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ABSTRACT

2
An exact expression for the L~ discrepancy D of the Roth
, . . M-1 M

segquence Rn in the unit square is computed for any 2 sn<?2
points. Previously such a result was known only for powers of two.
D is a measure of equidistributivity and has direct application in
estimating the error of numerical integration formulae employing
guasirandom sequences. The calculated D(Rn) has approximately

forty terms, typically consisting of a multiple summation over the

bits of n with the inductive form

e

M-1 M-1 9 t
(et’et—-l"" ,eO)M = Z nM—l—r(Z (et_l,...,eo)r, Osts4,
I‘::t
where (e ,e)r:=1 and (e,...,e )M =0 for M =z t. The

o t 0

computation, utilizing special algorithms developed for the manipu-
lation of these summations and known formulae for n a power of two,

indicates precisely the detailed structure of D(Rn)'






1. INTRODUCTORY REMARKS

This is an interim report giving some preliminary results of a
Ph.D. dissertation investigation under Professor John H. Halton. The
central theme of the planned thesis is the theoretical analysis of low-
discrepancy quasirandom sequences with the goal of illuminating their
detailed structure. This is expected to facilitate precise formulation
and rigoroqs proofs of interesting qualitative behavior already observed
experimentally such as global monotonicity, local anomalies and the
relative performance of different sequences with respect to error bounds
for quadrature formulae. It is anticipated that such a study will pro-
vide further justification for the use of certain point sets and lead to
the discovery of additional low=discrepancy sequences of practical
value [3,4].

This report is confined to the calculation of the LZ discrepancy
for an important well-known sequence in two dimensions. For the
first time a formula (27) is obtained for an arbitrary number n of
points in terms of the bits of n and involving summations up to an
index of only [1ogz n] rather than n - 1. Because of the length and
complexity of the computations it is felt that the attainment of this
result would have been infeasible without the development of special
symbolic manipulation routines which alleviated much of the tedium

and increased the reliability of the intermediate calculations.



The further exploitation of these techniques should permit the
extension of these findings to three dimensions in the forseeable
future. A description of the computational aids employed and the
analysis of the formulae (27 and 35) obtained here, including their
asymptotic behavior, will be saved for a later report.

Being essentially theoretical in nature this effort can be viewed
as a complement to some of Warnock's work which is broader in
scope but has an experimental flavor. Incidentally, an expanded
version of [3] just appeared as a Computer Sciences Department Ph. D.

thesis.




2. DERIVATION OF THE MAIN RESULT

Let Pn represent a set of n points in the unit square SZ. For

a given positive integer M, n is expressed in binary notation as

M-1

where n, € {0,1}, 0=isM=-2, and n 1. Let the number of

M-1
points of Pn in the rectangle R(p) = {qg ] q=pe Sz] be denoted by
v(Pn,p). Let (Xj’yj) be the location of point j =0,1,...,n~1 of

Pn’ and take p = (x,y). If H(z) is the Heaviside function

1, z 20
(Z') H(Z) =
0, z< O
then v can be expressed as
n-1
3 P ,p):= ) H(x-x,) e H(y-y.) .
(3) v(P_,p) lO H(x-x) » H(y-y))
]:

For arbitrary j=0,1,...,n=1, let cpz(j) denote the binary fraction

of j with the order of the bits reversed, i.e.
M-l
21

P Z IM-1-1" %
i=0

M .

Then the Roth sequence [1, p. 43] can be defined as

. | y
(5) (5 9,00, 3=0,1,...,27 -1
2



Suppose this sequence is generalized from ZM points to an arbitrary
number in the range of 1 as follows. Scale the abscissas of 5 by

M
the factor 2~ /n leaving the ordinates unchanged:

i . L -
(6) (G ®,0)), 3=0,1,...,n"1.

The principal objective of this report is the calculation of

1 1
2

(7) Ji= f oax [ ay (w(P_,p) = nxy)

0 0
for the sequence of 6. Note the xy symmetry of 7 for 6 when
n is a power of two. This computation extends the result of [2] for
the Roth sequence of 5. In is related to the Lz discrepancy Tn
of P as T :=vVJ /n.

n n n

For the trivial case M =1, the only point of P. is at the origin,

1
by 1 and 6. Hence, 7 becomes

1 1
w2 11
= [ oax [ oava-xnT =g
0 0
Henceforth it is assumed that M>1, i.e., nz 2.

In order to apply previously derived formulas for .2n points,

n= 1,2,3,..., itis convenient to subdivide the x interval as

_ m=-1 2M—l—i B
‘ 1= T =ms - = 0).
{8) Xm Z nM-l-—i ; l=msM (xo )
i=0
Then since n =1, 7 can be rewritten as

M-1




,M-1 1
(9) I j; dx j; dy (v(P_,p) = n xy)
M-l §m+1 5 2
) Ny .j;( dx _jody (v(P_,p) - nxy)
m=1 m

For the sequence of 6 with n defined by 1, there are 2M~1 points

of Pn equally spaced in the interval [0,x.). Thus, with the change

1

of variable x & nx/.?.M_1 , the first term of 9 becomes

M=-1
2 ol 1 _M-1 2
(10) I, = j dx j dy (v(P /1 sP) =2 "Xy)
0 0 2
] ZM—II
n ZM—I
by 7. The remainder of 9 can be expressed as
M-1
o I "eton o
m-1
where attention is now focussed on
;{m+l 1 2
(12) Tai= fo0 7 dx {7 dy (vP_,p) - nxy)
X 0
m
From 8, if nM-l-—m = 0, then Xm+1 = Xm and Im =0, If
nM—l—m = 1, then there are 2 ~l-m points of 6 equally spaced

in the interval [xm,;—c ). These points are raised by an amount

m+1



m i-M -
(13) Y=Y s = Z Ny_qy2 s lsm<M (v,=0)

m i=0

—

M-~1
with respect to the 2 points beginning at the origin. Therefore,

12 is separated into two parts by subdividing the vy interval at ;/m

-

Y

X .
(14) I = j‘ m+1dx j‘ mdy(v(P b)) - nxy)Z
m - n
x 0
m
X 1
v m+1 ) 2
j_ dx j_ dy(v(P_,p) - nxy)
m Ym
For x £ x< X , Vv can be decomposed as
m m-+1
o - _-
(15) V(Pnlp) = V(Pn;( l(lly)) + V(Pu I(u (X Xm)/ Yy ym))
m m m
where
(16) u_ = PM-t-m <M.

The second component of 15 is taken as zero for y < ;Im' It is valid
to omit this second component in the first term of 14 since vy = {zm
only on a set of measure zero. The separation between ;{m and

X for 6 is
m+1




from 8, so with the change of variable x « n(x—;qm)/um, 14 becomes

“m L ;7m - 2
(18) o= o Jax(f Tave o (,y) - (o xtnx )y)
0 0 m
1
- - 2
+ 0 dvuP o (L) (B Ok ymy ) - () xnx Y)Y
Y m m

m

For the purpose of calculation let

1
(19) A = [ dy VAP - (1Y)
0
1 1
(20 B = [ ax [ dy w(P L, (x,ymy D v o (1Y)
0 y m
m
1
(1) C := [ dyy Pz (1)
0
11 1—ym - - 2
(22) D = [ ax | dy(v(P ,(x,¥) = (u_x+nx )(y+y )
0 0 m
2 =3
+(E—nl+ X+ 222)~y—n-1~
3 nu n m 3

Note the change of variable vy« y—?m in the integral of Dm. Then

collecting results 10-12 and 18, 7 can be expressed as

M-~1
1 —
(23) I (uOJUO + Z Ny U +2B = (u_+2nx IC_+ D )
m=1

where 16 and 19-22 are used.

Observe that for n=u,., 23 is useless since n = 0,
0 M-1-m



l=m=z=M=1 by 1 and 17. However, it is already known [2] that

2
M4 23M 23 M-5 1
(24) ]uo 64 T 192 T96 " §.2M T 1g-22M -

The component expressions 19-22 of ]n are computed in the
appendices. The following shorthand notation is used to express re-
sults which involve multiple summations over the binary digits of n
[nM—l—rl 0c<r<M=-1} and powers of two. Let {eka =0,1,...,t}

be arbitrary integers denoting the exponents on the ur's. Then the

summation of order t is defined as

s-1
. eo
A (egsi= ) My Y
r=0
(25)
s-1 et
b / fee s = ce .
e S R
r=t

The summations are taken as zero if s =t, where t=0 in 25a) and

t> 0 in 25b). Note that in this notation, from 8, 13, 16 and 25a)

ay x :%l"(l)m, 0Osm=sM

m
(26)
b) y -'1‘“(—1)m Osm<M
Y = 2 ! = ’
A useful property for manipulating the product of a single summa-
tion (e)s of the form 25a) and any summation (et,et__1 s o e ,eo)s Qf

the form 25 of order t = 0 is given by Theorem 1. Note that the integer




s must be the same in both factors.

Theorem 1. For the summations of 25 the following identity

holds (forallt=0,1,2,3,...):

t +1 summations of order t and t+2 summations of order t + 1.

s-1
e
Proof. By 25 the left~hand side of the identity is Z nM-—l—r'ur"
s—1 et r'=0
Y > 0. This e: i '
Z M ieymp B (Bpoqree-igglty >0 expression can be
r=t

decomposed into the following three parts for r' =r, r'>r and r'<n

t"l"..’

s-1 2 ete
; t
i) X nl\/[—l—r ur (et_1 so e ,eo)r
r=t
s-1 -]
ii) n e S n uet(e e )r
}: M-=1=-r'u’, }: M-1-r r “t=-1"7"""70
r'=t+l ' r=t
s-1 e, -1
iii) Z n u t >w n ue (e e )r
‘ M=1=r r [, M-1=r' r'"t-1"""°""70" °
r=t r'=0
. 2 _ G
Since n = i) is (e+et,e eo)s by 25b). The

m~1-r n1\/[--1—r’

inner summation of 1ii) is (et,et 170" ,€.)s, so the whole summation

o

is (e,et,et 17 ,eo)s by 25b). The inner summation of iii) is

(e)r - (et—l" ‘e ,eo)r, an expression of the same form as the original
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left-hand side but with the summation order reduced by one. Hence,

the identity follows by induction on t using 25 since for t =0

s'-1 s'=1 e
(e)s' + (e.)s' Z u ' n 0
0 - M=1-r" "r' y M-1-=r" "r"
r'=0 =
s'-1 s'-1 r'-1 eq
e+e e
= n Ilu 11
nM—l-—r" u["' + Z rl1\/‘[--1--1" r' Z M=1=-r" "r
rIl:() rl:l rl!_;o
s'-1 en I'-1
+ Y n 0 n u
2_. M=1=r" " M=1-r'"r'
r'=1 r'=0
- 1 ] [}
= (e +e0)s +(e,e0)s +(eO,e)s .

Combining the results A28, B17, C5 and D18 from the appendices,

23 becomes

M-1

1{ ¢ M-m [M-m _ _

(27) In:n(l Nel-m 8 ( 5 Un um(l, 1)m+um(0)m
m=0

+'l£(2,1,—1,-1)1\/l +i(2,-1,1,-—1)M +‘12“(1,2,-1,-1)M

(1,1,-1,00M +“l‘ (1,1,-1,-1)M

(]‘Illll-z)M_ 4

+

o~ |-
N

(1,0,1,=1)M +(1,-1,1,=1)M +

™=
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1 1 1 _
bz (3,71, mDM + g (2,1,-2)M

1 1., 4. 1 _ _35 -

2 (2,71 OM £ (2,=1,=1)M + 5 (1,2,-2)M = 55 (1,1,-1)M
s a,-aM e a,0,00M 4 (1,0,-1)M - (1,-1,00M

8 ’ 1 Z s 14 4 1 4 4 14 ™M1

1o com Lo - L g 2 25

S5 (1,=1,=1)M = £ (0,1,=1)M + 75 (3,-2)M - {2 (2,-1)M

1 17 S T _

+ 77 (2,720M + 57 (1,OM = ¢ (1,=1)M = 5 (1,-2)M

1 Lo - 23 2 I
+5 (0, 00M + 57 (0,=1)M + oo ()M + 7% (0)M ( 1)1\/[)

where 26a) and the notation of 25 are utilized.

This rather lengthy expression 27 is the main result of this report.
Although the formula still seems amenable to evaluation only with the
aid of a computer, the homologous structure of the terms invites de-
tailed analysis that promises a greater understanding of In for the
Roth sequence than previously known formulae. The techniques for

manipulating a typical term of 27 are currently being explored.
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3. A SUPPLEMENTARY RESULT

Let P;1 be the same set as Pn except that the point at the
origin is replaced by a point at (1,1). By definition of v it follows
that v(P;l,p) = v(Pn,p) -1 forall pe S'Z except p=(1,1) where

both +v's equal n. Using 7 one can write

H

1 1
(28) 7! ‘fo dx ‘Yo dy(v(P! ,p) = nxy)

1 1
I+ 1 -2 ‘Yo dx Jo dy(v(Pn,p) - nxy).

i

With 8, 13 and 15-17 the last integral can be expressed as

-

M-1 *rl 1
(29) Z Nyt mm L dx j;dy(v(Pn,p) - nxy)
m=0 X

M-1 X y
- M € dy(v(P (1,y))-nxy)
= ) Nyegem Jo @x( [ dv(v® oL y)-nxy
m=0 X 0 m
m

b v L) (B )y ) ).

m m m
Y m

Proceeding in the same fashion as in the calculation of Im' the first

component of the summand of 29 becomes

ul'l'l 1 ym -
(30) = j dx j‘ dy(w(P =, (1,¥)) = (u x+nx )y)
0 0 m
u v u u ,
m m m m - -2
- n dy V<an I(]'IY)) 2n ( 2 + nXm)ynl

0 m
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The second component of the summand becomes

u 1 1
_m » - -y ) - X
(31) n o9 U Ay = (L) +v(R, L (x,y-y ) - (U xdnx )y)
0 % m m
m
um 1 um 1 1 _
= Jooavve s e ax [ody we L xyey )
Y m 0 \% m
m m
u u
_mf m = _c2
on (2 +nxm) (1 ym) .
Thus, with the definitions
1 1 _
(32) By i= [ dx [ dy w(p, .(x,y=y )
0 y m
m
1
(33) C! := dy v(P_= ,(1,y))
m j‘o nx_
and combining 30 and 31, 29 can be rewritten as
M-~-1 u
(34) Loy u_ (B' +cC —J‘*ﬂnhn;:n)
n L "M-l-m m\'m m 2\2 ’
m=0

From the results B18 and C8 of the appendices and applying 26a)

in 34, 28 becomes

! 1 M~m _ _
(35) J =T +1 —n( Z n u (1,1,-1)M

where the notation of 25 is used. The slight modification P;1 proposed

by Warnock [3] evidently has a smaller discrepancy than the Roth se-
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guence Prl according to experimental observations. It is simple to
check that I'l is only 1/9, which is precisely 1/2 less than Il.

just recently the author was successful in proving

Theorem 2. IV < J for n=1,2,3,...
T n n

The proof, which uses 35 and induction on the number of nonzero
bits of n, will appear in a later report. A similar effort is underway
to prove the more difficult hypothesis that Tn is monotone decreasing

with n.
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4. TFORMUILA EVALUATION AND VERIFICATION

An alternate formula for ‘In involving summations up to an index

of n-1 instead of [log2 n] is readily obtained as follows. Using

2 and 3, 7 can be rewritten as

n- n-1 j=-1
(36) Z 1=y +2 Z Z (1 =max [x, % DI 1-max{y,yk])
j=0 j=1 k=0
n-1
_n _ .2, n°
5 (1 x (1 y],) + 9
j=0

From the fact that Xj > Xy if j >k for Pn or P;1 (see 6), for the Roth

sequence 36 can be simplified to

n-1 j-1 n-1
(37) J =2 Z (1 -x) z max {y. (V) - ZO 1 - x)y,
i=1 =0 1=
n-1

(2‘ l—x —'Z'—Il+“1“+”l“‘)
9 2  4n

where Al13 and Al6 are also applied. From 2, 3 and 28 it is easily

seen that a corresponding formula for ];1 is
38 = - -8
(38) =Tyt 2 ) A-x)y -

A straightforward FORTRAN program based on 37 and 38 was used
to check the validity of 27 and 35 which are implemented with a much
longer program designed to be reasonably efficient (timewise) in evalu-

ating the discrepancies for many consecutive values of n. With
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DOUBLE PRECISION on a UNIVAC 1108 computer exact agreement to
eight decimal places was observed for 2 = n = 511. The checking
program ran for approximately six minutes while the running time of
the program implementing 27 and 35 was only about thirty seconds*
(see Table 1). Of course, the latter program would become even more
efficient than the checking program for larger ranges of n. Graphs
of these discrepancies x/iz/n and \/E/n using the symbols X and

Y, respectively, are depicted in Figures 1, 2, 3 and 4.

Table 1

Execution and Input/Output Time for Evaluating

In, I;ll */f;/n and \/I:/n, 2=n=sN.

Formulae 27 and 35 Formulae 37 and 38
N Time (sec.) N Time (sec.)
63 6.559 256 55.868
127 13.485 482 299.318
255 21.134 512 356.972
511 31.377

m]n can be computed more efficiently using recursive finite
difference formulae. The computation time for 37 can be reduced by
roughly a factor of n. Further analysis of 27 will probably lead to
a better algorithm but a less dramatic improvement.
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5. CONCLUDING REMARKS

From the further study of the structural formulae 27 and 35, one
should be able to prove the interesting Warnock conjecture that

a) the discrepancies of the Roth sequence and its modification
are strictly monotone decreasing with the number of points.

This was suggested by earlier experimental results and seems plausible
as evidenced by Figures 1-4. It has been proved (see Theorem 2) that
b)  placing the original point of the Roth sequence at (1,1)
uniformly yields a strict improvement in the discrepancy.
It is obvious from the definition of P that lim ]' = lim J
n ne~+o "N n—ow’'N
because altering one point cannot change the discrepancy very much
for large n. A careful examination of 35 must reveal analytically just
how slowly ]:] and In converge to each other.
More investigations of this sort are planned for other low~dis-
crepancy sets in the unit cube as well as the unit square. An impor=-

tant goal is the theoretical calculation and analysis of

1 1 1
2
c) dx dy dz (v(Q_,(x,y,2)) - nxyz)
§ axf arf ax o,

1 . - .
(n,fPZ(J), <P3(J)), i=0,1,...,

n-1, where (P3(j) is the radical-inverse function of j to
the base 3. It may be instructive to first compute Th for

the Halton sequence (P, (), P50, 5 =0,1,...,n-1 [1].

for the Hammersley sequence



[1]

(2]

(3]
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APPENDIX A

Using 2 and 3 with n replaced by n}"{m and x =1 in 3 the

v of 19 becomes

(A1) v(P - ,(1,y)) = Z‘ H(y-y,)

This equals the number of points of 6 whose coordinates lie in the

rectangle
' < —
R ,Y) = {(x,ﬂ)]xa[O,xm), nel0,y], 0sy=1l].
M-1-i ' |
The 2 points of 6 in the rectangular strip

(x,y)|xelX,% ), vel0,1], 0<i<m=-1)

X,
i’ i+l

are equally spaced in y with a point at (}?i,?i); X and 90 are

0

N N ¥
taken as zero. Hence, the number of points in R can also be ex~-

K

pressed as

m:l
(A2) Z nyroqgeg (LT
i=0

M My -5)) Hy-5), 0=y< 1.

Thus, using 16 and A2, 19 can be rewritten as

" Throughout this report [z] denotes the largest integer no larger
than z and {z}:= z - [z].
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1 m-1 2
(A3) A = jdy(z I H(y-yi)(H[ui(y-yi)]))
0 i=0
m-1
- 4 3
= ) Pamerog (17T F 2R HAD
i=0
m=-1 i-1
- 4 2 1
+2 ) ng )y (=T A + A+ A)
i=1 j=0
where
) 1
(A4) L 'Y;, dy [u;(y=y)] [u(v-9))]
i
5 1
A5 A := dy [u,(y-¥.
(A5) ¥ jy y [u(v=9))]
i
3 1
(A6) B = [ dy [u(v-¥)]
Y
. 1
(A7) Af = [ dy [u(y-§)].
Yy

The fact that the summation of A3 is one too large for y =1 does
not affect the validity of the integral since the integrand is incorrect
only on a set of measure zero. The expansion of A3 is straight—

nM-l—i’ and

1}

- - 2
orward observing that z vy, for izj, ,
forward observing th yi > yJ r izij nl\/[—l—l

H (y-yi) = H(y-i‘fi)-
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For convenience let

A8 a,, = uly.-v,
(A8) i ](yv1 yv])

pa—
A
ot
A
3
o
A
A
et

i

(A9) B, :

-u.V o .
ij i+l i)

With the change of variable y «—y - §i’ A4 becomes

1 .——-
Al0 A, = +
(A10) Y j‘ [u;ylluyy + g, ]
ul-Z (k+1)u
- Z K j‘ dy [u,y + aij]
k=0 k/ui
37
+ 1 —l j; [u y+otij]
lT

since l/ui divides 1 - §i with a quotient of [ui(l - 371)] =u -1,

for 1> 0. The latter follows from 1, 13 and 16:

-1-i -M -

(A1) u -1l=[u-5-2" ]=[u-2 (2" - u 5w -y

1
i 2

sfu -2z -2 e -

Since i >j in A3, 1 /uj divides l/ui exactly 2" times. Hence,
with the change of variable y+«vy - k/ui the first integral of A10 be~-

comes



26

1/u; 2 (1={aj; )/

(A12) 5‘0 dy (kuj/ui + [ujy+ Qij D= ]<;uj/ui + [oxij] j'O dy
uj/ui-z 1/1,1j (QJ }/uj

+ rZO (r+1 +[aij]) 5‘0 dy + (uj/ui+[ozij]) ‘f dy

u,
= L ((k+'1'>‘l+a,, --12-)
u, 2/ u, ij
i i

using the facts that [ozij +1 - {aij}] = [aij] +1 and that

S

(A13) Jor= s(s+1)
2

r=1

Using A9, let
1 5
Looo= - - - o = - .

(A14) Pij 1= Y, (ui yi) 1+ ij} 5, 1+ﬁij

Then with the change of variable y«y - (1 - '111“ ) the second integral

i
of A10 becomes
1 —
Eim i 1 1 1
(A15) ‘fo dy (uj(l —;ji) + [ujy+ Otij]) = uj(l -G‘i‘)(;l‘;- y;)
(1~ (aij])/uj [pij -1 l/uj
- d
+ [aij] J:) dy + Z (x+1+[aij]) j:) y
r=0
{511 }/uj ! [le ]2' )
tllpygl+1+fayD jo dy = ;’J‘ (=7 + leyylpyy = 5)

1= -5 -
-1+ {aij] + uj(ui yi)(uj(l v;) Py +aij)) .
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Thus, using Al3 again and the fact that

s(s+1)(2s+1)

S
(A16) Z. 2 —2
r=1

from A10, Al2 and Al5, A4 becomes

u u
1 i (i 5 17 1 1(1 3 1
Al D N (R S YOI . A
(B1T) Ay ui(.a PASET Zui) * (O‘ij z) 2 z‘Lu)

With the change of variable ye«vy - 371 and using A8 and All,

A5 becomes

1
2 l-ui 1~yi
Al A = " dy [u. N dy [uy+a..].
(A18) y ”Yo y [uy+a ]+ fl y [wy ;]
l__.__
1

Using Al3 the first integral of A18 becomes

(1 - oy, /g u (1= )2 1/n

- 1

(A19) [aij] j‘o dy + Z (r+1 +[ai]_]) j; dy
r=0
{a, 3/
+ (1 =) + [a, ] dy
i 1] 0

U DS N 1
S ey 5) -
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The second integral of Al8 is given by Al5, so with A17-19, Ailj
becomes
u u2
) 1 2 _j(i_3 S5y 1 _L -
(B20) A+ A= u, ( 3 2%t 12) PR TR R AL
2
u, ( [py;]
+uj -t [pij](pij— ) -1+ {aij)
Fu (oY1 =) - p )
ui Yi j yi le ij
Similarly, using All, A6 becomes
3 1~y u;—2 (r+1)/ui , l—§i
(A21) Ai = dy [uiy]2 = Z rz; dy+(ui—l) ‘S' dy
0 r=0 r/uj 1-1/y,
uZ
i1 1_ 1.2z
= 73 Zui+6 (ui 1) yi
and A7 becomes
) 1-9, u-2 (r+)/y; 1-y,
22) Al = [ dv[uy] = Yoro [ dv+iy-y dy
1 0 1
r=0 r/ui 1- /ul
u
A1 _
= 577yt by

where Al3 and Al6 are applied.

Combining A20~22 using A9 and Al4, A3 becomes

2

+ A

1)




2
m—1 ui ui 1 2_)
(A23) A = Z "M-1-i (T*T’Lg”ui Yy
i=0
m=1 i=-1 u, u-z u, 1
i i
+ 2 Z Diel-i Z M—l—;(u, (3 Ty 12)
i=1 =0 1

From 13, 16, A8 and A9 observe that

n .

a) {a,.) = _M-1-j

ij 2
(Aad) ~la,.]-1, §>0
ij
b =
) [Bij]
-[aio]l )} = 0.

Since nyog = 1, {aio} =1/2 by A24a). It is valid to take {aij} =

1/2 in A23, because (aij};rfl/z iff n =0 by 1 and A24a),

M-1-j

but in this case the effect of the erroneous {qij] is nullified by the

ZEero nM-1—j coefficient of the double summation. From 13, taking

Yo =Yg = cpZ(O) = 0, and 26b) and A8

Y o(-1)i - (=1)j), §> 0

(A25) a,, =
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Hence, in A24b) and A23 one can use

N [

(W, ((-1)i = (-1)j) = 1), §> 0

(B26) [a,.]= J
1]

(uy(-1)i = 1), =0

oo =

where {aij} is taken as 1/2.

Using the notation of 25 along with 26b), A24b), A25 and A26,
and after some calculation distinguishing the j = 0 terms from the

others, A23 can be rewritten as

(2,-1)m

1 1 1 1
(A27) Am =3 (2)m + = (I)m + 5 (0)m 5

+ 2(‘1‘ (1,1)m +‘l‘ (0,1)m —1‘1‘2“ (-1,1)m)

3 4
o 1 2 iz 2
+ Z Me1-1 % (_Z((—l)i) ()i ) Z nl\/l-l—j uj((—-l)j)
i=1 j=0
L et L ciiion - Liotiiimg
+ 2 (=1)i(1,=1)1 = 3 (~1)3(0)1 = = 1)1(1)1)
1 v =L v - -
+ 2 (1,0,-1)m 4 (1,-1)m > (0,1,-1)m
! m-1 ) . .
S .Zl Nppog—y DAL +5(1,0)m + (0,0)m = 2(1,1,~1)m.
1=

This intermediate result can be simplified by applying Theorem 1. After

further calculation Am takes the form




(A28)

A
m

31

(1,-1,1)m

1 L
> (1,11, 1)m = (1,1,~1)m =~
- (1,-1 O)m—"l’(l =-2,1)m +’1‘(O -1,1)m
7 14 4 bl 7 2 I ’
1
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APPENDIX B

The first factor in the integrand of 20 involves only 2M-1-m

points of 6. Because of the previous variable transformations (cf.

15) these points map one to one on the set of points with coordinates

(cf. 4 and 6)
a) x 1=
j u
m
O=zj=su -1
\ . m
b) . .
YJ : @2(1)
(B1)
where
o e s . . _
u ®,00) 2= (g I ezemlpr LEm<M-l
c)

Thus, from 3 with n replaced by u

um-—l
(B2) v(Pum,(x,y-ym)) = Z H(X—X;)H(Y‘Y -y.) .
j=0

The second factor in the integrand of 20 is given by A2. Integrating

with respect to x, and using 2, A2 and B2, 20 can be rewritten

as
Um"l 1 m~1 _
(B3) B_ = Z (1-x)) j’_ dy H(y=y_ -v,) l nyy oo+ =y D
=0 Ym i=0
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- _ , T
since vy =y, by 13. By Blboc), vy = ] - o Mi#l4m Hence,
from this and 13

Mm-—l .
- [} — : - - — B
(B4) vy ty =2 Z 21+(1_2M++m):1_21\/1+14m_21\/1
m b
i=0
and B3 becomes
le—l m-1 1
(B5) B = Z (=x) )y 1=y, =¥ +B)
j=0 i=0
where
1 1 _
6 i —
(B6) Bij _5‘ ldy [ui(y yi)]
Ym+yj
Using A9 define
- . .
(B7) Oty = u -y yj) 1+ {ami} = u,(1 yj) 1+ Bmi'

With the change of variable y «~vy - ?m - y;, B6 becomes

l-ym-yj | l-ym-yj
B8 ,
(B8) fo dy[u (y+y) +a_.] j‘o dy(u,y.

Huyta )
17 iy mi

l-ym-yj

] — ]
= 1- - d u,y+a
Wy (=5 =) + j‘o v [y+a ]

because uiy; is a nonnegative integral multiple of two by 16 and

Bl bc). The final integral of B8 can be expressed as

<1



(I=-{v .} /ui [Gmlj]— l/u
(B9) ] dy + Y (r+l+[a dy
mi ‘3:) IZ‘ f
{Bmi}/ul
+ ([ mij]+1 +la ) “Yo dy

[o,;]
(B10) Bilj = :1-1— (-—‘If—-— + [Gmu]( HCERE: [mi]+~1£)

D0 - fa 3+ 5,)

mi

+ {B i] uy+[

where Al3 and B7 are applied. Interchanging the summations of B5,

substituting B10 utilizing B7 and rearranging terms yields

m=1 U~
1 12
(B11) B = Z nm—l-—i( > Z -v}9
1:0 :
_1. -
o+ Z (1 ‘.)
(B .]2
L[ mit LY o
* ui ( 2 +[t3m.1](u +{P i}+[ami] 2) uiym
um—l
{Bml} {arrxi])(ui+[ami])) Z (l—xj))

From [2] it is known that
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17 ' 2 Ym
a) ZZ (1 xj)(l y},)..1<u+6
j=0
(B12)
um—l
b) ) (l-x)(-vy}) = I+ ‘m
] m
j=0 4
where
M=-m 1 1 7 2
a) Ky i= (1~——~')+~—-(11+~~—- z)
Um 16 U/ 48 Up U
(B13)
M-m 1 2
b) Ium e 3 + 3 (3 + um)
The last summation of B11 is
um—l . um-l .
[] .
- = - =7 +1
(B14) z (1 ) u_ . Z j=5(u +1)
j=0 =0

using Bla) and A13. Substituting B12 and B14 into Bl1, Bm becomes

m=1 Up Uy 1
B15) By =) Mweie ((Kum+ '“e:‘) o+ (fug o "':;‘)(ami 3)

i=0

u_ -+l : 2

“m [Py 1 _

2u, P mmi]( RGNS R LAY z) "% Ym

+

({Bmi} - {a i) (u, + [ami]»)

Observe that A8, A9, and A24-26 hold with ij replaced by mi,

with {ami} = 1/2 valid for B15. Using the notation of 25 along with
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26b) and A24~26, Bm can be expressed as

i

Ym 1 Y’ (
(B16) Bm = (Kum + 6 ) (I)m + Z(Ium + 4) (-I)m(1)m=(1,-1)m+(0)m
u_ +1 m=-1
m 1 2 _ 1 Y
+ ( g ((1)m)“(1)m - ¢ 'ZO Npgoq g (DD
i=

1 21
(l)m—4(0)m 8)) .

NeRE

1a_ - L 2y -
4(O, 1I)m 4 (-1)m (4(1, 1)m

+

Application of Theorem 1, 25b) and B13 vields

M-m {1 1f 1
(B17) B =g (2(1,1)m+2( um>(1)m+(0)m)

1 (] - - -
+16(um+1)(2( 1,-1,1)m - 4(1,-1)m

. 1 1 1Y
- 4(=1,0)m - (=2,1)m - 4(-1)m) - 8(um+ 5 um)( 1,1)m

1 2 1 2
+48 (Sum+11 +um u—g)(l)m+8(l +u )(O)m .

With 2, Bl and B2, 32 can be rewritten as

um—l
' fund - ! ].“'_ e !
(B18) B Z (1 xj)( Yo yj)
j=0
Um 1 -
= ILl + 4 2(um+1)ym
m
M-m  Ym 3 1 1
= —_— g = - -1
2 oy +8 + fu, 4:(umﬂ)( )m

using B12b), B13b) and 26b).
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APPENDIX C

Using 2, 16, Al and A2, 21 can be rewritten as

m=-1
1/ -2 1

(©h Cm = | nI\/I—1~i(Z<1 yi) +Ci>

i=0
where

1 1 _ 1"371 _
(C2) C, = ‘f_ dy y[u(y-7,)] = ‘fo dy (v+9)) [u, v]
i
-

' ]

with the change of variable y «y - S}i and by A22. From All the

last integral of C2 becomes

ui_z (r+1)/ui 1—&1 U_i""z l/u]_ . ]-/U-l
©3) ) r f dyy+u-n [dyy=) r(j dYY+;;de)
r=0  r/u; 1-1/u;  r=0 0 0
u, -1
i -2 1.2
S ((1 y,) - o, ) )
u, u, -1
4 1 1 i o _ o
T3 T4 Ty T2 iAW

with the change of variable y+«y = r/ui and by Al3 and Al6.

Substituting this result in C2 and using A22, Cl becomes

m—l U u.
21 N
cay o - S R D S O _
(©4) m 'Zo nM—l-i( 2 Vi T2 WY Ty 12ui)
1=

Using the notation of 25 and applying 26b) and Theorem 1
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N U N D

(C5) (’m = 4(1, 1,-1)m 4(1, 1'm 8(1, 2)m
1 1 1 e

+ 4(0, Iym + 3 (1)m —l»4 (0)m 12( 1ym .

With 2, 16, Al and A2, 33 can be rewritten as

m-1

] — 2
(G “m = Z "M-1-1 (1 TVt ci)
i=0
where
1 1-9;
| oo (D dy [uly-§01= [ dv[uv]
() S Jg-, y WYL= Jo i
i
u, =2 (r+D)/u, 1-y.
i i i ]
= Z r 7fdy*+ (ui-l) j’ dy'—-(ui—l)(2
r=0  r/u; 1-1/uy
as in C3. Hence, Cb becomes
m-1 |
] - -
(C8) Cp = L PM-1-i (2 (uy +1) =yy yi)
i=0

’Z‘ (=(1,-1)m + (1)m + (0)m)

using the notation of 25 and 26b).

5)
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APPENDIX D

22 can be rewritten as

(D1) D =D -2nXx D -2y u D3-—2n>"2 v 4
m m m mm m
5> nx 54 nX v
_zm 2y +—“)u +Y—m-u2+ m’
3 \3 m 2 m 3 m 2
where
1 1 Y
(D2) D = j’ dx dy G (x,¥)
m 0 0 m
5 1 1-Ym
(D3) D := j‘dx j dnyu (%,v)
0 0 m
3 1 1—37m
(D4) D := dx x dy G (x,Y)
wim §aex f o Tave,
1 1-y
(D5) p* .- j‘ dx J ™ qy Gy (X,Y)
m 0 0 m
and
(D6) G, (X,¥) = v(P, ,(x,¥)) —u_xv.
m m
From the results of [2]
1 1 1 2
(D7) D =7 - dx dy Gu (x,v)




1 1
2
D8 D" =K. - d d
(D8) n=Ke m fax § Ay v Gy ()
m 0 1 Yo
3 1 1
(D9) D =K - dx X dy G, (x,y)
m
. 1 1
(D10) D=l = | dx [ dy Gy _(x,¥)
m 0 ul—ym

where Ju_ is given by 24 with M replaced by M~-m, i.e.,
m

(M—m)z 23(M=-m) 23 _ M-m-5 1

64 192 96 leu —~ 72uf
m

(DI11) I, =

and Ky and I are given by B13.
m Um

Using 2, 3, Bl, B4 and D6 the integral of D7 becomes

u_ -1 u -1
1 '_‘1 m 5 m
(D12) [ dx j _ dy(Z H(x-x") -u xy) =7 Z (1-x")
0 l--Ym j=0 i=0
um—l um—l
e oo 2 -
+ 2y Z j1mx) == (1 1 ym))z 1-x
j=1 j=0
42
_m 1 = 3
g 1-a-F)7)
-3 2 -

where Al3, Alé and Bl4 are applied.




Similarly, the integrals of D8, D9 and D10 become

?3 g,,z -
_m _m - .
(D13) ; um+ 2 (um 1) + 5
§2 -
_m _m R
(D14) 6 um + P (1 . )
m
72 7
m m
15 - 1 —
(D15) 4 mJr 2

respectively. Combining D7-10 with D12-15, substituting into

D1 and collecting terms, Dm becomes

(D16) Dm = Iu - Z(nxm+ymum)Kum - anmymlum
2
+ 372 (um +—(>‘E +L>u + 1oz ——-))
m\ 3 2 m 2/ m 2 m 6
2= 2
m

Using the notation of 25 along with 26, Dm can be expressed as

(D17) Dm =7 = (2(1)m + (-1)m um)Ku = (I)m(-1)m Iu

1 1 21 1 .2
+ > (—1)m( (l)mum + (1)m 3) + 3(1)m .

Application of Theorem 1, 25b), Bl13 and D11 yields



(D18)

D
m

it

42

M-m (M=-m _ - e _1 v
3 ( 2 (1,-)m = (=1, )m = > (u_=1)(~-1)m
1 _ 1 23
(—1+u )(l)m (0O)m o + 24)
m m
1 1 - (- - 1 -
2 DL, =1, =hm 4 (=1,1,-1)m + (-1,-1,1)m)
2 1
S (L, 1)m === ((1,=1)m + (=1,1)m)
m
2—13- (u_+1)((1,=2)m + 2(0,=1)m + 2(=1,0)m + (-2, 1)m)
Li2u +1)((1,-1)m + (-1,1)m) + A 40?130 =1)(-1,-1)m
8 m ! ! 24 m m !

1, A (.1, 2 1f 2
3(2)m+24(11 um +T)(1)m+8(&um+l . )(O)m

u

m m
al 2 1,2 N\
48 ( Sum 9+um>( 1)m + 48 (4um+ 3um 1)( 2)m
23 5 1
a2 - >
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