WIS-CS~73-173

The University of Wisconsin
Computer Sciences Department
1210 West Dayton Street
Madison, Wisconsin 53706

Received February 1973

RECOGNIZING, "UNDERSTANDING, " DECIDING
WHETHER TO OBEY, AND EXECUTING
COMMANDS

by
Leonard Uhr

Computer Sciences Technical Report #173

February 1973

This research has been partially supported by grants from the National
Institute of Mental Health (MH-12266), the National Science Foundation
(G]-36312), (NGR-50-002-160) and the University of Wisconsin
Graduate School.

RECOGNIZING, "UNDERSTANDING, " DECIDING WHETHER
TO OBEY, AND EXECUTING COMMANDS

Leonard Uhr

ABSTRACT

This paper examines a programmed model (called DECIDER-1)

that 1) recognizes scenes of things,among which are a) objects and

b) words that form commands (or questions or other types of state-

ments), 2) recognizes the import of these commands, 3) decides
whether to obey one, and then 4) uses the command to guide the

consequent actions, along with any necessary perceptual search.

It uses the same mechanisms to handle a) the perceptual
processes involved with recognizing objects and describing
scenes, b) the linguistic processes involved with parsing sentences
and understanding their meaning, and c) the retrieval processes
needed to access pertinent facts in pertinent memory. This is in
sharp contrast to most of today's systems, which receive the com-
mand through one channel, to be "understood" by one special-
purpose set of routines, and perceive their environments through

an entirely different channel.

DECIDER-1 continues to pattern characterize, parse symbol
strings, and access facts implied by input questions untilanaction is chosen,
because it is sufficiently implied by this search through the memory net.
Then it executes the implied action. Possible actions include

Naming, Describing, Finding, Moving, and Answering queries.

The programmed model, DECIDER-1, is presented in EASEy (an
Encoder for Algorithmic Syntactic English that's easy, Uhr, 1973a) so

that we can examine exactly what happens.

RECOGNIZING, "UNDERSTANDING," DECIDING WHETHER
TO OBEY, AND EXECUTING COMMANDS

Leonard Uhr

INTRODUCTION

The basic purpose of this paper is to examine how word-
things recognized in the external environment can trigger actions
that include recognition and manipulation of other, object-things,
in the same environment. To do this we must examine several
igsues that have scarcely been touched upon in the research

literature of psychology or computer science: .

How does a system recognize that a perceived input is a gymbol?

How does it understand the import of a structure of symbols, eg.

that it is a command, or a question? How does it understand the
meaning of that structure? How does it decide what to do - whether
to obey a command, and which command, or whether to continue to
perceive, to respond to internal needs, or external presses from
perceived objects? How do the understanding of commands and
other symbolic percepts and the recognition of perceived objects
interact, helping one another; eg. how does it recognize which
objects are appropriate for carrying out 8 command? How does a
system choose and execute the appropriate response, from a variety

of possible responses ?

.These are extremely complex and subtle matters, and the work
presented here is only a first step. But there appear to be several
ways in which we can extend present-day programs, to begin to

handle them.

2 - Uhr

DESCRIPTION OF THE PROBLEM, BACKGROUND AND MOTIVATION

We will examine systems that a) input streams of information
from the environment, b) attempt to recognize things, including
symbols, and larger structures of things, c) decide whether to
continue in this perceptual process or to respond, and d) generate

the appropriate response.

Let's look at recent research with chimpanzees and with robots

for some examples.

Chimps that Qbey Commands

Two chimps have been taught (by Gardner and Gardner,
1969, 1971, and by Premack, 1970, 1971) to learn vocabularies of
over 100 words, and to learn to use these words in simple sentences.
One of the most interesting things Sarah (Premack's chimp) learned
was to respond to a sentence like "SARAH PUT BANANA BOX" by
going to the banana, grasping it, carrying it over to the box, and
dropping it into the box. SARAH is in an experimental room with a
number of objects, including a banana and a box, but also such
things as a pail, an apple, a cracker, and other objects, and a
board on which the experimenter places the words SARAH, PUT,
BANANA, and BOX. (These "words" are colored nonsense shapes:
all previous attempts to get chimps to talk failed because of their
limited vocal apparatus.) Thus words, sentences and objects are
perceived visually, with words static objects much like Chinese

ideograms.

Words are things that have symbolic significance. They
come in through the same input channel as objects like the (image

of the) banana. The chimp responds to the command, which is a

3 = Uhr

structure of several word-things, by manipulating the objects to
which the words refer: Sarah grasps the *BANANA, not the symbol
BANANA. (I will use stars (¥), as in *BANANA, *BOX, *APPLE, to

indicate the actual object, as opposed to the word.)

Today's Programs Cannot Model such Chimps

The above description may appear to belabor the obvious.
But although any three year old human child, and now two chimps,
can successfully sort out words and objects, recognize structures
of words as commands, understand the import of the commands, and
act appropriately, we have little idea how all this is done.
Psychologists have given us no theoretical models, and even the
most sophisticated of computer programs for pattern recognition
or language manipulation are designed to handle only small pieces

of this process.

A sophisticated pattern recognizer (eg. Uhr and Vossler,
1961; Andrews et.al., 1968; Munson, 1968; Zobrist, 1971) can
correctly name many different examples of a pattern, all distorted
in extremely complex, and unanticipated, non-linear ways. It can
contend with very complex possible confusions between objects.
In comparison, a *BANANA and an *APPLE are very different, and
the symbols Premack has chosen for BANANA and for APPLE
are also different enough so that the chimp has no perceptual
difficulties. (This is not at all to say that the chimp and human
are not sophisticated pattern recognizers, but simply to point out
that the particular single-pattern problem we are examining, in

which only a few very different patterns need be recognized, is

simple compared to problems that programs, as well as chimps

4 - Uhr

and people, can handle.) But today's pattern recognizers will not
handle scenes of several things, much less compose things into
structures like sentences, or sort out the words and the objects, and

their interrelationships.

A sophisticated language processor (e.g. Shapiro and Woodmansee,
1969; Winograd, 1971; see Simmons, 1965, 1970) can handle far
more complex grammatical structures than the simple actor-act-
object-indirect object of our example SARAH PUT BANANA BOX. But
it will handle only clean, clear-cut sentences. It cannot contend
with sentences with mis-spelled words and noise that are embedded
in larger scenes that include other objects. Nor can it begin to

touch the problem of applying the sentence to the objects.

At the very least, pattern recognizers must be extended to
handle scenes of objects, and to parse word-phrases as well as
characterize parts of objects (see Sauvain and Uhr, 1969; Jordan,

1971; Uhr, 1972, 1973c).

Robots that are Programmed to Obey Commands

Recent work with robots (e.g. Nilsson, 1969; Raphael, 1968;
Feldman et al., 1969) has made some steps toward this interaction.
But it has the flavor of interconnecting several separate black
boxes, each performing a separate function, even though there
often appears to be a great amount of overlap. Thus robots input
and handle commands and perceptual environment completely

separately.

Today's robots use extremely complex systems of computer

programs, almost always separated into four major sub-systems,

5 « Uhr

to 1) understand the command, 2) recognize and build up a model
of the objects in the environment, 3) deduce the set of actions
appropriate to carrying out the command, and 4) apply them to the

environment. Each subsystem has its own subsystems:

1) The command is given through a teletype, and the system
applies a special set of language "understanding" programs, to
recognize its words, parse the command statement, and turn this
statement into a goal state that the robot must achieve, to obey

the command.

2) Separate perceptual programs are used to handle the
robot's perceived spatial environment, which almost always includes
inputs from a tv camera, and occasionally is supplemented with
inputs from range finders, touch sensors, photocells, or sonar.
These programs input the sensed information, take a sequence of pre-
processing steps (eg. to eliminate noise, find gradients and edges,
and begin to connect short edge fragments into lines), and try to
build the salient features up into something that matches some
internal description of some object (e.g. Brice and Fennema, 1970).
This results (if all goes well - which today means if objects are
sufficiently simple, with enough background space between them,
painted in colors that contrast sharply enough in the black-and-white
tv image, and amply lighted) in the assignment of names to objects,
and the assignment of these objects to their locations within the

perceived environment.

3) A deductive problem-solving program (often a theorem

prover) is used to search for a sequence of actions that the robot

6 - Uhr

might apply to the objects it thinks it has recognized in its
perceived space, in order to achieve the desired goal state (e.g.

Fikes and Nilsson, 1971).

4) This entails binding the objects (including the robot itself)
to the inferred actions, so that the robot knows that it can in the
real world carry out an action that it has deduced would be a

stepping-stone toward carrying out the overall command.

But Real-World Commands Must first be Perceived

In the real world there is no separate input channel for a
command, and there is no god-given a priori signal, known to
commander and slave alike, that says, "this is a command, " "this is
a question," and so on. A question-answering program has built
into its guts that inputs will be questions, and it is straightforwardly
pre-programmed to answer them. A robot program similarly has
built into it that teletype inputs are commands, and that it is to
carry them out, by manipulating the environment that it perceives

through its sensory inputs.

But in the real world the command always comes in through
sensory input channels. In fact the command is itself a complex
structure of perceived objects. Eg the command, "PUT THE BANANA
IN THE BOX", is made up of a string of words that are further
structured grammatically and, more importantly, semantically (in
that they refer to things like bananas, relations between bananas
and boxes, an understanding that bananas can go into certain
boxes, and the implied action of the entity being commanded - that it _
should put the banana in the box). And each word is made up of
parts (letters if written, phonemes if spoken), each letter and

phoneme is made up of parts, and so on.

7 -~ Uhr

The command may sometimes come through a separate per-
ceptual mode channel, as when it is spoken, and refers to visually
perceived objects. But this is not the issue, for commands and
objects often come in through the same channel, with the receiver
hardly noticing. It is not the difference in channel that allows the
human to infer "this is a command of symbolic words" and "that is
an environment of objects". Rather, the hearer first recognizes
the parts of the command as objects and only later as symbols,
combines them up into larger and larger structures, and recognizes

that these structures have symbolic import, and are commands.

Deciding Whether to Obey Which Command

Closely related, the hearer has no built-in understanding that
it will receive one command at a time, pointed to and surrounded
by special symbols. Rather, since it must infer that parts of its
perceived environment are commands, it always has the possibility
of receiving more than one command. It must decide whether to
obey a command, and which. Andforany,real-world receiver there
will always be the issue of whether it should drop everything to
carry out whatever command it has just received and understood,
or whether it should do something else - what it was already
doing, or what will best satisfy some internal need (eg. hunger)
that is arising, or what will best respond to some interesting new

object (eg. a steak).

Thus a system should be able to decide which from among
a set of alternative action-sequences it wants to carry out, whether

to obey this command or that, or to satisfy its own needs or goals.

8 - Uhr

Key Problems Being Handled

This paper focuses on the problem of handling fields of things,
some of which are symbols, where these things combine into larger
structures (eg. eyes, nose, mouth, chin combine into face:

SARAH PUT BANANA BOX combines into a command; B, O, X combine
into BOX), some of which imply that the system should respond

with am implied action upon other things to which reference is made.

We have discussed one example of such a situation, when
the environment contains something like:
#*CRACKER SARAH PUT APPLE PAIL *#BOX *BANANA #*APPLE *PAIL (or)
*BOX3 ROBOT PUSH BOX2 NEXT BOX1 *#BOX4 *BOX1 *#BOX5 *BOX2

Such a system can handle a number of other problems, for
example an input like:
#CRACKER #BOX DESCRIBE THIS SCENE #BOX *BANANA *APPLE *PAIL
(in which case it must recognize the command DESCRIBE THIS SCENE
and as a result output CRACKER BOX BOX BANANA APPLE PAIL).

Or it can be given an input like:
#CRACKER #* BOX FIND A BOX *APPLE * BANANA * PAIL
(in which case it must recognize the command FIND BOX and as a
result output something to indicate the *BOX has been found.) Or

it can be asked to Move an object, or to Answer a query.

Examples of Name, Describe, Find, Move, and Answer are

examined following the program.

Simplifications

In order to focus on these issues and problems, we make

the following simplifications:

9 - Uhr

A) Patterns and recognition techniques are kept very simple.
They occur in one dimension, in a single sense modality, without
overlap. Characterizers are weak, and are applied serially.
(For sophisticated pattern recognizers, see Uhr, 1973b. For an
appropriate basis for scene describers, see Uhr, 1972, on

"recognition cones.")

B) Simple commands are used, and handled by very simple
parsing rules. (For sophisticated parsers, see Simmons, 1970;

Winograd, 1971; for better perceiver-parsers see Uhr, 1972.)

C) Learning is ignored; rather, the system is given a set of
"TRANSforms" on an "IDEAS" list that includes all the perceptual
characterizers, parsing rules, memory associations, and action
sequences. (For learning, see Uhr, 1973b, chapters 15-21, and

Uhr and Kochen, 1969.)

D) Only the very simplest of acting is done - just enough to

show where and how actions fit.

E) Actions are not sufficiently integrated with each other, or
with perception. But note that the single IDEAS memory homo-
geneously handles all actions. And a single mechanism is used
to characterize patterns, parse phrases,and retrieve facts stored

in memory.

F) Only a few memory transforms, from the many needed, will

be shown in the examples of behavior that follow the program.

10 - Uhr

"DECIDER-1" - A PROGRAM THAT RECOGNIZES OBJECTS,
WORDS, AND COMMANDS

The following program, DECIDER-1, demonstrates how pattern
recognition, parsing, and fact retrieval can be done in a homo-
geneous way, on scenes of objects, leading up to a decision as to
what action to perform, where a variety of actions are possible,

including finding, manipulating, naming, describing, and answering.

Mechanisms

To keep things simple, only 1-dimensional strings are given

DECIDER~1, e.q.

*BOX SARAH PUT BANANA PAIL *APPLE *BANANA *JAR *PAIL 1)
*BOX DESCRIBE THIS *BANANAS *BOARD 2
Characterizers

The characterizers used to pattern recognize are all of the
same form, and intermingled with, the transforms used to parse,
to trigger responses, and to respond (they are all called "TRANS"forms
and stored on a single list called "IDEAS"). These characterizers
are over-simple, since they merely look for a set of separate parts,
ordered, where a threshold and weights determine how many need

be present to succeed.

Rewrite Rules

Parsing rewrite rules can be tabled quite nicely in DECIDER-1's
memory, since each part can be either a class (eg. NOUN or FRUIT)
or a thing (eg. THE or *BANANA). If the threshold is set to the

sum of weights, all parts of the characterizer must be found.

11 - Uhr

Concatenation is not demanded (through it would be quite easy to give
characterizers the option to do so - see Uhr, 1971, 1973b, chapters
3, 4). ButI feel that this is an advantage, since in the real world,
where word-sentences and other objects are intermingled, and where
perfect sentences cannot be expected (just as perfect patterns

cannot be expected), objects and grunts will often intrude upon the
words. For example, DECIDER-1 should handle an input like:

SARA UHHH PUT *PEAR BANANA PAIL *APPLE *BANANA *JAR *PAIL 1.V
The intruding UHHH and *PEAR should be ignored. Traditional

rewrite rules can handle this only by proliferating rules, to include
ones that notice, in order to ignore, noise and irrelevancies.

Eg. we would need rules like "NOUN UHHH == NOUN", "ADV

UHHH == ADV", "VERB OBJECT == VERB".

Characterizers and Rewrite Rules

I suspect that thresholds can also be used fruitfully with
rewrite rules, just as they are with perceptual characterizers.
Linguists have been developing their grammars in ideal abstracted
worlds, where an input contains one and only one sentence, a
perfectly grammatical and noise-free string of perfectly spelled
words. But just as it does not contain perfect and undeviating
examples of object patterns, the real world does not contain perfect
words and sentences. And human beings are capable of under-
standing and responding to incomplete, ungrammatical, and garbled
sentences, and paragraphs of sentences, just as we can recognize
distorted and fragmented objects. Threshold characterizers
let a system infer implications and transformations from less-than-
perfection, with the additional option that the strength of these
implications can be a function of the degree of perfection (see Uhr,

1971).

12 - Uhr

Needs, Goals and Expectations

It is important to note that, since it must now handle
multiply~implied actions, and decide among them, the system is
capable of handling the effects of sources other than the external
environment - of the system's INTERNAL needs, goals and expecta-

tions.

DECIDER~1 does just enough of this to indicate how it can be
done. INTERNAL needs, goals and expectations are LOOKed AT along
with the EXTERNAL INPUT. So they imply IDEAS for characterizing
and acting. One or several needs, or a combination of needs and

perceived objects, can trigger a transformation.

Flow of Processes

DECIDER-1 puts PRIMitives characterizers onto IDEAS, and
inputs and puts the EXTERNAL environment and its INTERNAL need-
states onto LOOKAT. It uses several DELimiterS to chop things out
of LOOKAT; these things point to IMPLIEDS - transforms that go onto
IDEAS and objects that go onto the SCENE (along with the things
chopped out of LOOKAT).

When a characterizer succeeds, its IMPLIEDS that are of ITYPE I
(which can be more characterizers to apply, parsing rewrite rules
to apply, and/or actions to respond with) are merged onto IDEAS,
ordered by weight, and those of ITYPE S (which are objects) are
added to the SCENE. DECIDER-1 always pulls the most highly
weighted TRANSform from its IDEAS list, to execute next. There-
fore it starts executing primitive characterizers, and then will tend
to execute characterizers that the successful primitives have

implied. (Note that implications are merged together, so that when

13 - Uhr

the same one is implied by several different successful transforms

its weight is a combination of the individual weights.)

After a while, possible actions will be implied. They will
approach the beginning of the IDEAS list to the extent that their
weights are high, or rise (as a function of being implied by
geveral different transforms), and the more highly-weighted perceptual
characterizers have already been taken off IDEAS and applied. Thus
the IDEAS list serves to choose among characterizers, among

characterizers and actions, and among actions.

Finally, an implied action will be chosen, because it is more
highly implied than any other action, or for that matter than any .
other TRANSform on IDEAS. This triggers DECIDER-1 to go to execute

that action, whether to Name, Describe, Find, Move, or Answer.

Thus the IDEAS list handles everything. The person (or the
learning routine) thatwrites the memory lists mustbe careful toassign
weights to the Implieds that will keep processes properly ordered.
For example, characterizers to apply next, to gather more informa-
tion in deciding whether a particular thing (whether object or word)
has been found, should probably be given the highest weight.

Next highest should be characterizers and rewrite rules that com-
pound things into higher-level things (eg. objects, as when

#EYE *EYE *NOSE #*MOUTH imply *FACE; or phrases, as when
ADJECTIVE NOUN implies NOUNPHRASE). Then come some of the
fact-retrieval transforms, such as CHIMPS LIKE BANANAS Implies
CHIMPS LIKE BANANAS, where weights of the parts of the description
and the threshold for success are adjusted so that any two of the
three parts are sufficient to succeed, giving the complete fact as

the transform.

14 - Uhr

(Note that this is only one of a variety of ways in which
facts can be handled. For example, the following three transforms
are equivalent to the single one just given:

CHIMPS LIKE == BANANAS

LIKE BANANAS == CHIMPS

CHIMPS BANANAS == LIKE
with thresholds set so that all (two) parts must succeed. Another
variant would have the implication refer back to the description, in
effect saying, "output those parts of the description that were not
found." But this makes necessary descriptions that are not re-
dundant, whereas it is often very convenient for perceptual
characterizers to contain a number of different parts that are in
fact or-ed possibilities, with thresholds low enough so that the
presence of only a small percentage of them will make the
characterizers succeed. This suggests a more sophisticated routine
to get a non-redundant covering of the parts of the description that

do not succeed.)

An action is triggered when it is taken from IDEAS, because
it is now the most highly implied transform. This means DECIDER-1
has chosen it, over any other possible transforms - including other
actions or more perceptual characterizers. The specific actions

will be discussed, with examples, following the program.

15 - Uhr
Figure 1. OVERVIEW and Program Code for DECIDER~1

(OVERVIEW DECIDER-1. Applies IDEAS to the SCENE till chooses an

(act, and acts.

INITialize DELimiterS and all transform in Memory MD-MN
IN Put PRIMitiveS on IDEAS, M({N+1)
erase SCENE, input EXTERNAL environment. M(N+2),1

SENSE LOOKAT EXTERNAL environment and INTERNAL needs 2-5
by chopping out possible NAMEs using pairs of
DELimiterS (DLEFT and DRIGHT)
If NAME has IMPLIEDS and CLASSES, get its LOCa~- 6-8
tion and put that NAME and
IMPLIEDS onto SCENE (and IDEAS)
TRANSFORM Get the highest weighted TRANSform from 9
IDEAS and go to its TYPE (or to Describe
if nothing's left)
Perceive Look for the CLASSes in the TRANSform's 10-17
DESCRiption in SCENE or EXTERNAL (as
specified by G or E), put all found on
GOT, and TOTAL their WeighTs.
EVAL If TOTAL reaches THRESHold, go to ITYPE (=1 or S), 18-19
to merge IMPLIEDS into IDEAS or SCENE.
(Otherwise go back to TRANSFORM)

(The different transforms follow:

(I and S merge onto IDEAS and SCENE.

I Merge this NAME's weight (TOTAL) with its WeighT 20~29
on IDEAS (if there), and put it ORDERED by
TOTAL weight back onto IDEAS. (go to IMPLY)

16 - Uhr

S Get that object (NAME) from SCENE, and if close 30-35
enough, combine weights and locations, or
add it as a second, or a new, object. {(go

to IMPLY)

(N, D, and C talk about objects, Naming and Describing
(them them.

Name Get all things from SCENE belonging to the class 36-45
'OBJECT' and choose and output the one
with the HiIghest WeighT.
Describe Get all OBJECTs (stored in TRANS) in SCENE, 46-49
and output their NAMEs.
Class Store the specified CLASS in TRANSform, and 50
go to Describe (which will get and output

only objects of that class).

(F and M act upon objects, Finding and Moving them.

Find Find an OBJECT of the designated CLASS, bracket 51-54
and output it.

Move Find two OBJects of the classes designated, and 55-59

Move the first to the second

(A accesses facts in memory, to Answer queries.
Answer output the fact stored under the TRANSform 60

that has been chosen

17 - Uhr

(DECIDER-1. Applies IDEAs to SCENE till chooses anact. DECIDER-—l*
(Handles both surrounding edges (001...10) and a trailing
(space as DELimiters

INIT set DELS = '001]10]] I' MD™
set INTERNAL = '"HUNGRY 4 THIRSTY 2 FIND-RICHES 2 ' MI
(Memory Transforms go here. See examples M3-MN
IN set IDEAS = PRIMS M(N+1)
erase SCENE M{(N+2)

input EXTERNAL till] [-to END]

(SENSE gets objects (NAME) between DELimiterS and merges
(their IMPLIEDS

SENSE from DELS get LDEL] RDEL]=[-to TRANSFORM] 2

erase LOC 3

set LOOKAT = EXTERNAL INTERNAL 4

S1 from LOOKAT get LEFT that LDEL NAME till that RDEL = 5
+ RDEL [-to SENSE]

from $NAME get 'JI=' IMPLIEDS ']C=' CLASSES][~ Sl1] 6

(SENSE adds NAME to SCENE and puts IMPLIEDS

(on IDEAS and SCENE
LOC = size(LEFT LDEL) + LOC 7

on SCENE list NAME CLASSES] NAME 4 LOC] [IMPLY] 8
(Get most highly weighted TRANSform from IDEAS. (Go to Describe
(if none left.)

TRANSFORM from IDEAS get TRANS TYPE TOTAL GOT 1= 9
+ [+to $TYPE. -to D]
P COPYS = SCENE 10
from $TRANS get 'D=' THRESH DESCR 'Ji=' IMPLIEDS] 11
+ [~TRANSFORM]
P1 from DESCR get TP CLASS WT = [+ $TP -EVAL] 12
E from EXTERNAL get LEFT that CLASS [~ P1] 13
on Got list size(LEFT) CLASS CLASS [P2] 14
(Get an OBJect of the specified CLASS (in order)
G from COPYS getLEFT # that CLASS # RIGHT | OB] WT 15
+ Loc | =[-pP1]
on GOT list LOC CLASS OBJ 16
P2 TOTAL = TOTAL + WT [P1] 17
EVAL is TOTAL legsthan THRESH? [+ TRANSFORM] 18

(TOTAL has reached THRESHold. Merge IMPLIEDS into IDEAS
(and SCENE.

IMPLY from IMPLIEDS get ITYPE NAME TOTAL = 19
+ [+$ITYPE. - SENSE]

% .
NOTE: The program attempts to explain itself. But for problems
see the Appendix for a brief description of the program language
used (EASEy-1), and Uhr, 1973a, for a primer.

18 - Uhr

(Put transforms onto IDEAS, with GOT, ordered by TOTAL weight)

I erase ORDERED 20
from IDEAS get # that NAME # TYPE WT IGOT] = [-I1] 21
TOTAL = TOTAL + WT 22
on Got set IGOT 23

Il from IDEAS get ORNAME ORTYPE ORTOTAL ORGOT]= [-I13] 24

is TOTAL lessthan ORTOTAL [-12] 25
on ORDERED list OROB] ORTYPE ORTOTAL ORGOT] [I1] 26

12 on ORDERED list OB] TYPE TOTAL GOT] OROBJ ORTYPE 27

+ ORTOTAL ORHIST] IDEAS [14],

I3 on ORDERED list OBJ TYPE TOTAL GOT] 28

I4 IDEAS = ORDERED [IMPLY] 29

(Put objects on SCENE with CLASSES, weight, and LOCation
S from SCENE get that NAME CLASSES | NAME WT SLOC 1= 30
+ [+54]

from $NAME get ']JC=' CLASSES] [S2] 31

S4 is ABS(LOC -SLOC) lessthan 4 ? yes - LOC = (SLOC + LOC) 32
+ / 2 [-83]

TOTAL = TOTAL + WT 33

S2 on SCENE list NAME CLASSES] NAME TOTAL LOC] ‘[IMPLY] 34
(Add a 2d TRANSform object at a new location

S3 on SCENE list NAME CLASSES] NAME WT SLOC] NAME 35
+ CLASSES] NAME TOTAL LOC] [IMPLY]
(Name the single OBJect with highest implied weight.
N COPYS = SCENE N1 36
N1 from COPYS get LEFT '"C2JECT' RIGHT] HI] = [- OUT2] N2 37
from HI get HIOB] HIWT HILOC N3 38
N2 from COPYS get LEFT ' JOBJECT' # RIGHT]
+ OBJ WT LOC = [- OUT] N4 39
is HIWT legsthan WT [+ N2] N5 40
list HI = OB] WT LOC N6 41
from HI get HIOBJ] HIWT HILOC [N2] N7 42
OUT from $HIOBT get 'C=' NAME N8 43
output 'IT IS A' NAME [IN] N9 44

OUT2 output 'NOTHING RECOGNIZED' [IN] N10 45

19 - Uhr

(Describe all things on SCENE of class TRANS (= OBJECT) with
(WeighT at least = 20.

D from SCENE get LEFT # that TRANS # RIGHT | D1 46
+ OBJ WT LOC] = [- IN]
is WT lessthan 20 ? [- D] D2 47
from $OBJ get 'C=' NAME D3 48
output 'THERE IS A ' NAME ' AT ' LOC [D] D4 49
(To Describe giving only objects of the specified
C from GOT get CLASS TRANS [D] C1 50

(Find an OBJECT of the designated CLASS; bracket it in
(EXTERNAL; output EXTERNAL.

F from GOT get 'NAME ' CLASS F1 51
from SCENE get] that CLASS # 'JOBJECT ' RIGHT : F2 52
+ OBJECT
from EXTERNAL get that OBJECT = [OBJECT] F3 53
outpyut EXTERNAL [IN] F4 54
(Move OBJectA to OBJectB
M from GOT get LOCT ACTION LOCA OBJA L.OCB OBJB MO1 55

from SCENE get] that OBJA # LEFT 'JOBJECT ' RIGHT : MO2 56
OBJSA WTA LOCA] =
from SCENE get] that OBJB # LEFTB ']JOBJECT ' RIGHTB : MO3 57
OBJSB WTB LOCB =] OBJA LEFT '|OBJECT ' RIGHT
+ OBJSA WTA LOCB]
OBJB LEFTB 'JOBJECT ' RIGHTB : OBJSB WTB LOCB
output OBJSA 'IS NOW AT LOC = ' LOCB ' ASIS' MQ458
+ OBJSB
(Output entire SCENE (should clean out the internal information)

output 'ENTIRE SCENE IS ' SCENE [IN] MO5 59
(Answer a query with a fact stored in Memory and IMPLIED by the Input.
A output $TRANS [IN] Al 60
END -

*PEAR ROBOT PUT *BANANA PEAR IN PAIL *BOX #PAIL *APPLE | I1

20 = Uhr

SOME EXAMPLES OF DECIDER-1'S BEHAVIOR: DECIDING TO NAME

Let's look now at some simple examples of inputs DECIDER-1
can handle, along with the particular characterizers and transforms
it would use. (Normally these would be part of a much larger set,
designed or learned to handle the whole range of things and
problems the system must cope with. This means that several
actions will often be multiply implied, the most highly implied
being chosen when it reaches the head of the IDEAS list.)

A Minimal Memory to Recognize That it Should Name

DECIDER-1 does not have built into it that it should name,
or do any particular thing. So to get it to name the perceived
object we should give it a data Input card like:
NAME THIS *APPLE] I-1
(*APPLE would really be a picture of an apple, with all its parts and
qualities, and all the particular ideosyncracies of that particular
apple. But to keep things simple we use *APPLE, much like a

whole-template, to signify the sensed apple.)

This is in contrast with the typical pattern recognition program
that has built into it that it should name, to which we would give
an input like:

*APPLE] I-2

The following statements in memory would handle I-1. (these
statements do pattern characterizing, linguistic parsing, and
triggering of actions. They show only those parts of the memory

network that are needed for and pertinent to this problem.)

21 - Uhr

Name Description Implieds Classes
— i
v B |
#APPLE = D=|I=I *APPLE-TREE P 9 |C=APPLE 7 FRUIT 6 OBJECT 8]' M-1
NAME = ']i=I P2 P 5]C=] M-2
P2 = 'D=9 G NAME 6 G THIS 3 Ji=I NAME N 37 '}

Note how *APPLE implies a Perceptual transform that will be
put onto IDEAS to look for the Description of an *APPLE-TREE. This
indicates how parts and qualities can point up to larger wholes. We
will not pursue *APPLE-TREEs here; but we will soon see examples

using this upward flow of processing.

DECIDER-1 will use the Right space DELimiter to get the
three strings NAME, THIS, and *APPLE from the Input data card
I-1. NAME (M-2) will put the Perceptual transform P2 on IDEAS
(with weight 5). #*APPLE, with the CLASSES OBJECT and FRUIT and
weight = 9 is put onto SCENE (7,8,30), as are NAME and THIS.

P2 will then be taken from IDEAS and used to characterize the
SCENE. It will find NAME and THIS, adding weights of 6 and 3 to
the TOTAL weight of P2 on IDEAS (TOTAL = 5, since only NAME
implied P2). This gives a grant TOTAL of 14, which exceeds the
THRESHold of 9, so that P2 succeeds, firing the Implied transform
that switches the progam to Name (which means choosing the most
highly implied thing on SCENE that belongs to the OBJECT class,
getting its first Class, which is its NAME).

1Implied transforms are given high weights in these examples,
so that they will be chosen quickly. In actual practice these
weights should be low, so more characterizing is done before
acting.

22 - Uhr

Combining Multiple Implications

Note how THIS adds to the weight of P2. Thus 'NAME
THIS' triggers the program with more assurance than does just
'NAME'. (Because it is kept very simple, P2 will succeed whether
'THIS' is found or not; but a more reasonable DESCRiption would
contain many more parts, giving many alternate possibilities, in
which some combination, and not just NAME, would be needed to
succeed - possibly a second characterizer would succeed from
just NAME, but would not imply the decision to choose and output
with such high weight, so that it would only make for a slight

tendency that would override only for want of anything stronger.)

A real apple would be perceived in two dimensions, and
would have no delimiting spaces surrounding it. DECIDER-1
could easily be extended to handle two dimensions (rows would
have to be stored and used along with columns). Even without
that, DECIDER-1 can handle actual pictures with all rows
stretched out in one dimension, since DELimiterS like "001" and
"10 will chop out edges and portions of shapes, and the
DESCRiption parts that Extract from the raw EXTERNAL environment

can specify any strings.

Toward More Realistic Decisions About Complex Environments

Of course naming is a trivial problem until there is some
possibility of confusion among objects. The classic pattern
recognition problem arises when there are several possible object-
names, and recognition is difficult, because objects with the same

name vary in strange and unknown ways, and because there is no

23 - Uhr

simple partitioning between objects with different names. The
following statements show how this is handled. M-4 characterizes
*PEAR in the same way that M-1 characterized *APPLE, as a whole-
template. M-5 and M-6 (which M-7 puts on the PRIMitiveS with which
statement 2 initializes IDEAS) characterize an apple and a pear

by using descriptions of some of their parts and qualities.

*PEAR = 'D=]i=I #*PEAR-TREE P 7 JC=PEAR 9 FRUIT 5 OBJECT 7]' M-4

M-5 = 'D=7 G *STEM 4 G *PEAR-SHAPE 3 E 00111 3" M-5
+ 'E 011011 4 G *GOLD 3]i=S *PEAR X 9 S #APPLE X 3]'

M-6 = 'D=6 G *APPLE-SHAPE 5 E 0111110 3 G *RED 4 ' M-6
+ ' JI=S *APPLE X 12]"

PRIMS = '"M-5P 27X JM-6P 23X |

A full-blown program would have a large number of characterizers
of this sort (typically, 20 to 100, but occasionally several thousand
characterizers are used to handle 10 or 20 different pattern sets,
where each characterizer can, like M.5, imply several different
names.) And each characterizer can have many more parts, so that its
threshold can be exceeded by the combined weight of a number of

different combinations of some of them.

DECIDER~-1 can now begin to handle inputs like:
NAME THIS *STEM *PEAR-SHAPE #GOLD *RED] (or) I-3
NAME 0011100,0111110,1111111,0110110, *STEM *GOLD] -4

(where a 6-column by 4-row matrix of black and white has been

encoded into a string of 1's and 0's, with a comma ending each row).

M-5 and M-6 as shown imply only objects to be added to the
SCENE. But they could also imply transforms to be merged into

24 - Uhr

IDEAS. This means that the information that has been uncovered

so far can direct and focus the system's attention (see Uhr, 1973c,
1973b, chapter 8). Only the characterizers on PRIMitiveS are

always put on IDEAS. (Note that they may not always be used,

for if any action is implied with a higher combined weight DECIDER~-1
will choose it first - but this depends upon the relative weights

that the programmer, or the program's learning routines, have

assigned to primitives as opposed to implied actions).

"Understanding" and Responding to Variant Commands,
and Suggestions

We can easily allow DECIDER-1 to handle a number of variant
command forms, all meaning the same thing - "NAME!". The

following statements show how this can be done:

WHAT = 'D=]I=I P3P 4]' M-8
THIS = 'D=JI=I P3P 3]JC=LOC 5 | M-=-9
HERE = 'D=]i=I P3 P 3]JC=LOC 4]! M-10
P3 = 'D=12 G WHAT 4 GLOC 4 GIS 2 GSEE2 G DO 2 "' M-11

'I=1 NAME N 43]'

We can now input, eg:
WHAT IS THIS *APPLE *PEAR] I-5
WHAT DO YOU SEE HERE #STEM *APPLE-SHAPE #PEAR-COLOR] I-6
and a number of other variants. Depending upon the number of
characterizers for such parts and qualities as *STEM and *PEAR-COLOR,
the system will accrue more or less information for the actual

pattern naming decision.

25 - Uhr

Note how P3 and P2 (M-11 and M=3) both imply the transform
act of Naming. And this THIS and HERE both belong to the LOCation
class, P3's Description can refer to LOC, which will succeed if

either THIS or HERE is in the input.

External Objects and Internal Needs can also Imply Commands

It is not essential that the command be made explicit by
verbiage like "WHAT IS THIS". We can have objects like *APPLE
and *PEAR implicitly "command" actions, like NAME, as follows:
#*APPLE = ']JI=I NAME N 1 S #APPLE X 9 JC=APPLE 7 FRUIT 6 ' M-1.V
+ \"'V'-'JBJ]ECT 8 1

New - Implies the act of Naming, with a low weight.

Any explicit command in the input, eg. DESCRIBE or FIND
will, because it is assigned a higher weight, override such an
implied Name command; but when no such explicit command appears
DECIDER-1 will name by default. (Note that, for variety, statement
9 defaults to Describe, if absolutely nothing is left on IDEAS.)

DECIDER-1's BEHAVIOR: DESCRIBING

Up to this point we have examined variants on Naming. The
following addition allows DECIDER~-1 to Describe or Name, so
that for the first time it really chooses among alternate actions:

DESCRIBE = 'D=]1=I OBJECT D 59]' M-12

Now an Input like:
*BOX DESCRIBE THIS *APPLE *PEAR *APPLE] -7
triggers the Describe routine (statements 46-49). This gives a very
stylized description: all object names with TOTAL weights above

the pre-set CHOOSE level are output. We might want to augment

26 - Uhr

P3 (M-11) as follows, so that an Input like WHAT IS HERE implies
both Naming of a single object and Describing of all objects. (Once
again, this makes sense only when many more characterizers are
used, including ones whose implications and weights have been
learned from past experience.) Now Name and Describe will
be multiply implied, and whatever is first taken from IDEAS will
prevail. Given:
P3 = 'D=12 GWHAT 4 G LOC 4 G IS2 G DO 2 Ji=I OBJECT D 46 ' M11.V
+ 'I NAME N 43]'

with the weights shown, 46 for Describe will override 43 for
Name - except if one of the other transforms also implies Name.
(Note that anything can Imply anything, if we wish, including

Describe and Name.)

We can allow the user variety in the kind of description he

requests, e.g.:
DESCRIBE FRUIT *APPLE *BOX #*CRACKER *PEAR] I-8

by adding transforms that will lead to descriptions containing
only members of the class of objects designated. (If the "class"
is an object, like *APPLE, it will output all instances and their

locations.) With:

DESCRIBE = 'D=]1=I OBJECT D 59 I P4 P 63 |' M-12.V
P4 = 'D=73 G OCLASS 6 G DESCRIBE 7 JI=1 CLASS C 61]' M-13
FRUIT = ']JC=OCLASS 4 [' M-14

any word in the Input that has (as in M-14) Object CLASS as one of
its classes will trigger the Class describing transform first (with a

weight of 61). DECIDER-1 will then go to C (statement 50) where

27 - Uhr

the designated class (FRUIT) is put into TRANSform, replacing
OBJECT (which is the most general class). Then it goes to D, to

Describe, giving only members of that class.

FURTHER EXAMPLES OF DECIDER-1'S BEHAVIOR:
ACTING UPON THE SCENE

DECIDER~1 can perform several actions that do not merely
talk about the scene, by naming or describing, but actually change

it.

Finding Objects

Probably the simplest action upon an environment is to find

and touch an object, as in response to an Input like:
*APPLE TOUCH THE *BOX APPLE *PEAR *PAIL | I-9

DECIDER-1 shows it is touching an object by placing a bracket
around it. To do this, we need new characterizers to understand

commands like "FIND" or "TQUCH":

FIND = 'Ji=I P5 P 59]' M-15
TOUCH = 'JI=I P5 P 61]' M-16
P5 = 'D=67 G NAME 9 JI=I X F 65 [' M-17

APPLE = 'I=I *APPLE P 7]JC=NAME 9 NFRUIT 5 OBJNAME 6 | M-18

P5 is implied with a high weight by the words FIND or TOUCH.
(We would expect many more characterizers that implied P5 with
a full memory.) P5 looks for NAME, which will be among the classes
of many naming words (e.g., APPLE in M~18). Thus when both a

"find" word and a NAMEing word are found, P5 fires, Impling

-

28 - Uhr

the Find transform with the high weight of 65. Then Find (51-54)
gets the particular NAME, looks on SCENE for an OBJECT of that
NAME, then looks in the raw EXTERNAL view for that object, and
outputs EXTERNAL with the object in brackets.

Note how the name word APPLE also Implies the Perceptual
transform *APPLE, to look for an *APPLE. Actually, it should imply
all characterizers that imply *APPLE (these would include M-6
and M-5, and still others). Better, it would imply an internal
node that represented the concept of apple, where back-links would
point to the characterizers that implied apple, and these would be
added to IDEAS. Thus the word would focus the system to start

looking for the thing.

Memory transform nodes M-1, for the object *APPLE, and
M-18, for the word APPLE, handle things in slightly different ways,
because they have been tailor-made for their specific processes.

It is instructive to compare them, and to consider generalizing
them, and the programthatinterprets them, so that words and objects,

and the links between them, are handled in exactly the same way.

Manipulatin g Objects

Let's add the Memory items needed to handle Inputs like:
*APPLE SARAH PUT APPLE PAIL *BOX *PEAR *PAIL] (or) I-10
#BOX3 ROBOT PUSH BOX2 NEXT BOX1 #APPLE #BOX1 *PEAR #¥BOX2 1-11

We'll do this in the simplest possible way, holding in abeyance
a number of interesting problems. Let's ignore the issue of the

actor, as though DECIDER-1 assumes it should always act. (Very

29 - Uhr

interesting issues arise when the system must decide for whom a
command or other statement is intended.) The Parsing transforms
will be very simple, so that DECIDER~-1 recognizes only very
stylized commands. That's o.k., since more Memory statements
would give sophisticated parsing. But the Move routine assumes
it gets information in the order: ACTION OBJectA OBJectB. More
code would be needed to extract this information from more complex
commands. But note how junk words, like THE and AN, will be

ignored.

The specified ACTION is ignored, DECIDER~1 assuming it is
to Move OBJectA to OBJectB. More code is needed to interpret and
effect different actions, and to handle different relations (which are
also ignored). In fact the whole Move routine is quite rudimentary
and unsatisfactory; its purpose is merely to show how this sort of
thing can be triggered. (Note, though, how similar it is to other

response routines, e.g., Find and Describe.)

To contrast with Find, the Move routine changes the SCENE
rather than the raw EXTERNAL input, and outputs the new LOCation
of the move OBJect. What is really needed is a routine that cleans
up the internal information on SCENE, and then outputs the objects,

and higher-level objects, in their new locations.

DECIDER-1 needs the following in Memory to handle Inputs
like I-10 and I-11:

PUSH = 'D=]I=I P6 P 34]' M-19
PUT = 'D=]i=I P6 P 33]' M=-20
P6 = 'D=69 G OBJNAME 37 G VESSEL 37 JI=I MOVE1 M 65 |' M-21
BOX = ']I=I *BOX P 6]C=NAME 9 VESSEL 7]' M=-22

BOX2 = 'Ji=I #BOX2 P 9]JC=BOX 12 NAME 6 VESSEL 4]' M-23

-

30 - Uhr

Similar lists are needed for other things, like PAIL, BOX1, .
PLACE, *BOX1. But note that actor words like SARAH and ROBOT,
and relation words, like NEXT, are ignored. (A better program would

handle them.)

P6 will fire the transform to Move, with the high weight of
63, only if it has been fired by either PUSH or PUT, and then its
Description finds both an OBJect NAME and a VESSEL. We could
add more memory to have other lower-~level things, like VESSEL,

imply P6. But we need more code to handle:
#*BOX ROBOT PUSH BOX TO BOX #%PAIL *BOX] I-12

For DECIDER-1 must note that it has bound an object (the first
*BOX) as OBJectA of the command, and not bind it again as
OBJectB.

Internal Needs Can Imply Transforms to Characterize or Act

Still another impetusto action can be handled in the same
way - the system's INTERNAL needs and goals (MI). A need
(eg hunger) cam imply a cta racterizer like M-5 or M-6 that looks
for food (#*APPLE and *PEAR). It can also imply "EAT an object
that belongs to the FOOD class." Similarly, an object like
*APPLE can imply the action EAT as well as implying the word
APPLE and a higher-level construct like *APPLE-TREE. Once again,
all these implications, no matter from what source, are combined,

and then chosen among.

DECIDER-1 has HUNGER, THIRST, and FIND-RICHES on
INTERNAL (MI). Each should name a memory statement pointing to
a perceptual transform, like FOOD, WATER, GOLD, and FIND.

31 - Uhr

Building and Using Sequences of Actions

More actions must be coded, to grasp, eat, drink, and
covet, and to go to. But note how similar are the actions *SARAH
GOTO *BANANA and *BANANA INTO *BOX. (Note that these are
internal statements driving the actions, not the word commands -
e.g., SARAH GOTO BANANA.) The former moves the self (as though
OBTJA) to OBJectB. In fact a proper encoding of an act like *SARAH
PUT #*BANANA *BOX would have *SARAH GOTO *BANANA; *SARAH
GRASP *BANANA; *#SARAH GOTO *BOX (with the grasped banana):
#*SARAH TUNGRASP *BANANA.

Now an action is a whole sequence of sub~actions which must
be effected step by step, over time, at the same time the system
perceives and monitors new EXTERNAL environments. And recoding,
to get a set of basic actions, will make apparent the similarity
between many. E.G., FIND *APPLE becomes MOVE OBJectA
(= *SELF) to OBJectB (= #*APPLE) (or MOVE *PAW TO *APPLE). And
EAT *#APPLE becomes MOVE *PAW *APPLE; GRASP *PAW #*APPLE;
*MOVE *PAW *MQUTH; etc.

ANSWERING QUERIES WITH FACTS STORED
IN PERMANENT MEMORY

Up to now DECIDER-1 has Named, Described, Found, and
Moved parts of the scene input to it from the external world., We
will end with an action that follows network links into its memory
for facts, in order to retrieve answers that have been implied by

input queries.

32 - Uhr 27 - Uhr

This is of special interest, for it demonstrates how this
kind of fact retrieval can be done using the same Perceptual transform
mechanism used for characterizing and for parsing. A factis
IMPLIED by enough elements of its DESCRiption to exceed THRESH-
old, where question-words are parts of this description, and have

high enough weights to preponderate.
To handle an Input like:
WHO LIKE BANANAS] (or) I-12

A CHIMP LIKES WHAT] I-13

DECIDER-1 must be given fact transform nodes of the following

sort:
BANANAS = ']i=I MEM1 P 33]|C=NAME 4 FRUIT 3 OBJNAME 2 ' M-24

CHIMP = 'Ji=I MEM1 P 32]JC=NAME 3 ANIMAL 7 J' M-25
MEM]1 = 'D=93 G QWORD 45 G LIKES 17 JI=I FACTL A 77 ' M-26
WHO = ']JC=QWORD 3 [' M-27
WHAT = ']C=QWORD 3]' M-28
FACT1 = 'A CHIMP LIKES BANANAS' M-29

Now the specified parts (BANANAS, CHIMP) of the fact imply
the MEM1 node that looks for the other parts (LIKES) and the Question
WORDs (WHO and WHAT). If MEMI1 succeeds it triggers the Answer
transform, which puts FACT! in TRANSform, FACT1's contents ("A
CHIMP LIKES BANANAS") is immediately output (statement 60).

The reader might try his hand at altemate memories for this
fact, and also try to add other memory nodes, for this and for

other purposes.

33 - Uhr

DISCUSSION: FAULTS AND POSSIBLE IMPROVEMENTS

A number of functions are weak, but many can realtively

easily be improved.

Locating Objects

DECIDER-1 can easily be coded to find the closest instances
of the DESCRiption OBJects it is looking for in the SCENE, and use
the discrepancy in distance as a negative factor when computing
how highly that TRANSform is implied. It could further infer the
location of the object, by having stored with each part the relative
location of the whole object with respect to that part, computing
an overall average relative location, and then using this to pro-
ject where the IMPLIEDS should be (if objects) or should be

applied (if transforms).

Better decisions can be made as to whether two implications
of the same object in slightly different locations mean a single, or
two different but identical, object(s) is/are there. The system can
compute a "near" parameter, as a function of the total size of the
scene and/or the average size of objects, and use this to make the

decision.

Ordering and Concatenation

Characterizers' DESCRiptions can be of ordered objects, but
not of objects that actually touch, that is, are concatenated. I
suspect that simple ordering is preferable in the real world, since

it allows for interspersed things - grunts, noise, objects, etc.

34 - Uhr

And when we generalize to two dimensions (for this, see Uhr, 1971)
we can no longer use concatenation anyway. But in any case it
would be quite easy to have the system check the relative locations
of objects, when concatenation was asked for. Better would be

to have the system check relative locations in all cases, so that
distances could be asked for (concatenation now merely becoming

a distance of zero), and have the characterizer succeed to the

extent it is near the projected location.

Merging Implieds into the Scene and into the Ideag List

DECIDER-1 keeps one list, SCENE (of objects) and a second
list of IDEAS (TRANSforms of all sorts - to characterize, to parse, or
to act). These two lists are quite similar, and it would be possible
to code a variant program that handled them in exactly the same way.
The system would loop through IDEAS, and all implied things would
be merged onto a NEWIDEAS list and, after an entire pass through
IDEAS, NEWIDEAS would be added to the end of the SCENE, and
IDEAS would be set to contain NEWIDEAS (which would be erased),
and the program would loop back ghrough IDEAS.

To do this, the formats for SCENE and IDEAS would have to be
generalized. In DECIDER-1 SCENE contains the object's CLASSES
(and also the object listed among the classes, so that the system
can treat any designations of the object as though a class
containing itself);it also contains the object's LOCation (actually,
an approximation averaging the LOCations of the last parts of the
DESCRiptions found). But IDEAS contains a list of each CLASS of the
DESCRiption found, along with the specific OBJects that were the

35 - Uhr

found members of these classes, and their LOCations in SCENE:
but it does not contain the CLASSES of the object. This is simply
a result of tailoring each list to contain just those pieces of
informm tion that will be needed. But we could have each list
contain all the information, with a certain amount of wasted effort
and space. This would also mean that objects would be put onto
IDEAS, and TRANSforms would be put on SCENE - wastes of effort if
they are not used. But they may well be. For example, Answering
queries could be improved if GOTs were stored with fact-things on

SCENE.

Parallel-Serial Processing, Using Several Lists

DECIDER-1 merges all IMPLIEDS transforms onto the single
IDEAS lists, and takes the single most highly weighted implied
TRANSform from IDEAS to apply next.

A more realistic procedure, at least for the perceptual processes,
would apply a whole get of characterizer TRANSforms in parallel.
The eye applies a number of different characterizers in parallel,
where each characterizer is iterated throughout the eye's retinal
array. The transforms from the retina are then similarly characterized
by another parallel iterated set of characterizers, and this goes on
for a series of transformations of unknown length, but roughly on
the order of from 5 to 15 layers. A more complete model should
almost certainly have such a structure, which will exhibit many
more of the phenomena of sensory pre-processing, perception,
chunking, and concept formation, and heirarchical compunding, as
it successively transforms from layer to layer. (See, for example,

Uhr, 1972, on "recognition cone" models.)

36 - Uhr

Similarly, the separate sense modalities, such as hearing
and touch, first must apply sets of transforms to funnel information
into the system. And the system's internal needs must be
characterized and recognized; there is no built-in neon sign that

flashes an a priori understood signal like "I AM HUNGRY".

Coordinating Perceiving and Acting

DECIDER-1 keeps looping through the TRANSforms on IDEAS
until it applies an action transform, which branches it away from
Perception and into the designated action. The action is then
executed, with a simple rather ad hoc routine, its results are

OUTPUT, and DECIDER-1 INputs the next experience. -

This is overly simple, albeit sufficient to exhibit the central
point of this paper - that perception, linguistic parsing, fact
retrieval, and at least parts of actions (the location of objects)
can all be handled simultaneously, using the same simple mechanisms.
But a more sophisticated system would have to spend some time and
effort deducing the correct action sequence. And it should be
able to branch back to search and perceive some more, if the objects
it must act upon have not yet been found. If the system is inter-
acting with an environment that changes over time (Uhr, 1973c)
then the needed objects may not yet have come into view, and the
system must put them, as expecteds, onto IDEAS, or whatever

list controls its perceptual processes.

Now the system is confronted with the decision as to whether
to continue executing the steps - deducing them, searching and

waiting for the objects to which they apply - of a chosen action

37 = Uhr

sequence, or perceiving, or, possibly, switching into a new and
different action sequence that is now more highly implied. A
straightforward way to handle this is to separate the IDEAS list

into several lists, call them LOOKFOR (which contains perceptual
characterizers, linguistic rewrite rules, and transforms that search
into the memory network) and ACTIONS (which are the transforms

that rigger responses), and sort IMPLIEDS onto either LOOKFOR or
ACTIONS. Now there are several options: The system can cycle
only through LOOKFOR, until some decision rule is satisfied - eg.
all, or a set number of characterizers have been applied, or something
on ACTIONS has achieved a sufficiently high total weight. But the
program needn't switch entirely into an action mode; rather, it

can continue to apply characterizers from LOOKFOR interleaved with
ACTIONS. This lets the action-sequence that it is trying to generate
put things onto LOOKFOR to be applied, in order to help carry out

the actions. It also lets the system keep monitoring its environ-
ment, for feedback that its actions are leading to expected conse-
gquences, and in case interesting, or dangerous, new things appear
(this is something that is done by, and is probably necessary for

the survival of, all living systems).

As a further consequence, new IMPLIEDS will be merged into
ACTIONS, which raises the possibility that the action-sequence
presently being executed may no longer be the most highly implied.
So the program can re-decide, whether to continue or to start on some
new track. (It seems reasonable to give the action presently being
executed a certain amount of preference, eg. by adding an "inertial"

constant to its total weight when comparing it with other possible

38 - Uhr

actions. Otherwise actions will be helter-kelter, dropped when

half-finished.

Up to now I have assumed that only one action-sequence will
be executed at a time. This is the simplest assumption and, indeed,
living systems seem far more limited on the response side (at least
in their consciously controlled actions) than on the perceptual side,
where there is much parallel processing. But we are now in a
position to have the system choose to work on several responses,
either separately, or trying to deduce combined action-sequences

that attempt to maximize returns while minimizing effort.

39 - Uhr

REFERENCES

Andrews, D. R., Atrubin, A. J., and Hu, K. The IBM 1975 optical
page reader: Part III: Recognition and logic development, IBM
J. Res. and Devel., 1968, 12, 364-372,

Brice, C. R. and Fennema, C. L. Scene analysis using regions.
Artificial Intelligence, 1970, 1, 205-226.

Feldman, J. A. et al., The Stanford hand-eye project. Proc. 1lst Joint
Int. Conf. on Artificial Intelligence, Washington, D. C., 1969,
521-526,

Fikes, R. E. and Nilsson, N. J. STRIPS: A new approach to the
application of theorem proving to problem solving. Proc. 2d
Joint Int. Conf. on Artificial Intell., London, 1971, 608-620.

Gardner, Beatrice T. and Gardner, R. A. Two-way communication
with an infant chimpanzee. In: Behavior of Nonhuman Primates,
Vol. 4 (A. Schrier and F. Stollnitz, Eds.) New York: Academic
Press, 1971, 117-184.

Gardner, R. A. and Gardner, Beatrice T. Teaching sign language to a
chimpanzee, Science, 1969, 165, 664-672.

Jordan, Sara R. Learning to Use Contextual Patterns in Language
Procegsing. Unpubl. Ph.D., Diss., University of Wisconsin,
Madison, 1971.

Munson, J. H. Experiments in the recognition of hand-printed text.
AFIPS Proc., 1968, 33, 1125-1138.

Nilsson, N. J. A mobile automaton: an application of artificial
intelligence techniques. Proc. 1st Joint Int. Conf. on Artificial
Intelligence, Washington, D. C., 1969, 509-520.

Premack, D. The education of Sarah. Psychology Today, 1970,
September, 54-58,

Premack, D. Language in Chimpanzee, Science,

40 - Uhr

Raphael, B. Programming a robot. Proc. IFIP Congress 68. Edinburgh,
1968, H135-H140.

Sauvain, R. and Uhr, L. A teachable pattern describing and recognizing
program. Pattern Recognition, 1969, 1, 219-232.

Shapiro, S. C. and Woodmansee, G. H. A net structure based rela-
tional question answerer. Proc. lst Joint Int. Conf. on Artificial
Intell. Washington D. C., 1969, 325-346.

Simmons, R. F. Answering English questions by computer: a survey,
Comm. Assoc. Comput. Mach., 1965, 8, 53-70.

Simmons, R. F. Natural language question-answering systems: 1969,
Comm. Assoc. Comput. Mach., 1970, 13, 15-30.

Uhr, L. Flexible linguistic pattern recognition. Paftern Recognition,
1971, 3, 363-384.

Uhr, L. Pattern Recognition, Learning and Thought. Englewood-Cliffs:
Prentice-Hall, 1973b.

Uhr, L. and Vossler, C. A pattern recognition program that generates,
evaluates and adjusts its own operators. AFIPS WJCC Conf.
Proc., 1961, 19, 555-569.

Uhr, L. and Kochen, M. MIKROKOSMs androbots. Proc. 1lst Joint Int.
Conf. on Artificial Intelligence, Washington, D. C., 1969,
541-556,

Uhr, L. A Primer for EASEy (an Encoder for Algorithmic Syntactic English
that's easy). Computer Sciences Dept. Tech. Report, Univ. of
Wisconsgin, Madison, 1973. a

Uhr, L. Layered "recognition cone" networks that preprocess, classify
and describe. IEEE Trans. Comput., 1972, 21, 758-768.

Uhr, L., The Description of Scenes Over Time and Space, to be
submitted for publication, 1973c.

Winograd, T. Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language. Unpubl. Ph.D.
Diss., MIT, 1971.

Zobrist, A. L. The organization of extracted features for pattern recog-
nition. Pattern Recognition, 1971, 3, 23-30.

41 - Uhr

Appendix: A Note on Programs (See Uhr, 1973a for details)

Numbering at the right identifies statements, and allows for com-
parisons between programs. M indicates initializing Memory
statements: 1 indicates cards that are Input by the program. .V
indicates a Varient, .1 an additional statement.

A program consists of a sequence of statement's, and END card,
and any data cards for input. (Statements that start with a paren-
thesis are comments, and are ignored.) Statement labels start at
the left; gotos are at the right, within brackets (+ means branch

on success; - on failure; otherwise it is an unconditional branch).
4+ signifies a continuation card.

Strings in capitals are programmer-defined. Strings in underlined
lower-case are system commands that must be present (they would
be keypunched in caps to run the program). These include input,
output, erase, set, list, get, start, call, that, and the inequalities.
Other lower~case strings merely serve to help make the program
understandable; they could be eliminated.

EASEy automatically treats a space following a string as though

it were a delimiter; it thus automatically extracts a sequence of
strings and treat them as names. The end~bracket] acts similarly
as a delimiter, but the programmer must specify it. The symbol #
is used to stand for any delimiter (a space,] or #).

The symbol $stringl is used to indicate "get the contents of
string I, and treat it as a name and get its contents" (as in SNOBOL).

Pattern~matching statements work just like SNOBOL statements:

there are a) a name, b) a sequence of objects to be found in

the named string in the order specified, c) the equal sign (meaning
replace), and d) a replacement sequence of objects (b, c, and/or
d can be absent). that string I means "get that particular object"
~ otherwise a new string is defined as the contents of stringI, which
is taken to be a variable name.

size(...) is a built-in function that counts the symbols in the
string(s) named within parentheses. ABS(...) is a programmer-coded
function to compute the ARSolute value of the expression within
parentheses. (I don't bother to show the code.)

