The University of Wisconsin
Computer Sciences Department
1210 West Dayton Street
Madison, Wisconsin 53706

Numerical Approximation of Periodic Solutions of
van der Pol's Equation

by
Donald Greenspan

Technical Report #89

April 1970






ABSTRACT

Two new discrete methods, one based on discrete mechanics, the other based
on high-order Taylor series, are developed and applied to approximate periodic
solutions of van der Pol's equation. Typical numerical results are exhibited

from a broad spectrum of values of X in the range of physical interest.
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1. INTRODUCTION

Though periodic solutions of nonlinear differential equations have long been
of interest in applied science, the application of classical mathematical techniques
has limited inquiry largely to questions relating to existence, uniqueness, and
asymptotic estimates (see, e.g., references [3,4,7,9] and the additional references
contained therein). With the development of the digital computer, both discrete and

continuous numerical techniques were devised for approximating such periodic

functions [2,6,10-16]. The discrete methods are based largely on Newton's method and

Runge-Kutta formulas, while the continuous methods depend primarily on Tchebychev
interpolation and Galerkin approximation.
In this paper we will develop two new methods for approximating periodic
solutions of the van der Pol equation
(1.1) % -A(l-x%)k+x=0, x>0,
subject to the initial condition
(1.2) x(0) = 0.
Since, for each value of A , it is known thatthere exists a unique periodic solution
of (1.1)—(1.2)( our problem is, in fact, that of approximating
(1.3) x(0) = a
so that the initial value problem (1.1)-(1.3) has a periodic solution. In this connec-

tion, it will be convenient to let T = T(\) represent the period of the solution and to



note that
(1.4) x(T/2) = -a
(1.5) x(T/2) = 0.

Each of the methods to be described is discrete, efficient, and self starting in

the sense that no knowledge about x(0) is necessary a priori to assure convergence.

2. METHOD I. THE METHOD OF DISCRETE MECHANICS,

Let a particle be in motion in a fixed, say X, direction. For At > 0, let

tk =kAt, k=0,1,..., and let the particle be at X at time tk. Defining particle
velocity vy = v(tk), k=1,2,..., and particle acceleration ak = a(tk), k=1,2,...,
by

v, + Vv X, =X

k k-1 k k-1

= =12, ..
(2.1) > ~ , k=1,2,
v, -V
_ .k k-1 -

(2.2) a =T , k=1,2,...,

and introducing a Newtonian dynamical equation in the discrete form

(2.3) ma = F(x

kel = POt vy
results in a discrete model of mechanics in which all the usual conservation laws
are valid [5]. Further, every initial value problem for (2.3) has a unique discrete
solution which can be generated recursively on a computer.

In the above context, then, let us choose a particle of unit mass and rewrite

(1.1) in the form (2.3) to yield

) 3 2
(2.4) ak+l = A (l-xk )vk - X




Since %(0) = v_ = 0, it follows from (2.1) and (2.2) that

0

=& (x, - x)
iTar Y17 %0

2 n n-1 j ’
VoA § ¥a t (~1) Xq + 2 jZ=1 [(-1) xn-—j]} , n=2
2
a, = [x, - x.]
2
1 (D 1) 1 0
a, =2 [x, - 3%, + 2x_]
2 (At)z 2 1 0

2 { n n-1 j
a_=—"3 {(x_-3x_ . +2(-1)x_ + 43 [(-1)'x _,]},
n (mz n n-1 0 j=2 n-j

which, upon substitution into (2.4), yields

2
I (4%
(2.5) xl~[l > 1%,
(an)° 2

(2.6) x2=xl[3- 5 ]-—2x0+)\(At)(l—xl)(xl~xO)

2 ‘n-1

-] i

(2.7) x = x__[3- 1%1——] +2(-1)" %, - 4j§2 [(—l)an_j]

2 n-1 n-1 j

FOONA =% ) (x (D) xg -2 jz:=2 [-Wx, 1), n>2.

(k)

The method now proceeds as follows. Let x

0 =k+1, k=0,1,...,10. To

each such Xg generate, in order, fork =0,1,...,10, sequence xn(k) from (2.5)-(2.7).

Terminate each sequence when

k) _ . K
(2.8) XN+1 b XN



and record
(2.9) Sk =x -x

Of course, in (2.8)-(2.9), N depends on k. Let k = i be the first value of k for

which
(2.10) SM'SLLHgO'
Then seta = xN(M) and T/2 = NAt, Thus, XN(M) is an integer which approximates a.
To compute a one decimal place refinement of this approximation, s.et-g;o(0) =

() L () mn__ ™ (o) _ _ ()
XN +O.O,xO = XN + 0.1, X -—XN + 0.2, ...,xo —xN + 1.0,and
recycle. Thus, if one had found xN(p“) = 2, one would recycle with xo(o) =2.0,

(1) =2.1, x (@) =2.2, ..., X (10) = 3.0. From the resulting one decimal place

%0 0 0
refinement, one can, inthe indicated fashion, construct a two decimal place
refinement, and, in the same manner, eventually a j-decimal place refinement, where
the magnitude of the integer j is limited only by one's computer capability.

On the UNIVAC 1108, the following approximations fora and T/2 were generated

with At = 0.001 by the method of this section:

= 0.1 a = 2,005 T/2 = 3.144
A=1.0 a =2.009 T/2 = 3,332
A =10.0 a=2,014 T/2 = 9.540 .

The graphs of the approximate periodic functions are shown in Figure 1. All computa-
tions were done in double precision and the total computing time was under 20

minutes,
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3. METHOD II. HIGH-ORDER TAYLOR SERIES

Since no single-step, Runge-Kutta formulas are known which are of order
greater than seven, we will show now how easily one can construct and apply, for
the problem at hand, a classical Taylor series approximation of arbitrary ordef
greater than seven. For illustrative purposes we will concentrate on order eight.

Let h = At. Then, under the usual assumptions for expressing a function in a

Taylor expansion, one has the eighth-order approximations:

2 3 4 6 8
- h h h™ h -iv h v ,h vi h wvii h  wviii
(3.1) xkJr x + - Xk+ Xk+3! Xk+4lxk+ xk+-——-x6' k+7!Xk +8!Xk .
(3.2) % =% +hx +-}f~x -i--l-ﬁxiv +ﬁ‘ V-!-ll-'s-xVi —I-h'(i Vii+bsziii+ﬁ 1x
38 B TR TR RT3 % Tar *e s %k Ter™ T %k g1 Xk

where, from (1.1),
(3.3) %_= 2k, - mikk - %,
(3.4) % =%, - zmk(zzk)z - XXE}'{;{ - %,

iv

(3.5 xk ~kxk- ZX(xk) -6)\xkxkx —)\xkx-xk
(3.6) x, =2 ]i("—l‘zx (kk) ik—éxxk(ﬁk) - 8hx R xxkxk i

vi _ v o ges (2 . 2. o see . dv 2 v _ _iv
(3.7) X, = A X 30>\xk(xk) 200 (Xk) X 20>\xkxkxk lO)nx.kxkxk Xxkxk X
vii _ vi . o 2 v ese 2
(3.8) X, = )\xk 30N (xk) - 120>\x] “k k 30>\(xk) X 20>\.xk(xk)
es 1V .V 2 vi v
-30X X X X - 121 kakxk - X X -
viii vii

(3.9) x =gt - 2100 (ki()?‘ - 1400 xk(se]'{)z 2101 }&'xkxik," - 42 (}'{k)zx;:

2 _vii vi

.. |V ese 1V . Vi _ _
-42N kakxk - 70M kakxk - 14X kakxk kaxk Xk




ix | _viii o paznl o (2 1V o ase iV
(3.10) x° = XXk 560>\xk(xk) 4201 (xk) X 56kakxk,<k

. eV . (& Vi ese  V .s Vi
-336) xkxkxk - 56\ (.xk) X - 112\ X K % - 56 kakxk
iv 2 . Vil 2 wviii vii
—70>\xk()tf_k )y - 16>xxkxkxk - Xxkxk X -
The numerical method to be applied to (1.1)=(1.2) is then the same as that
described in Section 2 except that the sequence Xn’ n=1,2,... is no longer

generated by (2.5)-(2.7) but,instead, by (3.1)=(3.10). Typical resulting computa~-

tions on the UNIVAC 1108 with At = 0,00l yielded:

A =0.1 a =2.000 T/2 = 3.148
A=1.0 a=2.009 T/2 = 3.335
A =10.0 a=2.0l4 T/2 = 9.538.

The graphs of the resulting approximations were entirely analogous in general
gtructure to those given in Figure 1. All computations were in double precision and
the ’total computing time was under 28 minutes.,

It is interesting to note that packaged programs of the Taylor series method
are now becoming available in which the computer determines the coefficients, the
step size, and an error bound at each step of the computation in response to a given

initial-value problem and a desired accuracy {1, 8].
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