ' NAME (which contains the chosen name). 13 is
the end card that shows the program has ended, and I1- I3 are
three examples of simple unknown patterns that might be input to

the program.,

B. The Relationship Between EASEy and SNOBOL

Essentially, EASEy is a variant of a simple subset of SNOBOI14.
Enough SNOBOQL4 constructs have been taken to make a general purpose
programming language. These include the basic pattern-matching and
pattern-manipulation constructs that make SNOBOL so powerful as a §

language processor, and also constructs that handle arithmetic express—

ions, inequalities, and programmer-defined functions.

These SNOBOIL4 constructs have been changed, to make them
more understandable to a reader who does not know SNOBOL or, for
that matter, has not been exposed to programming languages or com-
puters. Since English is our common tongue, EASEy is chiefly in English,
but with a few pieces of jargon for constructs that are too awkward when
expressed in English. (E.g., "What/s under"~- which serves for in-

direct pointing =~ can more succinctly be expressed by "$".)

The use of EASEy as a list-processing as well as a pattern-
matching language was emphasized and enhanced by the addition of
several constructs that set up, access and manipulate lists of objects
in a convenient way. (E.g., "list (namel') = (name2) {(name3)" will
put name2, 1 space, name3, 1 space as the contents of the string
named namel.) Then "from (namel) get (objectl)" will look for a
space, and assign the string up to that space (that is, namel) as the
contents of objectl. The additional delimiters (], :, ; and #) give

further power.

20

EASEy also uses mnemonics to make its statements more under-

standable to the untrained reader. E.g., the SNOBOL statement:

(namel) (name?2) =

is equivalent to the EASEy statement:

from (namel) get (name2) erase

Finally, EASEy allows some flexibility in the way the same
statement can be coded. A number of alternate synonymous constructs
are allowed. (E.g., either "erase" or "=" can be used; from (namel)
get is equivalent to (namel) get or on (namel) find.) And a number of
filler words that are ignored by the system are allowed, to improve

readability. (E.g., "and", "its", "the".)

To summarize: EASEy takes a simple subset of SNOBOL constructs,

tries to make them understandable to the non-programmer, adds some
list-processing constructs, and accepts a number of alternate ways of

saying the same thing.

These changes are designed to make programs easier to read, so

that we can begin to communicate about complex programs at the con-
crete level of the programs themselves. The logic of the program itself
will often remain difficult. But EASEy allows the reader to confront the
real program difficulties, as though through a relatively clear glass of
the programming language, rather than have to worry about the peculi-

arities of the programming language.

21

A Quick Comparison of EASEy and SNOBOL4 Constructs that Differ

C.

EASEvy SNOBQOL4 (Equivalent statement)
Statements for Pattern Manipulation:
set A = BC A = BC
_-_l-_i-_S_EA:B'('C A:Blll(lcll
on A set BC = ABC
on A list B C - AB''C"'"!
at start of A set BC = BCA
at start of A list B C = B''C'"'A
from A get BC A BREAK(' ') B ' 'BREAK(' ") . C
from A get B C erase A BREAK(' ') . B ''BREAK(' ') ..C ''=
from A get that B A B
from A get # that B # C A ‘(" B ') BREAK(' ") c '!
- BCD +:|(|B|)|C|ID||

Names and Other Objects Used in Patterns:

1. Variable names:
from A get B A

2. Defined names:

from A get that B A

3. Fixed-length variable names:

from A get and call N symbols B

BREAK(" ') . B

B

A LEN(N) . B

Other Constructs:

GOTOs, Comment Cards

1. GOTOs:
[+to LABELA. -to LABELB]

2. Comment cards start with ‘('

:S(LABELA)F (LABELB)

(or '%') rather than '*'.

22

C. VARIANT AND SHORT FORMS OF EASEy=2, FOR EASIER CODING

EASEy=~2 is designed primarily as a tool for presenting programmed
models, so the crucial thing has been to make it as easy as possible
to read. The primer emphasizes what is pretty much the standard form
of EASEy, the form that I have used when coding programs, because
in my judgment it comes as close as possible to being self-explan-

atory.

But the complete EASEy system includes additional variant forms,
including short symbols that can be used to replace some of the
mnemonically self-explanatory constructs, like "start" and "call".
These are of special use and importance for writing code in EASEy.
The variant forms give the coder a certain amount of flexibility, and
naturalness, in saying things the ways that come most easily to him.

And the short forms allow for more compact code.

The first way EASEy can be varied is by the elimination of the
filler words (like "and" and "from") and the constructs that are not
necessary (those without underlines, like "set" or "goto"), keeping
only those constructs that are indicated as necessary, by underlining.

These we have already seen.

The second way is by using any of the synonymous constructs

that are summarized in section III.E of the EASEy-2 primer, above.

Note in particular that this allows the programmer to use forms

that are quite short and succinct. For example,

at the start of LISTA get and call N + 3 symbols OBJECTA,
+ and the REST till the end erase.

can be replaced by the equivalent statement:

< LISTA pluck @ N +3 @ OBJECTA REST %

23

Such flexibility might well make EASEy an alternative to SNOBOL
or LISP worth considering by somebody who has access to,and money

to spend for translation to, a SNOBOL system.

24

BIBLIOGRAPHY

Farber, D. J., R. W. Griswold, and I. P. Polonsky, SNOBOL,
a string manipulation language, J. Assoc. Comput. Mach.,
1964, 11, 21-30.

Griswold, R. W., J. F. Poage and I. P. Polonsky, The SNOBOL4
Programming Language (2d Ed.) Englewood-Cliffs, N.J.: Prentice-
Hall, 1971.

Newell, A. et al., Information Processing Language V Manual.
The RAND Corporation Tech. Report P=1897, Santa Monica, Calif.,
1960.

Uhr, L., Layered "recognition cone" networks that pre-process,
classify and describe. Computer Sciences Department Technical
Report 132, University of Wisconsin, 1971.

Uhr, L. Pattern Recognition, Learning and Thought. Englewood-
Cliffs, N.J.: Prentice-Hall, 1973.

Weissman, C. LISP 1.5 Primer, Belmont, Calif.: Dickenson,
1967.

Yngve, V. H. et al., An Introduction to COMIT Programming.
Cambridge, Mass.: MIT Press, 1961.

