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THE DESCRIPTION OF SCENES OVER TIME AND SPACE

Leonard Uhr

ABSTRACT

This paper explores techniques for pattern recognition and des-

cription of more than one object, where objects extend over time as

well as over space. Three major interrelated issues are examined:

A. Describing, as opposed to simple naming;

B. Time, and the way a system can build up a short—-term
perceptual memory to handle and make use of changing
information;

C. Glancing around, in order to recognize and describe.

Two actual computer programs are presented, to make clear
exactly what the issues are and how they are handled, and to make

comparisons possible.

Program DESCRIBE-1 uses configurational characterizers, and

describes by outputting several highly-implied objects.

Program DESCRIBE-2 handles inputs that extend over time. It
glances about and gives structural descriptions of the parts of ob~-

jects.

A number of variants are examined, to explore how a program

can describe with more variety.

Descriptors: Scene Analysis, Describing, Pattern Naming, Time,

Flexible Pattern Recognition



1 - Uhr

THE DESCRIPTION OF SCENES OVER SPACE AND TIME

Leonard Uhr

INTRODUCTION

Most pattern recognition research has been concerned with the
assignment of a single name to an input field. But rarely do we find

single, isolated objects in the real world.

Describing Scenes of Several Objects that Interact Over
Time and Space

Rather, we need programs that describe scenes of several inter—
acting objects, and further describe each object, commenting upon

parts, qualities, and other details of interest.

Just as they are not unitary things isolated in space, real-world
objects are not isolated, as in a photo, in a static moment of time.
But virtually no research has been done on the recognition of objects

that come, go, move, and change over time.

Once we introduce time we raise a number of interesting issues:
What kind of short-term perceptual memory is needed? How does the
system handle, and coordinate, time for perception, and for response (in
our case, for describing)? How can the system use information
gathered so far during perceptual interaction with its environment in
order to help it glance about and attend to objects as they come into

view at future times?

These are extremely complex and subtle, and interesting, ques~-

tions. This paper is a first attempt to tackle them.
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The Use of Bare-Bones EASEy Programs to
Make Things Clear

Actual computer programs are presented, described, and discussed,
in order to make completely clear exactly what is happening, and to
allow us to examine a variety of variations. These programs are kept
to their bare bones, and coded in a relatively simple English-like
variant of SNOBOL called EASEy (an Encoder for Algorithmic Syntactic
English that's Easey). Programs and variants are numbered so that
they can be compared one with another, and the Appendix and the EASEy
primer (Uhr, 1973a) should be helpful when details of the code are not

apparent.

These programs are designed to demonstrate a variety of possible
mechanisms, to be compared and contrasted one with another. They
depend upon the particular set of characterizers given them (by their
programmers, or by learning routines). We have not been able to ex~
amine within the brief confines of this paper the kind of behavior they
will exhibit, and the variety of sensed scenes they will handle, given

a sufficiently large and appropriate set.

HISTORY

Relatively little research has been done on general systems that
describe the various objects in a scene, along with their structure of
parts, qualities, defects, or other characteristics. On the contrary,
almost all pattern recognition research has concentrated on the as~
signing of a single name to an input. When scenes are examined,
they tend to be treated in an ad hoc way, using routines designed to

find special features of interest.
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Systems for Recognition of Continuous Handwriting
and Speech

Some research has been done on recognizing handwriting, where
several letters continue into one another, to form words and lines
(e.g., Frischkof and Harmon, 1961); Mermelstein, 1964; Eden, 1968;
Uhr and Vossler, 1963). And some attempts have been made in speech
recognition to describe the spoken utterance in terms of their basic
components, (e.g., formants, (Forgie and Forgie, 1959),
phonemes (Reddy, 1967). But virtually all of this work first decom~-
poses the scene, whether of letters or sounds, into individual units,
thus reducing the problem to standard single-name pattern recognition,

and then assigns a single name, using standard techniques.

Systems that Build Internal Descriptions to Name

Some programs that name develop a rich internal description of the
pattern in order to achieve the name. The best examples of such an
approach are probably the "syntactic" recognizers (e.g., Grimsdale
et al, 1959; Shaw, 1967; Ledley and Ruddle, 1965; Marrill, et al.,
1963; Narashiman, 1966, 1971; Uhr, 1971; Fu and Swain, 1971),
since they build up structures of larger and larger wholes from mean-
ingful parts. But in fact almost any naming program that applies a
set of characterizers to an input pattern can be thought of as building
up an internal description, of those characterizers that succeed, and
where, and those that fail. This information might be output, as a
description; it would be useful and meaningful to the extent that the
characterizers were ones that made sense to the human receiver. And
any recognizer could "describe" by outputting some of the alternate

implied names that it might have chosen, but didn't.
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Systems that Examine Continuous Fields of Qbjects

A variety of important problem areas confront us with scenes of
objects. These include many biological preparations, e.g., blood
cells, nerve tissue, chromosomes; X~rays, e.g. of heart, lungs, or
bones; and aerial photos of cities, country side, or cloud cover. Up
to now such work has concentrated on extracting particular features
of interest, e.g., an enlargement or other anomaly of an organ; an
aberrant blood cell; a texture of a certain sort; a break in a bone; an
edge of a cloud; a boundary between two fields of different crops.
Rarely is a complete description asked for or given; rather, a special-
purpose program is coded to analyze and search for particular signs
of interest. (See e.g.,Lipkin, Watt and Kirsch, 1966; Rosenfeld, 1969;
Lipkin and Rosenfeld, 1970; Hall, et al., 1971; Sutton and Hall, 1972;
Ledley, 1972; Hall et al., 1972; Ausherman et al, 1972).

Kirsch (1964), Londe and Simmons (1965), Fischler (1969),
Firschein and Fischler (19 71), Sauvain and Uhr (1969), Uhr (1968,
1972, 1973b), are examples of research that attempts to develop
more complete descriptions, though usually under the assumption
that only one, or at most two, simple, standard, noise-free objects

are present in the scene.

Systems for the Description of Three-Dimensional Objects

A good deal of interest has arisen in recent years in the problem
of recognizing objects that overlap, often in three dimensions, in the
fields of computer graphics (Roberts, 1965, Guzman, 1968) and
robots (Brice and Fennema, 1970). But most of this work very care-
fully attempts to find the edges that are predicted to be present for one

of the small number of alternate possible objects.
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Recognition Over Time

Virtually no research has been done with objects that move or
otherwise change over time, except for special-purpose systems,
such as those that track clouds (e.g., Lillestrand, 1972; Smith and
Phillips, 1972). Nor is the author aware of any systems that build
up a short-term perceptual memory in order to handle such continually

changing inputs.

Glancing About, and Conversation

Relatively little research has been done on pattern recognition

systems that decide where to look next as a function of what informa-

tion they have gathered so far. Most "concept formation" systems
have a very simple and rigid structure of this sort (see e.g., Kochen,
1960; Hunt, 1962; Towster, 1969). Uhr (1969, 1973b, chapter 8) has

examined more flexible systems of this sort.

A PROGRAM FOR TWO-DIMENSIONAL RECOGNITION AND
DESCRIPTION

We will now examine two programs that explore the problems of
describing objects that change over time. The first, DESCRIBE~1,
makes minimal changes to a relatively typical configurational pattern

recognizer (see Uhr, 1973b, chapters 2~4) to allow it to describe.

DESCRIBE-1 handles recognition in two dimensions, using con-
figurational characterizers that are sensitive to interactions among
their parts. It insists that each part be exactly positioned to match;
but characterizers are threshold elements, so that they can succeed

when any sufficiently highly weighted subset of their parts succeeds.
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It gives a first approximation to a description, since it outputs all

names that have been sufficiently implied to exceed a CHOOSE™ level.

(OVERVIEW DESCRIBE-1. Uses weighted, positioned configurations

in 2 dimensions.

(Qutputs all NAMEs™ implied above CHOOSE level. DESCRIBE-1
INITialize the CHOOQOSE level and the configuration CHAR~

acterizers. M1-MN
UPDATE Erase the old PRESENT and the ROW Present 1

IN input the new PRESENT, ROW by ROW: put the CHAR~
acterizers on LOOKFOR 2-5
PERCEIVE Get each CHARacterizer, its THRESHold,
DESCRiption, and IMPLIEDS 6-8
Get each PART, its ROW and COLumn location, and 9-10
WeighT, from the DESCRiption, and look for it,
positioned, in the PRESENT; and add the WeighT
to TOTAL if the part is found 11
TEST This CHARacterizer succeeds if TOTAL is above
THRESHold. 12
IMPLY Get each NAME and its WeighT from the IMPLIEDS, 13
and add this WeighT into the TOTAL for this NAME 14-16
on MAYBE
DECIDE Get each NAME and its TOTAL from MAYBE, and, 17

if TOTAL is higher than the CHOOSE level, output 18-19
it.

*Capitalized strings in the text and the OVERVIEW s refer to programmer-

defined string names in the programs.
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(DESCRIBE-1. (Handles 2-dimensional patterns. CHARacterizers are WeighTed, DESCRIBE-1
(positioned configurations that succeed if match above THREshold. Applies
(CHARacterizers till a NAME's TOTAL implied weight exceeds CHOOSE level

Set CHOOSE = 30 M1
(Characterizers should go here.

UPDATEZ erase PRESENT, ROWP 31
(input the PRESENT pattern ROW by ROW)
IN input TYPE, Row till ] [+to $TYPE —-to END]? 2
S ROWP = ROWP + 1 3
On PRESENT set ] ROWP] ROW ] [to IN] 44
R Set LOOKFOR = 'CHARl CHAR2 ... CHARN'' 5
PERCEIVE from LOOKFOR get CHAR = [~ DECIDE] 6
(Look for each OBJect in the DESCRiption at ROW and COLumn specified)
from $ CHAR get THRESH 'D=' DESCR 'Ji=' IMPLIEDS | [- PERCEIVE] 57
erase TOTAL 8
P1 from DESCR get PART WT ROW COL = [~ TEST] 69
from PRESENT get ] that ROW ] call COL symbols LEFT, getthat PART [-P1]310
TOTAL = TOTAL + WT [P1] 11
TEST is THRESH lessthan TOTAL? [- PERCEIVE] 12
(If total WeighT of OBJects got exceeds THRESHold, merge IMPLIEDS NAMEs onto MAYBE
IMPLY  from IMPLIEDS get NAME WT = [~ PERCEIVE] 13
from MAYBE get # that NAME # TOTAL = [~ I1] 414
WT = TOTAL + WT 15
I1 on MAYBE list NAME WT [IMPLY] 16
(output_ description with all NAMEs implied above CHOOSE level.
DECIDE from MAYBE get NAME TOTAL = [~ UPDATE] 17
is TOTAL lessthan CHOOSE ? [+ DECIDE] 18
OUT output '"THERE IS ' NAME [DECIDE] 19
end? -
S 00111110] (example data cards for an *F? in an 8 by 8 matrix) I1
S 00110000] I2
S 00100000] I3
S 00011110] 14
S 00011111] I5
S 00110000] 16
S 00110000} I7
S 00100000] 18
R ] 19

1NOTE. See the Appendix for a brief description of EASEy programs. (Examples of the 6
major program constructs discussed in the Appendix are superscripted 1 through 6 in this
program.) Caps are used in the text to refer to program constructs.
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If given good characterizers for the letters, DESCRIBE~1 will
output the name F and, probably, a few other names like C, I, and,

possibly, E and T. For good performance, the program would need

several hundred characterizers, of the following sort:

DESCRiption
e

IMPLIEDS
— )

\

CHARL = '5D=011 31 2 010 2 4 3 1111 6 5 4 I=F 9 E 6 C 1 ]'
LTI |
g
c% o EE%O s 9
= 2 & O < O
T o z 2
= 2

And it would also need more code to allow these characterizers to
succeed within some region (e.g., Uhr and Jordan, 1969; Uhr, 1973b,
Chapters 4, 21) rather than in an exact position (alternately, it could

be given a separate characterizer for every position; but this would

clog memory with far too many characterizers, and slow down processing
time). But this kind of program, with an adequate set of characterizers,

performs well (e.g., Uhr and Vossler, 1963; Andrews, Atrubin, and Hu,

1968), possibly as well as any approach (see Zobrist, 1971, for com-
parisons).
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Other Possibilities for Descriptive Information

DESCRIBE~1 output as its description all the NAMEs IMPLIED

above the CHOOSE level. DESCRIBE-2 and its extensions will explore
a variety of richer descriptive information, including the objects' parts,

structure, salience, qualities, and location.

DESCRIBE-1 has a bit more descriptive information that it could
make available fairly easily. The NAME's TOTAL weight could be
output, to indicate its salience, and/or the program's certainty. The
names of the\ CHARacterizers, the PARTs of their DESCRiptions that
succeeded, and their locations could be stored with the names, and

output as qualifying information (this will be done in DESCRIBE-2).

Weights and Thresholds

DESCRIBE-1 TOTALs the weight of each PART of a DESCRiption
(statement 11). The CHARacterizer succeeds if TOTAL exceeds the
THRESHold (12). This allows the programmer to design characterizers
that have any desired amount of looseness, in the sense of a threshold
decision element that succeeds when any of a large number of combina-
tions of subsets of its input PARTs succeed. If the threshold is lower
than the weight of any of the PARTs, such a characterizer is equivalent
to an "OR" operator; if the threshold equals the sum of all the weights
of all the PARTs, it is equivalent to an "AND" operators.

The programs in this paper add weights together, since this is
the simplest thing to do. But it is easy to have the program multiply
weights, or compute whatever other combining function is deemed

appropriate.
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Note how similar are the THRESHold for deciding whether a
CHARacterizer has succeeded and the CHOOSE level for deciding
that a NAME has been sufficiently highly implied (by one or more
characterizers) to be output as part of the program's description of

the input PRESENT.

Describing Vs. (Merely) Naming

The typical pattern recognition program simply chooses and outputs
a single name that it assigns to the input.

This is usually done by having the program choose from MAYBE
the single most highly implied NAME, rather than all the NAMEs im-
plied above a CHOOSE level.

Sometimes the program will merely choose and output the first
name whose TOTAL implied weight exceeds some minimum level for
choosing. This would simplify DESCRIBE~1, which could now put the
test that compares TOTAL weight with CHOOSE (statement 18) right
after statement 15, and eliminate the DECIDE loop through MAYBE

(statement 17) - with suitable changes in gotos.

DESCRIBING SCENES OF OBJECTS, AND THEIR PARTS,
OVER SPACE AND TIME

DESCRIBE-2 begins to handle descriptions over time, and descrip~
tions that talk about the parts and the subparts of which the recognized
wholes are composed.

To keep it short, it has been over-simplified, so that it handles
only l1-dimensional string inputs (e.g., English sentences), and uses
characterizers that do not handle position or interactions among parts

(except to the extent that parts are explicitly put together, as though
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into a rigid template, and all possible combinations of this sort are
added to its memory, as separate characterizers - a theoretically
possible but practically unfeasible procedure).

In addition to describing the scene using all names implied above
a CHOOSE level, it further describes each name by outputting all its
parts (each with its column location) and all of each part's parts, until
it hits the lowest level. It further does this from the point of view of
each name - that is, it says in effect, "If this name is present, then
these parts are present. "

Time is handled by merging each PRESENT moment into a SEEN
list, where OBJects are made salient (by high weights) when they first
appear, and to the extent that they move, but then gradually FADE away

when they are no longer present.

(OVERVIEW DESCRIBE-2. Builds short~term memory over TIME and space.

DESCRIBE-2
INITialize memory; UPDATE TIME, input PRESENT M1-3

SENSE  Merge each OBJect in PRESENT into what has recently 4~-8
been SEEN, its WeighT a function of newness and
movement.

FADE Down-weight, and erase, OBJects no longer in PRESENT. 9-11
PERCEIVE Get the IMPLIEDS names for each OBJect still in SEEN, 12-14

IMPLY  Put them on LOOKFOR and merge onto MAYBE, building 15-19
a list of PARTS.

EVAL output each NAME on MAYBE whose TOTAL weight 20-23
exceeds its THRESHold.

DESCRIBE output all PARTS of the NAMEd object, and PARTS2 24-28
of each, that have public TRANSforms (giving their
COLumn locations).
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(DESCRIBE-2. (Merges short-term SENSEory memory over time and space.
(OBJects are salient when NEW or move; FADE out when no longer PRESENT
(Advance TIME, input the new PRESENT)

(characterizers should go here)

UPDATE erase COLP
set TIME = TIME + 1
IN input PRESENT till | [~ END]

(Merge each OBJ in PRESENT with those already SEEN)
SENSE  from PRESENT get OBJ = [~ FADE]
COLP = COIP +1
from SEEN get # that OB] # WT COL = [~ NEW ]
on LOOKFOR list OB] WT + ABS(COLP - COL) COLP [SENSE]
NEW on LOOKFOR list OB] 9 COLP [SENSE]
FADE from SEEN get OB] WT COL = [~ PERCEIVE]
is WT lessthan 1? [+ FADE]
on LOOKFOR list OB] WT -1 COL [FADE]
PERCEIVE SEEN = LOOCKFOR
(Get NAMEs implied by each OBJect on LOOKFOR)
Pl from LOOKFOR get OBJ WTL COL = [~ EVAL]
from $OBJ get 'I=' IMPLIEDS | [~ P1]
(Put TOTAL of WeighTs for each IMPLIEDS NAME on MAYBE)
IMPLY  from IMPLIEDS get NAME WT = [~ P1]
on LOOKFOR list NAME WT COL
from MAYBE get # that NAME # TOTAL PARTS | = [~I1]
WTL = TOTAL + WTL
I1 on MAYBE list NAME WT + WTL PARTS OBJ COL | [IMPLY |
(EVALuate total WeighT against NAME's THRESHold, and output if greater)
EVAL from MAYBE get NAME TOTAL PARTS | = [~ UPDATE]
from $NAME get 'T=* THRESH
is TOTAL lessthan THRESH? [+ EVAL]
(Describes giving overlapping object NAMEs and overlapping parts and parts
(of parts)

output ‘AT TIME = ' TIME * IT MIGHT BE=' NAME ' DESCRIBED:

(outputs all the public PARTS, down to the lowest level)
DESCRIBE from PARTS get OB] COL = [~ EVAL]
from MAYBE get # that OBJ # TOTAL PARTS2 | [~ DE1]
on PARTS set PARTS2
(If OBJect has an external TRANSform, outputs it)
DE1 from $OB] get ‘T=' TRANS ] [~ DESCRIBE]
output TRANS 'AT ' COL [DESCRIBE]
END

LEFT-ARM TRUNK LEGS RIGHT-ARM EYE NOSE EYE CHIN ]
DOG-EAR SNOUT LEG LEG ]

TRUNK ]

LEG LEG TAIL ]

-

I

S —
<<

923

Gl W N =< W=

— L
H> w ~J O~
< - <g < <

16.V

17.V

18.V

19.V

W o jov

ot
o] U
O\O ~3 O~ N

11
12

13
14

15
16
17
18
19

20
21
22

23

24
25
26

277
28

I1
12
I3
14
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NOTE that size ABS(...) is a function that computes the ABSolute
value of the expression within parentheses; it is defined and written

by the programmer (though I don't bother to show the needed code).

DESCRIBE-2 needs a set of characterizers (put before statement
1) of the following simple sort, where each thing points up to the

things implied:

LEFT-ARM = 'I=PERSON 3 ] M1
TRUCK = 'I=PERSON 5 DOG 3 | ' M2
EYE = 'I=HEAD 3 ] M3
NOSE = 'I=HEAD 3 ]" M4
HEAD = 'I=PERSON 5 |P=EYE 5 EAR 3!

+ INOSE 7 CHIN 4 MOUTH 6 ]' M5

These (plus additional characterizers for LEGS, CHIN, DOG~EAR,
SNOUT, LEG) would allow it to notice PERSON and DOG. Since EYE,
NOSE, etc. point to HEAD, and HEAD points to PERSON, it is also
capable of describing a PERSON as having a HEAD, which has an EYE,
NOSE, etc. (But Il would not be described as containing an EAR.)

Note how characterizer M5 shows links from HEAD back to its
parts (EYE, EAR, etc.) - links that are not actually used. With
additional code, DESCRIBE-2 could add these to LOOKFOR, and use
them to describe what is missing from a particular object.

To handle an interesting variety of inputs, we would need to give
DESCRIBE-2 a much larger set of characterizers. DESCRIBE-1 is
actually the much more powerful pattern recognizer since it handles
configurations of intereacting parts and does not rely upon a space
(which is reasonable for sentences, and in fact typically used by

parsing programs) to delimit objects.
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Notice how a pattern can be recognized over time, even though
at no single moment are all of its parts present, because character-
izers look at the SEEN list, which only gradually fades away. Thus
e.g., a suitable characterizer would output DOG in response to Inputs
I12-14. The description of the DOG (and of the PERSON Input in I1)

would depend upon the particular parts present.

STILL FURTHER POSSIBILITIES FOR DESCRIPTIONS

We are now in a position to make a number of simple variations,

as described below.

Describing One Vs. Several Objects

DESCRIBE~2 describes rather exhaustively. For each NAME whose
TOTAL weight exceeds THRESHold, and therefore is output, it also
outputs all PARTS (that have public TRANSforms), and PARTS2 of parts,
down to the lowest level. Thus the description can contain much over-
lap, of names and of parts. This can be varied in a number of ways.

A. The simplest would have the program output only one NAME of
an object and its PARTS description:

(DESCRIBE-2~A. outputs only one object's NAME and description
of PARTS. 2=A

DESCRIBE from PARTS get OBJ COL = [~UPDATE] 24.V*

B. A slight change:

(DESCRIBE~2~B. Gives non-overlapping descriptions
from MAYBE get # that OBJ # TOTAL PARTS2 ] = [-DE1] 25.V

*Numbers like 24.V indicate Variations to the corresponding statements

in DESCRIBE=-2.



15 - Uhr

would give non-overlapping descriptions of non~overlapping things,
starting with whatever OBJect happened to come first on the MAYBE
list. This would make more sense if the NAME with the MAXimum
TOTAL weight were got from MAYBE in statement 20 (this entails a
simple loop through the NAMEs on MAYBE, to get the one with the
highest associated weight).

C. Still another variant would give overlapping descriptions of

non-overlapping NAMEd objects:

(DESCRIBE-2-C. Describes several non-overlapping objects 2-C

set COPYM = MAYBE 20.1
from COPYM get # that OBJ # TOTAL PARTS2 ] = [-TO DE1] 25.V

Details Vs. Wholes

D. All of these go from top down, from wholes to details. The

following simple variant would dip down to details, and then go up:
(DESCRIBE-2-D. Dips down to give details first. 2=D

at start of PARTS set PARTS2 26.V

This gives a funny kind of order, wandering from top to bottom, and

then back up.

E. A slightly more complex program would set all the PARTS2 at
the start of an ALLPARTS list, and only then start developing the descrip-
tion, from ALLPARTS.

Keeping Descriptions Short

These all give descriptions that are far too long, since they con-

tain all details. What is really needed is a system that chooses to
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output only the pertinent details - but this is an extremely complex
matter, as will be discussed below, since it depends upon a deep
semantic understanding of the objects in the scene, their import, and
their import to the hearer of the description. So for now we can only
examine the simplest of methods for keeping descriptions from growing

unreasonably long.

F. First, we might have the program put only highly weighted
OBJects onto the PARTS list (by checking the weight at statement 18)

G. Second, only parts of a specified QUALity might be output:

(DESCRIBE=-2~-G. outputs OBJect only if it is of the QUALity specified. 2-G

QUAL = 'SHAPE' M1.1
from $OBJ get that QUAL [~to DESCRIBE] 27.1

H. Third, the program might output only up to a fixed number of
object parts:

(DESCRIBE~2~H. outputs only a specified Number of PARTS. 2-H
ENOUGHP = I2 Ml.1

UPDATE erase COLP, NPARTS 1.v
is NPARTS lessthan ENOUGHP? [~to UPDATE] 24.1

NPARTS = NPARTS + 1 24.2

I. Similarly, fixed numbers of objects, and/or of characterizers
to be looked for, could be set (this is best done along with a function

that gets the MAXimum implied).
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GLANCING AROUND AND ACTING OVER TIME

Glancing, Noticing, and Focussing Attention

DESCRIBE-2 "glaces around", looking for higher-level wholes as
a function of things already implied, because statement 16 puts an
implied NAME onto LOOKFOR, so that the program will later look for
any names that it implies, and so on up the hierarchy. (Note that this
feature can easily be added to DESCRIBE-1.)

J.  As a variant, we might use:

(DESCRIBE~2-]. Tends to LOOK FOR NAMEs at higher levels. 2-]
on LOOKFOR list NAME WT + WTL COL 16.1.V

(or some other function of the weights of both the NAME and the OBJect
that implied it), so that a name at a higher level has a higher weight,

reflecting the weights of all its lower levels.

K. Alternately, we might add the statement:

(DESCRIBE-2~-K. Looks only with NAMEs chosen to output. 2-K
on LOOKFOR list NAME TOTAL 22.1

so that only at the end, if it has been chosen for output because its
TOTAL implied weight has exceeded its THRESHold, is the NAME put

onto LOOKFOR. This will put many fewer NAMEs on LOOKFOR, since
it requires a more stringent procedure for evaluating the importance of

each.

Glancing Over Time

It also has the interesting characteristic that it adds a NAME to

LOOKFOR to be processed at the next moment of TIME (since it loops
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back to UPDATE in statement 20), whereas the addition after statement
16 will affect processing immediately, on the PRESENT moment.

We are thus beginning to introduce a second source of short-term-
memory that gives continuity over time - not only in the SEEN list,

that only gradually fades away, but also in the LOOKFOR list.

L.  Still other variants would have the program a) add implied
names to a NEXTLOOK list at 16.1, and only at UPDATE time set LOOKFOR =
NEXTLOOK, so that the casually got names would not be processed until
the next time: b) loop back from EVALuation to PERCEIVE some more if
new NAMEs have been put onto LOOKFOR (22.1), so that they are pro-

cessed immediately, at this time.

DISCUSSION

The Short-Term Perceptual Memory

Merging of OBJects from the recent past into the SEEN list, where
their salience is a function of their newness and motion, and they fade
away only slowly after having disappeared from the environment, appears
to be simple, elegant, and sufficient to allow systems to handle environ-
ments that continue and change over time. But it may also be useful to
introduce further inertia over time by using a separate list of CHARacter-
izers to LOOKFOR, where LOOKFOR also continues over time. There are
many interesting alternative possibilities here, only a few of which have

been touched upon in this paper.

Focussing Attention and Noticing

As soon as we let a program add characterizers to its LOOKFOR
list we introduce a whole range of possibilities for focussing attention
and concentrating on certain things, and type of things. In DESCRIBE-2

what has already been noticed implies new characterizers, and new
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objects, which can themselves imply their parts, and characterizers
that would imply them.

We can, if we wish, initialize our programs to contain one or
more names of objects to LOOKFOR. This will focus attention on these
objects, and on the characterizers that imply them, and their sub~
parts. The strength of this fecussing will be a function of their weights.
Depending upon details of thresholds and choose levels, the system will
now find more of the things it has been set to look for, with less cer-
tainty thus leading to false positives, and it will tend not to notice

other things - all rather reminiscent of human beings.

The Influence of Internal Needs and External Suggestions

These systems are now in a position to have their processes in-
fluenced from a variety of sources. Commands and conversational
suggestions from the external world can suggest what to look for, and
what kinds of descriptions to output. Internal needs and goals can also
play a role. In all cases, the various sources of set are merged into

the TOOKFOR list, which controls processing.

Changing Points Of View

People will tend to describe scenes as though they are fields of
physical objects, with only one object at one place at one time. We
will point to and describe a number of faces, but without adding, "oh
there's still another face that's made of the left ear of face 3 and the
right chin of face 7;" nor will be go on to describe the details of faces,
saying "there's a leaf; there are two fish."

But we can very easily shift to different attitudes. TFor example,

if we're shown a drawing and told it contains 82 hidden faces and 212
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leaves, we will almost immediately see overlaps.
The germ of this ability appears to lie in the different variant
attitudes for outputting overlapping, or non-overlapping,descriptions

in DESCRIBE-2~A through 2-E. What still needs doing is to give the

program control over which of these attitudes it will take, and let it
decide as a function of a variety of pieces of information that it has
gathered during its conversational interaction with its environment,

including the hearers of its descriptions.

Recognizing and Acting Over Time

It is unrealistic to have a system apply no matter how many char-
acterizers, and output no matter how complex a description, in a single
moment of time. Time is needed to recognize, describe, notice, and

act. DESCRIBE-2-K and 2-1 begin to take this into account, but once

again there is a large variety of other possibilities. Ideally, we should
consider what is the common real time in which the environment, the
program's perceptual processes, and its motor actions must all take place,
and we should assign appropriate real times to each separate process.
This makes apparent the issues of parallel vs. serial vs. parallel-

serial processes, and time needed for feedback loops that monitor

action.

What is a Description?

The concept of a "description" is hazy, and noteasily defined. Most
people will look at a scene and say something like, "There's a man
walking a dog through the woods." A fastidious few will say instead,
"There's a man with fingers circling around the loop of a leash, whose

other end appears to be attached to a dog via a collar; there are also
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5 trees in the picture." A detective might say, "There's a tall man in
a coonskin cap with a black handle-bar mustache and a smudge on his
left cheek, " while a dog-nut might say, "There's a siberian husky with
eves that are too slanted, " and a nature lover, "there's a mixture of
honeysuckle, maple and pine, and it looks like Spring, but I don't
see any birds."

It is hard to conceive of a description in which the describer does

not 1) make major judgments as to what is important and, further, 2)

superimpose his own "understanding" of the objects in the scene, and

their interrelationships and their import.

Sometimes the scene will be impoverished to the point where
things seem relatively simple, at least on the surface. Thus almost
everybody will look at a sheet of paper on which letters have been
written and say, "There's an 'E'" or "There's the word 'THE'". If we
press further most people will say, "The 'E' has a vertical bar with
short horizontal bars extending to the right from top, middle and bottom" -
if it is a standard, well-drawn 'E' = and they will think us a bit crazy
for asking (why? = I think because such a description feels like a

tautology, possibly because it is a constructive definition of an 'E',

one that we have pretty generally agreed to use).

If the E is sloppy, and/or we press the describer to say more,
we will begin to get statements like, "The top bar wavers and has
breaks", "It's long and skinny". A more compulsive person might say,
"The top bar angles down 20° for 1/4 inch, then curves up for 1/2
inch, until it is 1/4 inch above its start, then goes straight for 1/2
inch."

This description probably sounds contrived to most readers. But
that leads into a third important characteristic of descriptions. Once
we are pushed beyond the ordinary level of description we must grope for

terms and framework. In general, the describer 3) says that he infers
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his hearer will consider pertinent. Thus the diagnostician will tell

the neurologist, "the wavering strokes have the quality of palsy rather
than brain damage", but he will tell the accountant, "the smudges come
because the pencil lead is too soft".

Description is now squarely in the middle of conversational inter-
action - just where I think it should be, but this raises even more com~
plex and subtle problems. Now we must worry not only about 1) the
actual objects in the scene, and their parts and relations, and 2) the
describer's understanding of the objects in the scene, but also 3) the
hearer's understanding of these objects, 4) the describer's understand-
ing of the hearer's understanding, and even 5) the hearer's understand-
ing of the describer's understanding of the hearer's understanding. For
example, the dog~nut might assume that the hearer is a secret dog-nut,
or at least realizes that many people are dog-nuts and probably also
the describer. And the hearer might infer that the describer knows he
the hearer likes dogs, and wants to suck him into an interest in the fine
points.

In addition to arguing for the complexity and subtlety of a des-
cription, this is to argue that it is intimately related to a rich semantic
understanding that describer and hearer have in common -~ at least to
some extent, along with an understanding by each of the situation of
communication, in which one tries to impart suitable information to the
other.

We cannot expect pertinent, sensitive descriptions until we have
programs that have the necessarily rich semantic understanding of the
world whose scenes are being described , and of what this world means
to their hearers. But we can still extend pattern recognition programs
that merely name to the point where they also describe, albeit either in

exhaustive detail or in overly~rigid conventional ways. And we can begin
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to tailor their descriptions to their hearers, as a result of simple con-

versational interactions.
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Appendix: A Note on Programs (See Uhr, 1973a for details)

Numbering at the right identifies statements, and allows for com-
parisons between programs. M indicates initializing Memory
statements: 1 indicates cards that are Input by the program. .V
indicates a Varient, .l an additional statement.

A program consists of a sequence of statements, and END card,
and any data cards for input. (Statements that start with a paren-
thesis are comments, and are ignored.) Statement labels start at
the left; gotos are at the right, within brackets (+ means branch
on success; - on failure; otherwise it is an unconditional branch).

Strings in capitals are programmer—defined. Strings in underlined
lower-case are system commands that must be present (they would
be keypunched in caps to run the program). These include input,
output, erase, set, list, get, start, call, that, and the inequalities.
Other lower-case strings merely serve to help make the program
understandable; they could be eliminated.

EASEy automatically treats a space following a string as though

it were a delimiter; it thus automatically extracts a sequence of
strings and treat them as names. The end-bracket | acts similarly
as a delimiter, but the programmer must specify it. The symbol #
is used to stand for any delimiter (a space, | or #).

The symbol $stringl is used to indicate "get the contents of
string I, and treat it as a name and get its contents"” (as in SNOBOL).

Pattern-matching statements work just like SNOBOI statements:

there are a) a name, b) a sequence of objects to be found in

the named string in the order specified, c¢) the equal sign (meaning
replace), and d) a replacement sequence of objects (b, ¢, and/or
d can be absent). that string I means "get that particular object"
- otherwise a new string is defined as the contents of stringl, which
is taken to be a variable name.
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