WIS-CS-168-73

University of Wisconsin
Computer Sciences Department
1210 West Dayton Street
Madison, Wisconsin 53706

FUZZY PLANNLR

Computing Inexactness
in a Procedural Problem-Solving Language

by
Rob Kling

Technical Report #168
February 1873

Received January 30, 1973

ABSTRACT

FUZZY PLANNER

Computing Inexactness

in a Procedural Problem~Solving Language

All contemporary deductive problem-solving para-
digms deal with a world in which assertions are true
(false) and action-rules valid (invalid). This sim-
plified situation is inadequate for realistic applica-
tions which include inexact information. This report
describes a precise computationally specific method for
coupling two different many-valued logic with a proce-
dural problem-solving system (PLANNER). Solutions to
deductive problems can be found which meet specific
criteria of validity. This particular scheme enables
the system to dynamically compute the truth-value of
a subgoal during the search process. Thus, the validity
of a subgoal may be used to direct the heuristic search

procedure.

Fuzzy PLANNER is a promising medium for experiment-
ing with different many-valued logics to find the ones

most appropriate for different problem domains.

FUzZZY PLANNER

I. Introduction

A robot that reasons out actions to manipulate the
world around him deals in a world of some imprecision.
He does not always perceive a scene with complete ac-
curacy; when he does, it still may change. The causal
laws he uses in reasoning about actions may have some
ambiguity. Unfortunately, all the deductive problem
solving systems (e.g., QA3, STRIPS, PLANNER) that have
been developed to aid a robot assume that all the in-
formation is exact. These systems are restricted by
the conventions of classical two-valued logics. Here
I will discuss how a deductive problem solver can deal
with certain kinds of inexactness by redesigning a par-
ticular paradigm (PLANNER) to allow the use of a many-

valued ("fuzzy") logic.

In many realistic settings a two-valued logic may
be too constrictive a model. Tor example, suppose we
wish to describe the intensity of a person's pain for
purposes of medical diagnosis. We could have a large
set of predicates which uniquely describe each gradation
of pain. A practical axiom system utilizing such a large
set of predicates in many similar inferences would be
unwieldy. Alternately, we could allow a single predicate
PAIN [X] to be interpreted as X is in pain. The truth
value of PAIN[X] (T[PAIN[X]]) could be used as an index
of intensity. Then T[PAIN[JOHN]] = .6 could indicate
that John is in mild pain. T[PAIN[JOHN]] = .9 would in-
dicate that John is in acute pain. Many descriptions
in the medical literature (Mellinkoff [1959]) utilize

qualifiers such as mild, acute severe, predominant,
marked, slight, etc. We would like a diagnostic system
which uses deductive inference to deal with such in-

exactness in a meaningful and precise way.

In a less dramatic setting, consider a robot which
is asked to bring us three "tasty" apples. Tasty is not
a precise description. We would really like the robot
to bring us the three tastiest apples it can find (near-
by). We would like our robot to solve problems which

involve imprecision with human-like flexibility.

In the preceding discussion I suggested that state-
ments assume truth-values on the interval [0,1]. The
multi-valued logics or these statements may be good
candidates for expressing inexact concepts and making
inferences with them. At this time we have few analyt-
ically precise alternatives. This paper outlines a
computationally precise scheme for a procedural problem-
solver (PLANNER) to use a many-valued logic. For brevity,
I will assume that the reader has some familiarity with
the class of robot manipulation problems current in
artificial intelligence (Raphael [19701]), has some ac-
quaintance with fuzzy sets (Zadeh [1965]) and is con-
versant with the notions of procedural problem solving
represented by PLANNER (Hewitt [1971], Winograd [1972]).

Each author proposes his particular logic as the
"fuzzy-logic" (Goguen [1968], Lee [1972]). Actually,
many distinct consistent fuzzy logics are possible. The
appropriate meta-theory--the theory of multi-valued
logics~-is introduced in the next section. This section
may be skipped on a first reading by the less mathematically

ineclined reader.

II. A Brief Introduction to Multi-Valued Logics

Multi-valued logics deal with statements which can
assume truth-values on the interval [0,1]. We can con-
struct such a calculus analogous to the first-order
predicate calculus by creating a set of primitive atomic
statements (Pi) and (2) a set of function of statements
{Fi}:

Fl(Sl’ .,Sal)

- [

Fz(Ql,...,Saz)

Fb(Sl,. "Sab) b>1

aiil
Then, for 1<i<b, and Sl""’sa are statements,
i
F(Pl,...Pa) 1s a statement. Common examples of Fi
i

are ~, =, and V . Thirdly, we divide the interval

[0,1] into [0,a) and [a,1]. If =xe[0,a) x 1is called

"undesignated" and corresponds to falsity in the two

valued calculus. Likewise, if =xela,1] , x 1is
"designated" and corresponds to "truth". Lastly, we
assign a truth function fi[sl,...,sa 1 to each
i

Fi[Sl,...,Sai] such that if T[Si]=si (the truth-value
= S,

of i), then, T[Fi[Sl,...,Sn]] = fi[sl,...,sa] €

[0,1] . We can then select connectives for the Fi
such as ~ and V , associate fi with these., and

develop a scheme for assigning truth-values to any

woff. Then we set up axioms schema for our logic and
explore a multivalued logic by considering its tantolo-
gies. This approach is the typical axiomatic develop-
ment of multi-valued logic (Rosser and Turquette [1952],
Rose and Rosser [1958]. This approach allows consider-
able laxity in selecting the statement functions Fi

and their associated truth-valuesfunctions fi

For example, the "standard condition" for ”Sl and

82” is designated iff T[Sl] and T[32] are both

designated. (Rosser and Turquette [1952].)

The "standard conditions" allow us tremendous

freedom in choosing truth-value functions.

Let T[Fl[8i582]]=fl[sl;szjz mln[sl;szj and
T[Fz[Sl,82]]:f2[81;s2]:max[0;sl+82~l]. The reader

can verify that both Fl and F2 are analogous to

conjunction in two-valued logic. Either is an acceptable
candidate for conjunction in multi-valued logic. The

remaining standard conditions are:

(2) "Sl or 82” is undesignated iff s, and

s, are both undesignated.

(3) ”Sl implies S

"

2

is designated and s, is undesignated.

(4) "not 8" is designated iff s 1s designated.

is undesignated iff s

For example, the set of truth-value functions pro-
posed by Lee for "fuzzy resolution" (Lee [1972]) con-

stitute a special many-valued logic in which oa=.5

(1) T(S) = T(A) if S=A and A is fully in-

itiated.
(2) T(S) = 1-T(R) if ©S= R
(3) T(S) = min[T(Sl),T(Sz)] if S=Sl 82
(4) T(S) = max[T(Sl),T(Sz)] if S:Sl)
(5) T(S) = inf[T[B(x)] x D] if S= xB and D

is the domain of x
(6) T(S) = sup[T[B(x)],x D] if S= xB and D
is the domain of x
(7) TLS] = max[l—T[Sl]; T[82] if S:Sl 3»82
(We will call any many-valued logic that satisfies (3)

and (4) a "fuzzy logic'.) Notice that Lee's valuation

of implication can be rewritten as the following ALGOL-

like expression:

(8) T[S]:= if T[Sl] > .5 then T[82]
else max[l~T[81],T[82]]

In a practical deductive system we need a rule for de-
tatchment that will enable us to compute the truth-values
1> 51 T 59>
T[Sl] and T[Sl$>82] we want to compute T[82] . We

of consequences of our premises. Given S

seek a binary operation * such that:
(9) T[S,1*T[5;=>5,] < T[S,]

We do not want the truth value of the consequence we
deduce to exceed T[82] . On the other hand, we would
like to have it as large as possible. Most accounts

of many-valued logic neglect this issue since logicians
are more concerned with the tautologies and axiomatic
basis of their logics than with providing computationally
specific deductive procedures. Lee was interested in
providing a computationally specific marriage of

"fuzzy logic" with resolution. For his definition of

T[Sl:>82] ((7) above) he proved the weak result:
(10) min[T[s;] , T[8,>5,]] < T[s,]
< maX[T[Sl] R T[Sl$>82]]

Thus, min can be used to estimate * and provide a
(conservative) lower bound for the truth-value of a
consequent.

Alternate methods for computing T[P= Q] and
* can be generated by studying the algebraic properties
of the lattice of propositions generated by our logic.
In his study of a variant fuzzy logic which satisfies

(1)-(5) and in which =0, Goguen created algebraic

constraints on *® and developed a related definition
for T[P=> Q] (Goguen [1968]). He argues that we would
like T[Sli»Szj as large as possible, but subject to
the constraint of (9). Then, if we know both T[Sl]
and T[82] s

(11) T[5;=>5,] = Sip{XlT[Slj"“XﬁT[Szj

Furthermore, if we want (Slﬁ»SQ)A(82$>83)$>(Sl:>83)
then * should be associative. Goguen adds several
additional constraints on * and suggests that a good
interpretation of the algebra of propositions is a
complete-lattice-ordered semigroup (Birkhoff [1967]).
Then, he argues that multiplication is a good candidate
for % . It follows that:

T[32] .
(12) T[Sl$>82] = ngzj if T[31]ZT[82]

1 otherwise.

One interesting property of Goguen's development is
that a chain of nearly valid implications decreases as
the chain increases in length. In contrast, Lee's
fuzzy logic bounds the validity of a chain of implica-
tions by the truth-value of the least valid element in

the chain.

The point of this development is to show that we
have a great deal of freedom in choosing % and
T[P= Q] in a fuzzy-logic. Our particular choice may
well depend upon the kind of reasoning we are trying
to model. Unfortunately, Lee's logic is not of much
use in the context (Resolution logic) for which he
developed it. The failure of his logic in that setting

and our desire to find a more tractable setting for its

use motivated this development of Fuzzy PLANNER. Both
Lee's and Goguen's developments are viable logics and

either one can be successfully embedded in Fuzzy
PLANNER.

III. Deductions with Fuzzy-Resolution

Lee [1972] clarifies the relationship between
fuzzy-logic and resolution. He proves the weak result
that the truth-value of a resolvent is bounded (above
and below) by the truth-values of its parent clauses.
Fach time we generate an inference we would like to
know its truth-value. Then we could formulate strate-
gies which would allow us to give priority to making
deductions from the "truest" inferences first. Un-
fortunately Lee's result doesn't allow us to use reso-
lution easily that way. Suppose we wish to find a ripe
apple. We could phrase our request as the following
theorem (Green and Raphael [1969]).

Sl:H x applel[x]aripe[x]

In a resolution theorem prover (using T-support;
Wos [1965]) we would start resolving S with axioms

1
Cl’CQ""’Ck
Now, what are the truth-values of the resolvents

{Rj} ?

Ry = RC 8.,C)
R2 = (R Sl’CQ)
Rj = R(Sl’cj>
Let T[C] be the truth value of clause C . Then,

by Lee's result:
min[T[81], T[Cj]] < T[R(Sl,Cj)] < max[T[Sl],T[Cj]]
Suppose we know the truth-value of each axiom Cj . We

do not know the truth-value of Sl: that will depend

upon whether there is an x that satisfies Sl[x]
If there is such an x , e.g., a ripe apple, the truth-
value of S[x] will depend upon which ripe apple we
choose for x . The truth-value of Sl is unknown.
Thus, the truth-value of Sl is also unknown, a "?".
Thus, min[?,T[Cj]] < T[Rj]'i max[?,T[Cj]]
T[Rj] is rather uncertain. We might attempt to estimate
it by T[Cj] . But there is still some uncertainty since
we are unsure whether T[Cj] is an upper or lower bound
on T[Rj] . These considerations motivate us to select
another system as a candidate for creating a computa-

tionally attractive "fuzzy" problem solver.

10

IV. Truth-Values in Fuzzy PLANNER

A PLANNER assertion, e.g., (RIPE APPLE7) is true
if it appears in the data base. In Fuzzy PLANNER, we want
to associate a truth-value T € [0,1] with each asser-
tion. Thus (THASSERT (RIPE APPLE7) .9) means APPLE7
is RIPE with truth-value .9 . If an expression e
as truth-value T[e] , we can interpret T[e] as the
(fuzzy) membership function of e (Zadeh [1965]). If
T[(RIPE APPLE9)] = .8 , we can say that APPLEY belongs
.8 to the set of RIPE things. Fuzzy truth-values are
not probabilities. We are describing deterministic

events.

PLANNER's means of accessing an assertion is the
THGOAL statement. (THGOAL (RIPE X)) will get me a
RIPE thing. We should be able to ask for a "very"
RIPE +thing, e.g., (THGOAL (RIPE X) 1) . This goal
should be satisfied by an X s.t. T[(RIPE X)] > 1
In "classical" PLANNER , expressions are either True
(and THSUCCEED) or False (and THFAIL)

Fuzzy PLANNER should allow a PLANNER statement
to succeed or fail based on the truth-value of the
expressions that match the statement compared to some
threshold.

Lee selects o = .5 as his lower bound for
designated truth-values. Thus T e [0,.5) corresponds

to "false" in two-valued logic. Any o < 1 is

formally adequate; the virtue of o = .5 1s the
symettry it provides. In the following discussion we
will assume o = .5 , but it may be changed without

loss of generality.

11

V. Truth-Values for Primitive PLANNER Expressions

Let's now consider the truth-values of the
PLANNER primitives:

(1) T[THSUCCEED] = 1
(2) T[THFAIL] = 0
(3) T[(THGOAL e 1)]

1"
=
1
>
f—

if (i) A matches e
(11) A is THASSERTED
(iii) T[A] > 7
1-1 otherwise (we will con-
sider goals that are
satisfied by THCONSES
later)
(4) TL[(THAND e €. en)] = min[T[el],...T[en]]
(5) T[(THOR el,e2...en)] ; max[T[elj,...T[en]
(6) TL(THNOT e)] = 1-T[e]

e

(7) Let e = (THCOND (pl eqq e12"'eln)(p2 e21...e2n)
(pm eml...emm))
Then e can be rewritten as (THOR (THAND Py €79 elz...eln)
(THAND Py 821...82n)... (THAND Py eml...emn))

Thus Tle] = max[min[T[pl],T[ell]...T[eln]],min[T[p2],T[ng]
T[ezn]l...min[T[pm]T[eml]...T[emn)]]

(8) T[(THFIND ALL % e)] = min T[e] (x is a list of all

® objects that satisfy

e)

(9) T[(THFIND n x e)]

min Tle] (x binds a list of n
* objects that "best"
satisfy e)
(10) T[(THPROG (X) e)] T[e] since THPROG acts like a
THFIND that binds one element which satisfies e
to x We will consider THPROGS with loops later on.

1

Several PLANNER primitives, such as THFIND, can

allow several expressions to be evaluated. Thus

T The evaluations are consistent with both Lee's and Goguen's

logic. Other forms of negation may be used. See Goguen [1968].

12

(THFIND ALL (X) (COLOR X RED) (TYPE X APPLE)) will
return a list of all the red apples. There is an
implicit THPROG in this and similar statements which
must be considered in computing T[e] as in (8) and

(9) above.

Lastly, we come to THCONSE, the "backwards" impli-
cation of PLANNER. If we want to say p(x)=>q(x) , we
write (THCONSE (X) (Q X)) (THGOAL (P X)) . If we
satisfy (P X) , with X=A then we infer (Q A) . This

is much like:

Sl: p(x)

S,:p(x) = q(x)

Tlq(a)] > T[S,1*T[S,] (The operation * was

introduced in Section II.)

From our discussion of many-valued logics in
Section II we know that we have qulte a bit of freedom

ala
v

in choosing ¥ and T[P=Q] . The operation for
detatchment corresponds to the truth-value function we
select for THCONSE . While our truth-value function
for = will be reflected by our computation of

T[P=>Q] , e.g., T[82] . At present we will not select
specific computations. Rather, we will leave % un-

specified and assume that we have some way of assigning

truth-values to conditionals like 82 . Let us denote
a THCONSE with its assigned truth-value T, as
(THCONSE wvars Ty g e'). In this format e, Yrepre-

sents an expression which can match a THGOAL statement
and e' is the THCONSE body (with an implicit THPROG)

which will be evaluated. Then,

(12) T[(THGOAL e 1)] = T[A] 4if (1) A is in the
data base
(2) A matches e

13

(3) T[A] > 1
T[(THGOAL e T)] > T[e']*TO if there is a
THCONSE theorem (THCONSE vars 1. e. e') s.t.

0 0
(1) e. matches e

(2) tgis theorem
THSUCCEEDS.
(3) T, > T and
Tle' >t
This brief discussion outlines the assignment of
truth values to most of the PLANNER primitives whose
execution will result in returning an expression with
some associated truth-value. Note in passing that
certain PLANNER primitives such as THGO do not have

meaningful truth-values.

Now let's return to THGOAL. A THGOAL may be
satisfied by directly matching some item in the data
base or by triggering a THCONSE theorem which THSUCCEEDS.
We would like to prefer THCONSES which have adequately
high truth-values to allow success. We could order these
by their truth-values and use truth-value as an estimate

of utility.

TH1: (THCONSE (X) .6 (TASTY X)
(THGOAL (APPLE X) 1)
(THGOAL (RED X) .7))

TH2: (THCONSE (X) .9 (TASTY X)
(THGOAL (RIPE X) .95))

Suppose we want a tasty apple: The appropriate

PLANNER expression is:

(THPROG (Z) (THGOAL (APPLE X) 1)
(THGOAL (TASTY Z)))

1y

If we want any tasty apple, let 1T = o . Suppose
PLANNER satisfies (THGOAL (APPLE Z) 1) for Z = APPLET7,
but must invoke a THCONSE theorem to satisfy (THGOAL
(TASTY APPLE7) .5) . Then PLANNER should try TH2 before
attempting THI1

Suppose *[x3y] = min[x;y] . T[(THGOAL e T] >
min[TO;T[e']] . If T > Ty > then a THCONSE with truth-

value T will be useless in satisfying such a goal.

Such THCgNSES should be rejected as candidates. Then,
if we want a very tasty apple and set 1T = .85 , then
we should try only TH2 since T[(TASTY APPLE7)] < .6
with TH1 . If we are very picky and ask for an
extremely tasty apple T = .95 , then neither TH2 nor

TH1 should be invoked.

15

VI. Evaluation of Fuzzy PLANNER Expressions

In the preceding section, I have implied the
evaluation procedure for THGOAL and hinted at one for
other PLANNER primitives. Some of the underlying issues
will be treated for THAND and extended later. They

include:

(1) Threshold
(2) Back-track
(3) Loops

(4) Satisficing.

A PLANNER (THAND €y +.- en) is analogous to LISP
(AND ey .- en) in that it will evaluate the ej's until
one of them THFAILS (in LISP eijIL) . Otherwise it

THSUCCEEDS. (LISP 1.5 returns T)

With fuzzy-truth how do we know when to fail?

Let eq = (THAND e e, 5 e, eg eB)
T[el] = .9 T[e2] = .7 Tle,] = .6
T[eqj = .4 T[e5] = .2 T[e6] = .8
Now T[eO] = m%n T[ej] = .2
1<3<6

In fuzzy-logic, T[e] > o = T[e] ® True. How many
of the ej should PLANNER evaluate before quitting?
Usually we want to stop when we find the first "false"
ej s €48, T[ej] < o . Suppose we use Lee's fuzzy-
logic with o = .5. 1In this example, T[eO] = .4 and
we would quit after evaluating e, - Then, we would
estimate T[eO] by .4 . Alternately we may want to
stop if the reliability of the e.'s drops below some

threshold kx . Thus, if k = .7 , we will stop

16

evaluating ey after we find T[e3] = .6 . At that
point, T[eO] < .7 and we might want to say T[eO] =
l1-k = .3 . While this scheme is appealing, it seems
superfluous. Usually the e, in a THAND are THGOAL
statements. Their truth values may be controlled by
setting their truth-value thresholds to the appropriate
level (>k) . Thus, an additional parameter seems

unnecessary. Our two choices are

(1) Evaluate all the ej and compute the value
of THAND by formula 4 given in the preceding section

(2) If T[e.] < .5 , stop evaluation and assign
a truth-value of T[ej]

The second solution is the most efficient, although it
yields an estimate of the truth-value of the THAND.

Consider asking PLANNER to find a ripe apple:
(THAND(THGOAL(RIPE X)) (THGOAL(APPLE X))) . Suppose we
have THASSERTED:

eyt (RIPE APPLEL) T[e7] = .85
egt (RIPE APPLE75) T[e8] = .9

eqt (RIPE BX75) T[egj = .95
e1g° (APPLE APPLE1] T[eloj = 1.0
eyt (APPLE APPLE75) T[ell] = 1.0
L (BANANA BX75) T[elQ] = 1.0

The PLANNER evaluator will make a list of all the candi-
dates for (RIPE X) , e.g., (eg, eg> e7) . Later if one
THFAILS, it will attempt the next choice on the list.

In this example, if e is chosen first with X=BX75 ,

9
PLANNER will attempt to satisfy (THGOAL (APPLE BX75))

17

This will THFAIL and PLANNER will backup to the place it
made its last cholce and try again with eg » (X=APPLET75)
In classical PLANNER this list is randomly ordered.

In Fuzzy PLANNER, this list should be ordered by truth-
values of the candidates assertions that can be used to
satisfy a THGOAL. In brief, we should use a simple

heuristic "Try the truest choices first."

How shall we keep track of the partial evaluation

of the truth-value of an expression to allow for back-

tracking? Suppose that eqg * (THAND e, e, e5 e, e e6)
and a variable X 1is bound to {x,, Xy x3} in e,
At the time that we evaluate e, and ec with

X:X1 , we have evaluated T[el] , T[e2] R T[eg(xl)] .
T[eq(xl)] and T[es(xl)]

We know: T[eD] < min[T[el], T[e2],T[e3(xl)],
T[es(xl)]

We would like to carry along our partial evalua-
tion of T[eO] based upon the e, we have already
evaluated. If it falls below o (for a THAND) PLANNER
should stop evaluating any of further e; . Suppose
[eB(Xl)] = .2 . Now PLANNER should THFAIL, and back up

to its last choice point e, and try X=x2 . What

about our partial evaluation? The evaluations of e5

e and e based upon x , are no longer relevant while

Ly 5
T[el] and T[e2] are still valid and useful. To keep

track of such partial evaluations, PLANNER needs to keep
track of the partial evaluations that are made up to
each choice point. Here we would store min[T[el] R
T[62]] with the choices for x at e, . If any ex-

3

pression ei(i>3) THFAILS back to e, we can choose

a new value for x and have a valid partial evaluation

for eO . The value of the THAND should be min T[ei]

18

for the first set of substitutions which satisfy all

the e; - Otherwise, it should be min T[ei] for the
i
last set of which are tried and THFAIL.

In a THPROG with loops, the PLANNER executive allows
backup to proceed properly '"through the loops." If
partial-evaluations are stored at each choice point, the
evaluation of the truth-value of a THPROG can proceed
much as in a THAND.

Suppose we add the following assertions to the

data base we have just developed:

i

e (FIRM APPLE75) T[elgj .8

13°

e (FIRM APPLEL) T[eluj = .85

1y

Now suppose we ask for a firm, ripe apple with credi-
bilities = .8 (THAND (THGOAL (RIPE X) .7)(THGOAL

(FIRM X).8) (THGOAL (APPLE X)1)) . Then if the PLANNER
executive orders its choices for (RIPE X) by truth-
value, it will again attempt eq g with X=BX75,
APPLE75,APPLEl in that order. PLANNER cannot satisfy
(THGOAL (FIRM BX75)) , backtracks, and selects e to

8
match (THGOAL RIPE X) .7) . e satisfies each

THGOAL in the THAND with truth vglues .9 , .8 and 1
respectively. X=APPLE75 with truth-values of .8

is FUZZY PLANNER's response. Had PLANNER chosen APPLEL
instead of APPLE75, it would have THSUCCEEDED through
the THGOALS with truth-values of .85, .95 and 1. The
resultant truth-value of the THAND is .85. In an
exhaustive search, APPLEl would be preferred to APPLET7S5.

Here we are willing to accept a suboptimal solution that

e

satisfies our minimal truth-value since 1t takes less

search to find than in seeking the truly best choice.

13

These four considerations, thresholding, ordering
the candidates for backtracking by truth-value partial
evaluation and satisficing apply to the execution of
other PLANNER statements such as THFIND, THPROG and
THOR.,

20

VI. Control of Fuzzy-PLANNER Expressions

The primary control mecha-isms within PLANNER
programs is the THCOND while THCONSE theorems are chosen
to select programs that may satisfy a THGOAL. Both
THCOND and THCONSE can pass control based upon the
truth-values of Fuzzy-PLANNER expressions. Consider
the PLANNER expression

(THCOND (py e;q e

11 712 1n

..... e__))

n nl nn

When the first s THSUCCEEDs, the corresponding

e, ce. €. are evaluated.
il in
Analogously, we would like to branch when we find
the first D such that T[pi] > a . Consider the

following program:

(THCOND (((THPROG (X) (THGOAL (RIPE X) .8)
(THGOAL (APPLE X) 1))
(GIVE X "JOHN"))
((THPROG (X) (THGOAL (CHEESE X) 1)
(GREAT (WEIGHT X) 4 oz))
(GIVE X "PETER"))
(T (TELL "JOHN" "NO SNACKS"))

If a ripe apple (1t > .8) is found, then it will
be given to John. If a piece of cheese is found, it
will be given to Peter. Otherwise John will be told
"no snacks." In executing this program, Fuzzy-PLANNER

will satisfice with minimal search.

21

The truth-value necessary to satisfy a given THGOAL

can be used to cut off ineffective search. Consider:

TH3: (THCONSE (XY) .95 (TASTY X)
(THGOAL (CREDIBLE Y))
(THGOAL (SAYS Y (TASTY X)))

Suppose we wish a very tasty apple:

(THPROG (Z) (THGOAL (TASTY Z) .8)
(THGOAL (APPLE Z) 1)

Furthermore let #*[x3;y] = min[x,y]

TH1, TH2 and TH3 are all candidate theorems to help
us find a tasty apple. They will be ordered by their)
truth-values TH3, TH2, TH1 and attempted in order. If
TH3 is invoked, we know that T[(THGOAL (CREDIBLE Y))]
must be > .8, If it is not, then T[(THGOAL (TASTY Z))] < .8
and we cannot get an adequately tasty apple. In this example,
.8 (denoted by B) provides a lower bound for the truth-
value of any top-level expression in TH1, TH2 or TH3.
More generally, suppose we are seeking to satisfy a THGOAL
with truth-value > T by invoking a particular THCONSE.
Then the truth-value of each top-level expression in that
THCONSE must exceed 1 . If the truth-value of any top-
level expression falls below 1t , then we can generate a
failure at that point since no further evaluation will
return a truth-value > 1 for that assignment of constants.
These observations hold precisely for *[xiy] = min[xiy].
For other % functions, the B8 cutoff value will still
exist, but need not be equal to the 1 of the desired THGOAL.
In Goguen's logic, B = i_ where Ty is the truth-value
specified in the desiredTOTHGOAL and g is the truth-value
of the THCONSE.

22

Fuzzy PLANNER is upwards compatible with the standard
PLANNER. 1If no truth-values are specified in THGOAL state-
ments, then o 1is assumed. If at least some assertions
are assigned fuzzy truth-values, then a Fuzzy PLANNER search
will be conducted even though the program does not appear

to specify fuzzy criteria.

23

VII., Open Issues

The preceding discussion has included the essential
themes of Fuzzy PLANNER. Some details, such as the treat-
ment of Fuzzy THANTE have been excluded for brevity. Certain

issues are still unresolved (e.g., same syntax). Other

new issues have been opened by this research.

A,

Fuzzy PLANNER syntax: Occasionally one wishes

to neglect an expression in computing truth-
values. TFor example, (THSETQ X (CDR X)) 1is
uninterpreted and should not interfere with the
computation of Fuzzy truth. Classical PLANNER
offers few means to iterate through a set. One
mechanism entails using a THAMONG which selects
elements from a set, followed by some operation
on each element. This sequence is terminated

by a THFAIL which backs up to the last choice
point (THAMONG) to select a new element. This
cumbersome PLANNER device uses a THFAIL for control
purposes. But one does not want T[THFAIL] = 0
to be included in the evaluation of truth-values
in such a process. Generally, we need a neat
syntax for a Fuzzy PLANNER programmer to mask

out selected expressions from being included in

the evaluation of truth-values.

Computing Fuzzy Predicates: The existent literature

on fuzzy sets (Zadeh [1965]) and fuzzy logic simply
assume that one has a fuzzy membership function.

The epistomological issue (how one gets such a
function) is neglected. Now the epistomological
issue can no longer be neglected. After all, if

we wish a robot to bring us the "sturdiest"

chair, we have to specify the computation "sturdiness"

for chairs. In addition, the computation of

24

fuzzy predicates may well depend upon their
arguments. After all, a "large chair" is

(typically) smaller than a "small room."

Computing Truth Values for THCONSE Theorems:

Implication in Lee's logic and Goguen's logic

have different algorithms. If we wish to know
Tlplx] = qlx]] in Lee's logic, we list all q[aj]
such that T[p[aj]]i a. Then,

(1) T{plx] = qlx]] = min{T[q[ajle[p[aj]] > o}

(]
In Goguen's logic:

Tlqla.]
(2) TLplx] = qlx]] = min{grsrzly | Tlpla;] > Tlalay1)
J]

Both logics use min for V . Thus, one 2y such
that T[q[ak]] is very low with respect to the

other T[q[aj]] will lead to a low value for

Tlplx] = qlx] . Integrating over T[q[ajj to

obtain an "averaged" value violates our interpretation
of ¥ as a condensed conjunction unless our truth-
value for conjunction is changed. Then we are no

longer on a lattice. This is now an open issue.

Applicability of Different Fuzzy Logic: The

preceding discussion has described two distinctly
different fuzzy logics. Truth-values of inferences
are bounded below by the weakest piece of evidence
in the derivation in Lee's logic. In contrast,
Goguen's inferences decrease in truth value as the
length of the deduction increases. Each is an
interesting candidate logic. Which is more appli-
cable to different situations, e.g., robot planning,
medical diagnosis? We are now in a position where

it makes sense to find out.

BIBLIOGRAPHY

Goguen, J. A. [1968] "The Logic of Inexact Concepts',
Synthese 19:325-373.

Green, C. apd Raphael, B. [1969] "The Use of Theorem
Proving Tech%aques in Question-Answering Systems"
Proc. ACM 23 Natl. Conf.:169-181.

Hewitt, C. [1971] "Procedural Embedding of Knowledge in
PLANNER" Proc. 209 International Joint Conference
on Artificial Intelligence:167-1814.

Lee, R. C. T. [1972] "Fuzzy Logic and the Resolution
Principle" JACM 19(1):109-119.

Mellinkoff, S. [1959] Differential Diagnosis of Abdominal
Pain McGraw-Hill.

Raphael, B. [1370] "Robot Research at Stanford Research
Institute" SRI Artificial Intelligence Center
Technical Note 6h.

Rosser, J. B. and Turquette, A. R. [1952] Many-valued
Logics North-Holland Publishing Co.

Winograd, T. [1972] Understanding Natural Language
Academic Press.

Zadeh, L. [1965] "Fuzzy Sets" Information and Control
8(6):338~-353,

