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An m by n real matrix A is said to be of monotone kind if

Collatz [ 2] treats square matrices of monctone kind and shows that for
. . N . . =1 .
such matrices the above implication is equivalent to; A exists and
uj‘ -, 3) ! 4 1 3 £ i i
A 20, Matrices of monotone kind have useful applications in numerical
analysis [2,7] .
it is the purpose of this note to generalize Collatz's result to
rectangular matrices, and also to show that, for the general rectangular

case, a matrix of monotone kind can be further characterized as one for

which the convex conical hull of the rows snntains the nonnegative orthant.
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)That is, each elsment of A is nonnegative,






(Foran m by n matrix A, the convex conical hull of the rows of
A is defined as
T
KA) = {z|z=2"u, uz 0}.

The nonnegative orthant E: is defined by
n n
E, = {x|xe®", x 2 0},
n . , _—
where E  is the n-dimensional real LEuclidean space.)

Theorem I, let A bean m by n real matrix. Then the following

two statements are equivalent:

(2} A has a nonnegative left inverse, In other words, there exists
an nbym matrix YZ 0 such that YA =1,

n

(3) K@) > E;

Proof, Clearly {2} holds if and only if each row Ii of the identity

-

matrix 1 of order n is & nonnegative linear combination of the rows of A ,
But this is equivalent to the statement that each unit vector is contained in
K{A), which is the case if and enly if (3} holds. Q.E.D.

Of course, if A is square, either (2) or (3) is equivalent to A being

L=l
nongingularand Y = A~ belug nonne:

{

ative,

i

ft can be shown by elementary arguments that (1} and (2) are equivalent

for a square matrix A, and that {(2) implies (1) for a general rectangular
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where L is the n-dimensional real Euclidean space,)

Iheorem 1. ILet A be an m by n real matrix. Then the following

two giatements are eguivalent:

(2} A has a nonnegative left inverse, In other words, there exists

an nbym mairix Y2 9 such that YA =1 .

——
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L

KAy = B

Proof.  Clearly {2) holds if and only if each row Ii of the identity
matriy I of order n is a nonnegative linear combination of the rows of A,
But this is equivalent to the statsment that each unit vector is contained in
K(A), which is the case if and only if {3) holds., Q.E.D.

Of course, if A is square, either (2) or (3) is equivalent to A being

1

belng nonnegative,

1}

nongingularand ¥ = A
it can be shown by alamantary arguments that (1} and (2) are equivalent

for a square matrix A, and that (2) implies (1) for a general rectangular






matrix A . The proof that (1) implies (2) for a general rectangular A seems
to require the use of either the duality theory of linear programming or a
theorem of the alternative for linear inequalities, such as Motzkin's theorem
[4, 5,8]. (Theorems of the alternative may be considered a consequence of
the separation thecrem for convex sets [1],)

Thecrem 2, Forany m by n real mairix A, (1) and (2) are equivalent.

Proof. If (2) holds, then Ax 2 0 implies that x = YAx Z 0, and (1)
is established,
If {1) holds, then A must be of rank n . For, Ax = 0 implies that

Ax 2 0 and A{-x) 2 0, and hence by (1), x =0, and the rank of A is

A

n m,

Thus if (1) holds and A is square {m = n), it is nonsingular, and (1)
together with .ZSAA-“1 =12 0 imply that A 2 0,

For m & n a different argument is required. We note that Ax 2 0,
Iix < 0 has no solution for each 1 =1,...,n. By Motzkin's theorem
[4,5,8] it follows that yA = .1[i , Y& 0 has a solution for each i , and

(2) follows. Q.E.D,

An alternate proof that (1) implies {2) may be based on the duality

-
3
bl

theory of linear programiming [ 6] instead of on Motzkin's theorem. If (1)

i

holds then

minimum {Ijx AxZ 0} =0 foreach i=1,...,n.
% )






By the duality theory of linear programming [6]

maximum {0y|ya =Ii » YZ0}=0 foreachi=1,.,.,n,
Y

where the zero denotes an m vector of zeros. Hence foreach i=1,.,.,n,

vA = Ii » Y2 0, has a solution. This establishes (2} .

~1 -1
Remark, For square matrices, because (A )T = (AT)

»]

, 1t follows
from (2} above that any of the statements (L). {2) or (3) above is equivalent

to any of the three statements below:

(1°y Ay 2 0 ==> y 2 0.

_ ~1 , -1

(2°) (AT} exists and (AT) z 0.
T

Rectangular Matrices of Monotone Kind with Respect to Another Matrix:

Let A bean mbyn real matrix and let B bea k by n real matrix. Then

the following are equivaleni:

(1) Ax 2 0 ==> Bx 2 0

(2"} YA =B, Yz O

o
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The equivalence of the above three statements is established by replacing
I by B or B” in the proofs of Theorems | and 2 (omitting in the latter case,

the demonstration that A is of full rank and the special argument for non~

singular A ),






Finally it should be remarked that if we define the polar cone of the

rows of a matrix A as

itV

P(A) = {x|Ax 01},

then (1") above can be stated as
(L") P(A) < P(B) .

The equivalence of {1"} and (3"} follows then dgirectly from the duality

L

~ Y

theorem for polyhedral convex cones of Goldman and Tucker [3, lemma 2].

Ixample,  Consider the following m by 2 matrix (m 2 2)

I, COs @, 7, sin
l " @i 1 . 61
_A = : : 3
r cos @ r sin @
m m m m

=<

where 5 £0, -mEs 6= m, for {=1,,,.,m . Ournecessary and

sufficient condition (3) (that A be of monotone kind (1) or have a nonnegative

lett inverse (2)) becomes this: there exist i, j, i#j, such that for all

k#i, k#j (1 51, j, ¥ m) we have that






If A isa 2by 2 matrix, then i=lor2, j=1lor2, i#j, andthe

_ -1 , ~1
above condition ig necessary and sufficient for A toexistand A "2 0 .

We have then

sin 92 -sin el
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