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Abstract

The main purpose of this work is to associate a wide class of
Lagrangian functions with a nonconvex, inequality and equality con~

strained optimization problem in such a way that unconstrained

stationary points of each Lagrangian are related to Kuhn-Tucker points
or local or global solutions of the optimization problem. As a con-
sequence of this we are able to obtain duality results and two com-
putational algorithms for solving the optimization problem. One
algorithm is a Newton algorithm which has a local. superlinear or
quadratic rate of convergence. The other method is a locally linearly
convergent method for finding stationary points of the Lagrangian and
is an extension of the method of multipliers of Hestenes and Powell

to ineqgualities.
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1. INTRODUCTION

In 1970 Rockafellar [21] introduced a Lagrangian for inequality

constrained convex programming problems for which an unconstrained

saddlepoint corresponded to a solution of the convex programming problem.
Moreover this Lagrangian was once differentiable everywhere if the
objective and constraint functions of the convex programming problem

were also differentiable everywhere. In 1971 Arrow, Gould and Howe

[1] considerad a general class of Lagrangians (including Rockafellar's)

for nonconvex programming problems and established local saddlepoint
properties for this class of Lagrangians. For their ‘class of Lagrangians
however, the saddlepoint was in general nonnegatively constrained just

as it is in the classical Kuhn-Tucker [11] Lagrangian for nonlinear
programming. The local saddlepoint property was obtained by the presence
of a convexifying parameter in their Lagrangian which made the Hessian

of the Lagrangian positive definite for large enough, but finite, values of
the parameter. This elegant idea of local convexification was first
introduced by Arrow and Solow in 1958 [2] in connection with equality
constrained problems and was later independently reconsidered in a
different algorithmic context by Hestenes [8,9] and Powell [19] in 1969
and by Haarhoff and Buys [7] in 1970. Miele, Moseley and Cragg

[14,15] have conducted numerical experiments on these ideas for equality
constrained problems. More recently Rockafellar [22] gave an illuminating
derivation of his Lagrangian for inequality constrained problems from the
Arrow~-Solow Lagrangian for equality constrained problems by the use of

slack variables.

A primary purpose of this work is to relate Kuhn-Tucker points of non-

convex, inequality and equality constrained nonlinear programming problems to



unconstrained stationary points of a wide class of Lagrangian functions.

Such a relation is important because it can bring to bear all the algo-
rithms and results of nonlinear equations theory [17, 18] on nonlinear
programming. As a consequence of this relationship we present in this
work local and global duality results (section 3), a new superlinearly

or quadratically convergent algorithm (algorithm 4.1 and theorem 4. 3),
and a linearly convergent extension to inequality constraints and to
more general Lagrangians of the method of multipliers (algorithm 4.4 and

theorem 4. 5).

The difference between our approach and that of Rockafellar [21,
22, 23] is that Rockafellar's results are valid only for convex problems,
whereas in our approach convexity plays only a minor role in some of
the peripheral results. In [24] Rockafellar extends the results for his
specific Lagrangian to nonconvex optimization éroblems and relates
global solutions of the optimization problem to global saddlepoints of
his Lagrangian. Our results are principally aimed at relating local
stationary points of the two problems and are established for a general
class of Lagrangians. Also Rockafellar's Lagrangian is differentiable
only once globally, whereas ours are twice differentiable globally. This
is an important distinction in the application of Newton type algorithms
which require twice differentiability. The difference between our approach
and that of Arrow, Gould and Howe [1] is that for their general result the
Lagrangian saddlepointis constrained by nonnegativity constraints where-
as the stationary points of our Lagrangians are completely unconstrained.
Their Lagrangians are not twice differentiable globally, whereas ours are.
Also, the conditions imposed on our Lagrangians are different from their
conditions. In addition we give a new general formulation for uncon-

strained Lagrangians together with new concrete realizations (section 5).

We shall be concerned throughout this paper with the following



problem
1.1 minimize f{(x)
subject to gi(x) =0 i=1,...,m
gi(x)r 0 i=mtl,...,k

where f:Rn - R, gi:R]r1 - R, i=l,...,k, and R]n is the n-dimensional

real Euclidean space. We shall associate with this problem a differentiable
Lagrangian function L:Rn e Rk — R in such a way that Kuhn~Tucker points
or local solutions ofl.1 are related to stationary points of L, that is

(::i,i}) € Rn X Rk satisfying
1.2 vlL(.S?:,g}) = 0 and vZL(;Z,'{r) = Q

where

’ . e r

0y ¥y

V.L(x,y) = %‘LX)‘

. r I )
1 °"aLB:;:LX)‘] Vo L(x,y) = [QLL‘“Z)‘X' cees oLl y)

n -

This is done in section 2 of the paper where, in addition, sufficient
conditions, different from those of [1}], for the n xn Hessian of L
with regpect to x to be positive definite are given. This result is
important in establishing the local duality results of section 3 and the
convergence of the algorithms of section 4. In section 3 we establish
duality results between problem 1.1 and an equality constrained dual
problem, problem 3.l. We establish a weak duality theorem 3.3 in the
presence of convexity, and a duality theorem 3.4 and a converse duality
theorem 3.6 in which convexity plays a secondary role. In particular
we relate, among other things, points satisfying Kuhn-Tucker conditions
and sccond order optimality conditions without any convexity assump-

tions. In section 4 we present two computational algorithms for the

l)l\ll vectors are either row or column vectors depending on the context.
A prime will denote the transpose and will be used only in denoting the
tensor product of two vectors or the transpose of a matrix.



solution of 1.1 based upon the solution of 1.2. Algorithm 4.1 is egssentially
a Newton method applied to 1.2 and for which we establish under suitable
conditions a superlinear or quadratic rate of convergence. Algorithm

4.4 is an extension of the method of multipliers [8,9,19,7] to inequalities
and for which we give a local linear convergence proof. TFinally in section 5
we discuss how to generate a wide class of Lagrangians for problem 1.1
such that unconstrained stationary points of the Lagrangians are related

to solutions of 1.1. We give a general formulation for such Lagrangians

in theorem 5.3 as well as specific formulations such as 2.10 and 5.21.

The appendix contains proofs of all the results of the paper.



2. EQUIVALENCE OF KUHN TUCKER POINTS AND
UNCONSTRAINED STATIONARY POINTS

A primary objective of this work is to relate, under the weakest
possible conditions, points that satisfy the Kuhn-Tucker conditions for
problem 1.1 to stationary points of an appropriately defined Lagrangian
L:Rn X Rk — R, For that purpose we begin by defining such a Lagrangian

as follows

m k

2.1 Lx,v)=fx)+ 2 Mo, .v) 2 o9, (x),y,)
. 1 1 . 1 1
i=1 i=m+l

2 2.
where MR —R and ¢:R - R. This general type of Lagrangian
formulation was studied by Arrow, Gould and Howe [1] from the point

of view of obtaining constrained local saddlepoints associated with 1.1.
We sghall begin by establishing the following equivalence theorem.

2.2 FEquivalence theorem Let f and gi, i=l,....,k, be differentiable

at x .

(a) 1If % is a local or global solution of 1.1 such that a constraint
qualification [11,12 pp. 171-173] is satisfied at x , orif x
and some u e Rk satisfy the Kuhn-Tucker conditions

k

VEE) + 3 u, Vg, (x) = 0
. i
i=l
u.g. (%) = ) < u =
uigi(.x) 0, gi(x) £ 0, u = 0, i=l,...,m
gi(;;) =0, i=m+l,...,k

- B o _ 3
where Vi(x) = {%%ﬁ PR ,%S{LJ and similarly for \7gi(x), then x

L1 n



and some ; € Rk form a stationary point of I as defined by 2.1,

that is

2.4 VlL(§,§) =0 and VZL(>—<,§) =0

provided that the functions A and ¢ of 2.1 are differentiable and

satisfy

(1) Kl(O,n) =, XZ(O,n) = 0 have a solution m foreach Bz 0
Kl(g,n) =0, kz(t‘i,n) = 0 have a solution 1 foreach £ < 0

i) cpl(O,n) =, cpz(o,n) = 0 have a solution. n for each W

where the notation A.l(g,n) and XZ(Q,T]) is defined by

NI %ﬁfgﬂ, ry (kM) = é‘%‘%m

(b) Conversely, if (;;:,5_/') e R" x Rk is a stationary point of L ,
that is (;;,§) gsatisfies 2.4, then % and U € Rk defined by

u, = Xl(gi(X),yi) i=1,...,m

CPl(gi(X),yi) i=m+l,...,k

i

satisfy the Kuhn-Tucker conditions 2.3, provided that the

XA and ¢ functions of 2.1 are differentiable and satisfy
(i) A (0,n) &0, A(E,0)=0 for &< 0

0 implies ¢ = 0 and £n =10

"

Ao (€M)
(ii') cpz(g,n) = 0 implies €= 0

If in addition f is convex or pseudoconvex at x , gi, i=1,...,m,

are convex or quasiconvex at x , and gi , i=m+l,..., k are



affine or simultaneously quasiconvex and quasiconcave at x , then

y

¥ is also a global solution of 1.1.
All proofs are given in the appendix.

It is convenient to establish now a result due tc Arrow-Gould-
Howe [1] under conditions different from those imposed by them on the
A and ¢ functions of 2.1. This result, which is the positive definite-
ness of the Hassian of L at (§,§) with respect to x , will play an
important role in deriving the local duality results of section 3 and

in the computational algorithms of gection 4.

2.5 Theorem (Positive-definiteness of VllL(i;,;)) Let the assumptions

of part a of theorem 2.2 hold and let in addition X and ¢ be twice

differentiable and satisfy

(iii) Kl(g,n) =0, £<0 imply that Kll(ég,n) =0

(iv) Xll(o,n) = xll(a,o,n) —~oo ag a— o for each fixed n for
which Kl(O,‘q) >0

(iv)  @,;(0,M) = @,(@,0,n) — = as a—e for each fixed 1 , for
which cpl(O,'q) #£0

Let f,gi,i:l, ...,k be twice differentiable at X , let sirict com~
plementarity hold with respect to inequality and equality constraints that
is

2.6 g;(x) = 0, i € {I,... .k} implies u, # 0

and let the second order sufficiency conditions [5, p. 30] for an

isolated local minimum of problem 1.1 hold at (;:,J) that is



2.7 xvllLO(;{,G)X > 0 for each x ¢ R, x# 0, such that \’/gi(;:)x = 0,

for all ie {i]g,(x) = 0,i=l,... k]
where

0 k
L{x,u) = I(x)+ 2 ug(x)
=1 17

N
co

0
is the standard Lagrangian and Vll}'., (x,u) denotes the n X n Hessian

matrix of LO with respect to its first argument x . Then, for suf-
ficiently large o , VllL(::i,;f), where L is defined by 2.1, is positive
definite and hence L(x,;r) has an isolated unconsgtrained local

minimum at x , that is L(;c&) < L(x,§) for all x is some open

2.9 Remark The sirict complementarity conditon 2.6 can be com-

neighborhood of x .

pletely eliminated or modified if we make corresponding changes in
conditions iv and iv' . In particular theorem 2.5 is still valid if
we

(@) Remove condition 2.6 and condition Kl(O,’ﬂ) > 0 from iv and

remove condition cpl((),n) # 0 from iv'
(b) Replace 2.6 by
g;(x) = 0,1i=(l,...,m) implies u, > 0
and remove condition cpl(O,n) # 0 from iv'
(c) Replace 2.6 by
g.(x)=0 i= {m+l,...,k} implies L_li Z 0

1

and remove condition Xl(o,n) > 0 from iv .



The significance of the results of this section lie in the fact that
under suitable conditions the solution of a nonlinear programming
problem can be reduced to the solution of a system of nonlinear equa-
tions: VlL(x,y) = 0 and VZL(x,y) = 0, In section 4 we ghall describe
two computational algorithms and establish quadratic or superlinear
convergence of one algorithm and linear convergence of the other.

In section 5 of this paper we shall show how to generate different
Lagrangians all of which have all the required properties derived in

this paper. Suffice it here to give suchatypical Lagrangian for problem

1.1. For ¢ e R, @ > 0 define

m k

1 4 4 1 2 2
2.10 Lix,y) = f(x) + 7= 2 ((eq,(x) +v,) -y, ) +55 2 ((eg;(x)+vy) -v, )
i=1 + ‘ i=m+l ‘
m k
1 4 4 a 2
= f{ oo T { - T X ey 3 £
£y + 4 2 (legylx) + yi)+ v 4+ 2 (G + v;9,(9)
i=1 i=m+l

where we have used the notation

4

4 Z if z2 0
(2), =
0 if z< 0
which is standard in spline function theory [ 6, 25]. (This

notation besides being extremely helpful in simplifying the expressions
for the Lagrangian I above in 2.10 and elsewhere in the paper, reveals
the close connection between the A and ¢ functions which go into
the constitution of L . See for example 2.10, and 5.4 and 5.5

below.)
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3. DUALITY

With the primal minimization problem 1.1 we shall associate,

through the Lagrangian L(x,y) defined by 2.1, the following dual

problem
3.1 maximize L(x,vy)
b 8%
subject to VL(x,y) =0 (L. defined by 2.1)

1
Under suitable conditions on the A and ¢ functions such as conditions
ii, ii' and conditions viii, viii' below, the primal problem 1.l can
be rewritten equivalently as

3.2 minimize L{x,vy)
X,y

subject to VZL(x,y) = 0 (L defined by 2.1)

Since we shall assume no convexity quite often in this section, the
standard techniques of deriving duality results such as the use of

minmax theorems [26,13,10,27] will not apply, nor will the elegant
conjugate function theory of Rockafellar [20] apply directly, however

see [24].

The results of this section consist of a weak duality theorem
3.3 (for which convexity is needed), a duality theorem 3.4 which
relates a solution of 1.1 to a Kuhn-Tucker point of the dual problem
3.1 and to a second order maximum of 3.1 under no convexity assump-
tions and finally to a global solution of 3.1 under convexity. The
converse duality theorem 3.6 similarly relates a local solution of the dual
problem 3.1 to a Kuhn-Tucker point of the primal problem 1.1 and to
a second order minimum under no convexity assumptions and finally

to a global solution of 1.1 under convexity.
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Probably the most important features of these duality theorems
are the absence of inequality constraints from the dual problem 3.1
and the relations between second order optima of the dual problems
obtained in theorems 3.4b and 3.6b without any convexity assumptions
at all. Related local duality results for a specific L have also been

given by Buys [3].

3.3 Weak duality Let ?{ be a feasible point of the primal problem
1.1, that is gi(./*;:) = 0, i:i,. R I gi(;) = 0, i=m+l, ...,k and let
(x,v) be feasible point of the dual problem 3.1, that is VlL(x,y) =0,
let f, gi, i=1,...,m, be differentiable and convex on R?, gi,
i=m+l, ..., k, be affine functions, and let the A and o functions
entering the definition 2.1 of L be differentiab_le functions on R2

satisfying
(V) xl(éln) z 0 and >Vl(glﬂ)g' ps (5,:7]) z 0 forall gl

(v) o€, mME-o(E,m) = 0 forall €,

Then

(%) = Lix,v). [

We observe that the second inequality of v and v' are
both gatisfied if A and ¢ are convex in € for each fixed 7 and

2(0,n) £ 0 and ¢(0,n) £ 0 forall n .

3.4 Duality theorem Let f and gi,i*—‘l, ..., k, be differentiable

at x .

(8) Let % be a local or global solution of the primal problem
1.1 such that a constraint qualification [12, pp. 171-173] is satisfied

— P — k L
at x , or let x and some u € R satisfy the Kuhn-Tucker conditions
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2.3. Let A and ¢ be differentiable functions satisfying condition
i and i'. Then x and ye Rk determined by solving the system
A.0 (given in the appendix) satisfy the Kuhn-Tucker conditions of the

dual problem 3.1

VZL(x,y) + VVIZL(X,Y) = 0

5 LT (o ) 4 - o) =
3.5 VlL(x,y) 1 vVllL(x, )= 0
A L{x,y) = 0

with v = 0,

(b) Let x be a local or global solution of the primal problem
1.1 such that a constraint qualification [12, pp.-171-173] is satisfied
at x , or let % and some U € Rk satisfy the Kuhn-Tucker conditions
2.3 of problem 1.1. Let the assumptions of theorem 2.5 hold, let
Vg (x), i €I U (m#l,...,k}, where I= (i/9,(x) = 0, i=l,...,m},
be linearly independent, and let the X and ¢ functions of 2.1

be twice continuously differentiable and satisfy in addition
(vi) A (€M) =0 =>2,,(€,m)=0
(vi') @, (€,n) =0 =D ¢,,(§,n)=0

o s ¢
(vif) 2,(0,m) > O ===> K]‘Z(O.TI) # 0

(vit') (0, m) # 0 => Py,(0,m) # 0

Then, for sufficiently large « («¢ enters 1, through the conditions
iv and iv'") % and ;r € Rk (determined by solving the system A.0Q
in the appendix) form an isolated local maximum of the dual problem
3.1 subject to the additional constfaints that y, = 0,

ief=(1 ]gi(;:) < 0,i=l,...,m}. Thatis there exists an open
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neighborhood of (;c:,i;) in Rn X Rk such that LA(;:,;) > Lx,vy)
for all {(x,vy) € R" % Rk such that VlL(x,y) = 0 and y, = 0,1€e7.

(c) If in addition to the assumptions of part a,f, gi,ir:l, vee M
are differentiable and convex on Rn and gi,izm—‘.vl, ..., k, are

affine and if A and ¢ an differentiable on RZ' and satisfy conditions

v and v' and

(viii) )x.z(:f_i,n) = 0 implies A(E,n) =0

(viii') ¢, (&,n) = 0 implies o(€,n) =0
4

then (;£,§) solves the dual problem 3.1 and the extrema f(.;;) and

L(E&,i;) are equal.

3.6 Converse duality thebrem Let (52,37) be a local or global

- e wm - 1~
solution of the dual problem 3.1 or let (x,y,vo,v) € Rn X R”x RX Rn
satisfy the Fritz John conditions A.l4 (given in the appendix) for the
dual problem 3.1 and let f,gi,i=l, ...,k be twice continuously

differentiable at x .

a) If the nX n matrix V L(}Z,;) is nonsingular then %

_ K 11
and u € R~ where

wo= Mg, y) 1=1,...,m
3.7 '

= oy(g,(x),y;) 1

i

m+l,...,k

J

satisfy the Kuhn-Tucker conditions 2.3 for the primal problem 1.1
provided that A and ¢ are differentiable and satisfy conditions

ii and ii'
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by In addition to the assumptions of part a above, let
vllL(:?c,i}) be positive definitel) , let xl(gi&),{fi) > 0,
iel= {i/gi(x) = 0,i=1l,...,m} and let condition iii hold. Then
% and u e Rk determined from 3.7 satisfy the second order sufficient

optimality conditions for the primal problem 1.1.

c¢) If in addition to the assumptions of part a above, f is
convex or pseudoconvex at x , and gi,i:‘l ;e ,M, are convex
or quasiconvex at x , and gj ,i=m+l, ...,k are affine or simultaneously

quasiconvex and quasiconcave at x , then x is a global solution

of the primal problem 3.1.

1)

This implies that L(}?&*) is an isolated local maximum of L(x, y)
subject to V,L(x,y) = 0 and v, - §i =0,ie]= {1[gi(5€) <0,i=l,...,m)
provided that conditions wvii and vii' are also satisfied and

Vgi(i) i€l U {m+tl,..., k} are linearly independent. (See proof

of theorem 3.4b in appendix.)
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4, COMPUTATIONAL ALGORITHMS

We shall present in this section two algorithms for the solution
of problem 1.1 which are based on reducing the problem 1.1 to that
of finding solutions of the n + k nonlinear equations VlL(x,y) =
and VZL(X, y) = 0. The first algorithm 4.1 is a Newton algorithm for
which we establish, under suitable conditions, local superlinear
or quadratic convergence rates. The second method is an extension
of the method of multipliers investigated by Arrow-Solow [2].
Hestenes [8,9] Powell [19] Haarhoff and Buys [7] and Miele,
Moseley and Cragg [14,15] for the case of equality constraints.
Our extension is to inequality constraints and to a general Lagrangian.
We establish linear convergence for the algorithm and indicate under
what sort of conditions we may expect fast or slow convergence of
the method. In [3] Buys gives, for a specific Lagrangian, a dual
algorithm which is related to our stationary point problem 1.2. One
specific implementation of his algorithm, for equality constraints only,
turns out to be the method of multipliers [8,9] and for which he
establishes local convergence. For inequalities however, a particular
case of his algorithm gives a special case of our algorithm 4.4 .
He does not however establish convergence nor a rate of convergence

for that algorithm.

4.1 Newton algorithm for the solution of 1.1  Choose & > 0 and

(xo,yo) € Rn X R‘k. Determine (XH']',yH'l) from (xJ,yJ) as follows
a) Define
i k
L(x,y) =)+ 2 Mo (x),y)+ 2 ¢lg;(x)y,)

fe1(xd)) Y i=mtl
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where
Jy = s j .
I(x") = {1[gi(x )z ~g,i=l, ..., m}
2
and A and ¢ are functions on R satisfying conditions stated

in theorem 4.3 below.

b) set ¥ =0 for ieg(d) = {ilgi(xj) < -g,i=l,...,m)}

Ay _
ox,

1

¢) Linearize the equations Jd=1,...,1n, and

\ o : .
Q“L"'é(%m =0, 1ic¢ I(xj) U {m+l,...,k} around the point (x],yj)

and solve for .XJ+1 and ;;H , ie I(xj) U {m+l,..., k} thatis

- b, 0 ] j j I j j 7
VHL (x,v) Klz(gi(x ),yi )Vgi(x ) @lz(gi(x ),yi )Vgi(x )
ie I(x)) ie {mtl, ... k)
4.2 X, (9, 0), 7.0 Wg (xj) 0 0 .
rARES RS TS B
ie 1(3)
?,,(g (XJ) Yj)Vg (XJ) 0 0
21Y71 ] i
L ie {m#l,....,k] -
= i+l i - T -
I L rVl’f.:(:xij,yJ)
/\'-{-1 + s .
e yi 5]”..§x] [y_]j
. Jvy
° . . + 3 = O
i€ I(x) i I(x)
~J+l i
Yi SL.{X V)
ayi
B {m+l,...,k}] Lie (’erl""'k}_J
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d) Set
0 if gi(xjH) < =g and i=l,...,m
yij.l—l = -—w—-—/};’iﬂ' if gi(xjH) z - ‘and i=l,...,m
}i“'l if i=mtl, ...,k

The following practical additons to the above algorithm were
made in an effort to globalize convergence. The purpose of these
additions is to maintain nonsingularity of the matrix of 4.2 and they

do not affect the convergence theorem 4. 3:

If the cardinality k of I(}{J) U {m+l,...,k} exceeds n
and k-m <n then replace I(XJ) and I(X,J) in steps a,b and c

above by I'(XJ) and I'(XJ) where

vy = - . Jy <o ) < < i
I'(x) = lk~n+l’lk~n+2’”"1m gi (.:\.)zgi (x)=s ... = gi (x)]
1 2 m ,
1z:l{ lm l’f
Vsdy = : Jy < Jy < < j
JH(x") Lodyrewendy 1 g x)=g )S..0 59 (X)
1 2 m

i, =]1,.,..,m

J j - . j . j j _
If Xlz(gi(,{),yi) 0 for some i ¢ I(x’) orif q,)lz(gi(x),yi) 0

for some i€ {m+l,...,k}, then replace these zeros by ones in step

¢ above.
A"'{‘l '+1
It y], = 0 and gi(xJ ) z—¢ forsome ie {1,...,m},
j 41
set y; = 1 in step d above,

4.3 Local convergence and rate of convergence of the Newton

algorithm 4.1. Let x ¢ R” and some U e Rk satisfy the Kuhn-Tucker
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conditions 2.3 for problem 1.1. Let f and gi,i=l, ..., k, be

twice differentiable at each point of an open neighborhood of X

and let the X and o functions defining L in 2.1 be twice
continuously differentiable on R2 . Let sz and Vzgi,i:‘l, A
be continuous at x , let the assumptions of theorem 2.5 above
hold and let A and ¢ satisfy in addition conditions vi, vi', vii,
vii'. Let the vectors Vgi(;c), iel U {mtl,..., k} Dbe linearly
independent, where I= {1 lgi(;{) = 0, i=l,...,m}. Then for large
enoucgh but finite @ (¢ entering L through conditions iv and iv')
there exists an & > 0 and an open neighborhood N(,gé,g;) of (:»—c,i;)
in R" x Rk' (where y is obtained from (,‘Z,G) by solving the
system A.0) such that for every (xo,yo) in N(§,§), the Newton
algorithms iterates of 4.1 are well defined and converge to (:>_<,§)

and

lim szH -zl _ 0

j - F (superlinear convergence)
[z - z]] .

where z = (x,vy). Moreover, if f,gi,izl, ..., k, are three times
differentiable on N(;c,;r) and X and ¢ are three times differentiable

2
on R, then there is a constant ¢ such that

sz+l ~zl|| = ¢ Izj -z HZ (quadratic convergence)

for all j = jO where j() depends on zO

We remark that any positive number & > 0 satisfying the
condition A.19 of the appendix and starting with any (xo,yo) € N(;c,i;)
as defined by A.24 will generate a sequence [x‘j,yj} which will
converge to (;i,i;). However on small test problems both conditions

were violated and convergence was still obtained.
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We present now a second method which is an extension to
inequality constraints and to more general Lagrangians of the method
of multipliers. Originally this method was proposed for equality
constraints by Arrow and Solow [2] by using differential equations to
determine a small stepsize algorithm. Later and independently of
Arrow and Solow and of each other Hestenes [8,9], Powell [19] and
Haarhoff and Buys [7] used a similar Lagrangian approach for equality
constraints and proposed a large stepsize method. Miele, Moseley and
Cragg [14,15] made numerical tests of the algorithm and variants of
it. More recently Buys [3] and Wierzbicki [28] considered extensions
to inequality constraints. Buys suggested a dual problem approach
for a specific Lagrangian function but did not gi\}e any convergence

rates. Wierzbicki considers another specific bt_lt different Lagrangian.

4.4 Method of Lagrange multipliers Choose ¢ > 0, B> 0. Start

with (XO,yo) € er1 X Rk guch that yio = 0 for gi(xo) < -g,

ie {l,...,m} . Determine (X‘Hl,y']ﬂ) from (x],y'}) as follows:
. , - i .
(@) y.JJrl = y.J + B OLG,y) ,ieI(xJ) U {mtl, ... k}
i i Byi
o ps J .
I(x') = {1|gi(x) z -g,i=l,...,m}
yiJ+l =0 ie () = {ilgi(xj) < -g,i=l,...,m}

(b} Determine .xJH such that
i+l g+l j+1
L,y a

)y = minimum L(x,y
x e R

or
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4.5 Local Convergence of the method of Lagrange multipliers

Let x ¢ R” and some U € Rk satisfy the Kuhn—-Tucker conditions

2.3 of problem 1.1. Let f,gi,i=l, ...,k be twice continuously
differentiable at each point of an open neighborhood of x and let

the X and ¢ functions defining L in 2.1 be twice continuously
differentiable on RZ . Let the assumptions of theorem 2.5 above
hold and let A and ¢ satisfy the conditions wvi, vi', vii and vii'.
Let the vectors ‘Vgi(}?.), ielU {m#+l,...,k} be linearly independent
where I = {i ]g’i(;{) = 0,i=],...,m}. Then for e large enough but
finite (¢ entering L through conditions iv and iv') there exists
an £ > 0 and an open neighborhood ﬁ(}?,{/) of (>—<,§) in R" X Rk
(where ;7 is obtained from (;:,1;) by solving the system A.O0)
such that for any (xo,yo) in ﬁ(§,§) the itera‘;es {xj,yj} of the
method of Lagrange multipliers 4.4 are well defined and converge

linearly to (%X,¥) for B € (0,B) for some B> 0.

4.6 Remark about size of P 1f we let XE E 7\1 > 0 denote

respectively the largest and smallest eigenvalues of the k x k

matrix
- - - - | - e
where

y = [yieK,g?ieI], K= {ilg;(®),i=1,...,m] U {ml, ... Kk},

J= {ilgj(;i) < 0,i=l,...,m} , k is the cardinality of K,

leL(X’yK'y]“) is the k X n Jacobian with respect to x of

the gradient with respect to y, of L :V,L(x,y,,y,), and
K 2 K

]



\Y/

L(x,v,,v.) is the n X k Jacobian with respect to vy, of the
12 K7 K

gradient with respect to x of L: VL(X,yK,y .}, then

1 J
o< s> =Bz 5P
1 k
where
0 2 /(14
& e (0, /(uxk/xl))
"
Thus the condition number "\'l of the matrix 4.7 plays a crucial role
"1

in determining the size of E . The larger the condition number of the

matrix 4.7 the smaller ig the size of f.’» and the slower is the

convergence., We also note from expression A.ll that if kK =n
and Vgi(ﬁ), i € K, are linearly independent, then the condition
number of VllL(:;,;') remains finite as ¢ (iniv and iv') tends to o,

A

-

and hence the condition number i"‘ of the matrix 4.7 remains finite
1
1 -
as o —~ ®, ) However in the more general case of k < n and
Vgi(i:’) , i € K, are linearly independent, then again by A.ll the

A

condition number of VllL(;:,g;) and hence 5\-’5* also approaches
1

© as a-—+oo ., Therefore for this latter case slow convergence may

be encountered as @ is increased. In both cases slow convergence

l)For this special case where the solution lies on a "vertex", the
intersection of n inequality and equality constraints whose gradients
there are linearly independent, making o arbitrarily large should
not, by the above analysis, slow convergence. It is assumed through-
out remark 4.6 that xll(o&i), iel and cpu(o,§i>, i=m+l,...,k, tend

to o at the same rate.
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may be encountered with small values of o for which vHL(SE&) may be
almost singular and hence the condition number of 4.7 may be large. Numer-
ical results of Miele, Moseley and Cragg [14, Table 2, Examples 6.2

and 6.3] where a = f (k in their notation), slow convergence occurred
for both small and large values of a. Fastest convergence occurred for

intermediate values of . This agrees with our analysis above.
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5. GENERATION OF UNCONSTRAINED TAGRANGIANS

The purpose of this section is to give simple sufficient conditions
for the X and ¢ functions entering into the definition 2. 1 of L in
order that conditions i to viii for the A functions and conditions

]

i" to wviii' for the ¢ functions are satisfied. Although the form of

Rockafeller's A function [21,22]

%{;’z + €N if at+ns=so0
5.1 A(E,M) = )
- & . .
™ it aé+n =0

1)y .
is not obviously related to the ¢ function of Arrow-Solow ) (2]
a
5.2 PEm) = 6%+ ¢n

we will show how they and other functions can be very simply
generated from a single differentiable function ¥ :R—R. In particular
we give the following sufficient conditions for the satisfaction of all

the conditions i to viii and i' to wviii'.

5.3 Theorem (Generation of A and ¢ functions for the Lagrangian
L of 2.1) Let y:R— R be a differentiable function on R. Let a e R
be a parameter and define the functions X :R%— R and @: RZ-+R as

follows

1

)In [22] Rockafellar derives his specific A function from a o)
function by replacing inequalities with equalities containing slack
variables. This is not the approach used here.
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5.4 AMEM) = Plat + n)+ - Pm) , (E,n) e RXR
5.5 O(E,N) = Y(aE+ M) -~ wn) , (6,1 e RXR
where
/W:) if {20
W), =

+
\2//(0) it £ <0

WF
Consider the following assumptions on %'(f) = 51_}_(_{3_1

dg
a) P' is a strictly increasing function on ‘R, such that
z//'((_j)+ maps [0,o) onto itself and %'(0) = 0.
b) Yy is convex and nonnegative on R and ¢(0) = 0

c) P is twice differentiable on R, y"(£)> 0 for ¢ >0
and y"(0) =0

a') P' is a strictly increasing function mapping R onto R
b') ¢ is convexon R

c') ¢ istwice differentiable on R and y"(£)> 0 for { #O.

Then for o > 0:

(a) == (i), (i1) & (viii)
(@) & (b) = (v)

(@) & (c) == (iii), (1v), (vi) and (vii)

and for a £ 0:
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(a')y => (1", (") & (viii")
(@) & (b") = (v

(@%) & (¢') = (iv"), (vi') and (vii") 3

Examples of 3 functions that satisfy all the conditions a, b, c,

a', b'and c¢' of theorem 5.3 are the following:

5.6 W) = ot s aeR, a>0, t=eveninteger = 4
EZ
5.7 W) = cosh - -f2~—— -1
i 2
5.8 P(L) = ‘i(cosh £ ~-1)

Hence the following X and ¢ functions satisfy all the conditions

i to viii and i' to wviii' of this paper.

5.9 AE,M) = &1{ ((a€ + ﬂ)i_ - nt), ae R, a>0, t=even integer z 4
(A€ + 2 2
5.10 A(E,m) = cosh (a€ + n)}‘ - __é___j.)__:l; ~ cosh n 4—32-‘
’ 2
5.11 AE,M) = %(cosh (aé + n)+ - 1)2 - % (cosh n - 1)2
. 1 . t t -
5.12 ©(E,mn) :ajg ((at+mn) -n), aeR, a>0, t=even integer = 4
(aé{,—l-n)z 2
5.13 9(€,M) = cosh (@€ + n) = ===~ - cosh -I'D~Z——
, 1 . 2 1 2
5.14 ¢E,m) = 5 (cosh (aé 4+ 1n) - 1) ey (coshn =~ 1)

Examples of ¥ functions that satisfy all the conditions a, b,

c, a', b' and c¢' of theorem 5.3 except the condition p"(0) = 0, are
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S TS
5.15 YLy = o (set t=2 in 5.6)
5.16 P(L) = cosh € -1

Hence the following A functions satisfy conditions i, ii, v, viii,
but not the remaining conditions iii, iv, vi and vii because

¢(§)+ is not twice differentiable at £ =0

. 1 2 _ 2
5.17 AME,M) = 2 ((a&»l—ﬂ)+ n)
5.18 ME,M) = cosh (aé + ﬂ)+ - cosh n

We note that if strict complementarity is assumed, then for a neighbor-
hood of a stationary point (x,y), ag, (x) + v, #Z 0 and hence the X\
functions of 5.17 and 5.18 can bhe differentiated twice in that neighbor-

hood and conditions iii, iv, vi and vii  hold because a¢+n £ 0.

The following ¢ functions, derived from 5.5, 5.15 and 5.16

satisfy all the conditions i' to wviii' of theorem 5.3

5.19 (€, M) :*2*1& ((a€+n)2~n2)
5.20 ¢(é,n) = cosh (@€ +n) - cosh

We observe that the ¢ function 5.19 is that of Arrow-Solow [2]
which was also studied by Arrow, Could and Howe [1, function M5].
The A function of 5.17 is that of Rockafellar [21,22] which was also
studied by Arrow, Gould and Howe [1, function M4]. Rockafellar's
results are for convex problems and those of Arrow, Gould and Howe

are for sign restricted Lagrangians, that is yi =z 0 for gi(x) = 0. Our
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principal results make neither of these assumptions. The functions
5.9to 5.14, 5.18 and 5. 20 define new unconstrained Lagrangians for

not-necessarily convex problems,

We also note that the X function of 5.9 is (t - 1) times differ-
entiable everywhere and the )\ functions of 5.10 and 5.11 are twice
differentiable everywhere. This is in contrast with the penalty
Lagrangian of Rockafellar [21,22] which is based on 5.17 which is only
once differentiable everywhere but twice differentiable only in a neighbor-
hood of the solution provided that strict complementarity is assumed.

This (t - 1)-times differentiability property makes the case t = 4 for

5.9 particularly attractive since the quadratic convergence of the
Newton method 4.3 requires that the Lagrangian I be three times
differentiable. In any case, the most attractive }Jnconstrained Lagrangian
to work with is that generated from 5.9 with t = 4 and from 5.19. In
particular we have for our original problem 1.1 the Lagrangian 2.10
which satisfies all the conditions i to viii and i' to viii' of this
paper and hence can be used for all the results given. Another such
Lagrangian is the following which is based on 5.11 and 5.20:

m 2 2
% ((cosh(agi(X) + yi)+- )™ =(cosh Y, -1)7)

1

5.21 L{x,y) = £(x) +

INSRE

1

k

+ 3% (cosh(ag,(x) +vy,) - coshy,)
\ 1 1 1
i=m+l
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APPENDIX

Proof of Theorem 2.2

(a) Since a constraint qualification is satisfied al x when
x is a local or global minimum of 1.1, the Kuhn~Tucker conditions

2.3 must be satisfied. TFor any two A and ¢ functions defined on

RZ that satisfy conditions i and i' of the theorem define § € Rk

as a solution of

2(0,7) =, 2,(0,y) =0 for ie{ifg()=0,i=1,...,m)

A.0 n(,00,y,) =0, A (g,00,y,) =0 for ie {i]g(x)< 0, i=1,...,m)

171 i 2
=1

j

cpl(O,yi) 4 cpZ(O,yi) =0 for ie {m#l,...,k]}

Conditions i and i' insure the existence of such Vi i=1,...,k.

The Kuhn-Tucker conditions 2.3 and the above relations give

m
A.l VIL(X,Y) =Vi(x) + 3 Xl(gi(\X),y.)Vg.(X)
i:l 1 1
‘r' 2 @l(g (X),yi)Vgl(X) =0
i=m+l
A.2 2L %,%) =2, (9,%),7,) = 0 -1
ayi le - Zgixlyl)"’ 1 l-—— 1 ,m
A.3 @—L(i")—c((i)")—o i = m+l k
. ay. ly - Pzgi [yi - ? 1= FECEC

1

(b) Conversely now, let (.Q,;/) satisfy conditions A.l to

A.3 above, and let conditions ii and ii' hold. Define
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Condition A.]l becomes then

k
A.5 Vix) + 3 u,Vg,(x) =0
i:l 1 1

The first condition of ii and A.4 give
A.6 u, 20, ie{ijg)=0, i=1,...,m)

and the third condition of ii and A.2 give

A.8 v. g, (x)=0 i=1,...,m

Condition A.4, condition A.8 and the second condition of ii imply

that

A.9 Uy = Mg, y,) = 2(9,(x),0) = 0 for ie {ifg(x)<0, i=1,...,m]

Finally from A.3 and ii' we have that

A.10 g,(x) =0 i=mil,... kK

Conditions A.5, A.6, A.9, A.7 and A.l0 are equivalent to the Kuhn-
Tucker conditions 2.3. The last part of the theorem follows from the

sufficiency theorem of the Kuhn-Tucker conditions [12, theorem 11.1.2,
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Proof of Theorem 2.5

The proof follows closely that of [1] even though our conditions
are different from those of [1]. Let x be a local or global solution
of 1.1 satisfying a constraint qualification or let (;:,G) be a Kuhn=-
Tucker point of 1.1. Let sz denote the nxn Hessian of f with
respect to x, let Lo(x,,u) denote the standard Lagrangian as defined
in 2.8, let I= {i]gi(:;.) =0, i=1,...,m} and let a prime denote
the transpose. Then by the proof of theorem 2.2, ;i, and some ;7 € Rk
determined by solving the system A.0 form a stationary point of L,

that is VlL(;i,i;) = 0 and VZL(‘;’;’) = 0, where L is defined by 2.1.

We also have tha’c1
- 2 - m - — - -y -
vllL(x,y) =V H(x) + f:-l (Xl(gl( x), Y W g( )+>»ll( 1( ),yvi)VgJ.L(-X) Vgi(X))
k -
bR (0y(0,(0,577, (9 +9)(0,(R), ¥, ()" Vg, ()
. l 1 ll
1:m+1
0~ - k .
= V. L'(x,u) + £ A,,(0, Y)Vg( ) Vg, (%) + 3 0,,(0, y)7g( x) Vg, ()
11 , 11 i 11 i
iel i=m+l
(by iii)
Hence for any real number 7y
- - 0 - - -t — k
A1l VL y) = [V Lo u) + y(2 Ve (x) Ve (x) + 2 Vg( )Vg( x)) ]
iel ‘ i=m+l
- k —
+ 2 Oqy(0,y) = )Vg( ) Vg, (X) + 3 (94,(0,¥,)= )Vg( ) Vg, (x x) ]
' - . 1
iel i=m+l

By Debreu's theorem [4, theorem 3] which states that

L +yYyM'M is positive
A. 12 A0, Mxx = 0 => xLx> 0 ) <=>
definite for -~y sufficiently

large

1
The expression “\7ql( <) Vgl( ) denotes the nxn tensor product of the
nx1l vector Vg, (x (x)' by'the 1% n vector Vg;(X).
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and by 2.7 it follows that the term in the first square bracket in A.11
is positive definite for v large enough, and since Vgi(x)"Vgi(x) is
a positive semidefinite matrix it follows by iv, iv' and 2.6 that the
terms in the second square bracket in A.ll are positive semidefinite
for a large enough. Hence "\711L(;<,§) is positive definite for o

large enough. Hence [5] L(x,y) has an isolated unconstrained local

minimum at x. [4

Proof of Remark 2.9

The validity of remark 2.9 follows from the following observa-

tions. When 2.6 holds then

= A > i
ui )xl(O,yi) 0 iel

1

0(0,5) A0 i=ml,... K

then by iv and iv', xn(o&i) —w,iel, cpll(o,§i)~»oo, i=m+l,....,k,
and hence the expression in the second square bracket of A.11 is

positive semidefinite. When 2.6 does not hold, then

c
il

Xl(O,yi) 0 iel

v

i

¢ (0,v)) i=mtl, ...,k

but again since both iv and iv' have been strengthened now by

deletion of the conditions xl(O,n) > 0 and cpl(O,n) # 0 respectively,
it again follows that )xll((),yi)—*r o, 1el and cpll(O,yi)-+-oo, i=m+l,
...k, and hence the expression in the second square bracket of A.11

is positive semidefinite. The case 2.9b corresponds to
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fost
i

= .
Xl(O,yi) 0, iel

= cpl(O,yi) . i=m+1,...,k

and the case 2.9c corresponds to

ui = )xl(O,yi) 2 0, iel

i

m+41l,...,k

it

,(0,v,) £0, i

and again because in the first case iv' is strengthened and in the
second case iv is strengthened, it again follows that x”(o,i?i)-w» 0o,
iel, and @11(0,§i)~> ©,i=m+1,...,k, and hence the expression

in the second square bracket of A.ll is positive semidefinite. 7

Proof of Theorem 3.3

BX) 2 f(x) + VE(x) (X - x) (by convexity of f)
k
m
= I(x) - .Z Xl(gi(X),yi)Vgi(X)(x-X) - Z @l(gi(X),yi)Vgi(X)(X—X)
i=] i=m+l
(by dual feasibility of (x,y))
m N k R
z f(x) + Z Xl(gi(X),yi)(gi(X) —gi(X)) t s @1(gi(><),yi)(gi(><) —-gi(X))
i=1 iz=m+l
(by convexity of gi, i=1,...,m, first inequality
of v and affineness of gi, i=m+1,...,k)
m k
= f(x) + .Z xl(gi(X),yi) gi(X) t 5 cpl(gi(X),yi) g_i(X)
i=] i=m+l
(by primal feasibility of % and first inequality of v)
m k
z I(x) + 2 Mo (x),y) + 2 qv(g.(X),yi)
i=1 ' i=m-l |

(by second inequality of v and v')

n
=
b
=
A
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Proof of Theorem 3.4

(a) By theorem 2.2a x and some ;/ € Rk satisfy VlL(;i,;) =0
and VZL(:Z,?) = 0. These are the Kuhn-Tucker conditions 3.5 for the

dual problem 3.1 with v = 0.

(b) By part (a) of this theorem, (%,¥) satisfies the Kuhn-Tucker
conditions 3.5 for the dual problem 3.1 with v = 0. To show that (X,¥)
is an isolated local maximum of 3.1 with the added constraints yi = 0,
iels= {1[ gi(;{) <0,i=1,...,m) we need to show that the second order
sufficiency conditions [5] are satisfied at (¥,y). That is for (x,y)# 0,

XeR“,yeRk,yi:O,ieI.

( \7 L(x v) v'lzL(i,y) [ %
A.13 (VllL(i":,ii) Vl L(X,9)) — L <0
\ L(x,Y) VZZL(i,i?) y

From the left side above we have that

x VllL(x,y)x + XVIZL(X,Y)Y =0

and hence the right side of the above implication becomes since

V., LXK, y) =V

12 L(X,v)', and since by assumptions vi and vi', VZZL(EZ,S?) = 0:

21

= XN, L{xX,y)x+ 2y L(X,y)x
T 11 21
‘VZIL(x, Y)

= -'lelL(S%,;/)X <0 for x£Z0

where the last inequality follows from the positive definiteness of

\Y

llL(;:,§) which is established in Theorem 2.5 for large enough «. We
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have thus established implication A.13 for the case x £ 0. Suppose
now x = 0, then the left hand side of implication A.13 gives that
— - — k - - -

0= 'Z yiklz(gi(X),yi)vgi(x) oz iyimlz(gi(X),yi)vgi(X)

1el I=m+4l
-~ - k — —
\ N i [s

=z ¥ 2,(0,v)) 7gfi(><) S Py,(0.y,)779, ()
iel i=m+l

I

But by assumptions vii and vii', X12(0,§i) A0, iel and q)lZ(O,;i) A0,
i=m+1,...,k. Hence by the linear independence assumption of T7gi(5i),
ielu {m+l,...,k}, it follows that y; = 0, ie TU {m+l,...,k}, and

since vy, = 0, i ¢ J, the implication A.13 1is vacuously satisfied.

(c) By part a of this theorem x and ¥y e Rk' determined by
solving A. 0 satisfy 3.5 with v = 0. Hence VlL(S%,?) =0 and (¥%,¥) isa
feasible point of the dual problem 3.1. For any dual feasible point (x,vy),
we have by the weak duality theorem that f£(x) = L(x,y). But by assumptions

viii and viii', L(X,¥) = £(X). Hence L(%,9) 2 L(x,vy).

Proof of Theorem 3.6

(a) Since (X,y) is a solution of the dual problem 3.1, (X,¥) and

some (30,5) e Rx Rn satisfy the following Fritz John conditions [12, p. 170]

0 V1
V. V. LEZ, )+ v, L(%,¥) = 0
A 14 072 12_ '
VlL(X,Y) =0
(v, v) £ 0
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From the first and third equations and the nonsingularity of VllL(SE V)
it follows that v = 0 and hence {;0 Z0. So VlL(;c,&) = 0 and
VZL(x,y) = 0. Hence by theorem 2.2b x and u defined by 3.7
satisfy the Kuhn-Tucker conditions 2.3 for the primal problem 1.1.

(b) By part a above, X and u determined by 3.7 satisfy
the Kuhn-Tucker conditions 2.3 of the primal problem 1.1. Now if we
let Lo(x,u) denote the standard Lagrangian defined by 2.8 and

I= {i{gi(.i) =0,i=1,...,m}, then by the equation preceding A. 1]

, el 0- - - -t =
A.15 VML(x,y) = \’/‘llL (xx,u) + EI XM(O,Yi)Vgi(X) Jgi(X)
k Lo |

i=m+1

Since ‘“,711L(§,§) is positive definite by assumption it follows that

A.16 <x;! 0, Vgi(;{)x. =0,ielU {mtl,... ,k}> => X/ LO(Q,G)X> 0
for if not, then for some % Z 0, Vgi(x);c =0,iel U {m+l,...,k},

;7:711140(52,,6)% < 0 which by A.15 gives % V. L(%,5)% = 0 which

11

contradicts the positive definiteness of 'VHL(EE:,?). Condition A. 16
is the second order sufficient optimality condition for the primal problem

1.1 because we have assumed that for i ¢ I, ﬁi = 7\1(0,5'11) > 0 which
implies strict complementarity with respect to the inequality constraints

g;(x) 20, i= 1,...,m[5].
(c) This part follows from the sufficiency theorem of the Kuhn-

g

We shall need the following lemma in the convergence proof of

Tucker conditions [12, theorem 11.1.2, p. 162].

the Newton method 4.1 and the method of multipliers 4. 4.



A.17 Lemma  Let I= (i{gi(S&) =0,i=1,...,m}, J= {i|gi(.§) <1l,...,m},
let TUJT#Z4, let NO(;{) be any open neighborhood of X such that g,

i
i=1,...,m, are continuous on NO(EE.). Then there exists an open neighbor~

hood Nl(;:) < NO(';:) defined as follows

A.18 Nl(;&) < {x]|x e NO(:I:), 9,(x)> g, iel, g(x)<-e, le 1)

where
1 -
-5 max g,(x) if 74 ¢
A.19 £ = ie]
any positive number if J = ¢
such that
Ix) =1 and J(x) =] forall xe Nl(;'&)
where
I(x) = {1|gl(X) z-g, i=1, l’m}
A.20
J) = {i]g, () < - g, i=1,...,m)
Proot We observe first that N,(X) is an open set in R” because of

1
the continuity of gi, i=1,...,m, and is nonempty because gi(.;c) =
0> —~¢ for ieI, and gi(:::) 5 ma? gi(;i) = -2e6< =g for ie]J, and
: ie

hence X e¢ N,(X). We have three cases to consider now for x ¢ N,(X):

1 1

First case 146, J# ¢

<ieI > gi(x:)>~g == ieI(x)> => I < I(x)

~<ic—:] = g <-e => ie1<x>> => ] CJ(x)
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<ieI(x) = 14T => 1] = ieI> => [(x) <I
<ie](x) => i £AIx) = i£]l = ie]>:_—> J(x) ©7J
Hence I(x) =1 and J(x) =] for x € Nl(;c).

Second case 14 ¢, J=4¢

<ieI = gi(x)>~a N ieI(x> => [ < I(x)
I:(P:::>gi(x)>-g, i=1,..0,m = J®)=¢=7]
<j€1(x) => 1] = iel> = I(x)CI

Hence I(x) =1 and J(x) =17 for x¢ N](x).

Third case I= ¢, JZ ¢

I=¢ = g () <-¢, i=l...,m => I(x)=¢=1

<i€] == gi(x)<~g = ieI(X)>::—:> J = J(x)

<ie]'(x) > AT = ie]>=:3> J(x) € 7

Hence I(x) =1 and J(x) =7 for x e N.(X).

1

Proof of Theorem 4.3

Since (%,¥) e R* % Rk‘ is obtained from (X,1) by solving the

system A.0 it follows from A.8 that ;fI = [S'fiGI] = 0 where J=

{i[gi(;c)<0, i=1,...,m}. Hence we have that

A.21 V. L(X,y

1 <t0) = Ol VZL(X'YK’O) =0

)i
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where VlL(x,yK,yI) denotes the gradient with respect to the first

argument x, VZL(x,yK,yI) denotes the gradient with respect to the

second argument vy

K and K = {i[gi(ii): 0, i=1,...,k}.

of conditions vi and vi', the Hessian of L(X,YK,Y

cPlZ(O,Yi)ti(X)
ie {m+l,...,k)}

Because

) with respect

g

4

J
to its first two arguments x and yK evaluated at (X,¥) is given by
iel
o - —
A. 2z le( ,yi) /gl(X) 0
iel
CPZl(O.yi)Vgi(X) 0
ie{m+l,...,k}

We will now show that the matrix A.22 is nonsingular for large enough

a. By Theorem 2.5 V..L(X,y) is nonsingular for a large enough.
11

Hence the matrix A.22 is nonsingular if the following product of matrices

is also nonsingular

le(O,Yi)vgi(x)
ie I
V11
ie {m+l,...,k}

L(X,Y)

Klz(O,yi)Vgi(X)

iel

ie {m+l,...,k}

Since by assumption, Vgi(ii), ieK=1IU{m+1,...,k} are linearly

independent, and since by 2.6, A.0, vii and vii', )»21(0,?1), ie I, and



cpzl((),?,l), ie {m+1,...,k} are nonzero, the rank of the matrices
appearing in square brackets in the above product is k = n where &
is the cardinality of K. Hence the rank of the product is also k and
thus is nonsingular and so is the matrix A.22.

It follows by the local convergence of Newton's method [16, p. l_f1-8]
that there exists an open neighborhood Nz(;{,'}K) of (;{’;K) in Rnx Rk

such that a Newton method applied to

A.23 vlL(.x,yK,O) =0, VZL(x,y ) =0

0
K’

will have all the convergence properties stated in theorem 4.3 if we
set z = (x,v,)-
K
It only remains to show that for some g > 0 algorithm 4.1 is
indeed equivalent to Newton's method applied to A.23 above. Choose
e> 0 as defined by A.19 in Lemma A.17 above and a neighborhocd

I\Tl(SE) of x as defined by A.18. Define now N(X,y) such that

- e —

B.24 NE Y E ()] e ROX RS, x Ny (%), (%,y,) € N, (x,¥,)]
For any (xo,yo) € N(;:,;f), we have by lemma A.17 that I(xo) =1 and
](xo) = J. Hence starting with (xo,yo) € N(§,§) algorithm 4.1 is

} = 0 and determining (xj,yé) irom a Newton
method applied to A.23 starting with (xo,yg). Hence we have all

) =

eguivalent to setting vy

the convergence properties stated in Theorem 4.3 for z = (x;,yK,y

)

(XIyKIO)'

Proof of Theorem 4.5

As in the proof of Theorem 4.3 we have that equations A.2l are
satisfied at the solution (%,y). Since for sufficiently large a,

VHL(}?,?(,O) is nonsingular, it follows from the implicit function
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theorem that for an open neighborhood N3(§K) in Rk there exists a
k -
function e: R - R"™ which is continuously differentiable on Ng(yK)

and such that

A.25 v
2 Yi € N3(yK)

Choose now ¢ and Nl(;{) as defined by A.19 and A.18 respectively

in lemma A.17. Define now

A. 26 N(E,5) < L0y 6w e REX RS, xe NG, v, e N, ()]

By lemma A.17, forany (x,v) ¢ N(;,:}) we have that

Ix) U {m+1,...,k} =1U {m+1,...,k} =K

Hence starting with (xo,yo) € N(;c,g}) . algorithm. 4.4 is equivalent to
j+l j j i j j j
. = - = - L
A.27 Y Vi BV, Llelvy), Y ,y]) Vet B\‘?Z (e(yK), Vi 0)
A28 vttt oo
J
A.29 S e(y;;rl)

where the last equality in A.27 above follows from the fact that

_.B._L‘.(x’y) = XZ(G(X') Y )I i= ]'l’ vo My, and hence VZL(e(y ),yK’y])

-

is independent of yI. Consider the mapping G(vy): Rk-r Rk derived
from A.27 and defined by

2 — B < ~
A. 30 G(yK) = Vg B VZL(O(YK), yK,O)

and its gradient
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A.31 V Gy

i

I+BY,,Lely,),y,,0)ve(y )+5v L(e( ) Vi 0)
21 K’ K

&

I-%-5VZ]’L(;<,.§K,O)V\76(§K) (by vi and vi')

), ¥,,0) = 0 with respect to vy

K and evaluating

.

VL, 7 0)Velyy) + 9,105, v, ,0) = 0

and since by theorem 2.5, VML(;&,?) is positive definite for large

encugh o, we get that

Substitution in A.31 gives

: = - - -1 - -
VGly,) =1 BVZlUx,Y ,0)7, L%, ) 'VlZL(x,yK,O)

K K 1

The linear independence assumption of ‘T/'gi(g), i € K gives that

TG £ Y ok
VZlL(x,yK,O) and VIZL( 0) are of rank k s n and since 711L(‘< )

is positive definite it follows that for B small enough, B e (0,B), the

- = -1

K !

eigenvalues of ¥ G(?K

spectral radius P(VG(y

) are all strictly less than one and hence its

K)) < l. Hence by Ostrowski's point of attrac-
tion theorem [16, p. 145] there exists an open neighborhood N4( K ,)
AN

of yI\ such that when yg € N4( K) the iterates A. 27 are well defined and

converge linearly to yK. Since e(yK) is differentiable the iterates of A.29
converge also linearly to X= e(§K). Hence the iterates A.27, A.28 and A.29
converge linearly to ;IK';I: 0 and x respectively. The neighborhood N( ,y)
of convergence mentioned in the statement of the theorem canbe takenas follows

e

N(x,y) < ((x,y) | (x,y) e N(X,¥), v, e N (¥,)}

K 47K

where N(x,y) is defined by A.26.
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Proof of Theorem 5,3

(a) => (i) Because ¢'(0) = 0 it follows that
X (€, m)

M(E/m) = "“‘5?"‘ = a¢'(0f+ ﬂ)+
o g o
Xz(é,ﬂ) = o - Y ag + n)+ ' (M)

Hence the equations

-3'Mm) =0

M0,m) = agim) =p, 2, (0,M) =9'(n)

have a solution 1 z 0 foreach u =z 0 because 1,1/'(71)+ maps [0,)
onto itself.

Also the equations
M(EM) = a v/'(a€+n)+ =0, A, (E,n) = w‘(a£+n)+ -¥'(m) =0
have a solution n = 0 for each ¢ < 0 because 3'(0) = 0.

(@) = (ii): r(0,m) = a z/;'(ﬂ)+ >0 (since y' is strictly increasing
and 9'(0) = 0)

XI(Q,O) = 1/,'((1&)_% =0 for €< 0 (since ¢'(0)=0)

Now

A.32 <x2(g,n) - plag ), -y = o>

af+mn =20, ab+ n= z
= or => £ s 0
ab+m <0, n=0 E< 0, n=0 and

En=0

%
<

!



Hence Xz(g,n) = 0 implies that £ £ 0 and £n = 0.

(8) ==> (viii):
£=0, n=0
A (Em) =0 => or
€ <0, n=2~0
(by A.32)

(@) & (b) ==> (v):

xl(g,n) =Q z//'(cx£§+ﬂ)+ 20 (since ¢'(0) :'O and y' is

strictly increasing)

MEME =ME M) =af Pab+n), ~ Plak+ n, + Pn)

P(n) if at+n<O

aéy'(ag +n) ~ P@E+m) + P(N)

0 (since y(m) z 0)

0 (by convexity of )

if ag+n =0

(since ¥(0)=0 & 9"'(0)=0)
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(@) & (c) == (iii):

Because y"(0) = 0 it follows that

A = oyt ),

MEm) = agifatn) =0 =

=> qgf+n s

0 (since '(0) = 0 and

P' is strictly increasing).

2
= )xll(éi,'ﬂ) = o P {af+ 'q)+ =0

(@) & (c) =» (iv):

Mj

A

(@) & (c) ==>

11(0/m) = as a-re for X (0,1)> 0.

(vi):

AL VAL A 1 VN AN O}

v
o]

(since ¢"(0) = 0)

Since Xl(O,n) = Q z//‘('n)+ > 0 it follows that 1> 0. Hence
(0,m) = a %"(n) > 0, because 3"(n) >0 for n > 0,

Hence

E,: Ol n
KZ(E;,T]) =0 = or (by A.32)
fi( 0, n = 0

Aap(€,m) = P, = ") = 0

==> or

Xy (E) = 9(at), = 9"

Xl(O,ﬂ) = Q 1//'(n)+ >0 > => 1n>0

(0) =0

12(O,n) = Q ;[;“(n)+ >0 (since 3"(M) >0 for n > 0)



(@) = (i":

The conditions
(0, M) = a ') =1, 9,(0,M) = P'(M) = y'(n) = 0

are satisfied by some 1 ¢ R because o Z 0 and ¥' maps R onto R

(a") == (ii"):

cp?(é;,n) = P'(aé+mn) - ¥'(n) =0 implies, since P! is strictly

increasing, «a€+n =mn and hence €= 0, since o # 0.

(@') = (viii'):

tpz(é,ﬂ):z,b'(a&Jrn)—z//'(ﬂ):O => £=0 => ¢(&,n)=ypMn)~yn)=0.

¢ (E,mME= @(E,m) = ay' (@€ +n)E~ P(af +n) + P(n) = 0

(by convexity of )

@y & (¢ == [(iv'):

(p]l(O,n) = az Pp"'(M) = o as g-+o because cpl(O,n) = ay'(n) £0
implies that 7 Z 0 and hence y"(n) > 0.

(@) & (') = (vi'):

CPZ(é"n) =y (ag+m) - ‘V’l(n) = O>::_"’> £ =0

= cpzz(éf,,n) =y"(m) ~yY"(n) =0
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& (¢') == (vii'):

CPl(O,ﬂ) =ayp'Mm A0 = n#£o0

= 9p,(0,m) = o ") £ 0.



