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QUADRATIC CONVERGENCE OF A NEWTON METHOD
FOR NONLINEAR PROGRAMMING

Abstract

A Newton algorithm for solving the problem minimize f(x) subject
n n m ,

to g(x) - 0, where f:R -+ R and g:R —R is given for the case when

g is concave. At each step a convex quadratic program with linear con-

straints is solved by means of a finite algorithm to obtain the next point,

Quadratic convergence is established.






1. INTRODUCTION

Levitin and Polyak [5] have proposed a Newton method for

solving nonlinear programming problems of the form

1.1 minimize f(x), X = [x ] X ¢ Rn, g(x) ~ 0}
X e X

n m
where f: Rn~+ R and g:R — Rl . The method consists of taking a

quadratic approximation fi of f around a current point Xi’ that is

1 Lo .
)+ > (x Xi) 7 f,(}\,i) (x - X.,)

1.2 f(x): = f(xi) 4 7f(xi) (x - X ;

i i
where 7f denotes the n-dimensional gradient vector of f and '\7Zf
the n « n Hessian matrix of f, and solving the guadratic programming
problem minimize f (x) to obtain X'+ . Under suitable conditions

xeX 1 i+l
they show that their algorithm has quadratic convergence (see definition

2.7 below). Unfortunately their method is not practical for nonlinear

constraints, that is when g is nonlinear, because each subproblem,

min fi(x), is, in general, as difficult as the original problem. In
X ¢ X
this work we show that for a restricted class of problems of type 1.1, the
class of reverse convex problems [12,8,9] that is where g is concave,
a practical Newton method is possible. In this method each subproblem
consists of a quadratic approximation of [ around X, and a lincar

approximation ol g around x,. This then gives rise to the
i

following quadratic programming subproblem with lincar constraints



1.3 minimize f (x), X, = {x!x € Rn, g(x,) +Vg(x,)(x-x,) = 0}
XeX; i i i i i

where fi is defined by 1.2 and g is the m ~\ n Jacobian matrix
of g. This subproblem can be efficiently solved by any of the finite

. We will show

and fast quadratic programming algorithms [2,3,13
that this algorithm also has a quadratic convergence rate,

In Section 2 of the paper we state the algorithm, the assump-
tions and define r-th order convergence. We also state in Section 2
the convergence theorem for the algorithm. Section 3 and the Appendix

contain the proof of the convergence theorem.,




2. ALGORITHM, ASSUMPTIONS AND CONVLRGENCE RATL

2.1 Algorithm: Start with any xo in X. Having Xi we deter—
mine le by solving the quadratic program 1.3 by prin-

cipal pivoting [2,3] or any other finite or fast g udratic

programming algorithms [13].

To establish quadratic convergence we shall need the following

assumptions:

2.2 /Zf, the Hessian of f, is Lipschitz continuous on X,

that is H\‘yaf(y) -\sz(x) | <R |y-x| . vx, yeX, for some

R>0

2
263 Mlyy -y 7 Hx)y = I\/Izyy, VxeX, Vye Rn, for some Ml’ M, >0
2R
2.4 ET Hxl - XOH <1
1
2.5 g is continuously differentiable and concave on some open set containing N
2.6 I'or cach x ¢ X, there exists a z ¢ RY such that \7qi(x)z < 0

for i I(x) = (i]g,(x) = 0},

We note that the concavity assumption of 2.5 does not make
the set X convex cxcept for the degenerate case when g is linear.

This case of concave g has been treated by Rosen [12] and Meyer |9,10]



using other algorithms and is referred to as the reverse convex case.

We also note that the existence of z satisfying \7gi(x)z < 0 for

i ¢ I(x), which is a form of the Arrow—-Hurwicz-Uzawa constraint

qualification [1], is equivalent, by the Gordan theorem, [7, p. 31,

Theorem 5] to the positive linear independence of \'7gi(x), ic I(x),

that is ui Vgi(x) = 0, ui <0, 1e I(x), implies that ui = 0,
iel(x)

i « I(X)-

Wwe define now r=th order convergence,

2.7 Definition: The sequence {,xi} in Rn is said to con-

verge to x with order r 1 iff for i =17, j+1,...,] 0

i
1 ”yr for some 1L >0, 0< y<1, if r>1

|
BT
A

iL ‘Vl for some W >0, 0< vy<l, if r=1

!
X
A

It can be shown [4] that the number r of definition 2.7 is

a lower bound to the root-order convergence factor OP of Ortega and
\

Rheinholdt [ 1].




We are ready now to state the main convergence rcesult of this

work,
2.8 Quadratic Convergence Theorem, Under assumptions
2.2 to 2.6, the sequence (Xi] generated by «lgorithm
2.1 converges quadratically (that is with r = 2 in
definition 2.7) to a Kuhn=-Tucker point X [7, p. 94] of
problem 1.1, that is
S 7EX) +uvg(x) = 0
/ .
ug(x) = 0
2.9 _
g(x) = O
{1 = 0

for some U ¢ R".

Tt is interesting to note that convergence of the above algo-
rithm can also be established under different assumptions if we adc
a step-size selection procedure to the direction-finding quadratic
problem 1, 3, In fact the dual [7, Chapter 8] of problem 1.3 is the

following quadratic program in u € Rm

Z —
minimize —1~ (FE(x,) +uyg(x,))7 f(x,) 1(<7f(x.)+uvg(x.))-- ug(x,)
U= 0 2 i i i i i i
with x - Xi = - ‘7&f(xi)~l (Vf(xi) + u‘Vg(xi)). This is essentially prob-



lem 2.3a" of [8] for which convergence has been established under
the fairly general procedure of dual, feasible direction algorithms.
This connection may help establish convergence rates for other dual,
feasible direction algorithms [8], and may also help in the devising
of quadratically convergent algorithms without the concavity restric-

tion on the constraint g.




3., PROOF OF QUADRATIC CONVLERGENCE TIHEOREM

We begin by establishing a lemma which gives a sufficient

oondition for r—-th order convergence.

3.1 Lemma (Sufficient condition for r—th order

_ n L
convergence) If the sequence [x.i] in R satisfies

3.2 | x ”X‘iH P’Hxl - Xi_lllr, i=1,2,..., for some

i+l

>0 and r ~ 1
and

3.3 Bflx - x -l

ol

then {x.} converges to a limit x with order r in the sense of definition
i

2.7 such that for i =0,1,...

1
- ‘ k_ i
R R e S
k-0 if r> )
1
S A ERE N IR -
— Xy — X :
3.6 Hxi - x| - ﬂ—f’“*wo—ﬂ v, oy=p<l, if r=1
-y

Prool (Gase Lz v > 1) We first prove by induction thal



W
o
~J

1- . ;
(R I Pl i= 12,

Ry 3.2 and 3.5, inequality 3.7 holds for i = 1. Suppose 3,7 holds

for i = 1. Then

r
[ENREE Y N LR (by 3.2)
I el
- hip Yo (by induction hypothesis)
1 )
1-r
=B

which completes the induction and hence 3.7 holds. Now for j > i

we have that

ij - XiH E ”XJ - xj_lll t ”xj_l - Xj_zu toee d Hxi+l - XlH

j-l _1__ J -1 rk
= 7 | x | = Y (by 3.7)
kml k+l %% k:i
Hence
1
1-r bk
3.8 [x, - x| =5 Sy for j > i
] ! k=1
Tl:r- - rk
K . y
Ko
I I
I-r b rl(r}\—l)
= P, y y
k=0
Il:-r_ lc'i ® r‘k—l ri
B Y S (since y <)
1 k=0
— fi




w K
where v = 7 yr , which is a positive series for which
k=0
k+1
3/r -1 B ,rk(r—-l)< r=1 _ ]
ro=-1 - =7
Y

and hence is convergent, Hence

1
1-r
3.9 HXJ_ - Xi“ v Bl ! yr for j > i

from which it follows that ij - X, |0 as i,j—+« and hence {xiT
is a Cauchy sequence which converges to some X. By letting j— «
in 3.9 we get that

- i T i k
3,10 ” Xi - }';H -y Bl'f‘ yf‘ l-r r ro=1

1
v
<
)

which establishes 3.4,

(Case 2: r =1 Trom 3,3 we have that B < I, and from 3.2 we have

that

i
EEE Ve P

i+l OH
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Hence for j > i

HXJ “Xi” E HXJ - Xj..l” toeevesd HX —Xi”

i+l

-1 .

w (;;J 4 .....+|’sl) ”XI—XO”
A

H l;-ﬁ> ”XI—'X()“

Hence Ixi} is a Cauchy sequence which converges to some limit ;
By letting j-—+» we get that
i

1-7

I3 -

= = x| - 1~ %l

which nstablished 3.6, Q.E.D.

The above lemma 3,1 will help establish the rate of convergence

of algorithm 2,1, However establish convergence to a stationary point,

that is a point satisfying somoc necessary optimality criterion, we nced

the following definition and lemma.

3.11  Definition (Optimality function) An upper semicontinuous
nonpositive function & on X is an optimality function for

problem 1,1 iff for cach solution x of 1.1 6(x) = 0.
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!

If X = Rj, a typical optimality function for problem 1.1 is
given by 6(x) = - ]|Vf(x)”a if ‘Jf is continuous on RY. If X isa
compact convex set in Rn and 7f is continuous on X, then an
optimality function is given by 6(x) = min SA(x)(y = x). We shall

yeX
need a different optimality function here however, which is given by
3,15 below,

We give now a lemma that establishes convergence to a

stationary point.

3,12 Lemma (Convergence to a stationary point) Let {xi} be a
Cauchy sequence in the closed set X, and let 6 be an opti-
mality function defined by 3.11 for problem 1.1, If for some

integers k,4

3,13 -e(xi) < p(xi__k )y, ik,

X, reeo ; X,
ik i+d

k
where [+ is some nonnegative function on R A such that

il_i*mm Mxi—-k’ ceo 'XiM.) = 0, then the limit x of the sequence {xi]

is stationary, that is 8(x) = 0.

Proof From 3,13, 0 < -=-86(x,) and lim p{x, ., ,...,%x, ) =0 we
E—— i f-— oo i-k 144

get that
.1“'“ _e(x') = 0

e 1
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and hence by the lower semicontinuity of -8 we get that

-9(X) = lim -8(x,) = 0
i - 0

which implies that 6(;:) = 0, since 6 is nonpositive on X, and x ¢ X

because X is closed. DL hE. D,

We introduce now a specific optimality function associntod

with the Kuhn-Tucker optimality conditions 2.9 for problem 1.1,

3,14 Lemma (Optimality function associated with Kuhn—Tuck
conditions) Let % bhe a solution ol probhlom 1.t tot
be twice continuously diffeventionte ond conve s k.v,
and let g be dilferontiable and cogicg o o0 L Thon

0(x) 0 whoo

i

3,156 B{x): min !

or cquivalently he Loho=Tuch oo conditicas o,
in addition, conditions *. 3, 205 and 2006 ol e 8 dedined by
o1 is an optimalily function tor problem 1oL in the oo nne ol doling-

)a

tion 3.11.

3,16 Remark  Under assumption 2.3 the minimum defined in 3,15
exists for any x ¢ X becausc y is boundoed by the incquality

|y -x]| - 3\7141 ]]\ﬁ(x) |, where 1\/[1 is defined by 2. 3.
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Proof Since g is concave at 52., the reverse convex con-
straint qualification [7, p. 103] is satisfied and hence
[7, p. 105, Theorem 7] the Kuhn-Tucker conditions

2.9 are satisfied at ;(.

We show now that satisfying the Kuhn-Tucker conditions at <
is equivalent to 9(;:) = 0, By the Farkas theorem |7, p. 31, Theorem
6] the satisfaction of the Kuhn-Tucker conditions 2.9 is equivalent

to

.Aygi(x)z = 0, ie I(}?) = {ilgi(};) = 0}

having no solution z ¢ R7. This in turn is equivalent to

7f(X)z + %2\723?(5&)2 <0
3.18
g(x) +Vg(X)z - 0

having no solution =z e R, To see this last equivalence we note

first that the forward implication is trivial becausc its equivalent

contrapositive follows from the fact that if z solves 3.18, then =z
- e

also solves 3.17 because z V f(x)z -0 |7, p. 89, Theorem 1].

To show the backward implication we prove its equivalent contra-

positive, which follows from the fact that if z solves 3.17 then

Az solves 3.18 where
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N _:_?Eﬁgli - gi(X) L UEY = (1] gl (R =
A = min {1, S ER)3 |Vgi(>?)§| }o 1A IR = (i gy(R) = 0]

Hence 3.18 has no solution z ¢ R which is equivalent to (%) = 0,
upon making the change of variable z = x - X,

Finally we show that © as defined by 3,15 is an optimality
function in the sense of definition 3,11. We first observe that for

any x ¢ X, g(x) - 0 and hence

1
(=277 E(%) Hy=x)| vy e R,

8(x) = min {VH(x)(y-x) + 5

g(x) +7g(x)(y=x) = 0} <0
where the last inequality follows from taking vy = x. In the Appendix

we show that 6 is an upper semicontinuous function on X and

hence satisfies definition 3.11.

Q.E.D.

Weae are now ready to prove the main theorem of the paper.

Proof of Theorem 2.8  We will show that the algorithm 2,1 gencrates

a sequence {xi} satisfying the assumptions of lemmas 3.1 and 3,12
and hence we have a sequence that converges quadratically to a
stationary point, and by lemma 3.14 this is equivalent to a Kuhn-

Tucker point.




Since X is a solution of 1.3, then [7, p. 141, Theorem 3i]

VE K )y mx) = 0

where fi is defined by 1.2. This is equivalent to

kY " — 2 — o
(\7f(Xi) + (Xi+1 Xi) \V4 f(Xi)) (Xi+l Xi) < 0
and so
(%, ) =£(x) = VEK,) (%, | =x.) 45 (x, =% )VOE(x)(x, =x.)
174 it 1 T 2 i i+l i
1 _ 2 3
£ T BT VIR ()
M,
g =5 |[xi+l-x I (by 2.3)
Hence
2 2 i
g =%l = - M, (F; () = B
or by 3.15
22
3.19 1%, ==l = - M, 6(x,)
Let
, o 2 ~
3.20 S = -Vf(xi) +Vf(xi__1) +V f(xi—l)(xi xi—-l)

By McLeod's vector mean value theorem [6],



n
. L ' ‘
5 - - jﬁ 0 [V7f(x) —\ff(xi~l) ] 0 =% )
n
for some nj -0, 321 o'j =1, Xj € (Xi’ Xi_l). So by 2.2
n
“ S” = J: Oj R ” XJ' X H ”Xi BRI “

n
. 2‘
<R I =Ry
Hence
| 2
3.21 Isll = Rl = x4
Now

f1(Xl+1) - f(xl): vf(xl)(le —Xl) * _(X1+1 ROAY f(xl)(\lJrl“\l\
E vf(xi) (xi+l —Xl)
2 2
= CVf(xi_l) +(x -xl_1)V f(xi—l) - s)(\iﬂ—x.) (by 3.20)
= V(g ) sy )
- s(xH1 ~xi) (by Theorem 3i, p. 141 [7)]
o Hs” H Xi+1 XiH
2 .
- =R X, TX (. Xq T Xi“ (by 3.21)

Hence
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3,22 -08(x,) = ~f, (x

2
; i .i+1) +f(xi) s R Hxi =% “ “x -x.i][

i+l
Combining 3.19 and 3,22 we get that

2Ry 2
M, (IR

3.23 -x | =
1

141

Conditions 3.23, 2.4 and lemma 3.1 imply that the sequence

i%.} grnerated by tne algorithm 2.1 converge quadratically to a
i

limit ;c, which must be in X because X is closed. Condition
3,22 and Lemma 3,12 imply that G(;c) = 0, and by Lemma 3,14,

x satisfies the Kuhn-Tucker conditions 2.9.



APPENDIX

The upper semicontinuity of 6, defined by 3.15, follows from
the following results of Meyer: Lemma 1,3 of [10] and Theorem -
and Lemmas 3 and 5 of [9, section 2]. For the sake of complete~
ness and because the last reference is an unpublished dissertation

we give below the proof of the upper semicontinuity of 6.

Al Mever's Theorem [9,10] Let H be a subset of Rn, let

s Rn # H=—+ R be continuous on Rn N H, let g:H-+ R"

have continuous first partial derivatives on H, let
A.2 o) = min (oly.x)|y e R", glx) +Vg(x)(y-%) < 0)
be well defined for each x ¢ H, and let for each x ¢ H
A.3 7gi(x)z < 0, ie I(x):=1{i [gi(x) = 0]}

. n \ . .
have a solution z ¢« R°. Then 6 is upper semicontinuous on H.

Proof [9, Lemma 3, Section 2]

a) We first show that if lim 2z, = 2 and for each i
i = 00
lim =z, =z, then there exists n,, j=1,2,..., such that
J 0 1] 1 ]
lim 2z . =2z, Let N(1) be chosen such that Hz -z|| <1 for
e ) i
i -~ N(1) and let N'(1) be chosen such that z -z < 1
‘ ) 215 = Zaen |

for j - N'(1), Suppose we have chosen N(1), N(2),...,N(k) and
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N'(1), N(2),eee,N'(k). Choose N(k+1) and N'(k+1l) so that
t > 1 — : > -
N'(k+1) > N'(k), ”Zi z“ < 1/(k+1) for i = N(k+1) and I ZN(k+1)j

zN(k+1)H < 1/(k+1) for j » N'(k+1), Let N(0) = 1 and define n], =

N(L) when N'(1) £ i< N'(4+1). It is easily verified that 2 ], — 7
j
as j=r oo,

b) [9, Theorem 4 and Lemma 5, Section 2] We next show that

the point-to-set mapping

r(x) = (z|z e R, g(x) + vg(x)(z - x) ~ 0)

is lower semicontinuous at x, that is if z ¢ I'(x) and xi——+ X then
there exist z e I (Xi) for i ~k, for some k, and z — z.
i

Let z™ = x+yz where z is a solution of A.3 and
v = min (1, =g.(x)/2[Ve,(x)z| ], 1/ 1(x).

Then g(x) +‘5«7g(x)(z;;:~x) < 0, Let z be an arbitrary point in T(x).
It is clear that z = \z™ + (1 -2z, N e (0,1]also satisfies g(x) +
g (x) (Z - x) < 0. Hence we can construct a sequence {zi] such
that g(x) + Y/g(x) (zi - X) < 0 and zi—~+ z, If x‘jm«r x, then by the
continuity of g and Vg, g <,j) + \‘7g(xj) (zi - xj) < 0 for sufficiently
large j and hence zi € F‘(xj) for sufficiently large j. Tence, for
every i there exists a sequence [_zij] such that Z'ij belongs to
"x,)) forcvery j and lim 2z, - Zi' Hence by part (a) above,

] ] — (0 1}

there exists a sequence {z .} suchthat z ., — z. But z . ¢ T'(x,),
n.j n,j n.j j
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so we have that ' is lower semicontinuous at X,
c¢) We finally prove that 6 is upper simicontinuous at x [10,
Lemma 1.3]. Let z e I'(x) be such that 6(x) = ¢(z,x) and let {xi}

be an arbitrary sequence in H converging to x. Choose {xn ]

o i
and {z 1} such that 6(x )—1lim 6(x,) and z_ —2z with z_ ¢ I'(x_).
n, n, i n, n, n,
i i i i i
We then have 6(x) = o(z,x) = lim q)(zrl 'Xn } = lim 6(xn Yy = lim e(xi\,

i i i
and hence 6 is upper semicontinuous at x., Since x 1is arbitrary

point for which 6(x) of A.2 is defined, 6 is upper semicontinuous
at all such points which constitute the set H.

Q.E.D.

The upper semicontinuity of 8 as defined in 3.15 follows im-

Liy - %) 7%y - %),

mediately upon identifying o(y,x) = VE(x)(y - x) + ‘;

and H = X,
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