WIS-CS-73-162

COMPUTER SCIENCES DEPARTMENT
The University of Wisconsin

1210 West Dayton Street

Madison, Wisconsin 53706
Received 12~27-72

*Also issued as Los Alamos Scientific Laboratory Preprint LADC~72-1522.

**present address: Mathematics Department, University of Wisconsin, Madison,

Wisconsin 53706. This research was supported by the Office of Naval Research
under Contract No. N-0014-67-A-0128~004 and by the U. S. Atomic Energy

Commission, Los Alamos Scientific Laboratory of the University of California
under Contract No.W=7405~-ENG~36.

SOLUTIONS OF A DIFFERENTIAL EQUATION
ARISING IN CHEMICAL REACTOR PROCESSES*

by

Seymour V. Parter®*
Technical Report #162

January 1973






1. Introduction.

Consider the nonlinear boundary-value problem

u"+-3—;-u’+ﬁf(u(x)+'r) =0, O<x<l
(1.1) '

u’(0) =u(1) =0

where 120, B 20 are nonnegative constants and the unknown function u(x)

is also required to be nonnegative., The function f(a) is assumed to satisfy
(1.2a) f/(a) 20 , a>o0 ,

There is an @, > 0 such that

0
(1.2p) fr(@) >0, O0<ax oy
(@) <0, oy <a
(1.2¢) £(0) =0 , lim f(@) =1 ,

A 4o

It is natural to refer to the interval [0, a ] as the convex region and
the interval [ao, ®) as the concave region,

The special case
(1.3) £(0) = 1,(0) = exp{-— %T}

arises in the study of chemically reacting systems as described by T, Cotter
(5], Working with Cotter, Paul Stein and Myron Stein have done extensive
computation on this special problem. This report was motivated by the desire
for a more precise understanding of these problems and their computational
results, Our results are far from complete and much more mathematical analysis

of these problems arising in the study of chemical reactions is certainly
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necessary, Nevertheless, in this special case, our results together with
the computational results of P. Stein and M. Stein seem to give a reasonably
clear understanding of the phenomena of multiple solutions. The interested
reader will find more basic material in the books by Gravalas [10] and
Frank-Kamenetskii [8].

In Section 2 we describe the computations of P. Stein and M. Stein and
comment briefly on their conclusions. In Section 3 we collect some basic
facts about monotone iterations for problem (1.1). These results depend on
the work of D, Sattinger [22], H. B. Keller [11], D. S. Cohen and H. B. Keller
[12], and the author [17], [18], and [19]. This fundamental approach is also
described in Courant-Hilbert [T]. In Section I we employ a basic result of
M. A. Krasnosel'skii and V. Ja. Stecenko [1lt] together with a recent result
of H. Amann [2] to establish regions (in the r-p plane) in which there are
at least three solutions of problem (1.1). In Section 5 we turn to uniqueness
questions, We derive regions (in the t-f plane) for which problem (1.1) has
exactly one solution. In addition we derive other useful estimates.

Of course, problem (1.1) can be rewritten as a Hammerstein equation

(1.4) u(x) = B J;l k(x, t) £(u(t) +7)dt

vhere

-tlogt , O0<ss<sts<gl
(l,ha) k(S, t) =
-tlogs , Ost=<s<1l .

We write for fixed t, B, =

(1.41) u=Au .
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Such problems have a long ﬁistory and the interested reader is referred to
the lecture notes [20] of G. Pimbley.
In addition, it is worth observing that
(1) if f(u+7) 20 then u(x) =2 0, and
(i1) in that case u’(x) < 0.
The first remark follows from the maximm principle while the second follows

from the formula

(1.5) u'(x) = - }%J: t flult) +1)dt .

Finally, we remark that there are many related problems which arise in
chemical reactor theory. In recent works D. S. Cohen (%] and D. H. Sabttinger
[ 22, Sec. 5] use the theory of monotone iterations together with the theory
of singular perturbations to obtain results which appear very similar to the
results of this report.

Ve are indebted to our many friends, both in Los Alamos and Madison who
discussed this problem with us. We want to give particular thanks to

Paul Stein, George Pimbley, Carl de Boor, and Charles Conley.



2. Commutational Results.

In their study of the important special case where f(Q) = fo(a) is
given by (1.3), Paul Stein and Myron Stein proceeded as follows. Choosing
a value of P > O, they used a Runge-Kutta method to "solve" the initial=-

value problem

1
(2.1) Y"+%y’+ﬁely|=o,o<x<1
(2.2) y'(0) =0, y(0) =y, z0 .

Thus, they constructed an approximation to the function

(2.3) T=y(l; B, yO) s

the final value. Since this function is a very smooth function of the
parameters B, Yo s and since their curves are very smooth; it is reasonable

to assign great validity to their results. The value of B was sampled

throughout the range
0<Bs Il.Ol5 s

a rather large range. They found a region in the first quadrant of the
T, B plane, say R, and for (r, B) € R they found exactly three solutions.
On the boundary of R they found exactly two solutions, Outside of the
closure of R, there was a unique solution. The region R (as computed)

is bounded by two curves. An upper branch, the explosion limit curve and a

lower branch, the gquenching curve. These curves meet in the point

T =0.2021 , B=10.961 .




The explosion limit curve (the upper curve) is monotone decreasing in

the interval O < 7 < 0.2421 and is easily described by the equation

2
st {@-2n -/T-Fr el I-kr

o=

(2.4) B(n) =

where s(r) is a slowly varying monotone increasing function of t. For

example
s(2.7473 x 10"2) = 5,4505772
(2.5) s(1.355667 x 107) = 5,5220439
s(2.421 x 1071 = 5.695645
while
Fo.u73 x 107 = 107
(2.6) B(1.355667 x 1071) = 70
Blo.h21 x 1071 =10.961 .

The guenching curve E(T) is also monotone decreasing in the interval

0 <1< 0.2421 and is described by the following table.

T gl
0,00000 16,84
0,04200 16,00
0.08969 15,00
0,13438 1k, 00
0.17546 13.00
0.21191 12,00
0.24125 11,00
0.24210 10.961




Remark: Recall that the function -r(g) was actually computed rather than

glr) .

Additional computations were carried out by Carl de Boor using a
program based on a collocation method of de Boor and Swartz [3]. 1In

figures 1, 2, and 3 we show his results for
y(03 B, 1) =u(0; By, T) + 7

for fixed values of rT.
Remark: The half ray, {16.84 < B<®, T =0} is part of the region R

in which there were found exactly three solutions,




3, Preliminaries.

In this section we collect some of the basic facts concerning problems
of the form (1.1). Our first concern is with monotone iterative methods.
While such methods have been discussed by many authors (see [2], 4], [17],
and [18]) the recent work [ 22] of Sattinger is an excellent reference for
the interested reader.

Let the operator L be defined by
Lu=ur +=u' .
x

Definition 3.1. A function U(x) = 0 is called an "upper solution" of

problem (1.1) if

LU+ p f(U+1) <0 , O<x<1l
(3.1) {

') =0, T =0 .
A function u = =T is called a "lower solution" of problem (1.1) if

Lu+p flu+tr) 20 , 0<x<1
(3.2) {

El(0)=o, - T SE(l)SO ¢

Definition 3.2. A function ¢(x) ¢ 01[0,1] ig said to "dominate" a function

¥(x) e cto,1] if:
(1) V(x) <o(x) , O<x<1,
(i1)  if ¢(0)
(iii) if v(12)

9(0) , then ¥'(0) < 9"(0) ,

o(1) , then V¥'(1) > ¢’(1) .

[

And, if ¢ dominates V¥ , we write

(3.3) VLo .

Since we are dealing with continuous functions we will use the

Suprenum norm,

(3.4) ull

i}

max { |u(x)

3 0sx<1}
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Let A:clo,1] » CE[O,l] denote the basic solution operator described
by the Hammerstein operator. That is: if ve C[O,l] 5 then u = Av is the
solution of the linear boundary value problem

Lu+ B f(v+r) =0

(3.5)
u’(0) =u(l) =0 .

Observe that A can also be considered as a mapping from the bounded piece-
wise continuous functions into Cl[O,l] .

Lerma 3.1, Suppose ul(x) < ua(x) . Then
(3.6) Awy < Au,

unless ul(x) = ug(x) .

Proof: Let w = Aw - Au,. Then, using (1.2a) we have
Lw = -B[f(ul+'r) - f(u2+-r)] >0 ,

Applying the Hopf form of the "maximum principle® (see [21]) we obtain (3.6).

Our basic iterative process is described by

(3.7) Zo.q=AZ

Lemma 3.2, Suppose U(x) is an upper solution of problem (1,1) and is not a
solution. Let 'ﬁn, n=1, 2, ,,. denote the successive iterates in (3.7)
Then

with ﬁoz'ﬁ=zo.

(3.8a) W <T, o, n=0,1, ... .

Moreover, each u is also an upper solution. Similarly, if u is any lower

solution and En denotes the successive iterates in (3.7) with }.IO =1 = ZO 5
then
(3.8p) u <u..4 > n=0,1, ... .




Moreover, each u is also a lower solution. 1In fact, if u <1 are
~ ~

respectively a lower solution and an upper solution, then
(3.8¢c) u, <9 Vik=zo0 .

Finally, if u is a solution of problem (1.1) and

(3.8d) u < u (or u s %)
then
(3.8e) B<u (or u<y) .

Proof: This is the basic lemma of the theory of monotone iteration (see
(73, [27], [18], [22]) and follows directly by induction and repeated use
of the Hopf form of the maximum principle,

Corollary 3.2.1. Problem (1.1) has at least one solution. In fact, there

exists a unique minimal solution v(x) and a unique maximal solution u(x)
which satisfy: If z(x) is any other solution of problem (1.1),

then

(3.9) v z<u ,

Of course, there may be only one solution and u(x) = v(x) . Furthermore,
the minimal solution and the maximal solution are monotone increasing in
7 and P, Finally, the maximal solution is continuous from the right in
T and P while the minimal solution is continuous from the left in T and B,
Proof: If T =0, then z(x) = 0 is a solution. In any case, X(X) =0 is a

lower solution. And, if z(x) is any solution of problem (1.1), then

(3.102) 0= v(x) s z(x) .
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The function
(3.100) F(x) = B/ (1-x)

satisfies

and is an upper solution. Moreover, it is an easy matter to see that

U(x) is greater than all solutions of problem (1.1). Thus
In < Yy

and the sequences {Xn}’ fﬁn} converge, It is an easy matter to see that
the limit functions are "weak" solutions of problem (1.1). And, hence are
solutions of problem (1.1), Moreover, Dini's theorem implies that the con-
vergence is uniform,

If z(x) is a solution of problem (1.1) an easy inductive argument

shows that
h < z <L oo

Finally, the monotone behavior and one sided continuity of the maximal and
minimal solution follow as in [18].

These results concerning the iterative method (3.7) and the corresponding
existence theorems are well known., We now present a recent result of
H. Amexm [2] in the special form that we reguire.
Lemma 3.3. Let X(X) and U(x) be the lower and upper solutions of Corollary
3.2.1. Suppose E(x) and ﬁ(x) are lower and upper solutions respectively

which are not solutions of problem (1,1).
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Suppose

(3.11a) X(V'; , WL,
and

(3.11b) (o) <u(o) .

Then there exists a solution u(x) of problem (1.1) which satisfies
(3.12) W(0) <u(0) < w(0).

Proof: Here we merely sketch the proof. See [ 2] for a more detailed

discussion. We consider the "degree" (see [13], [25]) of the map
u=u-Au .

Let d(3,2 ,0) denote the degree of & relative to the open set Q at O,

Let

(3.13a) 0 ={veclo,l; v < v <3}
(3.13b) le{VeC[O,l];x<V<ﬁ}
(3.13c) QQE{VeC[O,lJ;E<V<§}
(3.134) Gz =0 - (KW

The inequalities (3.1la) together with the basic facts about v and u lnply

a(é¢;0,0) =1 ,

[l

a(e 394, 0) = a(s 30, 0) =1 .
Thus, by the additivity of the degree 5

d(@ ;03’ O) = =1



and there 1n a solution E(x)c!)z. Consider u(0) . Returning to the
inequalities (3.1la), (3.11b) we see that (3.12) must hold.

Definition 3.3. Let u(x) be a solution of problem (1.1). We say that

U(x) is a "stable" solution if there exists Lv(x), ":J‘(x) lower and upper

solutions respectively such that

(1) wLuLW
and
(ii) Enfﬁ,wnlﬁ asn-+® ,

Stable solutions are important for many reasons, ITwo of the most
important follow (see Section 4 of [22]).
Lemma 3.4. Let u be a stable solution (in the sense of Definition 3.3).

Then there is a neighborhood of 1, say

(3.14)
Q= {veclo,1]; u(x) -8, < V(x) < u(x) +8,,0<8, <, 5,>0}

such that: If V(x,t) is the solution of

[ 2 V= 4B Ve, 0cxc1, t20
(3.15) { vi(o,1) =V(1,t) =0 ,
V (x,0) = V(x) e 5
then
(3.16) [ V(e,t) =W [[ 20 as t 4 e .

Remark: If ¢ = 0, we obtain a neighborhood in the positive solutions, i.e.,

 takes the form

Q= {veclo,1l, v > 03 T(x) -8, < V(x) < u(x) +0,,8,,8,>0)
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Proof: This result is essentially theorem 4,1 of [22], oOur formulation
is technically stronger and requires a slightly different proof which we
omit,

Remark: The above result is not used in our discussion. However, it is
important in the further study of the problems of chemical reactions,
Lerma 3.5. Let u(x) be a solution of problem (1,1). Consideér the linear

eigenvalue problem

(3.17) {ch-l—lﬁf' (W+ 1) =0

2(0) = g1) =0

Let )\O(B fr(u+ 1)) = Ao denote the lowest eigenvalue of this problem,

Then
(1) if u is stable, then 1 < Ao
(i1) if 1 < Ay, then u is stable
(iii) if A, < 1, then U is unstable in the sense that: for

every € >0 there exists w(x) and W(x), lower and upper
solutions respectively, such that
(iiia) W<u<w
(iiib) [w-ul<e, [W-ul<e .
Proof: See theorem 4,2 of [22],

Lemma 3,6: Suppose Vo(x) > O is a piecewise continuous function and

(3.18) Vl(x) = AV, = Vo(x) .

Then Vl is a2 lower solution in the sense that



-1

(3.19) L, +B f(vl +7) 20, O<x<l

vi (0) = Vl(l) = C

wherever LV, is defined and at a jup in Vos the limits from both sides

satisfy (3.19). 1Indeed,

is a genuine lower solution.
Proof: Equation (3.18) means that Vl(x) satisfies the boundary conditions

of (3.19) and
Lv, +p f(vO + 1) =0

(properly interpreted at the points of discontinuity of VO), Thus, the

monotonicity of f(Q) gives

Wy + B £V +1) = B[f(Vl4-T) - f(Vb-rT)] =0 .

Remark: A fUnction‘Vo(x) which satisfies (3.18) is called a generalized
lower solution.

Finally we turn to results on a closely related problem, This result
is due to H. Fujita [9] but this proof is due to S. Karlin.
Lerma 3,7: Suppose f£(@) is strictly convex for all ¢, Of course f cannot

be bounded., Hence (1.2c) does not hold, Suppose instead we have
(1.2c1) fla+q1) 20,

Suppose problem (1.1) has at least one nonnegative solution, Then it has

only one stable solution, say UU(X)° (Note: a1l solutions are nonnegative.)
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And, if U(x) is any other solution, then

(3.20) uO-<U .

loreover, it is not possible to find an upper solution u such that

And, it is not possible to find a lower solution u such that
¥*
u t U,

Proof: If f(T) = O then uo(x) = 0 is a solution, If f(T) > O then

u(x) = 0 is a lower solution and the sequence 'ﬁ’n (with ?.1'0 = )

converges monotonically upward to a unique minimal solution uo(x) . If
there is another solution U, a straight forward induction gives (3.20),

Suppose U is a solution satisfying (3.20). Consider the function
(3.21) wlxsh) = 20(x) + (1-0) wy(x) .

For all X\ > 1, we have
U<<w(e,N)

Using the strict convexity of f£(a), we obtain
Tw+g) > AT(U+7) + (1) f(uo + 7)
Thus, applying lemma 2.1, we have

Wy = AW s\ AU + (1-;\)Au0=w.
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On the other hand, if 0 < A < 1, we have
110‘<W(e,>\)<U
and
flw+r) <« n F(U+1) + (1-2) ﬂuo+7%
Thus
Wy o= A< w,

The lemma now follows immediately from lemma 3.1.

Corollary 3,7.l. Let U be a solution of the original problem (1.1), i.e.,

f(a) satisfies (1.2a), (1.2b) and (1.2c). Suppose

u(0) < %

Suppose there exists an upper solution TU(x) , such that

Wru .
Then u(x) is the minimal solution and, u(x) is stable.

Suppose there exists a lower solution u such that
En tu .

Then E(x) is the minimal solution. And, if there is another solution
u(x) with

1 a
u(0) < 5 -

Then, u(x) is stable.
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Remark: It is important to observe that this argument really depends only

on the positivity of k(s,t). Thus, in particular, the results of lemma 3.7
and corollary 3.7.1 apply to the problem
Lo+ B f(o+7) =0 0<x sxsxlsl

0
(3.22)

cs(xo)\ =0 olx) = v .



L, lultiple Solutions,

The results of this section are based on the work of M. A,
Krasnosel'skii and V, Ja. Stecenko [14] and the work of H., Amarm [2],
i.e., lemma 3,3,

Lerma 4.1, Let k(s,t) be the kernel of the Harmerstein equation (1.lta).

Then for O € s < e”l/2
e e

(1) L k(s,t) @t > 5= .

Proof: The left-hand-side of equation ( 4.,1) is the solution of the

linear boundary=-value problem

19 + X(x;e"l/a) =0

Qr(0) = Q1)

it
o
%

vhere, for all £e¢ (0,1) we have
1,0=<x<€E ,

(+.2) X(x3g) =
O, E<x<l .

A direct calculation shows that

-%— 5 0<x<e Y2
1l
Ux) == - y
1 1 ~-1/2
-—-ég+—-é—e—logx, e sxs1 .

Since Q'(x) < O we have

Q(s) 2Q(e"1’/2> =7§‘—- 5 Ossse'l'/e .
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Remar}: A direct calculation (based on the above work) shows that for

all x e (0,1)

X
0
. . _ 1
sxuop Min {L k(s,t)dt; 0 <s < Xy = 53
and this supremum is taken on when Xg = e” 1/2.

Lerma 4.2: Let @ > O satisfy

(k.3) hea <pf(a+q) .

Let

(b.4) Vo (x;3 ) =ax(x,e']’/2) .
Let

(&.5) Vi(x30) = AV,

Then

(+.6a) Vo(%,0) = ¥, (x,0)

(&.6b) Vo(3%,0) £V, (x,0) if aT>0

And from lerma 3.6 we see that Vl(x;oz) is a lower solution. Moreover,
unless @ = ¢ = O, Vl(x;a) is not a solution of problem (1.1),
Proof: For xe [e-l’/e,l] we know that Vl(x;A) > 0, Hence (4.6a) is certainly

true in that range of x. TFor xe [o,e“l/e] lemma 4,1 gives

1/2

e’ fla+
v, (x,0) » P f(o:-{»-r)L K(x,t)at 2 p SpE o
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Lerma L.,3, Let v = 0 satisfy

+.7) by 2Bf(y+r) .
Let
(4.8) U Gry) = y(1-x0)

Then Ub(x;y) is an upper solution, Moreover, unless y = ¢ = O, Ub(x,y)
is not a solution of problem (1.1).

Proof: Using (1.2a) we have

LUO+(3f(UO+.,) = J+y+ﬁf(Uo + 1) <0 ,

These two lemmas lead us to consider our next basic result, Despite its
simplicity, a complete proof is rather lengthy and is found in the

appendix, However, it is easily understood after a glance at a sketch.

Lerma 4.4, Let r » O be fixed, Let p > O be a fixed constant, Consider

the equation
(+.9.p) p=Bf(x+ 1) .

This equation may have, one, two or three solutions depending on the value

of £ > 0. In fact, if there is a value By > O for which equation (4.9.p)
*

has three distinct solutions, then there are two values B, (T, p), B (T, P)

with

(4.10) Bi(,0) < B, < B¥(r,0)
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such that:

(1) for all values BO satisfying (4.10) equation (4.9.p) has exactly
three solutions; Qi(T’p’ﬁo> < ag(w,p,qj) < ﬂa(f,p,fb)

(ii) for B = Py(r,p) there are exactly two solubions al(T’p,ﬁ*(T,p>) <
G5(T,p,5%(7,p)) with @3(7,p,ﬁ*(7,p)) a "double" solution in the

sense that

P 0:3 = E’* f(a5 + 'T) »

(k.11a)

p =f3*f'<055 + 1) .
Moreover,
(’-’r.llb) 053 + o> OJO > O!l + T .

Further , if P < B,(7,p), then equation (4.9.p) has exactly one solution

al(T,D,ﬁ) and this solution satisfies

Ofl-{-'r(ao .
*
(1ii) For B = P*(r,p) there are exactly tuo solutions Oi(T,p,B (1,p)) <

o, ( E¥(1,p) with o (T,p,B (T )) a "double" solution in th
.,5 Ty, ’r,D Wl 1 2P 3P a ouov.iLe soljution in =]
sense that

po’l = E* f(Oll -+ 'T) P

(k. 11c) N
p =B f'(@l + 1) .

*
Moreover, (4.11b) holds. Further, if B (7,0) < B, then equation (%.9.p)
has exactly one solution QS(T’p’ﬁ) and this solution satisfies
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Finally, if Py < 92 and there is a value Bb > 0 such that both equation
(h.9.pl) and equation (h.9.p2) each have exactly three solutions

aJ(T’pkfﬁo) 'j = 192:33 k = 152, then

al(T’ 02’ ﬁO) < al(TJ pl) Bo) < ae(T’ Qly Bo)

(4,12)
< a2(Ty pg) Bo) < a}(T’ 02’ Bo) < GB(T.‘P pl) ﬁo) »
and
B*(T,pl) < B*(T,Dg)
(4. 13)

B*(T,pl) < ﬁ*<"'ypg) °

Theorem 4.1. Suppose ¢ > O. Suppose there is a value ﬁo > 0 such that
both ecuation (4.9.4) and equation (4.9.ke) have at least two solutions

That is, suppose BO satisfies

(k. 14) Bo(re) s By <6 (k) .

Then there are at least three solutions of problem (1.1) (with B = Bg).

lioreover, the minimal solution is stable. Indeed, for all P satisfying

(4.11“) B <« ﬁ-"—(.‘-,l.l.) s

the minimal solution is stable.

Proof: Let p, = b, o, = he, Let ajCT,pk,B), j =1,2,3; k = 1,2 denote
the roots described above. If equality holds in (%.14) we have coalescence
of two of these roots and a2 (T,pk,B) does not appear. In any case, we

have




(4.15) 0 < cxl(.r,u,a) < aB(T,ue,a) < aB(T,u,ﬁ) .

Thus applying lerma 4.3 and lerma 3.2 we see that there is a solution

u(x) vhich satisfies
(4. 16) 0 £ T« a(rh,p) @-x) .

tloreover, since (4.11b) holds we may apply lemma 3.7 and corollary 3.7.1
and observe that there is only one solution u(x) which also satisfies (k.16).
Indeed, this is true as long as (%.1%') holds. Thus, we have a minimal
stable solution.

Let v, (x, aj(T’ he, B)) be given by equation (L.4), Let
Vl(x, O%(T, he, B)) be given by (4.5). Applying lemma 4.2 we see that

v, (x, Cz3('r , ke, B)) is a lower solution., Moreover, using the upper

1
solution (3.10b); or, for all O with O > a3('r,l+, B) the function
Uo(x, @) given by (4.8) is an upper solution. Hence, there is an

a>Q

3('\', 4, B) such that

Vl<x,'f, ai('r, ke, IB)) < a(l - x2) .

And, the function a(l - xe) is an upper solution. Hence, applying

lemma 3.2 we see that there exists a solution G(x) which satisfies
Vl (‘;'T"O"B(T’ue:f'» <E<UQ( .,0) .

Finally, since Q’l(q-,h‘,B) < 013('1-,1+e,f3) we may apply lemma 3.3 and discover

that there is a third solution satisfying

(%, 17) a, (r,%,6) < T(0) < x.rl(o,%(ﬁue,a)) :
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Theorem k4.2: Suppose ¢ = O. Suppose
(4. 18) £1(0) =0 .

Supnose ﬁo satisfies (4.14). Then there are at least three solutions of
problen {1.1).
Proof: This case differs from the case sbove in that u(x) = O is a solution.

l'oreover ,
O[l(oyb’,ﬁ) = O(l(O,ue,B) =0

and one does not necessarily have an upper solution T(x) above u(x) = O.

A 100k baclk at lerma 3.3 will show that this is necessary in the argument
therein. Thus, ve turn our attention to the construction of a sufficiently
small upper solution u(x). Let Ao and Yo be the smallest eigenvalue and

the associated eigenfunction of the linear eigenvalue problem

Ly + AV

1]
o
-

]
(o]

21(0) = v(1)
Then 0 <‘i’o and we consider
Q(X;a) = e Yy (x) .
Ve have
Lo + Bf(o) = Peyy[£(e) - p/8]

where

0=<g(x) sevy(x) .




Using (4.18), we see that w(xje) is a nonnegative upper solution if ¢ is
smell enough.

The proof now follows immediately as in the case of theorem L. 1.

Let us now apply this result to the special case of interest.

Theoren 4.3, Let rel0,1/4). Let

e 2
(k,19a) B*(T) 2 {(l-—ET) -/FT:ﬂT }exp { 1- /1-kT ]

P
;;:-
g
g
ez}
£
N
3
S
]

- + /157 oy 2 .
Ee{(l 21 ) +/1 -k }e:p [ I_:._Itjr;_}

Let f£(0) = fo(a) be given by (1.3). Then, if
(4. 20) B, (1) sB B (1) ,

there are at least three solutions of problem (1.1). Moreover, the
minimal solution 1s stable.

*
Proof: Apply theorem 4.1 and theorem 4.2, Compute B (r,4) and B, (r,ke).

Remerk: Corpubational results show that
*
B (m,ke) < B (r,4) , 0 51 <0.1590h |
i.e.,

B, (1) <B (1) .
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5. Unicueness - (Other Estimates

Lerma 5. 1. Let po‘be the first eigenvalue of the linear eigenvalue

problen
(5.1) Lé + Ay =0,
\::I(O) = q:v (l) = 0 3

and, let o be the associated eigenfunction.  Then

2 . 2
(5. 2a) Ay =ry = (2,40+8255) = 5.78305
and
(5. 2v) 1o(®) = I, (rx)

vhere Jo(x) is the Bessel function of zero order and ry is its first

i

positive zero. lloreover, if y(x)e 01[0,1] with «1(0) = +(1) = O, then
either ¢(x) = 0 or

1

(5.3a) ‘L [\Lf’(x)]gxdx z A Jj [q;(x)]gxdx

And, if equality holds in (5.3a), then

o

(5. 3b) #(x) = yJg (ryx)

where y is some constant.

Proof: These facts are well known [1], [6].
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Rermork: Ve normalize J (rox) so that JO(O) = 1.

0

Also we observe that Jo(x) is concave in the interval [O,ro].

Lerma 5.2: Let

(5.)}) GO = {1 (CZO) = max {fl (CL') s 0 < < o " .
If
(5.5) 0 <P« AO/OC

the solution of problem (1.1) is unique.
Proof: Suppose (5.5) holds and there are two nonnegetive solutions ul(x),
ug(x). Let (x) = ul(x) - ug(x). Then, after writing the equation

satisfied by W and rultiplying by xW we have

{xw LYW + pxfr(n+1) W2 =0,

Wt(0) =W(1l) =0 .

Interrating over [O,l] we obtain

Jj [W'(x)]exdx = BJ: xf’(n+1‘)[w(x)]edx
< pop || afnin]?ax .

0

Thus, either W(x) = 0 or W(x) is a multiple of Jo(rox) and
0y = £1(n(x) + 1)

0]

vhich is irmossible (unless 7(x) = 0, «+ = Ob).
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Corollary 5.2.1. 1In the special case when f(Q) = fO(Cé) is given by

equation (1.3), then condition (5.5) becomes

2

(5.51) ogﬁs_gg_e .

Lerma 5.3, There is a smallest value o with

(5. 68) 0<1 < ozo

such that, for all r 2 1, and 211 @ > 0 ,
(5.6b) af(@+ ) <@+ 1) .

Proof: Let &> 0, ¢ = & , using (1.2b) we have

1 0

o 40
o Tt (a+cxl) < ‘fa fr(s)ds = f(a+ozl) - f(al) < f(cx+ocl) .
1

Thus, there is at least one value r, = O such that (5.6a), 6.6b) hold.

Choose TO as the smallest such value.

Corollary 5.3.1. Let ¢ = To" The function

G(e) = _?fﬁ?_:..ﬁ_

a

is monotone nonincreasing in &

Corollary 5.3.2. 1In the special case when £(0) = fo(ot) is given by

equation (1.3),

(5.7) To = /h .
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Theoren 5.1. Suppose £ > 0 and
(5°8) O<TOST.

Then the solution of problem (1.1) is unique.
Proof: ©Supvose the theorem is false. ILet ul(x) be the minimal solution

and let ug(x) be the maximal solution. Then
(5.9a) 0L u]~< U, -

Using Corollary 5.3.1, we have

(5. o) £lu + 1) § fu, + )

! 2

and

£uy + ) J £(u, + 1)

(5-9¢) uy 5

On the other hand, using (5.9a) we see that P is the lowest eigenvalue

(the Perron Root or the Krein Root) of the two linear eigenvalue problens.

0'(0) = (1) = 0.

Hovever, the lovest eigenvalue is monotone decreasing in the weight
function (see [15], [16]) and hence B cannot simuiltaneously be the lowest

eigenvalue of both problems.
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Corollery T.5.1.1. Sumvose ul(x), u.(x) are two distinct solutions of
[

problem (1l.1). Suppose they "cross." That is, there is a value

xoe(O,JJ such that
ul(xo) = ug(xo) = Tl °
Then
< T -
Proof: Hote that u, (0) = ug(O) because the initial value problem has a
unique solution. Since the argument leading to Theorem 5.1 did not make

use oi the specific interval [O,l], ve may apply the above argument to the

restricted problem

1
o]

Lu +B @+ )

(5.10) ~ ~
ut(0) = u(xb) =0

Eoth ul(x) and u2(x) are solutions of equations (5.10). But, this problem

has a unigue solution for o S Ty

Corollary T.5.1.2, Suppose ul(x) and ug(x) are solutions of problem (1.1)

with
(5.11) u,y(0) < uy (0)

Suppose either:

(1)  There is an upper solution u(x) such that

s
u a.Sn—éc:.
n \ )




or
(ii) there is a lower solution u{x) such that
lln t u‘2 as n-+e .
Then
(5.12) u2—<u1 .

In particular, two stable solutions cannot cross. lioreover, the result

(3.12) of lemma 3.3 can be strengthened to read
(3.121) T<u<y .

Iroof: Suppose (5.12) is false. Then ul(x) and ug(x) cross. Thus there

are points O < X < xl < 1 such that

ul(xo) = 112(}{0), ul(xl) = uz(x-l)

and, in the interval (xo,xl)

(5.13) 0 < ul(x) < ug(x) < T .

Thus, vwe are dealing with a convex problem. If (i) holds, (x) restricted
to [xo,xl] is an upper solution and thus ug(x) is the minimal solution of
the restricted problem according to corollary 3.7.l1 and the remark following
thet corollary. This contradicts (5.13). Similiarly, if (ii) holds, u(x)
restricted to [xo,xl] is a lower solution and once more we see that ug(x)

is the minimal solution.
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Lemma S.4. Let u(x) be a solution of problem (1.1). Then
(5. 14) L u(o) - ﬁf(u(o) + ¢)< 0 .

Proof: We have the Hammerstein equation (l.4) and u(0) = u(x). Thus
1
w(0) = BL k(0, t) f(u(t) + 7) dt .

Thus

(5.15) u(0) < B J(;l k(0, t) £(u(0) + 7)dt .

However, we can evaluate the right-hand-side of (5.15). Let

1
Q(x) = B f k(x, t) £(u(0) + 7) dt .
0

Then Q(x) satisfies

LQ + Bf(u(0)+ 1) =0,

Q/(0) =Qq(1) =0 .
Now, Q(0) = Right-Hand-Side of (5.15). And
Q(x) = B/ £(u(0) + 1)(1-x7)

which proves (5.14).
Remark: Using the notation of Section 4, if 01(7,5,“0, QE(T,B,MQ and
a3<7, B, 4) are the roots of equation (4.9.4), then lerma 5.4 can be rephrased

as
(5.24) w(0) € (0,0 U (0, a5) -

This remark leads immediately to the following uniqueness theorem.




Theorem 5,2: Iet
(5.15) 0= p=<Br,s) .

Then problem (1.1) has a unique solution,

Froof: Applying lerma 4. k(ii) we see that

0<ul0) s (r,B,4) < =17

1 0

Thus, both the maximal and the minimal solutions lie entirely in the convex
region. However, corollary 3.7.1 implies that both are the unique minimal

solution.

Corollary T.5.2.1, In the particular case where f(a) = fo(a) is given by

equation (1.3), this result reads: Let tel0,1/4), let
2
osxpsaf(l-27)+/I-br exp[-———-—-—————-]
l ) } 1+V/1=bl 7

then the solution of problem (1.1) is unique.

Corollary T.5.2.2, Let

0 < B < max {AO/OO ’ ﬁ*(T,h)} .

Then the solution of problem (1.1) is unique.

Remark: Thus we have obtained a lower bound for the "quenching" curve.
We now turn our attention to an upper curve B(r) with the property

that

B(r) < B

irplies that problem (1.1) has a unique solution, That is, B(7) will be

an upper bound for the explosion limit curve.
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Lerma 5.5. Let AO be as in lemma 5.1. Let

(5.18) B=6 (r,A) .

Let u(x) be a solution of problem (1.1). Then

(5.19a) oy - T s 015(7, B, /\O) < u(0) .
iHoreover,
(5.19) 0 (1, By Ag) To(rox) <ulx) .

Indeed, for any o > 0, let &(x3;0) be given by
(5.20) 5(+30) = A(0 7, (r,%) .

If 0<o s Q(r,B, [\O) then §(x3;0) is a lower solution and

3

(5.21) , 3+ 30) <u .

Proof: If 0 < g < Q (1,8, j\o) then cJO(ro x) is a lower solution because

3
L UJO(rOx)) + Bf(GJO(rOx) + 7) = Bf(GJO(rOx) + -r) - AOUJO(rOx)z 0.

Suppose u(x) is a solution and (5.21) is false, Then there is a 0 20

such that

(5.22) UJO(rOx) <u .

If (5.22) holds for all Oe [o,oz3 (7,8, h)] then (5.21) holds by lemma 3.2,

Thus we may choose a Ul such that

(5-258') 0< cl < QB(T’ 5, Ao)
.23

(5.22b) 0, Jo(rgx) < u(x)




(5.23¢) o) I (T %) K ulx)
(5.234) o, Io(rgx) # ulx) .
Applying lemma 3.2 again, we have

UlJO(rOx) < A(UlJO(rOx)) < u

which violates (5.23c).

Lemma 5.6. Let te¢ (O, q—o). Let xO(B, T) denote the unique solution
of
(5-2)4') GB(T, 5, AO> JO(I‘OXO) = O:o - T .

Then xo(ﬁ, T) is an increasing function of T for fixed B. Moreover,

Oto-'r

(5.25) 0< l~XO(5, T) < a-m .
Procof: The function
(ao - T)/ aj('r’ B) Ao)

is a decreasing function of rt. Moreover, (5.25) follows from the concavity
of Jo(rox) in [0,1].
Lemma 5.7. Let ve (O, 'ro) and let (5.18) hold. Let xl(ﬁ, 7) denote the

unique solution of

(5.268.) 5/)4' (l - x12) = (10 - T
That is

1/2
(5.260) a8, = [1-% @ -] .



Let
(s o2 o = ool B) - Q) - (l-xo(ﬁ;;zzbfa"?)('r, By Ay + 1') ’
(5.20) oy = cy(r, B) = st a;:(c;’ :77 %) :
Let
¢, + ¢q(1-%) 5 0= xsx(p, T)
(5.28)  Y(x3B, 1) = %y 3 x(By 1) < x = x (B, 7)

I[%(l-x)2 + T xl(B, ) sx <1 .

o

Let u(x) be any solution of problem (1.1). Then the following inequalities

hold,

(5.29a) Q< Y(x3B, 1) <ulx) + 7 , 0=sx< xO(B, T,
(5.29b) 0<u(x) +1s¥(x3B,7) <O , xl(ﬁ, N <x<l
(5.29¢) £/(xCes B, ) = (a0 + 1)

Moreover, if 0O < T, < T < T then
(5.30) f’(Y(x; B, 72)> < f’(Y(x; B, 'rl)> ..

Proof: One can easily verify that Y(x;PB, r) is the straight line between

0
follows from lemma 5.5 and the concavity of Jo(rO x). Similarly on the

015(1', B, AO) + 7 and ¢, on the interval [0, xo(ﬁ-, t)] . Inequality (5.29a)
1

interval [xl(B, ), 1] the function Y(x;B, r) is a quadratic upper solution

rumning from @, to 714> r. Thus (5.29p) follows, MNoreover, (5.29¢)

follows from (1.2b). Finally, (5.30) follows from lerma 5.6,




Lerrra 5.8, Let (5.18) hold., Let xo(ﬁ,T), xl(B,T) and Y(x; B, T) be as
in lemma 5.7. Let Te(o,TO) be fixed, Suppose f(Q) satisfies (1.2a)-

(1.2c) and there are positive constants & > 0, k. > O such that

0
%o
(5.31) 0 < f’(a) < aiﬁ; y G <@
Then there is a value B(T) such that: if
(5. 328) BTy <p .
Then
(5. 320) B Ll k(0, s) f'(Y(s); B,T)ds =I(B,T)s 1 .
Moreover, B(T) can be chosen so that: if
(5. 33a) o<'\'1<'f2<‘fO
then
(5. 33b) B(rp) s Blr)) .

Proof: In order to prove the first part of the lemma we need only prove -
(5. 32b) holds for large P. Assuming this has been done, the monotone
character of PB(T) follows from lemma 5.6 and inequality (5.30). We

proceed to the proof of (5.32b), Let

2 o]
(S‘Bh) 9= 3 0'=2+6 °

Since
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we may choose P so large that

cl(T, £) 2 -2—%5 f(ao)
(5. 35) p>1

OlO < c;le < 053 N
Let Ee(o, xo(ﬁ,'l’)> be chosen as the unique solution of
(5.36) T(%58,7) = ¢ .

Recall that
k(0,8) = =slns < (1=5)

We write I(P,T) in four parts. Let

1 Bf}ﬂnﬂf%ﬂ&ﬁﬁ”“ s

I. =
x, (8,7)
12=BI§ |slns[f’<Y(s;B,T))ds ,
xl(ﬁyT)
, =8 [ ]s1:1s|f'<y(s-a T))ds ,
3 XO(BgT) ’
I =Bf |sins| £/(¥(s; B, T))ds
L (t(s5.8,7)
Then, using (5.31) and (5.36) we have
I. < Bko < Bko
1

A




Using (5.35) we have

6(1+5)
L ko I:f(ozo):l o
17 % | 2n
0
Thus,
y72(145)
fla))
(5.57) Lsg o, B2 kol/o [”’27\9"’]
’ 0

A direct integration gives

I, s —c—%— Y(X) f(y(SZ; B,T)) < ;——29_—5- ,

Thus,
2(145
o)
(5.38) A [727\9"] 6
0
Moreover,

1 £/(a,)
(5.39a) 13 + 1), < sf'(ao) L (e T)(l-s)ds =B 20 (,1--xo)2
O 3

Since

« Q. A

0 070

(l-xo) < % < E-f(-a-;:-ﬂ
we obtain
2
A £(x)
2 0 0
I, + I, <= ()



40~

Thus
1 % Mo °
= - ’
(5-)9b) 13 + Iu < "2' 9 B = [f(a5+'r ] f (ao) o

Thus, the lemma is proven.

Theorem 5.3. Under the hypothesis of lemma 5.8, suppose
B(T) s B .

Then problem (1.1) has a unique solution.
Proof: Suppose there are two solutions. Let ul(x) denote the minimal

solution and ug(x) any other solution. Let

W(ix) = ug(x) - ul(x) =20 .,

Then

(5.40) W(x) =B | x(x,s)r’(n(s)+T)W(s)d
x fol 5) £/(n(s) +7) W(s) as

where

(5.41) ul(s) < n(s) = ue(s) .

Moreover,

(5.42) 0 < W(s) < W(0)

Dividing by W(QO) we obtain

(5.43) l1<B Jr'l k(0, s) f'(n(s) +-r) ds
O

Using (5.41) and lemma 5.7 together with lemma 5.8 we have

1<8B C k(0, s) f’(Y(s; ﬁ,T)) ds = I(B,T) =1 .
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Thus, the theorem is proven.
Remark: The careful reader will find many ways in which the estimates of
lerma 5.8 could be refined., However, the difficulty of estimating the
resulting integrals is much greater,

We now turn to the special case where f(Q) = fO(Ol) is given by (1.3).

In this case we have

[e)
i

—-2/5,0:1/3,(10—;1/2,'70:1/1#

(5.44) -0

k =1, fla)=e", f'(ao)_._ue-g

Ao

5a5) g = {127 ‘ﬁm}e@{ 1‘7%3}

is monotone decreasing in (0, 1/4) and approaches +o as T-0+ ,
There is a value :FO such that

(5.46a) B*(T'O, Ay) = hge .
Computational results give

T, = 0.20363219 .
For T < ’f'o we consider the function

H(Q) = pa - B*(T,AO) fO(Ot +T)

We find
T

H(1) = Ao<l - el+T>< o .

— *
Thus, 0 < 7T < T and B = B (T,AO) implies that

053("',5, AO) =21 .
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Elementary computations verify that we may apply Theorem 5.3 in the range

above. It is easy to see that Il and IE are each less than 1/8 in the

range above. We now turn to (5.39a), the estimate for 13 + I, .

Since J

O(ro x) is concave for 0 < x <1, and xO(B,T) increases with

B and T we obtain the following estimates, Let

Xy = x5(Aje;0) .

Then, %, < x < 1 we have [055(0, Ay s hy) = 1]

1% s J.(r.x) .
-X

0'Fo
2(1-%,)

¥ -—
Thus, if O s T <7, and (5.18) holds, then x,(B (7,Ay), 7)> X, and

0

(5.46) 1= XO(ByT) < am .

Hence

- (J_-.B‘EO)2 2se‘2A02 o

13+Ii+52£3oe o = 5 (1-xo)
[ ]° [Br(ay+7)]
> 3
2A
-2

13+Ius——59-(1~xo .

A glance at tables of Jo(x) (see [1]) and elementary computations give
Xy > 0.623

(1«550)2 < (0,1k22) .

Thus, we obtain

I+ T, < -5-'1—2202 (0.2844) 2 0,60511 .




Thus we have obtained the following estimate for the explosion limit curve.
Theoren 5.4, Let f(a) = fO(Oi) be given by (1.3). There is a value

Te (71"0, 1/4) such that: if

* —
p (T, AO) s 0<T<T

(5.46) B =

we
Y
A
A
A
=
=
w0

B (T, Ao

then problem (1.1) has a unique solution.
Remark: The " g0seness™ in our estimates in lemma 5,7 is reflected in the
"looseness' in the upper estimate for the explosion limit curve near T = 1/’+ .
e observe that, using the monotonicity of all eigenvalues of (1.4) s
we have the following results:

(i) If B < Alfl(a()) then there can be no "“crossing" of solutions of
problem (1.1).

(11) It B < A () and if (B, W) is a "ifurcation” point, then P

is the lowest eigenvalue (the Perron root or the Krein root) of the problem

Lo+ Bf'(u+T)g =0,

QI(O) =o(l) =0

TIn this context A. is the second eigenvalue of the linear eigenvalue

1

problem (5.1) and
(5.47) A = rf = (5.520078)2 .

These remarks can be applied to the special case of interest to obtain
the fellowing result,

Theorenm 5.5: Let f£(a) = fo(a) be given by (1.3). Let

(5.482) peln e .



Al

Then there is at most one non-trivial solution u(x) of problem (1.1)

which also catisfies

(5.48b) O=<sulx) <1 .
Proof: Suppose there are two solutions ul(x) and ue(x) both satisfying

o<y .

Then, by the remarks above, we can assume one is greater than the other,

Assume
(5.49) u, (%) = uy(x)
But, as in the proof of lemma 3.5 we have

| f<uk>] -
Luk B [ uk uk =0 ,

But using (5.49) we see that

£u,)  £(w)
=
Y ]

Thus, because of the monotone decreasing nature of the lowest eigenvalue,

we have a contradiction.
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(. Concluding Remarks,

e have studied the general problem (1.1). Our results are consistent
with the corputational results of Paul Stein and lMyron Stein., Indeed, in
the special case where f(Q) = fo(a) is given by (1.3) we have obtained

(I) A region R’ inside the region R and inside R’, there are
at least three solutions of problem (1.1).

(IT) A region R" which includes the region R such that outside of R
one has a unique solution.

lioreover, for T < 0.20 the upper boundary of R" is described by

¥* _ AO 2
(601) 5 (T, AO) = —-é" [(1“’27) -\/ 1-’ET] exp[ ?L?;__-ﬁ]

vhereas the computational curve is described by

~ 1 2
(6.2) B(t) =75 s(7) [(1-27) - \/l-ﬂ‘] exp[m]

where s(T) is a slowly varying monotone imcreasing function rather close
to AO’
The upper boundary of R’ is described by
_ * L LT 2
(609) ﬁ (T;u) ='§ (l-ET) - l—'T eX-P I————-—-‘-‘:—Lw'—; °
Unfortunately, we have not established that there are at- most three

solutions. Such a result would be extremely desirable. Indeed, the compu-

tational results nake it very clear that such is the case.
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Arvpendix
B

Ve turn now to the proof of Lemma L. 4,

For B =0 then 0 = 0 is the only solution of equation (4.9.p).
For P> O the right-hand-side of (l#.9,p) is & monotone increasing function
vhich ranges from B f(T) to B. The left=hand-side is a monotone increasing
function which ranges from O to +o, Thus there is at least one solution

a, = O:l('f, B, p). Indeed, since B T(T) > O there is a first solution and

(A1) pa<pfl@+T) , Osa<a .
Hence
(A.2) p = af’(al +T) .
If O + T 2 Oy then £/(a + T) decreases as ¢ increases beyond O, and
G, is the only root of equation (4.9.p).

Suppose Ctl + T < Oéo . There are two cases,
Case I p = Bf'(al +T) .
Expanding in a Taylor series about Q = Oll we find

(a"al)g

(A.3) pQ = BE(Q + T) = =BE"(§ + T) ——pz=—
where Z lies between @ and Oél . Since Oll + T <Qy, for 0 <KL Oll + €
we have € + T < O, and inequality (A.1) may be strengthened to read
(A.17) pOA<Pf(@+T) , 0sA<Q +e€, afa .

Considering the behavior as Q-+« we see that there is a second root

a, = a,(T, B, p) and we have, using (A.1’) in the interval (@,,Q,),

(A1) pzBfi(a, +T) .

2



Since there is an € > 0 such that

p< BT (a+T) a <a<e

we see that

(A.5) A, +T>Q

Thus, for a > a,

p>Bri(a+ T)
and thus
(A.6) pa>pr(a+T) , >, .
Hence there are exactly two roots and we have the situation described in

(iii) of lemma 4.4,

Case II p > 5f'(al +T) .
In this case for O > Ozl and G near Oél we have
(A.T) pa>Brla+T) , a<a<a +e .

Moreover, this inequality holds until there is a second root ., There
may not be a second root, Suppose however there is a second root

a, = 052(1', B, P). Reasoning as sbove, we find

(A.8) p < 6f'(cx2 +T)

Case II.1 p = Bf'(a2 +T)

Expanding in a Taylor series about oz2 gives
-(a=-q )2

pa - Bf(a + T) = ——-—-———-—22 BEf"(g + 1) .

Let a< a, then f'(E + T) < 0, Thus

2

(A.9) G+T>EHT>A
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Thus in all cases E + T > Olo and

p@ =B+ T)>0 , a>aq

2 @

Hence, in this case there are only two roots with a, & double root,
Case II.2 p < Bf'(ae +T) .

For a > a2 and O near 012 we have

P < BE(@ + T)

And, again, the behavior as O-++« implies that there is at least one more

root, CZ5 = Ot5('r, B; p) - Moreover, arguing as before, we find

(A.10)

@

p 2 5f'(a5 +7T)
Comparison of (A.2), (A.4), and (A.10) shows that

Q3+T>ao °

Thus, for a > oz3

P>prfi(a+T)

and for a > a3

(A.11) pa> Br(x + T)

Thus, equation (4.9.p) has exactly three roots.

The remaining statements of lemma 4.4 are easily checked from a careful

study of the above arguments.
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