The University of Wisconsin
Computer Sciences Department
1210 West Dayton Street
Madison, Wisconsin 53706

A NEW HASHING METHOD WITH APPLICATION
FOR GAME PLAYING

by

Albert 1. Zobrist

Technical Report #88

April 1970

ABSTRACT

A general method of hash coding is described together with an application for
programs which play board games such as checkers, chess, and GO. An auxiliary
method which detects retrieval errors is proposed. The error rate can be precisely

controlled depending upon how much space in the hash table is devoted to the

auxiliary method.

A NEW HASHING METHOD WITH APPLICATION FOR GAME PLAYING
by

Albert L.. Zobrist

INTRODUCTION

When a computer program stores an item in a large table, subsequent
reference or retrieval of that item may necessitate a search of the table. This is so
unless a table address for the item can be calculated in a systematic fashion from
the item itself. A function which converts items into addresses is called a hashing
algorithm, and the resulting table a hash table. The application of these functions
is the subject of a small and specialized literature, but will soon be covered -by
Knuth.1

A good hashing function has two properties: randomness in the distribution
of addresses and speed of operation. Two items may produce the same hash

address. We shall call such an occurrence a clash. A clash cannot be detected

unless the items or derived quantities are stored in the table. The stored quantities
which may be used to resolve clashes will be called keys.

If a game playing program uses lookahead and evaluation followed by mini-
maxing to find its move, and if the alternate move sequences give frequent duplica-
tion of board configurations, then it might be useful to store the backed up values
of the board configurations encountered. A hash table would enable fast retrieval of

2
these wvalues. The Greenblatt chess program, one of the most successful game

players, uses a 32K hash table to store such information. A mild acquaintance
with game playing programs is assumed for what follows.

Suppose that a board configuration is reached at depth 5 which has already
been fully evaluated at depth 3. Then the value from the node at depth 3 may be
given to the node at depth 5 with no further lookahead or evaluation necessary.
Since most lookahead algorithms require search to a fixed or calculated depth under
the assumption that backed up values are more reliable, the values retrieved in
this manner should come from the same depth or closer to the top of the tree. 1If
a-B minimax is used (see the Greenblatt reference), many partially analyzed nodes
are left behind as the three is traversed. For such nodes, it is known that their
value is greater or less than some number. This information may yield a-f Cu‘toffs
at a node, or at least remove a node from further consideration.

A game player which uses this procedure along with hash table storage needs
to store the level and value of completely evaluated nodes, or the level and value
range of partially evaluated nodes. Although this could be done with no errors by
storing the board configuration as a key for each node, we might tolerate some
errors if, as a result, operations could be made more efficient. There are two types
of errors worth considering. Type 1 errors result if keys are not stored. If two dif-
ferent board configurations yield the same hash address, the error is not detected
and the wrong value may be given to a node of the lookahead. Type 1 errors also
occur if keys are stored but they are inadequate to resolve all clashes. If type 1
errors are controlled, then type 2 errors may occur. Entries in the hash table may
be overwritten by subsequent entries. Some nodes may have to be evaluated again,

but no wrong values are inserted into the lookahead.:

We shall give a general description of the hashing method before considering

its application to game playing.

DESCRIPTION OF THE METHOD

The exclusive or (XOR) operation will be used. Assume the following properties
for the XOR of a random sequence {r;} of n-bit integers:
P1) ri XOR (rj XOR rk) = (ri XOR rj) XOR rk
P2) 1, XORr, =1, XOR T,

i j j i

P3) r, XORT, = 0
1 1

P4) if s, =r XOR r, XOR *** XOR r, then [si} is a random sequence.

1
P5) {si} is uniformly distributed.

Suppose we desire hash codes for the subsets of a finite set S. An easy
method would be to assign n-bit integers from a random sequence to the elements of
S and let the hash code of a subset be the XOR of the integers assigned to the
elements of that subset. By Pl and P2 this code is unique, and by P4 and P5 it is
randomly and uniformly distributed. If any element is added to or deleted from a
subset, the code changes by the integer which corresponds to that element.

Other applications result if the objects to be hashed can be put into a 1-1
into relation with the subsets of a finite set in a natural way. Consider the problem

of hashing English words of ten characters or less. The set S could be the 260

elements of the form:

sl 1 = Jletter A in position 1
s1 5 = letter A in position 2
s, 10 = letter A in position 10
S, | 7T letter B in position 1

Thus every word will correspond to a unique subset of S, since two different words
must differ by some letter at some position. If 260 integers hij froma random
sequence are assigned to the elements of S, then a hash code is obtained. For
example:

hash(CAT) = h3,l XOR hl 5 XOR h20

/ /3

Note that not all subsets of S correspond to legal English words or even to letter

strings, e.qg. [Sl,l’ 52’1}.

THE CLUSTERING OF ERRORS

Although the hash codes are uniformly distributed, the idiosyncrasies of a
particular problem may produce an unusual number of clashes. Continuing our
example for English words, if the following clash occurred:

hash(CATS) = hash(DOGS)
then

hash(CAT) = hash(DOG)

hash(CATNIP) = hash(DOGNIP)

etc.

Similar problems might occur for any application of XOR hash coding. The
basic method depends upon the uniform distribution of codes for the subsets of a

finite set S. If two different subsets S1 and SZ have the same hash code, then

for any subset S3 disjoint from Slu S2 we have

hash(SlU 8,) = hash(SZU 53)

and for any subset S,&c: S1 HSZ we have

hash(Sl-S = hash(SZ—S4)

4)
Hopefully, XOR hash coding will show advantages for some application which out-

weights its disadvantages.

APPLICATION TO GAME PLAYING

Consider the class of games in which men are placed or removed from a
board, but are not moved: GO, tic-tac-toe, GO-MOKU, quobic, hex, etc. Suppose
that there are m distinguishable types of men and n locations on the board. There
are at most mxn possibilities for placing a type of man at a board location, thus
every game configuration corresponds to a unique subset of these mxn possibilities.
If an mXn array of integers is taken from a random sequence, then one integer can be
assigned to each placement possibility, and the hash code for a board configuration
would be the XOR of all the men on the board.

If the status of the game is updated with each move, then only one XOR is
needed for the placement of a man. Since XOR is usually a fast machine operation,
this is probably the fastest hashing method available. By properties Pl~P3 the

removal or capture of a man can be accomplished with the same XOR operation used

for its placement. The integer used for placement will cancel the integer used for
removal. During lookahead, the hash codes can be stored recursively, thus only
one XOR operation will be needed for each node visited.

For games of movement such as checkers and chess, a move can be treated as
the removal of a man at one position and his placement at another. Promotions can
be treated as the removal of one type of man and the replacement of another. Chess
and checker moves will typically involve two XOR operations, but such moves as
castling, captures, and multiple captures may require three or more.

The storage requirement for the array of integers is not excessive. Checkers
uses 4 types of men and 32 board locations, chess uses 12 types of men and 64
board locations, and GO uses 2 types of men and 361 board locations. Since only
distinguishable types of men and board locations are noted, this method is guaranteed
to recognize all equivalent board configurations as they occur.

Our method has assumed that the moves leading to a board configuration have
no effect upon its evaluation. But some states of a game may depend upon the last
move or previous moves. In chess, a pawn is en passant only if it has just moved,
and a king may castle with a rook only if both pieces have not previously moved. In
GO, certain captures are forbidden for one turn only. If such conditions are used in
evaluation, then provisions can dbe made to incorporate them into the hash code. For
example, four integers may be reserved for the four castling opportunities. When a
castling opportunity is removed, its integer is XOR ed.

If type 1 errors are to be reduced or eliminated, then it is necessary to store a

key which is capable of detecting clashes. However, no description of the board

configuration is produced by our method, aside from the hash code itself. A simple
solution is to produce a second XOR hash code using an independent random sequence,
and store this second code as a key. If two different board configurations produce
the same primary hash code, then it is unlikely that the secondary hash codes will

be equal as well. The secondary hash code need not have the same number of bits

as the first, which is determined by the length of the hash table. If the levels and
values stored in the hash table occupy part of a word, then the remainder of the word

can be used for the secondary hash code. It is fairly obvious that the greater the

number of bits in the secondary hash code, the less chance there is of type 1 errors.

ESTIMATION AND CONTROL OF ERRORS

If two different board configurations produce the same primary and secondary
hash code, then a type 1 error may occur. A wrong value would be inserted into the
move tree search, with some chance of the error backing up to the top of the tree.
Because of the nature of XOR hashing, successors of the two board configurations
will produce an unusual number of type 1 errors as well, making it difficult to
estimate the true probability that an error will affect the move decision. We shall
assume that every type 1 error is a fatal error and estimate their probability for dif-
ferent key sizes.

Suppose that the hash table has 21 positions and that the keys have n+m bits
each. Suppose that during the move tree search, 2" values were retrieved from the

hash table with a probability

8
that each was correct. For an approximation we assume that these probabilities are
independent (which is conservative in view of the clustering of errors) yielding the

following probability that no errors occur:

2 1
)= ()

n ~m

2
1

2n+m

p(no errors) = (1~

The approximation can be used to yield the following probabilities:

m = number of extra bits probability of no error

.36778
.60653
.77879
. 88251
.93941
. 96924
. 98449
. 99222
.99611
. 99805
.99901

OOV O~k WNE=O

[

If a game player uses a 32K hash table then 20 bit keys would yield a 3 %
error rate. 25 bit keys would vield a .1% error rate. Many computers have a word
size capable of storing such a key as well as the value and level, so a 32K hash
table would fit in 32K words. This control of key size and of the frequency of errors

is a major advantage of the method outlined in this report.

COMPARISON WITH ANOTHER METHOD

It is interesting to consider a current hashing method which could be applied
to game playing programs. First obtain an integer which describes the board con-
figuration. Then, divide the integer by the hash table size and use the remainder
as a hash address and the quotient as a key. However, the integer which describes

the board configuration may occupy several (or many) computer words, thus, the

divide will be complicated and slow. The quotient may also occupy several words,
thus most of the hash table would be occupied by these keys if type 1 errors

were to be avoided.

CONCLUSION

A new hashing method has been described, but it is of dubious value for
general applications. Its specific application to game playing (where errors may be
tolerated) shows the following advantages:

1) It is easy to apply. For example, its implementation for checkers, chess, and

GO are roughly the same.

2) It is fast.

3) It enables precise control of the serious errors which result from the retfieval
of wrong information from the hash table.

4) It allows choice of the size of keys used to control the errors in 3).

This method is currently being implemented for two game playing programs
(checkers and chess) at the University of Wisconsin. However, I would be interested

in hearing of any other applications or potential applications it may have.

ACKNOWLEDGEMENTS

This work was partially supported by NSF grant GJ583 and NIH grant MH12266,

10

REFERENCES
1 Knuth, D. The Art of Computer Programming, vol. 3 (to appear)
2 Greenblatt, R., D. Eastlake, and S. Crocker, The Greenblatt chess program,

Proceedings Fall Joint Computer Conference, Thompson, Washington D.C.,

vol. 31, Nov. 1967,

