NUMERICAL STUDIES OF DISCRETE VIBRATING STRINGS

1. Introduction

The motion of a vibrating elastic string has been studied [4]
using a discrete computer-oriented approach which is applicable to
both linear and nonlinear models, The purpose here is to extend the
investigation by allowing two-dimensional particle motion, by im-
proving upon the relatively naive nonlinear models used in [4], and

by considering several types of problems not explored previously.

2. Geometrical Discription of the String

The discrete string may be modeled geometrically in the follow-

ing way (see Figure 1). Let the string be composed of n + 1 ordered
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particles" denoted by P1 'PZ’ eoe 'Pn’ Pn+1° Let each particle Pj

have mass m which is assumed to be concentrated at its center

(2, 1) X, = (xgl),x(z)

j j j )lj:1121°°°ln+1-

In all the problems to be considered, without loss of generality, the

center of P1 will be positioned initially at the origin, i.e, x1 =

will be fixed permanently at x =

(0,0), while the center of P
n n+l

+1
(2,0).

3., Definitions of Velocity and Acceleration of the String Particles

To write down equations of motion for the particles, we first
need both notations for and definitions of their velocities and acceler~
ations. Since these quantities are time~dependent we need some dis-

crete description of time. Let discrete points of time be denoted by

(3.1) tkzkAt, k=0,1,2,00.,

where At is a positive parameter., For j=1,2,...,n+1, and k =
0,1,... letthe velocity and acceleration of Pj at time ‘rk be

denoted by
(3.2) v, = (v§

and




(3.3) a, = (a,

respectively,
If we extend the particle position notation given by (2. 1) to

include time dependence by appending a second subscript so that

(1) (2)

X, = (X,”, , X, ;) denotes the position of the center of P. at time
ik ik Ik j
tk’ then the velocity of Pj at time tk+1 is defined implicitly by
(3.4) TG 55 N 05 s 15 S 41

2 = At ’ J - 1000, ®
Let the acceleration of Pj at time t0 be defined by

v -V
— ‘-J-l"—————‘l—L—‘ 1 j 0 3 o

(3,5) ajlo - At ] J“llzl-ooln+1 ’

and for k=1,2,..., let the acceleration of Pj at time tk be de~-

fined by (see [6])

v, -V,
(3. 6) ";'[333- - @ Skl Bk gy oL e

kK j,k—l] - At
Note that equation (3.5) is a one-step forward difference formula,
whereas equation (3.6) is a two-step formula, making use of informa=-
tion at two previous time steps to determine quantities at the next
successive time step. Formulas (3.4) and (3. 6) were motivated by
considering velocities and accelerations as continuous functions of
time and by considering the point tk+-12— = (k + '12:) At as the point

where the average velocity and acceleration in the interval [tk'tk+1]



are attained. The truncation error in equation (3.6), when viewed as
an approximation to acceleration as a continuous function of time in

the interval [t ], is O(Atz). When velocity is assumed to be a

t
k' k+l
continuous function of time, the truncation error in equation (3.4) is

O(Atz). Equation (3.5), a starting formula for the two-step formula

(3., 6), has associated with it a truncation error which is 0(At).

4, The Fquation of Motion

The motion of the string is assumed to be governed by Newton's

second law when applied to each of the particles composing the string.

1 (2)

Thus if I—‘j = (Fj })<’Fj k) denotes the sum of the forces acting upon

'k

particle PJ, at time tk we have

4,1 ma, = F, ., j=1,2,c00,n+1, k=0,1,2,00.
( ) ik ik J

We must next list and describe the various forces composing Fj

. @
Wk

We assume the only possible forces acting upon each particle at each
point in time are (1) viscosity, (2) gravity, and (3) tension, and these
are defined as follows:

(1) As in [6] the force of viscosity u, , = (LL;lL,.U;a}){
! 1

ik )

acting upon particle Pj at time tk is assumed to

be proportional to v,

j k and oppositely directed.
'

Let a denote the non-negative constant of propor-




(4. 2)

(4.3)

(4. 4)

tionality, so that

== QqvVv,
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The force G, due to gravity, is taken to be the weight
of the particle, which acts in the negative vertical

direction only. Thus, in English units,
G =-mg = -m(0,32,2),

which is uniformly constant for all particles and all
times.
Tension is the force which couples the particles com=-

posing the string and is assumed to act between con-

(1) _(2)

secutive particles only. Thus if <, . = ('rj k’Tj k)

ik

denotes the net force of tension acting upon particle

P], at time t_and |T denotes the magnitude

k J',J'+1,k]

of the tension between particles P], and Pj+1 we have

as in [4] (see Figure 2)
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where T is the distance between the centers

i,i+l,k



(2)

Figure 2
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of Pj and Pj+1 and is given explicitly by

_ (y _ (1) 2 (2) _ _(2) |2,1/2
ek T T R ) e T 0 T
Note that 2 k and Thsl X are not defined by (4. 4).

These values must be defined for each special type of
problem being considered, e.g., for a string fixed at
both ends or for a free-end string. (See Sections 6
and 7.) Note that each term of equation (4, 4) con~-
sists of the magnitude of a tensile force and a factor
indicating the direction in which the force acts, The
magnitude of the tension between Pj and Pj+ is

1

defined in the following way:




TiLjlLk oLk
l_ )(_J_LJ..__L__) + I (_J_LJ__L._) ]

(4.5) ITj,j+1,k| - TO[( ¢ Ax AX

‘ ] = 1121000 0,

where 0= €< 1, Ax =2/n, and TO is a reference

tension acting between P]. and Pj+ when they are

1
separated by a reference distance Ax, which is seen

easily by inserting Ax for r. . in (4.5).
y oy g j.g+l,k (4.5)

Note that if € = 0 in (4.5) we have that

T

0
(4.6) %5 500,50 = B 5, 500,0)°
which is the linear tension formula known as Hooke's
law and which, when inserted in (4.4), yields
T
(4. 7) T = 9 +

ik Ax [Xj+1,k T2y Xj—-l,k] °

From (4. 7) it can be seen how our formulation of the
problem is related to the continuous wave equation,
for the right-hand side of (4.7) includes a second
difference in the spatial variable, while the left-

hand side of equation (4.1) has acceleration,

At this point it should be noted that formulas other than (4. 5)
can be chosen for the magnitude of the tension, In fact the method

used to obtain (4.5) can be exiended to a polynomial of arbitrary



Ttk

Ay as follows., (For convenience we

degree in the variable
drop the subscripts on r and T, with the understanding that these
quantities are associated with two consecutive particles in the dis-

crete string),

Assume the magnitude of the tension [T(r)] has the form

c.+c (*L)+c (__r__) + eee +C (“‘L) 1.

(4, 8) [T ] = Tyl 0" “1'Ax 2 'Ax pAX

where TO and Ax are positive parameters, Ci' i=0,1,c0.,p, are
non-negative coefficients, and p is a positive integer. Two of the

coefficients ci, i=0,1,...,p, are determined by imposing the

following two conditions,

(1) |T(0)] = 0 (This is equivalent to assuming that zero
tension between consecutive particles corresponds
to their centers being coincident,)

(2) |T(ax)| =T (This condition allows one the ability

00
to assign a reference tension of TO when two particles

are separated by a reference distance Ax.)

From (4. 8) we see that condition (1) implies that Cy = 0, whereas

condition (2) implies

(4. 9) cl+cz+-oo+cp:1°




So one can specify arbitrarily any p - 1 of the non~-negative co=-
efficients Ci' i=1,...,p, and the remaining coefficient is then
determined by equation (4. 9).

Let us now rewrite equation (4.1) with the right-hand side ex-

panded into its constituent forces, as follows,

(4,10) maj’k: Tj,k+p“j,k

+ G .
The right side of (4,10) can be expanded further with the aid of (4. 2),

(4,3), (4.4), and (4,5) as follows:

2
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This last equation simplifies further to

To

(4.11) a = {(1-¢g)

j, k mAx *

Xk 7%k N k!

£

Faw 05k Sen,x ¢

r. . +r, , X,

i, i+l k J~l,1,k) ik
a :

+ V., 1= 2,3,...,1’1;
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Equation (4.11) was so written to show how the linear and nonlinear

terms in the tension separate.

5, The Computational Procedure

From (3.4), (3.5), (3.6), and (4.11), we are able now to des-
cribe the following general method to be used in computing the positions
of the string particles at all points in time, given only the initial posi-

tions and velocities of the particles.

Step 1: Specify all parameters and initial data, i.e., n,

At, To,m, a, €, x l,000,n+1,

j,00 V3,000 7
Step 2: Compute Ax =1/n.
Step 3: From equation (4.11), with k = 0, compute aj 0’
j=2,3,060e,N 5

and a will

The accelerations of the end particles, a, 0 n+l,0’

be determined in a special way, in accordance with the particular

problem being solved.

Step 4: Compute v, j=1l,e0e,n+1 from the following

i

equivalent form of equation (3.5).

v =V + (A1) a,

':1,9001 ‘i‘la
i1 V5,0 j,0°) "
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Step 5: Compute x], X ij=1,eee,n+1 by rewriting (3.4)

with k = 0 as follows:

1
lel = X’j,O + ZAt(vj,O + vj,l)

Step 6: Foreach k=1,2,..., execute the following 3
steps in the order given,
a) From (4.11) compute aj,k" i=2,e00,n, Compute
aO,k and an+1 X by special formulas to be given

with each problem being considered.,

b) From (3.6) compute

l‘ T |
vj,k+1 = Vj,k + 5 At(Baj,k aj,k—-l)’ j=l,600 ,n+le
c) From (3,4) compute

L |
X =%k T2 At(vj,k+l+vj,k)' j=l,eee,ntl .

The iteration described in step 6 is continued up to some arbitrarily
specified stopping point, or until the particles stop moving, €s9.,
when for some time step q and specified tolerance &
max |[x, -x. | < &,
lsjsn+l 74 J,a-l
We will next describe a variety of examples and results, All

of the examples fall into two major categories:
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(1) a string fixed at both ends throughout;

and
(2) a string fixed initially at both ends, but with the end

at x =0 released at t = 0+.

The examples of type (1) will be discussed first.
For convenience, n + 1 will always be chosen to be odd, so

that there will always be a center particle.

6., Studies of a String Fixed at Both Ends

Example 6.1

In this example of a string fixed at both ends we consider the
case of a symmetric, linear initial displacement of particles with
zero initial velocities, See Figure 3 for a graph of a line passing

through the centers of the particles at t = 0,

(2)
x
A

1 [

. ?-X(l)

Figure 3
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All of the forces described in Section 4 are included. To define com~
pletely the computational procedure for this and all examples of strings
with both ends fixed throughout all times, we refer to the general pro-
cedure detailed in Section 5 and will indicate, in addition, how the end
particles are treated in steps 3 and 6a. Thus we have that, for all k =

01112:0‘0 7

( % = (0,0,
- < i1,k T (2,0),
o Vik T Vne1,x - (0400

L%,k 7 %,k 7 000

(‘
2y _ (1) _ . . n+2
xj,O'Xj,O_ (G-AX, j=2,3,000, 5
2y _, _ (1) n+4
(6.2) < .leo_z x_j,O' 5 reeer ,
v, =(0,0), 1=2,3,c60,n.
L YiLo ), ]

The following parameter values were chosen for this example:

[ n =40 (hence, Ax = .05)
m=1/n=,025
o < T, = 12.5
At = .001
a= .15
L € = .01 .,
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Figures 4a and 4b vyield a graphical illustration of the positions
of the string at various times during its first downward swing and its
first upward swing, respectively., Figure 4b also shows the steady-
state, or equilibrium, position of the string which was reached, to
3 decimal places, at t = 2.8 in approximately 20 secs of computing

time on the Univac 1108, The motion of the string particles in the

(1)

horizontal (x'~’) direction was so small for the choice of parameters

in this case that it cannot be seen in Figure 4, In fact, from the

(1)

direction, the dis-

(1)

placement of the particles from the equally spaced positions Xj‘ =

numerical printout it was seen that, in the x

G-1DAx, j=1,2,.00,n41, was of order 10_4, or about 1% of AXx,
uniformly in time for all particles. Thus, the popular assumption of
negligible motion in the horizontal direction is verified to be reason-
able to 3 decimal place accuracy for this choice of parameters.
Figure 5 shows a magnified view of the motion of the center
seven particles in the interval t =0 to t= ,043. It is of interest
to observe that adjacent particles fall with a "flapping" type of motion
as was described in [4].
Note, finally, that the average execution time for this example
was estimated to be approximately 240 time-steps per second of real

Univac 1108 time.
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Example 6.2

In this example we consider a string whose component particles
are initially held at rest in the asymmetric position illustrated in Figure
6. Since the string is to be fixed at both ends throughout the motion,

(2)
X h

1 ¢4

ol .2 1 2 'x(l)

Figure 6

conditions (6.1) hold forall k =0,1,2,... . The initial conditions

for the interior particles are given as follows:

X](%Z) = (J-1)A%x, j=2,3,60.,n
x](?z) = 5XS)0, 0<X;{i)§'2
R TS S PR
vj,O = (0,0), i=2,3,c00,n.

The parameter values chosen for this example are as follows:
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m= 1/n = .05

T = 12.5
(6. 4) < 0

At = .001

a = 015

€ = 0, .1, .5, 1.
.

Note from (6.4) that we have chosen a variety of values of €,
so we really have several examples in one,

Some of the results of these examples are illustrated in Figures
7, 8, and 9, each of which shows the pattern of motion of the string
for one complete cycle, that is, one downward swing and one upward
swing, Figure 7 shqws clearly the effects of introducing non-linearity
in the tension formula by comparing the linear case, € = 0, with the
case where € = ,1, Note in particular that in the case € = 0 there
is no motion in the horizontal direction (this fact is easily verified to
be true exactly), whereas there is a significant amount of horizontal
motion in the case € = ,1, as illustrated, for example, by the posi-
tions of the rightmost particles at t = .42, We see that there is a
horizontal "bulging" effect in the non~linear case when the string
reaches the extremity of its downward motion., This is not present in
the linear case, but it is known from observation to be present in the

real physical case. Thus this example illustrates the significant
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improvement of a nonlinear tension formula over a linear formula and
of a model which includes horizontal motion over one which does not
[4].

Another effect of the inclusion of non-linearity in the tension
formula which is illustrated in Figure 7 is the change in the period
of the string, Note the large difference in positions of the strings in
the two cases during the upward hali~cycle,

Figures 8 and 9 show the motion of the string with relatively
large values of €, .5 and 1, respectively. This means there is a
relatively large degree of non-linearity in the tension formula. Note
the more pronounced horizontal bulging effect which is present in
these cases during the half-cycles as well as at their extremes., The
greatest effect of this kind is observed in Figure 9 at t = ,64 at the
left side of the string,

Another item of some interest which was determined from the
numerical printout is the amount of time required to reach steady
state in each of these cases. The arbitrarily chosen criterion for
when steady state occurred was the following:

(6.5) max || %

- x| = .001,
l<sisn+l '

ik

where ;{i is the steady-state position of the ith particle, and X

is the position of the ith particle at time t Table 1 shows time

kn
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of steady state (tgg) as a function of €,

¢ tss
0 4,7
.1 4,7
.5 4.6
1 4,3
Table 1

Finally, Figures 10 and 11 show an enlarged view of the string
motion in the initial moments for various values of €. Once again
the significance of the nonlinearity in the tension formula and of the
motion in the horizontal direction is clearly illustrated., Also the
flutter motion of consecutive particles, which was noted in example
6.1, is seen again in this example.

The average execution time for parameter cases run in this ex-
ample was estimated to be approximately 265 time-steps per second

of real Univac 1108 time,
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Example 6,3

In this example an impulsive downward force is imparted to the
center particle of a discrete string and the ensuing motion is then ob-
served, The force of gravity will be taken to be zero in order to focus
on the string motion effects due only to the striking of the center
particle, Once again the end particles of the string will remain fixed
throughout the motion, so conditions (6.1) hold. The initial conditions

on the interior particles are given as follows:

(D (G=-1)AK, J=2,3,00.,0
i.0 ! 1
(2) _ o
leo =0 ’ 1_2’31"‘ln1
(606) < v§1)0 =0 ! j:213,conlnl
(2)  _ o n o
Vj'O = 0 ? ]-lelooolzl 2+2,...,n,
@ o,
. EH

For the parameters the following values have been chosen?

(

n = 40 (Ax= .05)
=1/n = ,025
T, = 12.5
(6.7) J At = ,0015
a = .15
g = 0, .5
g = (0,0).
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Figures 12a - 12j show the first ,525 time units of motion of
the string for the case € = 0, and Figures 13a - 13j do the same for
the case € = ,5. Note in Figures 12a - 12f, which include the approxi=-
mate period of time required for the wave generated by striking the cen~
ter particle to reach the fixed ends, that all of the particles remain on
or below the horizontal. Then Figures 12g - 12i show the waves re~
flected from the two ends traveling back toward and meeting at the
center with much reduced amplitude, Finally, Figure 12j illustrates
the string's shape early in the second full cycle as the wave travels
toward the ends again with even further reduced amplitude. This type
of motion continued until, at approximately t = 1,7, the maximum dis-
placement of any particle was less than 10“3 units from the horizontal,
so that our steady~-state criterion was satisfied, Thus the motion of the
string in this example is characterized by a relatively high amplitude
first half-cycle with all particles remaining below the horizontal,
followed by rapid attenuation of the wave in the succeeding half-cycles,
leading to a quick approach to steady-state,

The same remarks made above for the case € = 0 hold qualita-
tively for the case € = ,5 (see Figures 13a - 13j). The major differ-
ences due to a positive € are the general reduction in amplitude of
the wave throughout the motion and introduction of more "wiggles" in
the shape of the string throughout its motion. Steady-state occurred

at approximately the same time, t = 1,7,
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Example 6.4

This example is intended to demonstrate instability in a numer-
ical computation, The initial conditions are the same as in (6. 6) and
the parameter values are as given in (6,7) with € = 0 except for

the value of At, which is here taken to be

(6.8) At = .003,

Figures 14a - 14e show the first 1.5 time units of motion of
the string during which it is clear that the computation is already be~
coming unbounded, Thus an increase in At of a mere ,0015 units
has caused a change from a stable computation to one which is un~
stable,

Finally, we point out that the average Univac 1108 execution
time for parameter cases considered in examples 6.3 and 6,4 was
estimated to be approximately 240 time~steps per second of real

time.
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7o Studies of a Free-end String

Now we proceed to the study of a string fixed only at one end.
teferring to the string description in Section 2 and to Figure 1, the
problem may be described as follows, Initially the string is assumed

to be hanging in its equilibrium position with particle Pl at the

point (0,0) and particle Pn at (2,0). For t > 0 particle P, is

+1 1

no longer fixed at the origin but is free to move according to the
governing law of motion., Thus we may use the same definitions, law

of motion, and computational procedure as in the case of the string

fixed at both ends, except that we must include the motion of Pl .
The necessary modifications may be made as follows. In step 3 of

Section 5 include the computation of a which is given by

1,k

(7.1) may = T by +G k=012,

where Ml K and G are defined in (4.2) and (4. 3), respectively,

and
X - X
‘ 2.k 1,k
(7.2) e = T T '
1,2,k
where |T1 ) kl is defined by equation (4.5).
The boundary conditions for this problem are
X (2,0)
(7.3) ntl,k k=0,1,2,0..,
= (0,0)

Vn+1,k
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whereas, for initial conditions, we have

<
i

(0,0)

X, = X,
i.0 j

where .?cj is the equilibrium (steady-state) position of the jth
particle of a string hanging from both ends. fcj, j=2,3,...,n, may
be computed by setting all time-dependent variables in equation (4.11)
to zero and solving the resulting system of nonlinear equations. Thus

one would solve the following system by the generalized Newton's

method (see [5]):

T
0
(1.5) ax Wmebg g = axex )7 I %0 0y
+r, L) X+, , X, -g=0, j=2,3,...,n,
J"1,J) I ol 1—1]}
Call any solution so obtained 5{], . {Note that ;{l = (0,0) and ;cn+l =

(2,0).)

In case € = 0 an alternative method, which is faster, may be
used to solve for the initial position, for this corresponds to the linear
case of uniform tension TO in the string. Indeed, one may take the

classical continuous wave equation

T
= 0 -
(7.6) utt ‘5 uxx gO !
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where u is the displacement in the vertical direction, p is the

linear density of the string, and 99 is the acceleration of gravity,

set utt =0; p= nm/2, and solve the resulting ordinary differential
equation
2
(7.7) du ‘2‘ - M9
dx 2 T0

subject to the conditions that u vanish at x =0 and x = 2. The
solution is
(7.8) ux) = M9 xx - 2).
4T
0
Then, recalling that the horizontal components of particle positions
in the linear case € = 0 are just the positions equally spaced by

AX units on the interval [0,2], we have

) g -1)ax
(7.9) ) i =2,3,....0,
(2) ~(1)
] )

u(x,
]

0
i

%>

i

and initial conditions (7.4) are thus determined.

A comparison between the two methods of computing these
initial conditions when € = 0 was actually made for T0 in the
range 12.5 - 50 to justify the use of the second, faster, method as
a good approximation to the first. Table 2 shows the results of this

comparison for the case n = 20. The quantity 5 is the maximum
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absolute discrepancy between positions computed by the two methods.

TO 8

12.5 .003

20 .001

25 . 001

35 .001

50 . 001
Table 2

Example 7.1

The purpose of this example is to contrast the cases of a linear
tension formula and a nonlinear formula. The parameter values are

given as follows:

Case 1 Case 2
n 20 20
. 12.5
TO 12.5 2
m .05 .05
At .002 .003
o .15 .15
£ .2 0
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Note that there are different values of At for the two cases.
The smaller value of At in the nonlinear case (€ = .2) is chosen
to ensure numerical stability in the computation, since it is known
from empirical evidence that there is a greater restriction on the size
of At in a nonlinear case than in a linear one.

Figure 15 is a side-by-side plot of the first downward swing
for these two cases at time intervals of .18 units. The solid curves
correspond to the case € = .2, and the dashed curves correspond
to the case € = 0. One can see in the figure that the linear case

tends to lag slightly behind the nonlinear case in the downward motion.

Example 7.2

This example contrasts cases with different values of the viscosity
parameter o. The tension law is taken to be non-linear for greater

generality. The parameter values chosen are as follows:

Case 1 Case 2
n 20 20
TO 12.5 12.5
m .05 .05
At . 002 .002
o .15 .05
£ .2 2
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Flgure 15
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Note that all parameters except o are the same in both cases.
The value of o in Case 1 is a reference value which has been used
in all examples described previously. Figure 16 shows the first down-
swing of the motion of the string in each case at uniform time intervals
of .18 units. The solid curves correspond to Case 1 (o = .15), and‘
the dashed curves correspond to Case 2 (o = .05). As expected,the
string's motion is seen to be less restricted for the less viscous case,
as indicated by the greater stretching of the string at the extremity of

its first downswing.

Example 7.3

For a final example of the motion of a free~end string, we choose
to contrast cases of different reference tensions TO. The parameter

choices are as follows:

Case 1 Case 2

n 20 20
. 25

T0 12.5
m .05 .05
At .002 . 002
a 15 15
€ .2 2
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Once again all parameters except T0 are held constant in the

two cases so that all differences are due to the choices of T Also

0"
€ is taken to be non-zero so that the cases are nonlinear.

Figure 17 illustrates the differences between these two cases
for the first downward swing of the string. Note that there is a great
difference in initial positions of the string in the two cases and that
there is a large difference in the nature of the downward motion in the
two cases. The greater tension in Case 2 results in a shallower down=-
swing than in Case 1 but one which swings farther outward in the
horizontal direction. In short, in Case 2 the horizontal forces, due
primarily to tension, are greater with respect to the vertical forces,
due primarily to gravity, than in Case 1.

In Table 3 is shown the amount of time required to reach steady-
state in each of the cases considered for a free-end string. The steady
state, or equilibrium position for a string fixed at one end only is, of
course, such that the horizontal component is identical for each particle
and the vertical component is constant for each particle. In our case

(2)

this implies Xj = (2,xj ), j=1,2,...,n+l. The criterion chosen for
the occurrence of steadyf-state was the same as in section 6 (see (6.5)),
i.e., when the following condition is satisfied:

max {“xik”;ci”oo] < .001 ,
lzisn+l !
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Figure 17
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where ;Ei is the steady-state position of the i-th particle, and

X is the position of the i=th particle at time t

i,k k’
T £
m n 0 Q tss
.05 20 12.5 .15 .2 2.7
.05 20 12.5 .05 .2 14.7
.05 20 12.5 .15 0 5.0
.05 20 25 .15 .2 2.6
Table 3

For these parameter cases the average execution speed (including
the time required to compute the initial position by the Generalized
Newton's Method) was approximately 200 time-steps per second of real
Unijvac 1108 time. This compares closely with the figure of approximately
265 for the 21-particle asymmetric string, fixed at both ends, which was
discussed in section 6. The difference in these two figures may be
attributed to the time required to compute the initial position for the free-
end cases. The number of Generalized Newton iterations required was
approximately 100 for the specified tolerance of .5 x 10_4.

We conclude our discussion of the free-end string by giving Table

4,which indicates a possible relationship between the final (steady-state)




65
length £ of the string and the reference tension TO for the case

€ = 0. (Recall that T, represents the tension between two consecu-

0

tive particles spaced by a distance Ax = 2/n.)

Ty x4

TO y/ n=20 | n=100
12.5 2.70 33.8 32.0

15 2.25 33.8

17.5 1.94 34.0

20 1.70 34.0 32.4

22.5 1.50 33.8

25 1.35 33.8 32.5

Table 4

The table suggests that the product of TO and / is constant,

at least for the range of T_ indicated, and that this constant approaches

0
the magnitude of the acceleration due to gravity as the number of particles
n gets large.

Finally, we remark that the computational method described in this
section for the free-end string problem may be compared with a related

problem which has been solved using classical mathematics only. That

is the problem of the suspended rope which was solved (see [1],[7])



66

using Bessel functions. However the suspended rope problem is a
much simpler problem since it assumes motion in one direction only.
In particular it does not allow for the free end of the rope to move
above its equilibrium height. So thus far there is no known classical
mathematical solution for the free-end string problem which we have
solved by our discrete method.

The appendix contains a listing of the Fortran program used in

the computation for the free-end string problem.




67

8. Remarks

We conclude this report with a few remarks about extensions
which can be made. First, the problem can be extended to three di-
mensions. Further, one could take into account rotary motion of the
particles. One could also refine the "single-strand" model for the
arrangement of the string's component particles to allow for multiple
strands, or rows, of particles. This last refinement has associated
with it the difficulty of determining an appropriate description of the
forces acting between particles in different rows.

In Section 4 the formula chosen for the magnitude of the tension
between consecutive particles was quadratic in distance between the
particles. We have already noted that polynomials of higher degree
could be chosen, but this has not yet been implemented. One could
also consider using different polynomials in different intervals of
distance between particles, e.g., a piecewise linear polynomial (see
(3D.

Finally, there is current investigation into the stability of the
computational method described in section 5. The first efforts have
been empirical in natgre, and some stability conditions have been
hypothesized, but thus far no mathematical proofs of these conditions

have been obtained.
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Appendix

THIS FROCRAM COMPUTES THF TWO-DIMENSTONAL POSTTTONS ANC
VFLOCTTIES OF THE PARTTCLES COMPOSING A DISCRFTF STRING OF

UNIT TOTAL MASS WHICH TS FIXED AT GNF FND ONLY. THF COMPUTE-
TTONS ARFE DONF AT A SPECTFIED TIME INCREMENT STARTING FROM THF
STFAQY-STATF POSITION GF A STRING HANGING UWITH ROTH ENDS FIXFD.
THE FORCES CuNSIDERED TC BE ACTING ON THF PARTICLES ARF NON-
LINEAR TENSIONe VISCOSITYs AND BGRAVITY.

FFORIS s ENDFREE
FARAMETER NPARTZ Z19NSNPART-1.NHIN/Z4]
r NFART = TOTAL WNUMEBER OF PARTICLFES IN STRING.
RFAL MASS
T

DYMENS TON XUIMFARTs I s VINFART 1292 o AINPART»Zs 2o XUINPARTeZ}
* gVUINPARTeZ ) o ALPHAMIZ) o XSINPART2Z)

C CFFINTITIONS OF DIMFNSTONFD VARILABLESS

C ¥ (Ied) = J-TH COMFCNENT OF POSTTION DF T-TH PARTICLF.

C VETedsel) T J=TH CpMp ONENT OF VFLOCTTY OF T-TH PARTICLF AT PREVYIOUS
¢ TIMF-STEF,

r VO TedsZ ) = SAME AS YITyJdel) FXCEPT AT CURRENT TIMF-STEP,

C AlTedol) = U-TH COMPONENT 0OF ACCELERATION OF I-TH PARTTICLE AT

C FREVIOUS TTME-STEPR,

C Al TedeZ) = SaMF AS AlTedsld FXCFPT AT CURRENT TIMF-STEF,

C xiitILed?d = STARTING VALUF USFED IM ITFRATIVFE METHOD FOR COMFUTING
C J-TH CCMPONFNT 0OF TNITTIAL FOSITION OF T-TH PARTICLF.
N VLU Ted ) = J=-TH COMFONENT OF INITIAL VELOCTITY OF T-TH PARTICLE.
C AS0TedY = J-TH COMPONENT OF TINITTAL POSTTION OF T-TH FARTICLE .

DeT &L CeFH

o

» ISTLYsRHO/ZZZ2 201 eF~-Toleot/

r DFFINITICNRS OF DATA VARTABLES.

r G = ACCFLFRATION CUE T3 GRAVITY.

r FRR = SMALL POSTTIVFE NUMBFR USTDO TGO RFESOLVE FLOATING POINT
C ZFRO.

f ISTDY = VARTIADBLF CONTROLLING METHOD OF COMPUTING INITTAL PDS-
C ITIGNS OF PARTICLES .

C TSTDY.EQal0 IMPLIFS {(FOR THF CASE €FS = 0NV USE CONTIN-
C UOUS APFROXIMATION FOR INTTIAL POSITIONS.
r {IF FPS.GTeN THTIS IS AN FRRONEDUS CONTROL
C VAR TABLF VALUE.)

C ISTNYSNF U IMPLTES USE THE GENFRALIZED NEWTON®S METHOD
r FOR COMPUTTING INITIAL POSITIONS.

C RHD = LINEAR MASS DENSTTY OF STRING.

¢ USE A VARTABLE OTHFR THAN THF PARAMETFR VARTABLFE NPART TO HOLD
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THE TOTAL NUMBFR OF PARTICLES.
WEZINFART

COMPUTE INDIVIDUAL PARTICLE MASS, REFERENCFE HORIZONTAL PFARTICLE
SFLCINGe 2ZND CONSTANTS TO BE USED IN INITTAL FOSITION COMPUTATION.

MLGSZTlae/N
N¥=Ze /N
REOGZ=ZRHUsG#* . &
CZG/N=DX

SFT INITTAL VELOCITIFS TO ZFRO AND STARTING VALUFS FOR POSITIONS
T0 ZFRO IN THE VERTICAL DTRFCYTON AND TO FRUALLY-SPACED VALUFS
IW THF YORIZONTAL DIRECTION,

NG 2 TZ1eNPART

X001y 1)={I-11%0X
XtLeZ1=0o

VUCLe 110
VE(IsZ2)ZU»
ARITE HEADING LINF DFFINTNG TYPE OF PROBLEM THIS PROGRAM SOLVES,

ARITELE +22 ) NP s DX 9 MASS
WRTTELG BC)

FETHT OUT INITTAL PARTICLF VELOCITIES.
Call FPRINTHUDesVOs1elleNF)

INTTTALTZY CURRENT VALUES OF PROBLEM PARAMFTERS,

FrSz =11,
TENTZ-10,
DTz-1U.

ALPHAZ-1D.

UFDATE FRFVIOUS VALUFS OF FROBLFNM PARAMETERS,

COLDZIES

TOLGZTENLO

DTOLO=OT

AGLDZALPHA

KF2T PARAMFTFRS FOR L DATA CASE.

RFAG(Z s SEy ENDZZU) LMAXs INCPRy INCPLo DT TENDS FESy ALPHAS OMECA

DEFINITIONS OF OATA PARAMETERS.

LMAX = MAXIMUM NUMBFR OF TIME-STFFES THIS CASF TS5 7O GFE RUN,
INCPR = TIME-~STFF INCREMENT FOR PRINTING OF PARTICLE POSITIONS.
INCPL = TTME-STEF INCRFMENT FOR FLOTTING OF PARTICLE POSITIONS.
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Ny T TIME-STER SIZE.
TENL = PRFFERENCE TENSTON BETWEEN CONSECUTIVE PARTICLFES.
FPS = FARAMFTER OF NGNLINEARITY IN TENSION FORMULA.
ALPHA = TOEFFICIFENT OF VISCOSITY,
OMFCS = OVER-RFLAYATION FACTOR FOR GENFRALIZED NEWTON®S METHOD.

TFEST TG SEE IF TEND OR EFPS HAS CHANGFD FROM FREVIOUS DATA CASFE,
IE(ASS(FOLD-FPSI+ABSITOLD-TFNU) L T-.FRR)Y 60 TO 1002

TF 30y COMPUTE VALUES DEPFANDFNT UPON THESF PARAMETFRS,

33 1s-EFFS

CONZC/TEND

THOX ZTEN{G/MASS /DX

TEST FOR METHOD OF CCMPUTTNG INITIAL FOSTTIGNS OF FARTICLFS.
IFCISTOY .NEUY GO YO Z07

TFST AHETHER EPS IS ZFRO TN THIS CASF. IF NOTe THF CONDITION IS
TRAONFOUSs SO IGNORE CURRENT CASE AND READ THE NEXT ONF.

TFIA35(EPSI.GT<ERR) GO T 10K

USF CONTINUOUS AFFROXIMATION FOR INITIAL POSITIONS,

RGTZZRHIGZ /TENU

0o LN2 TZ1sNPART

XSETe1zx0(Te1)

XSUTe 2 bRETZaX il To 1) (XU(Te 1V -2 a)
GO T0 ©

TEST FOR WHETHFR OR NOT STEADY-STATS CALCULATION FAILED FOR THE
CURRFNT VALUES OF TEND AND FPS IN A PREVIOUS CASF UITH A DIFFERENT
VALUE OF OMEGAR.

IFLIFLAG.NE.U) GO TO 203

TF STEADY-STATF POSITTON HAS ALREADY BFEN OBTATINEDs HENCF THE CASF
ALEEADY RUNe FOR THE CURRENT FPARAMETER VALUESe TEGNORE THF CURRENT
0A&4TA CASC AND READ THE NEXT ONE, OTHFRUTISE PROCEFD TO RUN THIS
CASE S

TEFCAESINTOLD-DT Y 4ABSEADLD-ALPHA) LT -ERR) GO TO 2
G3 10 °

COMPUTE TNITTAL POSITIONS BY GFNFRALIZED NFUTON®S MFTHOD,
CALL STFADYU(FFS1+EDXoOMECGA+CONe X0 9 XSeIFLAG)

TFST FOR WHETHER OR NOT TNITIAL POSITTON COMFUTATION SUCCREEDED.
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IF SOs FROCEFD TO RUN CURRENT CASE. IF NOTs WRITF MFSSAGE INDIC-
ATING THTS AND READ NEXT DATA CASFE,

IFCLFLAG.FQ.U)} GO TO E

WRITF(Eo80) TFNUGEFSsALPHASDT »OMFGA

GG TO 3

FRINT QUT PARAMETFR VALUES FOR CURRENT DATA CASE.

WRITFA{69037) TENUIDTeALPHASEPS
WRITE(E.GC)

FRINT QUT INITIAL PARTICLF POSITTONS.
CALL FRINT(UOsXSslesleNP)

TEST FOR WHFTHER OR NOT INITIAL POSITIONS WFRE THF ONLY COMPUT-
ATTONS DESIRED FOR THIS CASE,

TEALMAY sFut) GO TO 2

COMPUTHE HALF THE TIME-STES STZE AND VISCOSTITY COEFFICIENT DIVIDED
BY PARTICLF MASS.,

BTe=DT /2.
ALPHAMTALPHA/MASS

ARTTE MESSAGE INDICATING THF TIMF-STFP INCREMENT FOR PLOTTING OF
FLETICLF FOSITIONS.

WRITFE(Es o) TNCPL

STORE TNITIAL VALUFES INTO WORKING ARRAYS.,

D0 & TzZ1sNPART

Y{TellzoxS{Iel)

¥ UTeZ)XS(Iez)

VETsl o202yl Tel)

VELe 213 V0OCTe 2

COMPUTF INITTAL ACCELFERATIONS.,

CALL ACCFLATMOXoEFSeFOR eXo Ve ALPHAMe DX 23700 A(10102))
COMFUTFE VFLOCITIFS AND POSTTIONS AT FIRST TIME-STFP.
DG 10 TzZ1leN

VT e 12 12VITelol)+DT*8(T 0l eZ)

VIT e Ze 21 VLT eZol)4+0T*ALtTeZs7)

XL 1PN O Tol 2 aDTZxdV(Tolez) s (Tolsl))

XOTsZ2 )X T2 14072V TozZe2 )4 V{Ts241))

TEST FOR PRINTING OF POSTTIONS AT FIRST TIME-STFP,
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IF(INCFR.FQo1) CALL PRINT{1sX9sINCPRs INCPLoNF)

TFST FOR MAXTIMUM OF 1 TIMF-STEF FOR THIS CASE.

IF(LMAX.LTaZ) GO TO 2

FROCEFD TO COMFUTF FOR THE REMAINING TIMF-STEFS FOR THIS CASE.
DG 25 LZZ.LMAX

UPDATF PREVIOUS VALUFS OF VFLOCITIFS AND ACCELFRATIONS,

DO 12 T=1lsN

VIiTele2)VLETels?2)
YITeZ o102Vl TezZe2)
AlTele1VCAlTe1e2)
AlTeZol )AL sZe2)

COMPUTE ACCELFERATIONS AT CURRENT TIME-STEP.
CALL ACCEL (TMDXsFFESoFDXoeXoVeALPHAMD X9 $2B8eAl1010Z))
COMPUTF VFLOCITIES AND POSITTONS AT CURRFNT TIME~-STFP,.

B0 18 IzZ1eN

UlToeleZ)oVTololt ¢DT*l01.5%A0Te107)=aS*xA(To1s1))
VIToZoZ) oVt IoZol ) 4DTR (L %A(TsZ92)=nExA(TsZs1))
Y(Tel1oX(Tel)4DTZ{VIToleoZtaViTelel))
X{TeZ)oX(TeZ ) #DTZ2x(VITeZ2eZ2)4VIToZs 1))

TEST FGR PRINTING OR PLOTTING OF POSITIONS AT CURRENT TIMF-STEP»

IF{MOD(Ls INCFR) oFQoals0ReMOC (L INCPL)-FQRa0) CALL PRINT(LeXoe INCPRS
TNCFL «NF)
CONTTINUF

TFST FOR WHETHER OR NOT THF PRINTING TNCRFMENT FXCFEDS THF
MAY TMUM NUMBFR OF TIME-STFFS. IF NOTs RFAD NEXT DATA CASFE o

TFUINCPR.LE-LMAX) GO TO 2

IF SO0y PRINT OUT THE POSTTIONS AT THF LAST TIME-STFPs AND THEN
READ NEFXT DATA CASF,

WRTTF(ES C2)

CALL PRINT(LMAXsXs1le0eNP)
G0 Y0 =

FRRGR RETURN FOINT FROM ACCELFRATION COMPUTATIONs TNDTCATING THAT
COMFUTATION HAS BECOME UNSTABLE. PRINT MESSAGE AND PROCFED TO
NFXT 3aTA CASE,

WRITF(E421)
¢ T0 2
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C TERMINATION POINT FOR PROGRAM., CONTROL RFACHES HFRF AFTER
¢ ATTEMFTING TO READ PAST LAST DATA RECORD.

20 STOF
C FORMAT STATEMENTS FOR MATIN PROGCRAM,

33 FORMAT(TOINITIAL POSTITION®)

36 FORMAT(ZIEe1Z2FE,.0)

37 FORMATU(//1HO T0 =° E11e2e3X DT =9 F11e392x YALPHA T El11.3¢ 3%
» "EPS 7 F11.3//)

96 FORMAT(SOINITTAL VELOCITY®)

9% FORMAT(1HO IEs ZX°PARTICLE FREF END STRING ON tDsZ)e PARTICLE SPA
*CING =°1PF11.393X 'PARTICLE MASS =°® F11.3/1X *FORCFS CONSIDERFD--
#* TENSTON (NONL INEARPeVISCOSITYsGRAVITY.®)

94 FORMATU(® PLOTTING FREQUENCY = TE.zZX °*TIME STEPS*/)

22 FORMAT(°OFINAL POSITION®//)

S1 FORMAT( OOVERFLOW IN ACCELFRATION CALCULATTON. ABANDON CURRENT DAT
*A CASF.")

20 FORMAT(POINITIAL CONDTTION CALCULATION FAILFD FOR THIS CASE.?
% YT D FEL1eBX TEPS TP FGLTeEXTALPHA Z°FG.2oEX°DT Z9FBE, Y495

* YOMEGA = FGa2)

END
SFOURSIS e ACCEL
r THTS ROUTINF COMPUTES THE ACCELFRATTONS OF ALL THF STRING
r FARTICLES AT A SINGLF TIMF-STEP.

SUBROUTINF ACCFLITMOX s EPSoEDX e X sV eALPHAMDELX oS04
FARAMETFR NPARTZ Z1eNSNPART-1sNHIN/ 741
DIMENSTION X(NPARTsZIvA(NPARToZ ) o VINFART s Z)
NDATA C/27.2/
TYZ=ZUe
TXZz=Us
00 10 TzZ1eN
TYl=TY?
TYIZTX?Z
DXZX€T¢191)=-X¥{To1l)
DYZXCTs LeZ)=X{TeZ)
DOX=ABS(DX/0EL %)
COYzZRABS(DY/ZDELX)
ODZDX»%xZ ¢ D Y%7
ITF{DOPoLToelle w0Re DO0GTs 10, ) RETURN B
TZTMDX# {1 ~-EPSHYEDX«SQERTION )Y
TYZ=T=hOy
TXZ=Z T 00X
ACT o LIZTXZ-TX1-ALPHAM*V(Ts 1)
10 A(TeZ)=TYZ-TY1-ALPHAM=Y(Te2)~5
RFTURN
END
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AFORIS s FPRINT

eNe e RR

THTS ROUTINE PRINTS AND/OR PLOTS (BY FRINTER) THE PARTICLE
FOSITIONS (%) AT A SPECIFIED TIME-STEP (L) IF THIS TIME-STEP

IS A MULTIPLE OF SPECIFIFD TNCREMENTS FOR PRINTINCG AND PLOTTING
( INCFRIINCPL ).

SURROUTINE PRINT{LoXeINCFRsINCFLNP)

FLRAMFTER NFARTZ 21

DIMENSIGN X (NFARTsZ)

DIMENSION TITLE(S)sXTITLE(B) YTITLF (B)

DATA (T[TLE(T)QI:108)u(XTTTLF(I,oI:1vS’v(YTITLE(T?vI:los)/ZQ*

¥ EH /
38 FORMAT{IHOTISE +21FGE.3)
Gg FORMATUIEX 21FE .2}
97 FORMAT(1HO &% Z1FG6.2)

[IF(MODULs INCPR}ILNE DY GO TO 7

NNZMINO(NFoZ 1)

WRTITF(Ee2SY Lo X (TeZ)sIZ1eNNI

URTITEF(E¢93) (X (Ts1l)eI=1oNN)
T IF(NN-GFENF) GO TO 7

N1ZNN+ 1

NNZNN+MINDINF-NN9Z1)

UWRTTF(E«CT7) (X({TeZ)s ISN1sNN)

WRITE(SE ¢98) (X{ILs1l}lsT=NLoNNI

GO TO ¢
7 TF(INCPL-FQ.01) RETURN

TFIMODI(L + INCPL1«NE.O) RETURN )

CALL GRPHZNUX (1e2)s "R®%sX {19110 ®R%s~NPs "SMALLYs~U oo aSoler oo

¢ TITLF o XTTITLEYTITLE % %% )

CALL GRFPHND

RETURN

END

AFORVIS s STFADY

~ o

THIS ROUTINF COMFUTESs BY THE GENFRALIZED NEWTON®S METHCOD. THE

STEADY-STATEs OR FQUILIBRIUMs POSITIONS OF THE PARTICLES OF A
STRING HANCING WITH BOTH ENDS FIXED.

SUPROUTINF STEADY(EPS1+EDXsOMFGAsCONeXOs X9 IFLAG)
PARAMETER NPARTZ Z1 ¢NHMIZNPART/ZsNHZINHMI#+1sNHPIZNH¢1
DIMENSION XUINPARTsZ) s X(NPART+Z1IoEXINH)EYINH)

DATA TOL/E.E-5/eMAXIT/ZED/

93 FORMAT('OCONVERGFNCE ATTATNED IN STEADV-STATE CALCULATION AFTERT
# TUsZX *ITFRATTONS®/1X °*MAX. FRROR =' Ellals3X °TOLERANCEZ"ElleHs
¥ X YQMFGA =°* FB.2/)

97 FORMATU('GITERATION FATLED TO CONVERGF YN STEADY-STATE CALCULATION
«AFTER® TUsZX "TTEFRATIONS'/1X °*MAX, ERROR ='E11.492%" TOLERANCE =7
* Flle%/)

IFLAGZ=D
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DC & I=1sNHP1

X(Isel)=XO(Ts1)

Y(Ts2Z)z-X0lIs2)

DO 2U IT=1eMAXIT

DXZZX(Ze1) =X (101}

DX2SA=DX2%%7

DO LU T=ZsNH

DX1=DXZ

DXZZX(T41s1b=X(Isl)
DY2ZX(I+10Z)-X(Is2)

DY L1ZX(TsZ)-X(I-1s2)

UX1SATDXZSE

OXZSQzDXZ=%2

DY1S@=DY1#%7

DY2SGzDY2#%2

R1ZSARTIOX1SG4NY1SA)
RZZSGRT(OXZSE4DYZSE)
ANUMZEPS1%(DX2-DX1)4EDX* (RZ%0OXZ-R1% DX 1)
NNOMZZ < *FPSI1EDX*(DXZSA/RZ4RZ+DXLISA/RLRT)
EXUIIZOMECA*ANUM/DNOM

X(Toel 1ZX{Ta1 ) 4EXIT)
DXZZA(T+1s1)-%XETs1)
DX1=X{Teld=-X{TI=101)

Y 1SQ=DX1==x7

DXTSATDXT w#?

RZ-SARTI(NX2ZSA+PYZSA)
R1SSGRTI(DX1SA+NY1SA)
ANUMZFPS1%(DYZ-0Y1)4FNX%x(RZ%DYZ-R1%x0Y 1) -CON
DNOMZZ o *EPS1+EDX e (DYZSA/RZ¢RT4DY1/R1+R1)
FY(T)=OMEGAsANUM/ONOM
X(TeZ 1= X{Te2 14EYLT)

XONHP 1013272 o-X (NHMTs 1)
X(NHP1oZ )= X{NHM102)

IF(ITLT-50160 T0 20

TEST FOR CONVERGENCE

EMAXZU

DO 1% I=ZeNH
EMAXTOMAXL(FMAXsABSIFX(L)) sABS(EY(I))?
IF(EMAX.GTTOL) 60 TO 2O

MRTTE(G +98) IT+EMAX,TOL s OMEGA

NSTNH4 72

DO 17 T=NSeNFART

X(TeZ ) ZXINPART-I¢1+¢2)
X{Te1)=Za-X(RFART-T41s1)

RFTURN

CONTTNUF

WRTTE(E+97) MAXITsFMAX,TOL

TFLAGZ -1

RF TURN

£ND
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