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ARE ALSO CONCEPT FORMERS

by

Leonard Uhr

ABSTRACT

The typical pattern recognizer (PR) applies a set
of characterizers to an input. Each characterizer implies
a set of possible names, and the single most highly implied

name 1is chosen.

The typical concept former (CF) applies a binary test
to the input. This test implies either another test to
apply, or a name to output.

Pattern recognizers have almost always applied proba-
bilistic (usually two-valued but occasionally multi-valued)
characterizers in parallel; whereas concept formers have
always applied deterministic two-valued tests, in series.

This paper presents and examines simple computer
programs (coded in EASEy-2, a language that is relatively
easy to understand) for (1) parallel "pattern recognition"
(NAMER), and (2) serial "concept formation" (CONCEIVER).

Finally, these programs are generalized to give a
single "flexible" pattern recognizer-concept former
(FLEXIBLE PR-CF) that combines the desirable features of
parallel-probabilistic and serial-deterministic systems.
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INTRODUCTION

Pattern recognizers (PR NAMERS) and concept formers
(CF CONCEIVERS) have always appeared to have a lot in

common. Yet they have been developed in quite separate

lines of research, since each concentrates upon a dif-
ferent problem area (roughly, perception versus cognition),
and takes a different approach.

This paper first examines their differences, and
then their striking similarities, by presenting, explain-
ing, contrasting, and comparing actual computer programs
for each. Then a third "FLEXIBLE" program is presented,
one that both recognizes patterns and forms concepts.

The EASEy Programming Language. The programs are

coded in ¥EASEy-2 (an Encoder for Algorithmic Syntactic
English that's Easy, version 2-See Uhr, 1973a), an En-
glish-language variant of SNOBOL that's designed to be

as close as possible to a self-explaining list-processing

language.

The programs are bare-bones, kept as short as
possible so that we can examine exactly what is happening,

*

An EASEy-2-to-SNOBOLY4 translator has been coded 1n SNOBOLY4
(Uhr, 1973a). So any EASEy program can be translated into
SNOBOL and then run on any computer with a SNOBOL compiler.



and make detailed comparisons of small changes, and of

their effects. They must be given (or-another story-learn)
the particular characterizers needed to recognize the
objects expected, or the particular tests needed to identify
the desired concept--just as a parser must be given the
particular set of rewrite rules that defines the grammar.

Pattern Recognition. Many hundreds of pattern

recognition (PR) programs have been written, to handle a
wide wvariety of problems, e.g., letters of the alphabet,
spoken words, simple objects, bubble chamber photos,
chromosomes, blood cells, and cartoon faces (e.g., Grimsdale,
et. al., 1959; Uhr and Vossler, 1963; Andrews, et. al.,
1968; Zobrist, 1971; Reddy, 1967; Ledley, 1972. See Uhr,
1973b chapters 1-9). These programs attempt to handle
the very difficult problems of recognizing objects when
they are distorted in any of the potentially infinite
number of unknown and non-linear ways in which real-world
objects can vary.

Virtually all pattern recognizers have the following
simple basic structure: A set of characterizers is applied
to the unknown input pattern, where each characterizer
specifies one, or a set of, tests. The characterizer's
outcome implies one, or a set of, possible names. The
program chooses the single most highly implied name,
after combining the outcomes from all the characterizers

applied.

Usually characterizers are two-valued: they either
succeed or fail. Sometimes they are many-valued, where
each outcome implies a different set of possible names.
Sometimes characterizers 1mply transforms that can then

be used as inputs for subsequent characterizers (e.g.,




Selfridge and Neisser, 1960). Sometimes the pattern is
first "pre-processed," to smooth, eliminate noise, en-
hance edges, and in other ways regularize. But we will
ignore pre-processing, since it is often absent, and in
any case can be replaced by additional transforming
characterigers.

Most pattern recognizers apply a whole set of char-
acterizers in one parallel look at the input (e.g.,
Doyle, 1960; Andrews, et. al., 1968); occasionally a
system will effect a series of parallel passes (e.g.,

Uhr and Vossler, 1963); sometimes each characterizer is
applied in series (e.g., Unger, 1958, 1959). Usually
weights or probabilitles are associated with the various
implied names, and these are combined and the most highly
implied name chosen. But a serial system like Unger's

tries to do without weights.

Sometimes characterizers imply other characterizers

to apply--giving what I have called "flexibility" (Uhr,
1969, 1973b).
Concept Formation. Concept formers (e.g., Kochen,

1960; Hunt, 1962; Towster, 1969) have been developed

chiefly to model psychological research on cognition,

where a large number of experiments of the following

sort have been run: A sequence of cards 1s presented

to the subject, where each card contains a simple picture,
e.g., of a big red solid triangle, or a small blue out-
lined square. The picture is in fact a collection of
dimensions, such as shape (triangle or square), color

(red or blue), size (big or small), type (solid or
outlined), saturation (bright or hazy). In almost all
cases the dimensions are two-valued (e.g., triangle or

square), and in all cases the two values are chosen to



be easily discriminable, and the different dimensions
are also chosen to be as different and as discriminable

as possible.

A typical experiment will use from 3 to 10 dimen-
sions. The problem is to say whether a picture is YES--
a member of the concept class--or NO--not a member
(e.g., the concept might be [small and square] or [not
[small and blue] and trianglel).

All concept formers apply one test at a time, where
each test implies two different possible outcomes, on
success or failure. Tests in series are "and-ed" together;
branching paths are "or-ed." Since concepts are binary
a negation can be replaced (albeit awkwardly) by its
opposite. The chosen outcome can be elither a YES or
NO, which is the program's overall decision, or another
test to apply to the input picture. This i1s a strictly
serial process; in fact it is the typical form of a
discrimination net. It is also similar to the serial
net of features used in the "Elementary Perceiver and
Memorizer" (EPAM) developed by Feigenbaum (1963) to

model human memory.

Pattern Recognition versus Concept Formation.

Pattern recognizers apply many characterizers, in parallel,
combine their weighted outcomes, and make a probabilistic
choice. They look at inputs in two dimensions, with

many hundreds, or thousands, of cells, and must be able
to assign the same name to varlant examples of the same
pattern class, where the distortions are complex and
non~linear in unknown ways, and the possibilities are
potentially infinite. Pattern recognizers typilcally
handle 26 different pattern classes, sometimes only 5,
and occasionally as high as 200. Concept formers handle
only the two classes, YES and NO.




Concept formers apply one test at a time, in series,
where each test specifies a dimension and an expected
value, and its outcome (either success or failure) im-
plies either another test to apply, or the name choice
to output. They look at inputs with 3 to 10 binary-
valued dimensions, where the concept can be any logical

combination of these dimensions.

Pattern recognizers must be able to ignore slight
distortions and bits of noise; in general, their charac-
terizers (which can be any codable functions, but are
often configurations of tests and features) must be good
at throwing away, as well as extracting and abstracting,
information. Real-world patterns vary and overlap with
other patterns in so many unknown ways that it 1s virtu-
ally impossible--and in any case not worth the effort--to
design perfect characterizers. Rather, most researchers
have opted for a large parallel set of as-good-as-discoverable
characterizers, where each is assigned welghts that re-
flect its goodness, and a grand decislon is made over
many. Thus individual mistakes are expected, with the
hope that they will be washed out by the general consensus.

Learning Patterns and Formulating Concepts. This

paper examines only the recognition of the pattern or

the concept, and not the actual learning of the charac-
terizers and tests that are used. Concept formulators
(for a detailed examination see Towster, 1969) generate
and add a new test to the end of a path in their discrim-
ination nets, when feedback indicates they have made a
wrong choice. The test is generated to correct this error
on this input. Pattern recognizers that have been coded
to discover new characterizers use similar techniques to

generate (except that the input pattern is far larger



than a concept, so that it 1s harder to find good in-
formation-rich regions, and often several tests are
compounded into a single characterizer), and weights

are used to assess the worth of a newly generated char-
acterizer. (E.g., Uhr and Vossler, 1963; see Levine,
1969.) For a discussion and preliminary examination of
recognizers that attempt to discover good characterizers
to apply in a parallel-serial structure, see Uhr, 1973b,
chapters 16-21. But learning is another story, and
beyond the scope of this paper.

A TYPICAL CONCEPT FORMATION PROGRAM

The following computer program (called CONCEIVER)
shows how a typical concept former works. CONCEIVER
must have a set named ¥TEST1, TEST2,...TESTN of tests
it has built up in formulating the concept (statements
M1-MN). Each test specifies (1) a DIMENSION (e.g.,
shape), (2) the expected VALUE (e.g., triangle) and the
names of (3) the next test (YESDO) to apply if the test
succeeds, and (4) the next test (NODO) to apply if the
test fails. (Statement 3 gets these four parts from
the test currently in LOOKFOR.)

The next example is input and stored in LINE by
statement 1, and LOOKFOR is initialized (2) to contain
the first test, TEST1l. The test is applied (4) to the
current example. Statements 5 and 6 store the new test
in LOOKFOR, and 7 checks for an ANSWER--a YES or a NO
(indicated by a star--%¥), which is output (8). Otherwise
it returns to RESPOND (3), to get and apply the next
test.

%
Caps refer to names in the programs, numbers to state-
ment numbers at the right.




Input examples must all be of the form shown by
the two Input data cards that follow CONCEIVER's end
card. Each dimension must be followed by its value.

Spaces must surround every dimension and value, but

the dimension-value palrs can be listed in any order.



Figure 1

CONCEIVER: A Simple Program for Concept Formation

(CF CONCEIVER Program. Applies TESTs in series until a name is
(reached, and output.
START* TEST1 = 'SHAPE SQUARE TEST3 TEST2 '

TEST2 = 'COLOR RED Al TESTL '

Al = '¥YES!
(More TESTs must be put, or learned, into Memory.

TESTN =
(INput the next example (stored in LINE) and put 'TEST1' in
(LOOKFOR
IN input LINE till ] [-to END]

set LOOKFOR = 'TEST1 '
(From the name stored in LOOKFOR get the next DIMENSION and its
(VALUE
RESPOND from $LOOKFOR get DIMENSION VALUE YESDO NODO
(See if that DIMENSION and VALUE can be found in the example
(in LINE.

from LINE get # that DIMENSION # that VALUE # [-R1]
(Put YESDO if succeed, or NODO if fail, into LOOKFOR.

LOOKFOR = YESDO [TEST-OR-OUT ]
Rl LOOKFOR = NODO

(If LOOKFOR starts with ¥ this is a choice; output it.

TEST-OR-0UT at start of $LOOKFOR get '¥*' ANSWER [-RESPOND]
output LINE ' IS ' ANSWER [IN]

end [goto start]

COLOR RED SIZE BIG SHAPE TRIANGLE TYPE OUTLINED ]

SHAPE SQUARE COLOR BLUE TYPE SOLID SIZE BIG ]

¥
See the Appendix for a brief description of the EASEy
language, and Uhr, 1973a for more details.

Il
I2




Note how the tests link, through the YESDO and
NODO branches, to form a discrimination net (actually,
a tree is almost always used). Thus TEST1 asks that
the SHAPE be SQUARE, in which case TEST3 should be
tried, but otherwise TESTZ2 should be tried.

Let's follow through an example. Statement 1
will input the first example, stored in Input card Il,
2 puts the name 'TEST1' into LOOKFOR, and 3 gets
DIMENSION = SHAPE, VALUE = SQUARE, YESDO = TEST3, and
NODO = TEST2. Statement 4 will fail to find that spe-
fied DIMENSION (that is, 'SHAPE') and that VALUE, so 6
will store TEST2 (the contents of NODO) in LOOKFOR.
Since 7 does not find a '¥' it returns to RESPOND.
TEST2 gives DIMENSION = COLOR and VALUE = RED, which
is found, putting Al (in YESDO) into LOOKFOR, so that
7 now finds the '¥' signal that 'YES' be output (8).
Thus "not square and red" is a path of tests that leads

to the conclusion, "yes" (this is a member of the concept).

Of course many more tests would be used, and longer
paths would have to be taken, for interestingly difficult
concepts. But notice how CONCEIVER moves serially along
a path through its discrimination tree, with each test
implying the branch to take to the next test, until a

terminal name (signaled by '¥') is reached.

CONCEIVER handled negations by using a test for
the opposite value (e.g., the negation of COLOR RED is
COLOR BLUE). This is possible because all concepts are
assumed to be two-valued. But 1t could easily handle
negations directly, by expanding the test to indicate
whether it should or shouldn't be found, and 1f it
shouldn't reversing statements 5 and 6 (putting NODO
into LOOKFOR if it was found).
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A TYPICAL (ALBEIT SIMPLE) PATTERN RECOGNITION PROGRAM

Let's look now at a pattern recognition program
(called NAMER) that has been somewhat oversimplified
to make it more comparable to a concept former like
CONCEIVER. NAMER handles only l-dimensional patterns

(a gross oversimplification, but we will end with a

2-dimensional pattern recognizer-concept former, FLEXIBLE,
that both names and conceives). NAMER's characterizers
look only for a single test, in DESCRiption (5-6), rather
than the typical configuration of tests and other func-
tions. But each successful characterizer implles any
number of possible names to output (e.g., M1, M2), each
with an assoclated weight. These names are combined

into a MAYBE list (7-10), from which a CHOICE is made
(11-14) and output (15).

All characterizers to be applied are put on
MEMORY (M1) and then on LOOKFOR (3). NAMER keeps looping
through them (4-6, 7-10) until LOOKFOR has been emptiled.
Then 1l1-14 get the HIWeighTed CHOICE, and 15 outputs it.
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Figure 2

NAMER: A Program for Pattern Recognition

(PR NAMER Program. 1-Dimensional inputs. Qutputs NAME if

(CHOOSE

level is reached.

(CHARacterizers must be put (or learned) in Memory. E.g.:

START

INIT

MEMORY = 'CHARL CHAR2 ... CHARN '
CHAR1 = '1111100,0000 I 9 T 7 E 3 ]!
CHAR2 = '000100 I 5 T 4 E 2 ]

CHAR3 = ',0001111 'E9 11T 2 ]
CHARN =

CHOOSE = 30

erase CHOICE

(INput one pattern (stored in LINE) and put all CHARacterizers
(in LOOKFOR

IN

RESPOND

input LINE till ] [-to END]
set LOOKFOR = MEMORY
from LOOKFOR get CHAR = [-0UT2]

(From the name stored in CHAR get the DESCRiption and IMPLIEDS

from $CHAR get DESCR IMPLIEDS ]
from LINE get that DESCR [-RESPOND]

(If that DESCRiption was found in LINE, merge IMPLIEDS NAMEs
(into MAYBE

IMPLY

I2
(CHOICE
CHOOSE
CHZ

{ ORNAME

ouT

end

from IMPLIEDS get NAME WT = [-CHOOSE]

from MAYBE get # that NAME # TOTAL = [I2]

WT = TOTAL + WT

on MAYBE list NAME WT [IMPLY ]

is the single most highly implied name on MAYBE
from MAYBE get CHOICE HIWT = [- OUT]

from MAYBE get ORNAME ORWT = [-OUT]

is HIWT lessthan ORWT ? yes - HIWT = ORWT [-CH2]
becomes the present CHOICE since its ORWT exceeds HIWT
CHOICE = ORNAME [CH2]

output 'I CHOOSE ' CHOICE [INIT]

[goto START]

001111100 ,000010000,000110000,000010000,001111100, ]
000111110,000110000,000111100,000110000,000111111, ]

ML1.V
M2.V
M3.V
MN.V

2.V
3.V

3.V
L.v

TV

8.V

M1
M2
M3
Mk

M(N+1)

10

11
12
13

1k
15

Il
I2
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Examples. It is too cumbersome to follow through
an even faintly realistic example of a pattern recognizer's
workings, since several dozen, or hundreds, of the rela-
tively weak characterizers we are using would be needed.
But note how an Input card can represent a 2-dimensional
matrix (Il and I2 Input an I and an E, each in a 4 by 9
matrix, with a comma (',') following each row). Both
CHAR1 and CHARZ2 will succeed on Il, so that MAYBE will
contain (NAME WeighT) 'I 14 T 11 E 5 ', and the CHOICE
will be 'I'. Only CHAR3 succeeds on I2, so that MAYBE
contains 'E 9 I 1 T 2 ' and the CHOICE will be 'E' (but
note that CHAR1 almost succeeds).

Note how statement 5 gets the DESCRiption ( =
'1111100,0000') and IMPLIEDS ( = 'I 9 T 7 E 3 ' ) from
CHARl, after 4 got CHAR1 ( CHAR = 'CHAR1l ') from LOOKFOR.
Then 6 gets that DESCRiption in LINE (which contains Il1).

A SINGLE PROGRAM FOR PATTERN RECOGNITION
AND CONCEPT FORMATION

We are now ready to generalize, to a single
program (PR-CF FLEXIBLE) that does both pattern recogni-
tion and concept formation. But first the reader might
want to compare CF CONCEIVER and PR NAMER, by using the
statement numbers for CF (where e.g., 2.V means a
Variant of statement 2) as given next to the PR statement

numbers (in the right margin).

The FLEXIBLE Program Described

FLEXIBLE inputs 2-dimensional patterns LINE by
LINE (2), and stores each LINE under its NROW number
(3-4). (The 1lst LINE must start 'I ' and the rest 'S '
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followed by one card that reads 'R ]'). It uses CHAR-
acterizers whose DESCRiptions contain a whole set of TESTs,
each with a ROW and a COLumn position, and a weight (9).
Each TEST is looked for in the ROW and at the COLumn spe-
cified (10) and if it is found its WeighT is added to the
TOTAL (11).

After all tests have been applied, 12 loops through
each threshold BOUND and its associated IMPLIEDS on
ALLIMPLIEDS, and 13 sees whether the TOTAL weight of parts
got has reached this BOUND level. (Note how this uses a
descending sequence of lower BOUNDs, rather than, as in
NAMER, a single THRESHold bound--thus giving multi-valued
characterizers.) If the BOUND has been reached, 14 gets
each NAME and its WeighT and TYPE from IMPLIEDS, and goes
Lo the label stored in TYPE.

If TYPE = N, FLEXIBLE acts just like PR NAMER: 16-18
merge the NAME onto MAYBE.

If TYPE = L, the implied NAME is listed on LOOKFOR,
since it is a characterizer, and not an output name. This
is the basic feature of what I have called "flexible"
pattern recognizers (Uhr, 1969), where characterizers can
imply either names to output or characterizers to apply—--
which gives a parallel-serial process that dynamically
tailor-makes the specific set of characterizers it applies
to a particular input pattern as a function of what has
been uncovered so far about the input.

After all characterigzers have been applied, 19-22
CHOOSE the HIWeighTed CHOICE, and 23 outputs it.



START  CHaR ='1211u1;23ou)3u3cnu.35]
+ '30111 4 J9 y g 12N0T2735 y1g ]
+ 'L c23 x ]

MEMORY = 'cpapy CHAR2 ... CHARy

CHAR2 = '2 1 99190 3w 1550,y NE2]

TESTl = '1011 71 TEST3 1 Jo 1 Tmspp I
CHOOSE = 30
I £rase NROW, CHOICE
N input TYPE LINg 4117 ] B to $ryeE, 0 END]
(sense and store the input LINE Row by Row.
S set NROW = NRow + 1
set $('R'NROW) = Liym [to 1N]
R set LOOKFOR = MEMORy
R1 from LOOKFOR &et CHAR = [~ qupp]
Erase TOTAL
Trom $CHAR get pmsCR ] IMPLIEDS 11 end

(Get each TEgT from DESCRiption, With itg ROw, COLumn ang

R3 from DESCR get RoOw, COL, TEST, wr = [- Re]
at start of $ROW get and call cop symbols LEFT,
+ get that TEST [- R3]

TOTATL, = TOTAL + yo [R3]

R2 from ALLIMPIIEDS get BOUND IMPLIEDS 1= [-R1]
is TOTAL lessthap BOUND ? [+ Roj

IMPLY  fpop IMPLIEDS get TYPE NAME wp = [+ $TvpE, - CHOO
L °n LOOKFOR 1ist NAME [IMPLY]
N from MAYRE get # that Namp # TOTAL = [- 117

WT = TOTATL, + WT

on MAYBE 1igt NAME wrp [IMPLY]

CHOOSE  from MAYBE get CHOICE HIWT = [. ouT]
CH2 from MAYRE get ORNAME ORWT = [. ouT]

is HIWT lessthap ORWT ? yes - HIyp = ORWT [-
CHOICE = ORNAME (po

ouUT output 't CHOOSE CHOICE [1]

end

1.v

b,y

SE ]
5.V

CH2]

WeighT,

T.v

M(N+1)
1.v
2.V

7.V

8.v

10
11

M1

M3

11

12
13
1l
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Figure 3
FLEXIBLE: A Program for Pattern Recognition and Concept Formation

(FLEXIBLE Program for Concept Formation and Focussed CF PR PR-CF
(Pattern Recognition
START CHARL = 'l 2 1111 4 2 3010 3 4 30111 35 ]
+ '30111 4 ]9 NE12NI215 NIS8]
+ 'L c23 x ] M1
MEMORY = 'CHARL CHAR2 ... CHARN ' M2
CHAR? = '2 100100 3 ]2 N ISNTLUNE?ZR ] M3
CHARN =
TESTL = '1 011 ]1 L TEST3 1 ]O L TEST2 X ]! MN
CHOOSE = 30 M(N+1) M(N+1)
I erase NROW, CHOICE 1.V 1
N input TYPE LINE till ] B to $TYPE. -to END] 1.7 2.V 2
(sense and store the input LINE Row by Row.
5 set NROW = NROW + 1 3.
set $('R'NROW) = LINE [to IN] L
R set LOOKFOR = MEMORY 2.V 3 5
R1 from LOOKFOR get CHAR = [- 0UT2] L 6
erase TOTAL T
from $CHAR get DESCR ] IMPLIEDS till end 3.V >V 8
(Get each TEST from DESCRiption, with its ROW, COLumn and WeighT.
R3 from DESCR get ROW, COL, TEST, WT = [- R2] 9
at start of $ROW get and call COL symbols LEFT, bov 6.v 10
+ get that TEST [~ R3]
TOTAL = TOTAL + WT [R3] 11
(Get each BOUND and IMPLIED and test against TOTAL weight
R2 from ALLIMPLIEDS get BOUND IMPLIEDS ] = [- R1] 12
is TOTAL lessthan BOUND ? [+ R2] 13
IMPLY  from IMPLIEDS get TYPE NAME WT = [+ $TYPE. - CHOOSE] 7.v 1k
L on LOOKFOR list NAME [IMPLY] 5.V 15
N from MAYBE get # that NAME # TOTAL = [- I1] 8.v 16
WT = TOTAL + WT 9 17
on MAYBE list NAME WT [IMPLY] 10 18
CHOOSE from MAYBE get CHOICE HIWT = [- OUT] TV 11 19
CH2 from MAYBE get ORNAME ORWT = [~ OUT] 12 20
is HIWT lessthan ORWT ? yes - HIWT = ORWT [~ CH2] 13 21
CHOICE = ORNAME CH2 1k 22
ouT output 'I CHOOSE ' CHOICE [I] 8.v 15 23
end - - -
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followed by one card that reads 'R ]'). It uses CHAR-
acterizers whose DESCRiptions contain a whole set of TESTs,
each with a ROW and a COLumn position, and a weight (9).
Each TEST is looked for in the ROW and at the COLumn spe-
cified (10) and if it is found its WeighT is added to the
TOTAL (11).

After all tests have been applied, 12 loops through
each threshold BOUND and its associated IMPLIEDS on
ALLIMPLIEDS, and 13 sees whether the TOTAL weight of parts
got has reached this BOUND level. (Note how this uses a
descending sequence of lower BOUNDs, rather than, as in
NAMER, a single THRESHold bound--thus giving multi-valued
characterizers.) If the BOUND has been reached, 14 gets
each NAME and its WeighT and TYPE from IMPLIEDS, and goes
Lo the label stored in TYPE.

If TYPE = N, FLEXIBLE acts just like PR NAMER: 16-18
merge the NAME onto MAYBE,

If TYPE = L, the implied NAME is listed on LOOKFOR,
since 1t is a characterizer, and not an output name. This
is the basic feature of what I have called "flexible"
pattern recognizers (Uhr, 1969), where characterizers can
imply either names to output or characterizers to apply—-
which gives a parallel-serial process that dynamically
tailor-makes the specific set of characterizers it applies
to a particular input pattern as a function of what has
been uncovered so far about the input.

After all characterizers have been applied, 19-22
CHOOSE the HIWeighTed CHOICE, and 23 outputs it.
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Note that CHAR1l is a configuration of four parts,
and a good bit more powerful than all three characterizers
shown for NAMER. It will imply E with a high weight if
most parts are found, but I with a high weight 1if fewer
are found. CHAR2 is exactly like CHAR2 of NAMER. (A
looseness of position for matching should be allowed, as
described in Uhr, 1973, chapters 4, 20.) TEST1l shows the
first concept formation characterizer, which acts exactly
like TEST1 in CONCEIVER.

A skeptic might argue that this program is a good
bit longer than NAMER, and therefore might be expected
to handle CONCEIVER's Jjob also. But all the additions
serve primarily to improve upon pattern recognition.
Thus statements 3 and 4 handle 2-dimensional patterns;
while 7, 9, 11 and 13 handle weighted configurational
characterizers~-and neither of these serves any purpose
for concept formation, which is l-dimensional and deter-
ministic.

Statement 12 gives multi-valued characterizers,
which serve to handle the yes versus no branches of a
concept former, as a very simple case. But they are also
of great value for pattern recognizers, in increasing the
power of their characterizers. And the no-branch could
be handled in a simpler, and more ad hoc way, by pulling
IMPLIEDS and NODO from the characterizer, and branching
to NODO on failure (much as was done in CONCEIVER, state-
ments 3 and 6).

Finally, statement 15 puts implied characterizers
onto LOOKFOR, and thus makes possible the discrimination
net. This is the one contribution from CONCEIVER (5.V).
But it is also the key feature of "flexibility" and,
in the context of a whole set of parallel characterizers
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on the LOOKFOR list, gives pattern recognizers a great
deal of new power, and flexibility, in focussing and

directing attention.

Pattern Recognition

For pattern recognition-naming, FLEXIBLE behaves
much like NAMER, except that it uses more powerful con-
figurational characterizers, with locations, weights and
bounds, it applies these to 2-dimensional inputs, and
characterizers can imply characterizers to apply as well
as names to MAYBE output.

Concept Formation

To handle concept formation, FLEXIBLE must start
with a new statement 5:

set LOOKFOR = 'TEST1 ' 5.V

to initialize LOOKFOR to contain only the single charac-
terizer, named 'TEST1'. And we must recode the Input

examples, to make them compatible with patterns.

Representing and Inputting the Concept. We do not

need the richness of a 2-dimensional input to handle a
concept, which can fit on a single Input card. Nor do

we need to specify the concept by giving the dimension
and the value each in its common name, like COLOR RED.
Since it is now inconvenient to do so, let's recode the
concepts, by assigning a positional number to each dimen-
sion, and a 1 to one of its values and a 0 to the other

of its values: e.g.,

Shape 1 Color 2 Size 3 Type Yy
triangle O red 0 big 0 solid 0
square 1 blue 1 small 1 outlined 1

Now we can replace the encoding for CONCEIVER:
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SHAPE SQUARE COLOR RED SIZE BIG TYPE OUTLINED ] by Il
1 1 2 0 3 0 4 1

Finally we can use the position in the string to

indicate the positional numbers, giving:
1001 ] I1.V

This is instructive also because it makes clear how
simple a concept is, in contrast to a pattern, with re-
spect to the number of bits needed to encode it--although
i1t should be remembered that it can be far more complex
with respect to the crucial importance of each Dbit.

Tests are Simple Characterizers. The structure of

the "tests" is now a very simple, almost degenerate, form
of the structure of pattern characterizers: the DESCRiption -
contains only one TEST part, with a WeighT of 1 ( WT = 1 ).
ALLIMPLIEDS contains a BOUND of 1, with its single IMPLIEDS
which is the no branch (NODO), as in:

TEST1 '17011 J1L TEST3 1 JO L TEST2 1 ]'

TEST?2 '1 101 J1 NYES 31 JO L TEST4 1 ]!
which are equivalent to TEST1 and TEST2 in CONCEIVER.
(E.g., TEST1 looks in ROW = 1, positioning through COLumn
= 0, for a 1 (the present encoding of SHAPE = SQUARE).
If found, the WeighT of 1 goes into TOTAL, which reaches
the first BOUND of 1, so that TEST3 is IMPLIEDS and its
TYPE = L puts 1t onto LOOKFOR.)

"Flexible" Pattern Recognition,

and Concept Formation

If we do not impoverish FLEXIBLE's characterizers,
to contain only one test in a description, with a weight
of 1, and one bound of 1 for the yes branch and a second
bound, of 0, for the no branch, we can get a great deal
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of power and flexibility. The complex configurational
characterizers of a pattern namer can be used, and each
can imply not only a whole set of MAYBE names, but also
a whole set of characterizers to LOOKFOR. (If this is
done with abandon, FLEXIBLE should be improved to merge
characterizers onto LOOKFOR, so that each is looked for
only once; weights could also be merged, and the most
highly implied characterizer looked for next.)

Concept formers can work deterministically only on
very small inputs. It has been suggested that they be
generalized and used for 2-dimensional patterns; but
this would be explosively expensive. We can see how
flexible techniques allow us to introduce parallel prob-
abilistic processing, as the input size expands, from
4 to 10 to 100 to 1000 bits.
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SUMMARY

The computer programs presented 1n this paper
should make clear exactly what a concept former, and a
pattern recognizer-namer, look like, and how they are
related. The third program generalizes the first two,
so that it both names and concelves. By adding what
I call "flexibility" to a recognizer, so that character-
izers can imply further characterizers to apply, and by
using multi-valued, rather than 2-valued characterizers,
we get a program that can also handle the concept former's
set of tests, organized into a discrimination net. These
tests become very simplified and stylized characterizers--
ones that make virtually no use of weights or threshold
bounds, specify configurations that contain only one
part (the test), and imply only two different things
(the yes and the no branch).

By using more of the riches avallable--configurations
of many pieces, with weights, any number of threshold
bounds, and any number of implieds, where these are
mixtures of possible output names and characterizers to
apply--such a "flexible" program can combine many of the
advantages of both parallel and serial systems, focussing
its attention on aspects of the input as a function of
what it has uncovered so far.
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APPENDIX

A Note on Programs (See Uhr, 1973a for details)

Numbering at the right identifies statements, and
allows for comparisons between programs. M indicates
initializing Memory statements: I indicates cards
that are Input by the program. .V indicates a
Variant, .1 an additional statement.

A program consists of a sequence of statements, an
end card, and any data cards for input. (Statements
that start with 1) a parenthesis are comments, and
are ignored; with 2) a plus continue the previous
statement.) Statement labels start at the left;
gotos are at the right, within brackets (+ means
branch on success; - on failure; otherwise 1t is an
unconditional branch).

Strings in capitals are programmer-defined. Strings
in underlined lower-case are system commands that
must be present (they would be keypunched in caps

to run the program). These include input, output,
erase, set, list, get, start, call, end, symbols,
that, and the inequalities. Other lower-case strings
merely serve to help make the program understandable;
they could be eliminated.

EASEy automatlcally treats a space following a string
as though it were a delimiter; it thus automatically
extracts a sequence of strings and treats them as
names. The end-bracket ] or semi-colon ; also act

as a delimiter, but the programmer must specify 1it.
The symbol # is used to stand for any delimiter (a
space, 3 , ] or #).

The symbol $stringl is used to indicate '"get the
contents of string I, and treat it as a name and get
its contents" (as in SNOBOL).

Pattern-matching statements work just like SNOBOL
statements: there are a) a name, b) a sequence of
objects to be found in the named string in the other
specified, c¢) the equal sign (meaning replace), and
d) a replacement sequence of objects (b, ¢, and/or d
can be absent). that stringl means "get that parti-
cular object'"--otherwise a new string is defined as
the contents of stringl, which is taken to be a
variable name.
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Functions are underlined, of the form: funct(...)

or FUNCT(...). E.g., size(...) is a built-in function
that counts the symbols in the string(s) named within
parentheses. CHOOSE(LISTA,CLASS) is a programmer-
coded function that chooses the most highly weighted
object on LISTA that is a member of the designated
CLASS.







