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DESCRIBING, USING "RECOGNITION CONES"

Leonard Uhr

ABSTRACT

Parallel-serial perceptual “recognition cones" (RE—CO—DERSl)

are being developed to handle scenes of interacting objects, by
successively transforming and coalescing information. Recognition
cones apply the same mechanisms to pre-process, characterize, find
parts of objects, find qualities, name, and describe. They attempt to
model living perceptual systems, in their generality of functions and

homogeneity of processes, as well as in their overall structure.

A recognition cone program for scenes of interacting objects is

presented, described and discussed.

The concept of a "description" is discussed, and a variety of
types of descriptive information is surveyed. The recognition cone
is then extended to handle many of them. Several further problems in
describing are discussed, including the importance of culling information
from the overly large - indeed potentially infinite - exhaustive descrip-
tion that is possible, and using an understanding (whether built-in,
or through commands, conversation, or learning), of the recipient of

the description - the hearer - to help determine relevance.

1E{_]Eicogmition COne DEscribeRS, where Recognized Environments are
Coalesced by the Organism to Describe Experiences Recaptured from
the Scene.
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INTRODUCTION

This paper examines a parallel-serial "recognition cone" model
for its ability to describe scenes of objects, and to tailor its descrip-
tions in response to commands input from a user-hearer. An actual
program is presented, in an Endish-like language called EASEy, to
allow the reader to see exactly what is happening (if help is needed,
see the Appendix, and Uhr, 1973a). The program is kept as simple
as possible, but when given the appropriate set of transforming and
characterizing operators (just as a parser must be given rewrite rules),

it is a relatively powerful recognizer and describer.

This paper is organized into the following sections:

1. Naming inputs vs. describing scenes.

2. "Recognition cones" described, and an example program.
3. "Describing” discussed.

4, Extending recognition cones to describe, as commanded.
5. Discussion of problems and possible improvements.
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NAMING INPUTS VS. DESCRIBING SCENES

Pattern Recognizers that Assign a Single Name to the Input

A typical pattern recognition program applies the following steps:
1) Pre-processing, to eliminate noise, smooth, average, sharpen
edges, difference, and in other ways regularize. 2) Characterizing,
to assess what possible names might be assigned to the input pattern;
3) Deciding, by choosing the single most highly implied name. There

have been many variations on this theme, some of which follow:
Often the pre-processing is absent.

Usually the program applies its entire set of characterizers to
the input, combines all the implications of possible names, and then
chooses the single most highly implied among them. But sometimes it
applies characterizers in several sets (let's call them "layers"), so that
the transforms from each layer (these can be preprocessings, or internal
names, e.g. of compounds) are input to the next. Usually only the
final layer outputs implied names to be chosen among; sometimes all
the layers output a mixture, of implied names, and information to be

input to the next layer.

Sometimes a decision rule for choosing is periodically invoked,
so that the program will choose and output a name before all characterizers
have been applied. Sometimes the characterizer implies additional
characterizers to apply, so that the particular set of characterizers used
will be a function of what information has been gathered so far about
this particular input pattern. Figure 1 diagrams several alternate

structures.
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Some Alternate Structures for Pattern Namers

Figure 1.
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Figure 2. The Structure of a Recognition Cone to Name or Describe

Transform Transform Transform
Input Layer 1 Layer 2 e Layer N
CHOOSE and
DESCRIBE
output

Transforms include pre-processors, characterizers, and assessors of
qualities. The apex cell of the collapsed cone becomes the MAYBE list
from which the system can CHOOSE a name or description. (Transforms
can also trigger choices in prior layers, as indicated by *C above. These.
will be carried along, finally arriving at the apex, by transforms that
average and sum.)




5 - Uhr

Fig. 1 about here

But in all cases a grand decision is made, which chooses a
single name to output. (See Uhr, 1973b, chapters 2 through 9, for an

examination of these and of other alternatives.)

"Recognition Cones" (RE-CO-DERS) to Model Perception

"Recognition cones" are designed to handle 1) pre-processing,
2) layers of characterizing, and 3) deciding, using the same
mechanisms, in a simple and homogeneous way (see Uhr, 1972, for
details). A recognition cone (see Figure 2) consists of a series of
transformation layers, where transformation operations can be either
pre-processors (e.g. summing a cell and its neighbors, to "average")
or configurational characterizers (e.g. that look for several relatively
positioned edges and angles). All transforms output to the next layer of
the cone, in contrast to the typical pattern recognizer, where transforms'
outputs go either to the next layer or to the list (let's call this the

MAYBE list) of implied names among which a choice is to be made.

Fig. 2 about here

Layers grow smaller, collapsing from the raw input scene at the
base of the cone to a final layer, with only one cell, at the apex. To
merely do classical pattern recognition, which is really pattern
naming, this single apex cell can be used for choosing, since it
contains all the implications of possible output names, along with the

combined weights of each. This is so because these implications have



6 - Uhr

been merged by the transforms into the next layers' cells, along with

all other information.

The collapsing from layer to layer not only serves to merge
all information together into the apex, but also appears to be desirable
in terms of sound design: the transforms extract, abstract and
coalesce information, usually in a many-to-one fashion. Each
transform's output is a function of and summarizes many input cells;

collapsing and converging acknowledges this funneling of information.

The recognition cone seems attractive for its relative simplicity
and homogeneity. But its use leads to two further consequences that

are of special value for describing, as opposed to merely naming.

Recognition Cones for Describing

First, one of the most difficult problems for a describing program
is to decide where one thing ends and another begins - that is, to decide
where to assign names. The classic naming program can ignore this
decision completely, for it merely chooses the single most highly implied
name. In fact such a program is really naming the entire input matrix
within which the pattern lies, and not the pattern itself. But the
instant more than one thing might be in the input the program must worry
about whether to choose among several alternate possibilities to assign
to a single region, or to assign two (or more) names to several different

regions.

Deciding How Many Names to Assign,and Where

Consider the relatively simple (but unsolved) problem of hand-

writing, where the program must decide among a number of overlapping
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combinations, eg "ciii" or "au" or "cw" or "aii" . Such
problems have almost always been handled by trying first to segment
the input into regions, where each region contains only one object,
and then applying classical techniques for characterizing , and
choosing a single name (e.g. Frishkopf and Harmon, 1961; Uhr and

Vossler; 1963; Mermelstein, 1964; Eden, 1968.)

But that is clearly the wrong thing to do, for it ignoresan enormously
rich source of pertinent information - the patterns being segregated.
Rather than trying to find boundaries between regions before it even

begins to look at those regions, a sensible system would characterize

the scene in order to find the regions of interest. Boundaries would -

then grow naturally between such regions. Even better, once some-
thing is chosen and recognized as filling a certain region it could in
effect act as a boundary that helps to delineate all the regions it

touches.

But we have not had systems capable of doing things this way,
for putting implied names into a single MAYBE list destroys all positional
and regional information. The recognition cone, since it keeps
passing names from layer to layer back toward the apex, along a line
from where the characterizer was applied on the input, keeps all this
information separated into regions, in what seems quite a natural

way.

Deciding to Choose Names for Sub-Regions of the Scene

Further, the recognition cone, since its transforms are capable
of implying a variety of different things, can imply signals that

trigger the decision to choose among names in any particular cell,



8 - Uhr

not only in the grand apex cell. This means that information about a
name that is highly implied, and/or about a region that contains one,
or several, strongly implied names, as opposed to its neighborhood
which contains very little (that is, looks like background), can trigger

the decision to choose.

Whenever such a choice is made, the choosing cell can be treated
as an apex of a sub-cone within the grand recognition cone. Now,
moving back toward the base, the system can make use of whatever
information is stored in that sub-cone in order to develop a description
of it. And of course the sub-apex choices serve to describe the

grand cone.

Describing Named QObjects' Parts, Structure, Qualities, and Other
Attributes

The sub-cone stores and organizes this information about the
named object chosen from its apex. This includes the parts of the
object, and, implicitin where they are stored, their locations, and,
therefore, their structure. The characterizing transforms that implied

the objects can also be used for descriptive information.

Finally, a variety of different kinds of potentially descriptive
information - about qualities like shading and color, or features like
edges, curves and angles, or abstractions like feelings or imports
(eg "ominous" or "lively" or "beautiful") can be implied by transforms,
and stored along with everything else in the cells of the recognition
cone. We are nowina position to ask the recognition cone to use this

kind of information to enrich its descriptions of the scenes input to it.




9 - Uhr

Program RE-CO~DERS-1 Described
(See Uhr, 1972, for more Information)

RECODERS-1 must be given a set of operators - transforms and

characterizers - to apply, and these must be named on the list of
*LAYERS (statement M1), at the layer desired, or on CHARacterizerS
(M2) which are applied after all LAYERS. The STEP-size for collapsing
each layer must also be specified (M1, 9), along with SpotSIZE (M(N+1))
and the maximum number of ITEMS in a description (M(N+3)).

Initializing. A new scene is INput, ROW by ROW, and decom-
posed into SPOTs stored in separate cells (1-6) until a card starting
TRANSform indicates that the scene has been completed and

RECODERS-1 should start perceiving it. TRANSforming continues layer

by layer until the scene has collapsed into a single apex cell (7-29).
Each layer has a STEP-size and a set of operators on NOWDO, each
with the sub-matrix through which it should be applied (9). First the
next layer is Erased (10,25), then the operators are applied (12-24),
their outcomes being MERGEJ into the corresponding cell (which is

a function of STEP-size) in the next layer (17,22).

Building Layers. Operators are of three TYPEs: TYPE A MERGE

All things into the next layer (17), and are therefore convenient for
averaging and differencing without having to bother specifying each
specific thing being merged. (A whole set of TYPE C operators, one
for each thing, would, in a very cumbersome way, give the same
results.) TYPE C first look for a Configuration DESCRibed in the
operator (18-21) and, if enough described THINGs are GOT in their
specified relative location to TOTAL above the specified THRESHold,
the set of IMPLIEDS (which can include names, qualities, and triggers

%
Caps in the text and OVERVIEWSs refer to names in the programs; numbers
refer to statement numbers (in the right margin).
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to *CHOOSE) is MERGEd into the next layer. TYPE E, which are
automatically added at the start of each layer (10), Erase the

corresponding cellin the next layer (25).

Choosing. RECODERS-1 CHOOSEs a name to put on a TOOUTput
list whenever it finds (37) a *CHOOSE that has been implied (several
characterizers should assess how well information about a variety of
implied things has peaked and coalesced in a certain region, in
contrast to little activity in neighboring regions - all implying a
PRECHOOSE name which, when it reaches a certain weight,triggers
another characterizer to imply *CHOOSE - thus this is handled

entirely by operators). A final name is CHOOSEn from the grand apex
cell (30). Finally RECODERS-1 CHOOSEs and outputs the most

SALIENT names on TOQUTput, quitting when the specified number of
ITEMS (= 7) has been given, or TOOUT is empty (31-33).

Describing. RECORDERS-1 collects an enormous amount of
descriptive information, in the cells of the recognition cone and in
the TOOUT list. This information includes all implied things,
whether wholes, sub-wholes, parts, qualities, characteristics, moods,
or whatever. It also collects HISTory information about the transforms,
and the particular configurations that implied each, and their weights
and locations. But very little of this information is used in the present
version, which outputs only one completely stylized description of
up to 7 most SALIENT ITEMS from TOQUT, entirely ignoring their
structure, and any information in the cone. After the program is
presented and "describing"is discussedwe will add a bit of rather

simple code to let RECODERS-1 output a wide variety of descriptive

information in response to commands input to it.
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Figure 3. OVERVIEW and RECODERS~1 Program

(OVERVIEW RECODERS-1. Describes, giving salient things found.
(Recognition Cone characterizes, transforms, names, gets qualities, using
(similar mechanisms as it collapses input scene layer by layer.

(Chooses names to output in description when choice is triggered.

START Initialize LAYERS, CHARacterizers, each CHaracterizerl, M1-MN
and SPOTSIZE.
NEXT erase Layer, Row, TOOUTput list, and apex cell for new scene. MN+1
set ITEMs in a description to equal 7. MN+2
IN input @ ROW and its TYPE and go to what's in TYPE ($TYPE) 1
(If TYPE is S, will Sense the scene, Row by Row
SENSE get each SPOT and store it under its Layer . Row . Column. 2-6
(If TYPE is TRANS starts TRANSforming, since the raw scene is stored.
TRANS output that starting; initialize TODO to contain LAYERS and CHARS 7-8
T1 Get STEP size and NOWDO for next layer from TODO 9
and set DO to Frase the next layer, and go to T4 10
T5 Get and apply each TRANSform from NOWDO, 11-16
get the submatrix to look at and what to DO from in TRANS, I2
T4 get the TyPe, THRESHold and DESCRiption from in DO, 14
T3 get each THING and its relative locations and MINimum from DESCR 16
(TyPe A TRANSForm MERGEs all NAMEs in the cell into the next layer.
Al MERGE the specified cell into the next Layer. 17
(TyPe C TRANSform looks for a configuration over a THRESHold.
Cl1 If enough specified THINGs are found with VALues above MINimum 18-21
to TOTAL above THRESHold,
MERGEs IMPLIEDS and history of DO and GOT into next layer. 22
A2 Loop through the specified sub-matrix until done, then go to T5. 23-24
(TYPE E TRANSform is set up by statement 10 to erase the next layer.
El Erase the cell in the next layer and go to A2 to loop through. 25
(When all NOWDO for a layer have been DOne, ITERates to next layer.
ITER Add 1 to Layer, reduce Row and Column by STEP-size, 26-28
and test if the cone has collapsed to its apex. No - go to Tl 29
Yes - CHOOSE the HIWeighTed "NAME' from the grand apex 30
(OUTput a description by CHOOSEing ITEMS (= 7) most SALIENT names on TOOUT
SALIENT CHOOSE and output the hiweighted name on TOOUT, 31-32
until ITEMS (= 7) names have been output, or TOOUT is empty, 33

and go to INITialize for, and INput, the next scene.
(MERGE and CHOOSE are functions used by the program, and DEFINEd here.
MERGE MERGE each NAME and WeighT from LISTA into location in LISTB 34-40
TOTALing weights, and listing location (LISTB), and GOTA on HISTory. 38
#*CHOOSE triggers CHOOSEing the HIWeighTed name of the CLASS 37,40
CHOOSE CHOOSE the HIWeighTed name of the CLASS specified from LISTA 41-50
(Input data cards follow the program.
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(*Program RECODERS~-1. Recognition Cone Describes giving SALIENT things found.

(Characterizes, transforms, names, and gets qualities.

(Collapses input scene layer by layer to apex, choosing names to output when triggered.

START set LAYERS = (the list of transforms - including averaging, fading and M1
differencing, if desired - and characterizers is given here, layerby layer)

set CHARS = (the list of characterizers to be applied after all layers) M2
set CI = (each characterizer must be given, with its description of M3-MN
pieces, threshold, and implieds)
set SPOTSIZE =1 M(N+1)
NEXT erase L, R, TOOUT and $(IL . 0 . 0) M (n+2)
set ITEMS = 7 M(N+3)
(INput a ROW and go to TYPE (SENSE, TRANSform, or a command)
IN input TYPE, ROW] [+to $TYPE. -to END] 1
(Sense the input scene, ROW by ROW. Store each SPOT under Layer . Row. Column
SENSE erase C 2
S1 from ROW get and call SPOTSIZE symbols SPOT. erase [-to S2] 3
in $(. . R . C)list ] SPOT 'l *; ]' 4
C =C+ 1 [toS1] 5
S2 = R+ 1 [IN] 6
(The raw scene has been stored in the first layer. Transforming starts. "
TRANS output Row ' SCENE HAS BEEN INPUT, IS BEING TRANSFORMED." 7
TREPEAT TODO = LAYERS CHARS 8
(Cycle through TODO (which contains LAYERS and final CHARacterizers) till collapsed.
T1 from TODO get STEP NOWDO] = [~ TREPEAT] 9
(Erase next layer with TYPE E operator 10
DO ='"EXXXX]][T4]
T5 from NOWDO get TRANS = [-ITER] : 11
(Get the bounds of the sub-matrix through which to iterate the TRANSform to DO
from $TRANS get RA CAA RMAX CMAX DO 12
T2 CA = CAA 13
T4 from $DO get TP THRESH DESCR ] IMPLIEDS ]] 14
erase GOT TOTAL 15
- (Get the relative Distance, THING and its MINimum value to look for (if TYPE C)
T3 from DESCR get DR DC THING MIN = [+ $(IP 1) -$ (TP 2)] 16
(TYPE A TRANSform MERGEs all NAMEs in the cell into the next layer, MIN has weight.
Al MERGE( $(L . RA + DR. CA + DC), '$(I+1. RA / STEP . CA / STEP)' , 17
+ MIN ) [T3]
(TYPE C TRANSform looks for a configuration over a THRESHold.
C1 from $(L. RA + DR .CA + DC) get # that THING # VAL [-T3] 18
is MIN lessthen VAL? yes- TOTAL = TOTAL + 1 [T3] 19
on GOT list THING [T3] 20
Cc2 is TOTAL lessthan THRESH [+ Az] 21
(THRESHold is exceeded, so MERGEs IMPLIEDS into the next layer.
MERGE(IMPLIEDS , '$(IL+1 . RA / STEP . CA / STEP)' , 1 , DO, Got) 22
(If CMAX contains C or RMAX contains R, $CMAX and $RMAX get grand Row or
(Column bounds.
A2 is CA lessthan $CMAX ? yes- CA = CA + 1 [+ T4] 23
is RA lessthan $RMAX? yes RA = RA + 1 [+ T2. - T5] 24

*See Appendix, and Uhr (1973a), for explan§tions of program constructs.
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(Operator that Erases next layer.

El erage $(L+ 1 . RA/STEP . CA / STEP ) [A2] 25
(ITERate till cone has collapsed into a one-cell apex.
ITER L=L+1 26
R= R/ STEP 27
C = C / STEP 28
is R lessthan 1 ? is C lessthan 1 ? [-T1] 29
(Apex reached. CHOOSE HIWeighTed NAME and OUTput SALIENTs on TOOUT.
at start of TOOUT list CHOOSE($(L . 0 . 0), 'NAME") 30
+ HIWT L . 0 . 0 HIHIST ]
SALIENT from TOOUT get CHOOSE ( TOOUT) WTLOC HIST ] = [- NEXT] 31
QuT output 'THERE IS A ' CHOOSE ' WEIGHT = ' WT 32

is 0 legsthan ITEMS ? yes- ITEMS = ITEMS - 1 [+ SALIENT. -NEXT] 33
(MERGE LISTA into LISTB; add TOTAL WeighT, and HISTory of TRANSform applied
(and parts GOT

MERGE DEFINE: MERGE(LISTA, LISTB, WT, TRANSA, GOTA) 34
M1 from LISTA get ] NAME WTL HIST ] = [- RETURN] 35
(If WT contain '$' set WT = TOTAL of pieces got

from WTL get '$' = TOTAL - 36
(IF NAME contains '*CHOOQOSE"' go to CHoose

from NAME get CLASS '"*CHOOSE' [+ CH] 37

from $LISTB get ] that NAME TOTAL TRANSB ; HISTB ] = NAME TOTAL + 38
+ WT * WTL TRANSB TRANSA ; HISTB GOTA ] [+M1]
(LISTB contains the location where implied (but it's never used by this program).

on $LISTB list ] NAME WT * WTL LISTB TRANSA ; GOTA ] [M1] 39

(CHOOSE the HIWeighTed NAME of the CLASS specified from this cell, and put
(on TOOUT.

CH at start of TOOUT list CHOOSKE$ (L.RA.CA),CLASS) 40
+ HIWT L . RA . CA HIHIST ] [M1]
(CHOOSE the HIWeighTed NAME of the CLASS specified from LISTA.
CHOOSE DEFINE: CHOQOOSE (LISTA, CLASS) 4]
CHI from LISTA get ] CHOOQSE HIWT HIHIST ] = [- RETURN] 42
is CLASS EMPTY ? [+ CH2] 43
from $CHOOSE get 'C=' LEFT # that CLASS # [-CH1] 44
CH2 from LISTA get ] ORNAME ORWT ORHIST ] = [~ RETURN] 45
is CLASS EMPTY ? [+ CH3] 46
from $ORNAME get 'C='LEFT # that CLASS # [-CH2] 47
CH3 is HIWT lessthan ORWT ? yes- CHOOSE = ORNAME [-CH2] 48
HIWT = ORWT 49
HIHIST = ORHIST [CH2] 50
END [to START] -
S 01110111110] I1
S 00100110000] 12
S 01110111110] 13

TRANS I,C] 14
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Scenes are Input one ROW at a time, each row starting with
'S ' (for Sense) and ending with ']' (which means that spaces, but not
brackets, can be part of an input) (e.g., I1-I3). One Input card, which
starts '"TRANS ' and, optionally, contains the correct names, or any

other identifying information, and ends with ']' must follow each scene

(e.g., 14).

The four Input rows shown (I1-I4) give a simple example of a
Scene of the two objects, an I anda C . To recognize them,

RECODERS-1 would need a number of characterizers that looked at

configurations of their various parts. If the scene were larger, and
more realistically noisy, additional pre-processing transforms would be
needed to eliminate local noise (e.g., by transforming a 1 virtually -

surrounded by 0s into a 0), smooth, and in other ways regularize.

DESCRIBING AND DESCRIBING AND DESCRIBING

Let's briefly survey what's been done and the problems to be faced,

and then examine what we might mean by a description.

History

A small but substantial number of papers have been written about
programs that describe; and a few programs have been coded. These
have been about a variety of different things - from finding blobs or
edges in aerial photos to counting and identifying cells in microscope
slides (e.g., Kirsch, 1964; Ledley and Ruddle, 1965) to looking for
aberrant bone structures in X-rays (Ausherman et al., 1972); from
recognizing the letters in continuous handwriting (Eden, 1968) and the
phonemes in speech (Forgie and Forgie, 1959; Reddy, 1967) to finding

a whole, like a face or a table or a 3-dimensional block, and describing
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its parts, such as noses, legs, and edges (Guzman, 1968; Sauvain and
Uhr, 1969). (See Uhr, 1973b, for a more detailed survey, and Lipkin and

Rosenfeld, 1970, for more examples.)

But much of this work still has the strong feeling of beginnings.
Each program attacks a particular problem and, worse, describes in a
particular, pre-ordained way. Describing programs take an extremely
important step beyond classical pattern recognizer-namers, which
simply assign a single name to the input. But it is an extremely diffi-
cult step, and progress is slow. A namer outputs one symbol - the
chosen name. As soon as a program outputs more than one name it's

probably fair to call it a describer.

Describing Because Naming is too Difficult

But that admits some pretty simple-minded programs, for example
ones that can't even decide upon a single name with much success,
but can still manage to output several, saying in effect: "I think it's
this, but it might be that, or even thatother." Whenever a namer uses
a set of characterizers, each of which implies one or more possible
names (and this is the typical structure of a pattern recognizer-namer),
it is trivial to have it output its characterizers as well as the chosen
name - and this, again, is describing. In fact quite often a describing
program is one that has not been completed to the point where it can
actually name the objects, or even the single object, in its input
(usually because it is dealing with especially complex objects); rather
it can only characterize fragments, or look for specific objects,

features, or aberrations of interest.
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Sometimes characterizers will seem intuitively meaningful to
us humans as descriptors - e.g. when they specify edges or curves or
angles or loops. Sometimes they will seem weird, e.g. when they
specify something like "a bit of darkness here and a bit of light there
and a gradient down below". Sometimes they will seem complete
gibberish, e.g. some arbitrary function that has been thrown at the

pattern.

The Importance of the Hearer's Expectations

But how do we decide which are good descriptors ? The obvious
answer, and I fear the correct one, is that a descriptor is good to the

extent that it conveys information to the hearer, the recipient of the -

description. If this is true, then we must introduce enormous new
problems before we can handle description adequately, for we must
make description a part of the communication process, and our programs
must be cognizant of what has relevance, interest, and meaning to the

hearer.

For the moment we can conventionalize the hearer, into a standard
recipient of information. For example, we can flag some characterizers
as publicly meaningful, as opposed to the others that have meaning
for the program since they help it to recognize, and have the description
output only the publicly meaningful characterizers. But we should
remember that these are ad hoc conventions, and we should not push

them too far.

Types of Descriptions

There appear to be a number of types of information that are, at

least at times, appropriate for descriptions (for more discussion see
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Firschein and Fischler, 1971; Uhr, 1972, 1973c). These include the
possible names and the characterizers that succeeded on the pattern, as
just discussed. Note that these can be used in a variety of ways. For
example, the program can output the names that were definitely not im-
plied, saying, "it's certainly not any of these." And it can use the
characterizers to support its arguments for each name, by saying, "I
think it's this name because of these characterizers, but these other

characterizers suggest it might be this name instead."

But we need programs with richer structures in order to get a
greater variety of descriptions, as indicated in Table 1, including some of

the most basic sorts.

Table 1 about here

Probably the thing that most naturally comes to mind when we talk
about descriptions is a structural statement about the parts of the object,
and their interconnections. Thus we say it's the word BOX because it con-
taingsa B an O and an X (note that there's a hidden convention that we
always assume without noticing, and that, unfortunately, we usually build
like concrete into our programs' code - that these are concatenated from
left to right in a linear string). And it's the letter B because it contains
a left vertical line and a small loop going to the right from top to middle
and a similar loop from middle to bottom. And it's a person because
there's a foot and a leg and a hip and the leg is connected to the hip, and

SO On.

To do this sort of a thing we need systems that can recognize objects,
and then recognize objects made up of these objects, and so on. These
clearly go beyond the classical naming programs, and the work of this

sort seems to me the most direct attack on describing. But at present this
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research works only with very clean and simple drawings of scenes; it does
not try to handle the messy, noisy scenes we get from the real world. In
fact it virtually ignores the problems that the naming programs confront -
recognition over a potentially infinite set of unknown non-linear trans-
formations. When that must be done the program is confronted with
major problems just in recognizing the parts, and these problems are
compounded when there is a whole mess of other parts to be recognized
gimultaneously, and then higher-level wholes (which are themselves just
parts) to be recognized. This is an interesting situation, since all this
mess at the same time adds an enormous amount of contextual information
that should help recognition. Ultimately we will be better off because of

it, but for the moment we are just learning to handle it.

But there are still other things that are components of a good
description, for example classes like animal or furniture, and qualities
and moods like color, shading, texture, shadowing, firmness of line,
boldness, goodness, and beauty - going, roughly, from simple and
concrete to abstract and vague. Characterizers for color and for shading
are relatively easy to code compared to texture and firmness of line,
which turn out to be major problems in themselves. But forget about
boldness, much less beauty, except to note again how much they lie in
the eye of the beholder - our systems must learn what the hearer feels

about things.

Directing and Choosing the Description

Anything in the raw input scene, or the outcome of any conceivable
transform, might potentially be useful in a description. This ultimately
depends upon the hearer, his interests, desires, and peculiarities. A

crucial problem lies just in keeping the description down to a reasonable
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Table 1. Some Possible Types of Descriptive Information
A. Some types of things in a scene: Examples:
1. Unrelated collections forest

2. Related groups

3. Objects:
a. wholes
b. sub-wholes
c. parts

4., Characteristics and measure-
ments

5. Classes

6. Qualities:
a. shading, color, texture
b. concrete
c. abstract

7. Moods and tendencies

8. Things counter to expectations:

a. missing wholes, parts,
characteristics,
qualities, etc.

b. incongruities

Relations bhetween things:

—t
-

Co-occurrence
Systematic placement

Locational .covering

DWW N

Characteristics and qualities

5, Parts and contexts

dining set == table and chairs

family == man, woman, child

tree, table
leaf, hand
seat, finger, fingernail

straight edge, long vertical,
angle

table, chair ¢ furniture, name -

dark, red, herring-bone
jagged, faint
forceful, beautiful

ominous, lively

place-setting without fork,
face without nose

3-eyes face; friendly Hitler

trees in forest, objects in a room
beacons at an airport
field covers green, stubbled

(transforms used and stored in
history)

(parts found and stored in history)
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size, focussing, culling, and choosing only what is relevant. Table 2

examines some aspects of this focussing process.

Table 2 about here

RECODERS~-1 follows built-in procedures for choosing its description.

RECORDERS-1A, which we will examine now, custom-makes its descriptions

to a hearer-user's commands. Systems that infer and learn how to make
their descriptions more pertinent, as a function of conversational inter-
action with scenes and hearers, will be left as an exercise for the

reader, and for future papers.

RECOGNITION CONES FOR DESCRIPTIONS

The recognition cone is an attractive vehicle for describing because
it can handle any variety of transforms that are desired and can be coded
(or, another story, can be learned through experience), including
features like edges and curves, qualities like color and texture, parts
like eye and leg, and pre-processors like averaging and differencing.
These can all be assessed by their particular characterizing transforms,
and their outcomes stored, along with implied output names and all other

transforms, in the next layer of the cone.

The cone can also be used to superimpose several different kinds

of structure on this stew of descriptors as summarized in Table 1.




21 - Uhr

Table 2. Sources of Information to Help Direct and Choose the Description

A. Types of information leading to choices:
1. Strength of implication
2. Level of the object:
a. highest
b. lowest
c. most "relevant"
3. Covering of the scene:
a. most parts accounted for
b. least redundancy
c. most coherent and relevant "story"
4, Specified classes, characteristics and qualities expected
5. Relevance

6. Coherence and harmony, all parts adding to an interesting
description

B. Sources and reasons for choosing the specific objects in a description:
1. Built-in (e.g. "6 most highly implied animals")
2., Commanded (e.g. "ALL WHOLE OBJECTS")
3, Inferred, or learned, from:
a. scenes (present scene; previous scenes)
b. commands and conversation (present ones; previous ones)
¢. conceptions of "pertinence® and '"relevance"
i. built-in
ii. inferred from this scene and/or the commands

iii. inferred from a learned model of hearers, or of this
hearer's expectations
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RECORDERS-1A, WITH ADDITIONS TO DESCRIBE IN A VARIETY OF WAYS

Let's look now at additions to RECORDERS-1, to allow it to describe

in a variety of ways, and thus make use of the potentially descriptive
information that it collects while transforming the scene through the

recognition cone.

These additions allow a user to conversationally input a sequence
of commands (each must start
with OBEY, to direct the program's description). Each command specifies
any of a variety of different requirements, in terms of a) the ordering
of objects in the description (e.g. most SALIENT in the weights of their
implications, or starting with the largest WHOLEs), b) the strength
of implication of objects output (eg. ALL, or only those STRONG enough -
to have reached a DECIDE level), c¢) the structure of the description
(eg. just OBJECTS, or objects plus their FEATURES or PARTS, or
objects plus other things that they COVER), and d) the types of things
(eg. of a specified CLASS or QUALITIES).

In addition, the user can command RECORDERS-1 to CHANGE or

ADD to any list, so that he can, eg., change the number of ITEMS he
wants in a description (the program itself sets ITEMS = 7), or the
DECIDE level, or he can add operators to the LAYERS or CHARacterizerS
lists, and create now operators (by specifying OBEY CHANGE [newname]
[newcontents] - which changes the contents of this newname, e.q.

CHAR193, from nothing to the newcontents).

Fig. 4 goes here
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Figure 4. Additons to RECORDERS-1 to Command it to Describe

The following show the possible TYPEs of input. ALL COMMANDSs start 'OBEY".

TYPE COMMAND WHICH WHAT
ggg N é?{]zNGE}M(NAMEym;(STRING)
S ) OBJECTS
FEATURES
TRANS SIEIQONG SALIENT\ _— ) PARTS
oG~ J WHOLE COVER

c1Ass —— s[c1ass]
QUALITIES ——>[THING]

Every input must specify a TYPE. TYPE = OBEY indicate a COMMAND,
which must also have a WHICH and a WHAT. Many combinations are possible,
as indicated by brackets and arrows above. (eg ALL WHOLE COVER; DETAIL ,
SALIENT OBJECTS; ALL CLASS [CLASS] (ie. the actual classname desired). The -
following code changes handle all possible combinations:

(RECORDERS~1A. Changes that input and OBEY a variety of COMMANDS RECORDERS-1
DECIDE = 30 M(N+4)
output CHOOSE ' IS MOST HIGHLY IMPLIED, COMMAND MORE' [IN] 30.1
(OBEY signals a COMMAND specifying WHICH and WHAT to describe.

OBEY from ROW get COMMAND WHICH WHAT [$COMMAND] 30.2
(COMMAND CHANGEs or ADDs to memory list (eg. ITEMS, LAYERS, or an operator)
CHANGE set $WHICH = WHAT [IN] 30.3
ADD on $WHICH set WHAT [IN] 30.4

(Responses to COMMANDs that specify kinds of descriptions
(To output ALL things on TOOUT

ALL ODECIDE = 0 [$WHICH] 30.5
(To output only STRONGLly implied - WeighTabove DECIDE (=30)

STRONG ODECIDE = DECIDE [$WHICH] 30.6
(To output all DETAILs in apex cell as well as TOOUT. (A detail starts '™

DETAIL  on TOOUT set $(L . 0 . 0) [ALL] 30.7

(WHICH contains WHOLE, CLASS or QUALITIES, or SALIENT
(TOOUT is ordered from apex to row scene, so WHOLEs are output first.

WHOLE from TOOUT get CHOOSE WT LOC HIST] = [+ OUT. - IN] 30.8
(Output descriptors that belong to one of the designated class THINGS in WHAT
CILASS from $CHOOSE get 'C="' CLASSES ] 30.9
HIST = CLASSES [QUALITIES] 30.10
(Output descriptors that have one of the designated THINGS in their HISTory.
QUALITIES set THINGS = WHAT 30.11
Q1 from THINGS get THING ] =[- $WHICH] 30.12

in HIST get # that THING # [+OUT. - Q1] 30.13
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(Get SALIENT things, ordered by weights, from TOOUT.

SALIENT from TOOUT get CHOOSE(TOOUT) WT LOC HIST ] = [+ OUT. -IM] 31.V

ouT output CHOOSE ' IS ' WHAT ' = ' THING ' LOC = ' LOC ' WT = ' 32.V

+ WT [$WHAT]

(Will quit when has output the specified number of ITEMS

OBJECTS is O lessthan ITEMS ? yes - ITEMS = ITEMS - 1 [+ $WHICH. -IN] 33.V

(WHAT contains FEATURES or PARTS (got from HISTory), COVER (got from cell where

(chosen) or just OBJECTS

(Only the FEATURES transforms are kept in HISTory

FEATURES from HIST get HIST ; [PARTS] 33.1

(Get PARTS of PARTs (from HISToryParts) down to lowest level.

PARTS from HIST get PART = [~ OBJECTS] 33.2
from TOOUT get ] that PART WT LOC HISTP 33.3
on HIST set HISTP [OUT2] 33.4

(COVER looks for generallists of ALLQUALs and RELATA, and HIST, in cell

(where chosen,

COVER on HIST set ALLQUALS RELATA 33.5

COV1 from HIST get PART = [- OBJECTS] 33.6
from $ LOC get ] that PART #[- COV1] 33.7

QUT2 output 'IT IS FURTHER DESCRIBED BY ' PART [$WHAT] 338

NOTE that the user must now input NEXT ] to start processing a new scene
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A Descriptive Discussion of RECODERS' Various Descriptions

Rather than output up to seven most SALIENT things on TOOUT,
as RECODERS~-1 does, RECODERS-1A outputs the single most highly

weighted CHOOSEn from the grand apex (statement 30.1), suggests that
the user COMMAND MORE, and goes to INput (either a command or the
NEXT scene). All commands start with OBEY as their TYPE, and 30.2
gets the COMMAND, WHICH and WHAT from the input ROW, and goes to
the name in COMMAND.

If this name is CHANGE or ADD the string in WHAT is stored under
the name in WHICH, or added to its end. This is an extremely simple
technique for giving the commander control over any of the program's
memory lists (and it is rather reminiscent of the kind of "learning" that
has been called "advice-taking" - see e.g. Raphael, 1%4; Uhr, 1973b
chapter 19. For example, the command:

OBEY CHANGE ITEMS 16 ]

will have ITEMS = 16 replace the ITEMS = 7 for this scene (30.3). And
OBEY ADD CHARS C123 |

will put C123 at the end of the CHARS list (30.4). (Another CHANGE
command might be used to create C123 - the change can be from nothing-

ness.)

If the COMMAND name is a) ALL, b) STRONG, or c) DETAIL
RECODERS-1A will set the OQutput DECIDE level to a) zero (so that all

things are output) (30.5); or to b) DECIDE (which is set at 30 - unless a
CHANGE command has changed it - so thatonly things above that rather
high level are output (30.6); or c) it will put the apex cell, which
contains masses of detailed information that has been carried along, at

the end of TOOUT (30.7), and go to ALL, to set ODECIDE = 0.
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RECODERS-1A now goes to a) SALIENT, to get CHOOSEn things

ordered by weight (31.V), or to b) WHOLE, to get things as they are
ordered on TOOUT (30.8), which tends to have larger wholes first; or to
c) CLASS, to output only if one of the classes listed in WHAT is stored
as this CHOOSEn thing's class (30.9 - 30.10), or to d) QUALITIES, to
output only if one of the things listed in WHAT is found in CHOOSEn's
HISTory (30.11 - 30.13).

The object chosen, along with its LOCation and WeighT, are
output (32.V), and RECODERS-1A goes to what's under WHAT, to see

if any additional information has been requested.

PARTS gets each PART from the HISTory of the object, and gets its
parts (HISTory-of-Parts) from TOOUT (33.2-33.4), cycling through and
QU Tputting all the PARTs (33.8). FEATURES looks only for the trans-
forms (stored before the ; in HISTory) (33.1). COVER looks for all things
in HISTory, and also in the additional lists ALLQUALS and RELATA (which
must be initialized in the program's memory, or input by user commands,
to contain the types of things desired in a description of the sub-cone
covered by this object), and it outputs all those found in the sub-apex
(33.5-33,8). If OBJECTS is specified, only the main objects got from
TOOUT are output (33.V, 32.V) without any of this additional information.

Simple Improvements for Better Descriptions

More things could be done. FEATURES gets just the transform
operators used, whereas PARTS gets both parts of configurations and the
operators. Slight changes would add the third option, of getting just
parts. To minimize lines of code I have features and parts treated the
game, which means 33.3 wastes effort looking for parts of features (and

for the semi-colon (;) that separates them) which it will never find in
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TOOUT. The reader with the perseverance to follow the code in detail

will find other places where efficiency might be improved.

We could easily have RECODERS~1A use the strength of weights to

choose the most important parts and qualities, just as it now chooses
the most important objects, and use a set number of items in describing
an object. It could also note when several objects have the same parts
or qualities in common, and it could choose objects as a function of

combinations of classes, parts and qualities.

DISCUSSION

Level and Variety of Detail

To the extent that we enrich the possibilities for description we
enormously lengthen our descriptions. It seems quite likely that, as
with information retrieval systems, the biggest problem will be how to
keep from overwhelming the hearer with descriptions ad nauseam,
often with only minimal, albeit demonstrable, pertinence. This once
again indicates the issues of pertinence to the hearer, and how the pro-
gram can be told about that. Since one hearer's pertinence is another
hearer's nonsense, it seems necessary that the program must learn about
hearers, or at least obey hearers' commands, again with much the
same problems of an information retrieval system that must input and

attempt to "understand" users' requests.

Is there any such thing as a "standard" description? The only
one I can think of is an exhaustive description. For anything else
would have to include an arbitrary choice of objects - e.g. members of
a "named objects" class, or named objects and their parts, features

and qualities, or named objects implied above some threshold.
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The exhaustive description would simply be the contents of all the
cells in all the layers of the recognition cone (or whatever other transforms
a program used). This includes all the spots of dust (for those scientists
who study dust), in the first, input layer, and all possible combinations
thereof, along with all the interconnections that can be inferred from
history, classes, and relative locations in the cone. Who is to deny
the compulsive hearer who wants the input enumerated cell by cell? Or
what if the input is indeed a code with no redundancy from cell to cell

(eg. a computer tape)?

Steps Toward Relevance

Recognition cones like RECODERS-1A that can obey a variety of commands,

by outputting the appropriate descriptive information, are capable of
almost any kind of description, If anything else is desired, they need
only be given new transform operators capable of characterizing these

new kinds of descriptive information. That is, anything measurable can be
used, and made accessible for a description. If a Configuration is

not sufficient a new transform type can be coded to compute the desired
function. The cone structure itself organizes this information, by

structure, regions, classes, and co-relations.

RECODERS-1A has several techniques for keeping the description

pertinent, and relatively short: a) the number of ITEMS specified

sets an outside limit; b) the DECIDE level (which the ALL command can
lower to 0) outputs only items that have exceeded it; ¢) special
CLASSes and QUALITIES of things can be insisted upon. But these are
only first steps. A good system would be able to mix these, and other,
criteria together under a general assessment of relevance of each item.

It should not slavishly obey a command, but rather infer, through con-
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versational interaction - which includes feedback that changes the
course of the description as it goes aloflg - what is most relevant to
the present hearer.

It should further build up an internal conception of pertinence.
A step in that direction could be made by putting the various command
and decision parameters on internal lists, each with a weight. Then,
as a function of feedback as to whether a response was deemed rele-~
vant by the hearer, the weights of the parameters involved with that
response could be raised and lowered. (This is much like the para-
meter adjustment we see in pattern recognizers like Marrill and Green,
1960; and in Samuel's checker player, 1959, 1969 - except at a higher
level, as in Uhr and Jordan, 1969; see Uhr, 1973b chapters 16, 21.)
Now the particular type of response could be chosen with probabilities
that reflect these weights. General weights could be induced for all
hearers, and particular weights for the present hearer, and for well~-

known hearers, could also be used when the particular hearer is known.

Improving Serijal Representations of Parallel Systems

Recognition cones simulate parallel-serial converging systems
of the sort we see in the brain, and especially in the visual system.
When embodied in hardware (neurons connected by synapses, or elec-
tronic switching elements connected by threshold eleme nts) it is not
unreasonable to have a lot of information kept, since information can
be stored in any element, and, since the element is physically present
in any case, it might as well be working rather than idle. But when
simulated on the serial digital computer, such a system can eat up

valuable memory space.
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RECODERS-1 is wasteful in this respect. It not only keeps

all details of information in all cells at all layers of the cone, but
it also redundantly passes this information along to the next layer,
to make it easily accessible (if we place, as I recommend doing, a
general averaging operator at the start of each layer's transformation).
But this can easily be changed. Averaging need not always be done,
or it can be done only across mémbers of key classes (e.g. the ex-
ternal names, in order to be able to choose among them, and to get
descriptive information, and low=level qualities, like edges, in order
to smooth and in other ways pre-process). Better — a threshold can
be used to keep low averaged values from being passed along to the
next layer.

Another technique would allow an operator to specify a layer
as well as the row and column positions, so that it could reach back
to any prior layer in the cone to make its test. This would allow the
system to keep things where they were, passing along only the mini-
mum, of external names and pre-processings.

In any case, it is not possible to effect any enormous saving
of space in this way. The cone converges from its base, which must
be large enough to adequately resolve the input scene. The total cone
will not be a very large multiple of just the base. The larger and more
complex the set of operators used to process the sharper should be the
convergence STEP sizes, so that the total space needed for operator

outcomes and cells remains in some balance.

We might think of erasing a layer as soon as it has been pro-
cessed (as in Uhr, 1972), and this indeed keeps the working memory
as small as possible. But an especially interesting and important ex-

tension would allow RECODERS-1 to handle inputs that continue and

change over time (as in Uhr, 1973c), and to do this the cone should

remain, with things gradually fading away when no longer seen, new
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things emphasized, and moving things reinforced.

Choosing and Using Descriptors

RECODERS~1 adds to its list of things TO OUTput when trigger-

ed by a *CHOOSE in a cell. It then culls its description from TOOUT.
Only when it is asked for DETAILS does it look also into the grand
apex cell. Alternately, chosen objects could simply be put into the
apex, or passed along through the cone (tagged as chosen), so that
the apex cell contained everything, and could be used directly, as a
TOOUT list. This clutters up the processing, since the system must
look for pertinent things to output among a much larger list. But it
gives a simpler structure, and would allow the system to treat chosen .
objects and the unchosen in the same way, for example so that, in
changing its point of view in order to get a sensible cover, it could
decide to re~choose from among the unchosen with the now~-deemed-

appropriate features, parts or classes.

Conversational Descriptions that Affect Recognition

Another alternate would have the system output as soon as it
chooses. This would make for more rigid and stylized descriptions -
unless it was capable of inputting the hearer’'s response, and having
that direct its actual transforming operations and not, as in the com-

mands input by RECODERS~1A merely direct its culling of the TOOUTput

list. Now there must be a pause in processing after each output, to
get a command response and use that to focus its processes - e.g.,
to search for a certain object or class of objects, or to describe de-
tails of a certain type.

This quite nicely fits into RECODERS-1A, since we merely need

to have it output the CHOOSEn object rather than add it to TO OUT (40),
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and then go to IN, to get and execute a command (we could extend
this ability to allow it to use back-links from names a command sug-
gests it focus on to get characterizers, and to add these and other
specified operators to its current NOWDO list), and return to where

it left off processing (see Uhr, 1973c; 1973b, chapter 8).

Conversational Descriptions Over Time

This does violence to any reasonable conception of time. When
a command is received the whole world stops, and only after it has
been executed and all adjustments made do things start up again,
right where they left off.

A realistic system needs to spend time recognizing and under-
standing the command (see Uhr, 1973d), and by that time the scene
will have changed some, and the transforms in the cone will have
changed. That is, perception should continue, in real time, and only
after enough time has passed to decide to a) choose a descriptor,

b) actually output it, c) wait for a response, d) input and e) re-
cognize and understand it, and f) effect any internal changes, so that
processing is now a function of this output—~input interchange, can the
system return to processing - and by that time the world will have

changed (unless it is immovably static).

Complete Cognitive Systems that Use Recognition Cone Describers

Once conversational commands can affect processing, in a sys-
tem that handles environments that change over time, we are in a posi-
tion to let other forces come into play, by putting this perceiving sys-
tem into a larger cognitive system. Rather than simply trigger names
and other descriptors to output, the system can also trigger acts (e.g.,

find or move an object) and internal searches (e.g. answer a query,
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or deduce a solution). Then the action, or answer, when output,
leads to responses and other repercussions (e.g. a different per-
spective, if the system has moved itself) within the interactive con=-
versational framework that has already been established to accept

commands (see Uhr, 1973d, for a simple system to do some of these

things).
SUMMARY

This paper describes "recognition cones" for parallel-serial

perceivers that describe scenes of interacting objects.

The concept of a "description" is examined, for the variety

of things that it might mean.

A recognition cone program is presented, and code is added to

allow it to output a wide variety of descriptive material, as commanded.

The commands serve to limit the size of the description, and
thus help to fend against a major problem of descriptions - that any
quality, detail or combination of details may be pertinent from some
point of view, whereas to communicate successfully a description
must be kept down to absorbable size, and must contain the pertinent
and relevant information. To do this properly a good describer must
make subtle decisions as to relevance, including decisions as to what

it infers would interest the hearer of the description.
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