Computer Sciences Department
University of Wisconsin
1210 West Dayton Street

Madison, Wisconsin 53706

A PATTERN RECOGNITION PROGRAM
WHICH USES A GEOMETRY-PRESERVING
REPRESENTATION OF FEATURES

by
Albert 1. Zobrist
Technical Report # 85

March 1970

ABSTRACT

This report describes a two layered pattern recognition program.
The first layer scans an input for features and produces a coded repre-
sentation. The second layer looks for combinations of code which
signify relations between features in the input. It is argued that the
nature of the representation produced by the first layer determined the
amount and quality of subsequent processing. Both layers create and
modify their operators. Good results are obtained using the Highleyman
hand printed data. The program is discussed as a model of an aspect of

human perception.

INTRODUCTION

Feature extraction is a popular method for general pattern recognition
primarily because it is relatively easy to implement and because it has
worked as well as any method. A large body of computer algorithms and
philosophies dealing with feature extraction has been surveyed recently
by Levinel. Another reason for the appeal of this method is that features
appear to be the basic elements of human perception. 2 This report suggests
a more effective organization of features for such programs and describes
a working program which uses this suggestion., The program is discussed
as a model of perception with the hope of giving insight into human pattern‘

recognition capabilities.

FEATURE EXTRACTION PROGRAMS

For purposes of discussion, we shall consider pattern classification

to be a two stage process:

Feature Representation Classification
Input Extraction > of »
Features

Feature extraction attempts to characterize the input by a set of properties
which allow efficient classification. The following paragraphs summarize
this aspect of two computer programs, paying special attention to the manner
in which features are represented or stored.

The Uhr-Vossler prog:;ram3 creates its own characterizers according "
to a fixed set of rules. The characterizers are 5 x 5 matrices of zeros,
ones, and don't-cares which can be scanned over an input for possible
occurrences. In addition, there are compound characterizers which are
boolean combinations of several 5 x 5 matrices.

For each application of a simple characterizer the following informa-
tion is stored: how many times it matched the input, the average i,]j
coordinate of these matches, and their mean square distance from the center.
For compound characterizers, only the number of matches is stored. This
information is in the form of a list containing the occurrence of features
with some positional information.

The Munson program 4 has a preprogrammed set of characterizers

which detect the presence and location of edges and the presence, size,

location, and orientation of enclosures, concavities, and stroke tips. The
edge information is stored in binary vectors with the bits indicating the
general location (nine regions) and orientation (six 300 intervals). The
other features are measured by numerical quantities called descriptors.
These descriptors are then transformed to bits of information in a binary
vector. These vectors are the basis of further processing to classify the
input.

Most programs which produce such lists or vectors proceed with a
final step, more algorithmic in nature, to classify the input. Typically,
n-tuples from the list or vector are used to give weights of implication or -
else a metric is placed on the vectors to find the distance of an unknown
input to vectors obtained from prototypes. WNils son5 has written an intro-
duction to this subject.

If we consider features to be the elements of pattern recognition,
then we should consider methods which make use of the structure and
organization of features in a scene. Thus we should ask whether present
classification algorithms can utilize physical relations in a scene which
may be important to pattern recognition. Such research will not just in-
volve these algorithms, however, but will include study of the representa-
tions upon which they operate. Clearly, the types of processing which
can practically be done depends upon the structure of the representation

on which they operate., For our pattern classifiers, the information avail-

able to the final decision step must either be stored in the representation
or calculated therefrom. This is an argument for a more complex representa-
tion of features (even if no more information is added to the representation)

which allows more information to be calculated.

A PROGRAM WHICH USES A GEOMETRY-PRESERVING
REPRESENTATION OF FEATURES

The program is written in FORTRAN-V for the Univac 1108 computer.
It is a pattern classifier, so it must be told the number of characters in
the alphabet and their names. All experiments reported here were performed
on the Highleyman da'ca6 which consists of 50 alphabets of hand printed
characters, each alphabet having 10 numerals and 26 upper case letters.
Each character is quantized and encoded as a 12 x 12 binary array. Iis
operation can be outlined as follows:

Step I. Uhr-Vossler characterizers are applied to the input. When-
ever they match, a mark is placed in the corresponding point of an array
reserved for that characterizer.

Step II. N-tuples are scanned over the arrays produced by Step I.
Fach n-tuple requires its marks to be found in their arrays at fixed relative
position. The n-tuples imply the names of the alphabet with certain weights.

Step III. The weights are summed. The name with maximum weight
is chosen as a response.

Step IV. The program is given the correct response as feedback.

The values and the weights of implication of the n~tuples are adjusted up
or down, and the values of the characterizers are also adjusted.

Step V. If the feedback is different from the response, then new
characterizers and n-tuples are extracted from the input. Characterizers and

n-tuples with low value may be discarded.

These steps will be examined in detail. We shall consistently use the

terms characterizer and n-tuple as above, even though the n-tuples could be

called compound characterizers. The program can start with null

memory and create all n-tuples and characterizers or it can be given a pre-
programmed set of characterizers and/or n-tuples. Note that weight refers
to weight of implication of an n-tuple, and value refers to the worth accumu-
lated by a characterizer or n-tuple.

Steps I and II are illustrated by Figure 1. The Uhr-Vossler character-
izers are 5 x 5 arrays of zeros, ones, and blanks. Each characterizer is
scanned over the input, and when the zeros and ones all match then a bit ig
placed. The placement is at the row and column corresponding to the centér
of the 5 x 5 array during a hit. For the results shown in the next section,
between 64 and 84 characterizers were used. The 64 to 84 arrays

produced by their application will be called the internal representation of

the input.
An n~tuple consists of n references to the internal representation to-
gether with a specification of the geometric arrangement of the elements of

the n-tuple. The 2~tuple shown in Figure 1 can be expressed as follows:

(0,0) characterizer 1

(3,~1) characterizer 2

Each n~-tuple is scanned over the proper arrays to find a match, but no

rotations or reflections are used. The geometric relations are allowed to

FIGURE 1.

000000000000
000000000000
000000110000
000001111000
000001001000
000010000000
000010001CCO
00011C111100
001100000100
0C1000000000
000000000000
000000000000

input array

char,

3.

00000C000000
000000000000
000000000000
000C00000000
000001000000
000C601000000

0000000000
000000000000
000000000000
000000000000

array 1

000000000000
000000000000
000C00000000
000000000000
00C00000000C
000000000000

array 2

array 3...etc,

2=-tuple

Illustration of the matching of characterizers and n-tuples

wobble a distance of 1 . For example, the bit placed by characterizer 2
could be at relative location (4,-2) in Figure 1.

Each n-tuple has an associated weight vector contining one weight
of implication for each letter of the alphabet. If all parts of an n-tuple
match, then its weight vector is added to a total sum vector. An n-tuple
is allowed to add its weight only once per input. The highest value in the
total sum vector determines the response of the program. The program is now
given the correct name of the input as feedback. Steps IV and V are optional
for a given run, so assume that they are requested,

If the feedback is different from the response, then step IV is per-
formed as follows. Let Tk be an n-tuple which participated in the decision
and suppose that it implied the response and feedback with weights Wkr’
ka respectively, Tk may have made a positive or negative contribution,

denoted Ck = ka - Wkr . If we let Vk be the value of Tk , then the

following calculations are made:

10 C, >0

X = k
le/10| C, <0
C C. >0

v - k k
ck/a ck< 0

V! = Vk +Y

ka = ka+X

W' = w, -X

kr kr

10

Where the prime indicates that these new values are stored in memory to
replace the old values. Thus, Tk will gain in value if it was "correct"

in this case or will lose value if not. Note that any loss in value is divided
in two. This is an ad hoc device for rewarding n-tuples which apply fre-
quently. As each n-tuple is adjusted, the quantity Vf(- Vk is added to

the value of each characterizer to which that n-tuple refers. The weights
are adjusted up 10 or down 10% so they will stabilize at a value which
reflects the percentage of correct predictions. That is, if an n-tuple dis-
criminates A from R correctly 75% of the time then the difference in
weights for A and R will tend towards 300 .

If the response is correct, then the program still adjusts weights and
values to improve discrimination. It pretends for the moment that the second
highest weight corresponds to the machine's response, then it performs the
calculations described in the previous paragraph. Thus the second highest
response is inhibited and the correct response is reinforced.

Step V is performed only if the machine gives an incorrect response.
One characterizer and three n-tuples are created according to the following
procedure:

1) A 5 x5 matrix is extracted from a random position in the input

matrix., It is rejected if less than four "one" cells occur.

" n

2) All "zero" cells adjacent to "one" cells are replaced by blanks.

Each of the remaining nonblank cells are replaced by blanks with probability

11

—;- . The characterizer is rejected if less than two "ones" remain.

3) The value of the characterizer is set to the minimum value over
all characterizers plus 100, or to 1000 if no characterizers exist.

4) One n-tuple is created by choosing at random n different
characterizers which applied to the input and then choosing one bit at
random from each of the arrays produced by those characterizers. The
relative position of these bits determine the geometric structure of the n-
tuple.

5) The n-tuple is given a weight vector of zeros except for the
weight which corresponds to the true name of the input. That weight is
set to 10x (size of alphabet).

6) The value of the n-tuple is set to (Va - Vm)/Z where Va is
the average value and Vm is the minimum value over all n-tuples, or to
1000 if that value is less than 1000 .

7) Two more n~tuples are created as in steps 4-6 except that one
of the references of each is assigned to the new characterizer just created,
and to the geometric position from which it was extracted.

8) If there are more characterizers than the maximum allowed, then
the characterizer of lowest value is discarded. All n-tuples which refer to
it are discarded as well.

9) The most active characterizer is chosen by the formula h-s+32%m,

where h is the number of hits scored by n-tuples which reference the

12

characterizer, s is its age in terms < the number of inputs, and m is
the number of n-tuples which refer to it. This characterizer is penalized for
its activity by discarding the n-tuple of lowest value which refers to it.

10) If there are still more n-tuples than the maximum allowed, then
the n~-tuple of lowest value is discarded.

Although the description given in this section appears complicated,
the program is really quite simple, requiring about 600 FORTRAN statements.
It is reasonably fast, requiring .3 seconds per input for the Highleyman data.
The principal drawback is the large amount of core storage required for the
arrays used by the characterizers. This problem might be eased by placing
some or all of the characteristics in the same array, using different symbols
for different features. A program written by Forsen7 uses one array to represent
lines and edges extracted from the input by symbols which indicate the orienta-
tion. For our purposes, a certain point in the input may belong to several
features, thus the marks will cancel one another. If we desire a rich computer
representation of features in a reasonable amount of storage, then more thought

must be given to this matter,

13

RESULTS

The Highleyman data has been used in a variety of pattern recognition
experimentss. Some have used the first 40 alphabets as training data to
determine parameters and the last ten alphabets as testing data, with no
parameter adjustment during the testing phase. This arrangement has been
followed to produce the results shown in Figure 2. The specific conditions
for the three runs marked ABC are as follows:

1) In all three runs, the program used only 2-tuples, all of which
were created by the program, allowing a maximum of 400,

2) Runs A and B used 64 first level characterizers which were :
designed by the author,

3) Forrun C , the program created all of its own characterizers,
allowing a maximum of 84. Note that the results are superior to run B ,
which used predesigned operators.

4) A 34 letter alphabet omits the numerals 0 and 1. A 10 letter
alphabet consists of the numerals 0 through 9.

When a data set as small as Highleyman's is used, the scores must
be interpreted carefully. For example, one might obtain 100% success on
the training data by the use of 1400 characterizers, each of which correctly
identifies one training sample. Thus the independent test score is a better
measure of success, By this measure, Munson has achieved the best results

to date. If we consider these programs to be learning machines, then another

14

important measure is the generalization, the difference between the training
score and the test score. In both of these respects the present program

performs very well,

15

size of # training training test

alphabet passes score score
Chow 36 1 93.3 58.3
Munson 36 18 - 68.3
A, 34 L ho. L L3.8
Munson 10 18 - 88.0
B. 10 12 76.8 63.0
C. 10 10 83.3 75.0
Human perf. 34 - - 88.5

FIGURE 2. Recognition rates for experiments with Highleyman's

data,

16

THE PROGRAM AS A MODEL OF PERCEPTION

In an early paperg, Greene pointed out that computers of that day did
not contain the meaning of the propositions they handle. "Every proposition
is reduced to a hole or an electric charge or a magnetic field at some point of
space. Thus the propositions may be sorted and combined but their meaning
resides in the mind of a person who looks at a list which says that a hole in
this place means that proposition." But surely the human mind has its equi-
valent of bits and holes. How can we say that a certain distribution of matter
and energy in the brain has meaning? If we take "meaning" to mean the internal
connections, then Greene is saying that a symbol may have more connections
in the programmer's mind than in the computer program which manipulates it.

I would like to argue that a perception carries meaning to our mind, and that
the meaning resides in the representation caused by the perceptive processes.
Furthur processing occurs, more cognitive in nature, to give us the end result
of our perception. We shall call this a model of perception. It is rather
vague and doesn't have many working parts, but it is a useful framework for

the discussion which follows.

Perception Cognition

Internal

Input > Representation >

The richness of the representation determines the amount and quality

of furthur processing which may occur. To quote from Greene again, "Most

17

of our perception is too rich to be described in what is called a discursive
code, a one-dimensional sort of language that can be written on a typewriter

or spoken or put on a magnetic tape." Thus it appears that a complex repre-
sentation of perceptual features is necessary for the "mind's evye., "
Feature production programs can all be thought of as realizations of
this model. In particular, the program described in that last section is an
attempt to improve pattern recognition performance by enriching the repre-
sentation of features. More specific hints for the program were provided
by the studies of Hubel and \/\/’e:‘tsel10 in which nerve impulses were found
in the occipital region of the brain of cats in response to a variety of stimuli
which correspond to "features" such as spots and edges. Similar transforma-
tions were studied in the retina of frogs by Lettvin et. al.11 In man it
appears that many parallel sets of transducers operate on a visual input to
produce the features which carry meaning to our mind. Their connections
are interwoven so that the impulses which represent features maintain their
geometric position. This arrangement has been modeled by mapping the results
of the first level characterizers into arrays of the same dimension as the input
array. Although the location of occurrences of features could be placed in a
list, it would then be difficult to reference this information by location.
This type of processing is prohibited by the Uhr-Vossler and Munson programs,
The authors GO program12 uses a similar representation for features
extracted from the input, which is an array of black and white stones. Again,

we have perceptive processes followed by processes more cognitive in nature.

18

. n-tuples N move
visual Internal decisi
GO board organization| Representa- |lookahead Storage ecision
7| tion

This program is the only successful GO playing program reported in
the literature and is capable of winning against a weak human opponent. We
should be very interested when two programs operating on similar principles
achieve success in different tasks. Generality may be achieved by combining
such programs in a non-trivial fashion. A suitable representation of extracted
features might enable calculations which correspond to a wide variety of
intelligent activities. It has been suggested that list structures or symbolic
calculi are suitable for this purpose13 , but T am suggesting human perception
as the prototype for an input to artificially intelligent devices.

To date, the performance of these programs is the only objective com=-
parison of them, as models, to their biological prototypes. This serves the
goal of efficiency of operation. However, there is the exciting prospect of
new comparisons of behavior as the models become more detailed. For
example, psychological phenomena which are thought to occur primarily in
the early layers of the visual system, such as masking and stereopsis, might
be obtained with models not radically different than those discussed here.
The goal now is knowledge about the human mind.

In my opinion, striving

towards the second goal is the best means of achieving the first,

19

SUMMARY

The Uhr-Vossler program is notable for its creation and adjustment
of its own characterizers. The program described in this report inherits
these advantages, and is capable of creating a second level of character-
izers (n-tuples) as well. The second level characterizers can assess
geometric relations between the features detected in the input. This is
made possible by a geometry-preserving representation of features at the
first level. This program, as well as the Uhr-Vossler program, can be
considered as models of human perception. Thus, the good results reported
above are achieved by a series of programs which express theoretical ad- -

vances as well.

20

ACKNOWLEDGEMENTS

I would like to thank Professor Leonard Uhr for his help and
guidance. This work was conducted with the support of NIH grant

MH12266 and NSF grant GP7069.

1‘

10.

11.

12.

13.

21

BIBLIOGRAPHY

M. LEVINE, Feature extraction: a survey, Proceedings of the IEEE,
57 (8), 1391-1407, Aug. 1969,

U. NEISSER, Cognitive Psvychology, Appleton-Century-Crofts,
New York (1967).

L. UHR and C. Vossler, A pattern recognition program that generates,
evaluates, and adjusts its own operators, Proceedings of the WICC
(1961).

J. H. Munson, Experiments in the recognition of hand-printed text:
part I - character recognition, Proceedings of the FICC, 1125-1138
(1968).

N. J. NILSSON, Learning Machines, McGraw Hill, New York (1965).

W. HIGHLEYMAN, Data for character recognition studies, IEEE
Transactions on Electronic Computers, EC-12, 135, Apr. 1963.

G. E. FORSEN, Processing visual data with an automaton eye, in
Pictorial Pattern Recognition, Thompson, Wash. D. C. (1968).

J. H. MUNSON, R. O. DUDA, and P. E. Hart, Experiments with
Highleyman's data, IEEE Transactions on Electric Computers, EC~14(4),
399-401, Apr. 1968.

P. H. GREENE, An approach to computers that perceive, learn, and
reason, Proceedings WJCC, (1959).

D. H.HUBEL and T. N. WEISEL, Receptive fields of single neurons
in the cat's striate cortex, Journal of Physiology, 148, 574-591 (1959),

J. Y. LETTVIN, H. R. MATURANA, W. S. MCCULLOCH, and W. H. PITTS,
What the frog's eye tells the frog's brain, Proceedings IRE, 47, 1940
(1959),

A, L. ZOBRIST, A model of visual organization for the game of GO ,
Proceedings SJCC, 34, 101-110 (1969).

K. CRAIK, Hypothesis on the nature of thought, The Nature of Explanation,
50-61, Cambridge University Press, Cambridge (1943).

