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Introduction.

Approximate solutions to the system of ecuations corresponding to
a finite difference analog of the Neumann problem can often be found
iteratively by successive line over-relaxation (SLOR). The convergence
rate of this procedure is governed by the eigenvalues of an associated
iteration matrix. These eigenvalues can be calculated explicitly for
the Dirichlet problem on a rectangle, but for the Neumann problem this
has not been accomplished. Rather, asymptotic estimates have been
given for the eigenvalue which governs the rate of convergence.
Gilchrist [4] has considered the Jacobi point iterative method for the case
of a souare with uniform mesh. Parter [6] has given a general treatment
of the rates of convergence of iterative methods for elliptic ecuations,
which includes the Neumann problem as a special case. This estimate
is used here to prove a recent conjecture of Gary concerning a problem

related to the solution by SLOR of the Neumann problem on a rectangle.

The Neumann Problem.

Let R be the rectangle [(,a]Xx [0,b] in the (x, y)-plane, and

let T be the boundary of R . If two functions f and g are given,



the Neumann problem is to find a solution u(x, y) to
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where Nx and Ny are integers. Using the usual approximations for

Au and —?5— , welet a= (A y)2 (A x)_2 and write the finite difference
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We now define the Nx X Nx block matrices
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Then we let £L=D+ U + UT and the finite difference equations for the

Neumann problem become

fu=p

where p is a vector, of the same form as u, that depends on
AX, AY, f, and g.

The following properties of £ can be verified by direct compu-
tation:
Lemma 1. £ is positive semi-definite. The null space of £ is one-
dimensional, and is spanned by the vector P , all of whose components
are 1.

This says that solutions to £u = P differ only by an additive
constant. This is to be expected, since it is a property of analytic
solutions to the Neumann problem.

For a real parameter 3 « <y < 1, define

(N v D+ UL
ﬂP
L

Now D is positive definite [7, p. 23] so N is non-singular. Thus

(3)

(y-1)D - U

we can define

(4) M=N"p

The SLOR iteration for the Neumann problem is then

( u( 0) arbitrary

(5) {
l u(n+1)

e

= Mu(n) + anp
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If one writes (5) in terms of the smaller blocks in the matrices involved,
it is clear that at each step one solves NX tridiagonal systems. These
can be solved very efficiently, so that the computational effort involved

in each iteration is not too great.

We can now state the following convergence result:

Lemma 2. Assume that pT e =0, sothat £u=p has a solution.

(0) (n)

Then for any choice of u , the iterates u converge to a solution

of Lu=p.
Proof. This follows from a Theorem of Keller [ 5, p. 285], since the
matrix
*
N+N -£=(2y-1)D

is positive definite.

If we define the errors € (n) =u —u(n) , then it is easy to see that

(0)

e(n) = Mn € Thus to examine the rate of convergence of the iterative

scheme, we should examine the form of Mnx for an arbitrary vector x .
To do this, introduce the following notation:

= = -
{Xi, 1 =4 NxNy } = eigenvalues of M

Ao =max (]| |n] <1}

p(\,) = maximum degree of any Jordan
block corresponding to an

eigenvalue xi of M

P, = Max {p(Xi)] [Xi{ =X, }

To= 11} Pyl =g PO =y}

O

n0 = number of elements in IC .



Then we have the following:
Theorem 1. Let S be a non-singular matrix such that S"1 MS is in
Jordan normal form, with the columns 5> Sy s Sy N of S

X

Y
normalized and ordered so that
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Proof, The existence of the s j in this form follows from the definition
of Py Py and the Jordan normal form (and also because Me = e s
and Lemmas 1 and 2 ensure that 1 is a simple eigenvalue of M).

We can then write

N N
n - Exy n
Mx=a1e+ 7 a M s
i Y v
v= 2

Let s, be the eigenvector associated with an eigenvalue N, of M,

] j
and let s be the ith generalized eigenvector associated with s

i, j



and xj . Then it is easy to show by induction that

n jo-i n
Misy = 5L NS
i vVEO

where j 0 is the degree of this particular Jordan block, and the s i

v
are ordered so that

Thus we have

so that for the asymptotic estimate we neglect all terms except those for
which ]xj | = Ao jO =Dy and i1 =1. This completes the proof of
the Theorem.

The rate of convergence,

As is the usual case for SLOR, we reduce the question of finding

Y 0 to the problem of estimating the eigenvalues for the corresponding

Jacobi iterative procedure. Therefore, we define the following:
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We let {uj l1=j = NXNy} be the eigenvalues of M1 , and

L, = max {[ujl [uj]<1}

The following is then an easy consequence of known facts about £
and the Jacobi method:
Lemma 3. Let yu be an eigenvalue of 1\/I1 . Then:

(i) W is real

(ii) -1 is an eigenvalue of 1\/[1

(iii) -1 is an eigenvalue of M., so the

Jacobi method is not always convergent.
We now define the Nx X NX block matrix

81 0

S(9 = 61

The relationship between the {2\ j} and {p j} is then provided by the
following:

Lemma 4. (1) If Mx=3x for x# 0, then A # 0. Thus Mly = Uy
for y =8 —l(x%)x and gy = (Ay+1l-vy ) (x)-% .

(i) 1f Mly =y, let 3 be aroot of the equation

A
YA =urZ +1-7v =0 .

NjE

Then Mx =XAx for x=8(¥)y.

Proof. If Mx=xx, then ON-P)x = C. If A= 0, then -Px= 0, so then



x = 0 because -P is non-singular. The rest of the Lemma follows by
a standard argument [2, p. 250].

The two SLOR eigenvalues correspondingto W =1 and & = -1 are

X1=1
_ A=y 2
and 7\2—-( Y )
Now (i—;l>z< (=) <

‘y 2

so that again by a standard argument
[2, p. 253], we should choose

Nl;—-

L a-ndE
Yo =32 ! 0

since then any other eigenvalues W, less than [ 0' in magnitude
satisfy

2 2
b < = -
v LLO 4 70(1 VO)
so that if A

v corresponds to uv then

1-7
0
’)"vlz(,y )

Finally, notice that for this choice of ¥ we have

_ 2 3 23,71
Ao = (I-0-w @) (11 =1 ) ?)

An estimate for W

0 is provided by the following Theorem of Parter

[6, p. 343]:
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LLemma 5. Let A be the smallest non-zero eigenvalue A of the problem

Au+irxu=20 in R

du *
aV—O on T

}
\
{ uZ o

Then uo ~ ] - —% (Ax)2 + olpxAy) as Ax and Ay tend to 0.

For the Neumann problem on a rectangle, these eigenvalues are

[1, p. 429]

where m,n=0, Thus

A =7TZC—2

for ¢ = max(a,b) . We can summarize this in the following:

Theorem 2., If SLOR is used to solve the Neumann problem on a

rectangle with relaxation parameter ~ Li (1 +7rc—l(A x)) then the

4]
rate of convergence is governed by the guantity

XO’VI-—Z'IT cal(Ax)

Application to the results of Gary.

In [ 3], Gary considered the following class of problems:
Let R(a)=[0,a]lx [O,oa_l?;a] for C<a=1. Solvethe
Neumann and Dirichlet problems on this region by SLOR
with Nx and Ny fixed, and let the rates of convergence
be xN(a) and xD(a) respectively.

From computational results, Gary conjectured that XD( a) decreases
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as o decreases, but that )\N(cx) is independent of a.

The Jacobi eigenvalues for the Dirichlet problem are

L (D)= (a cos (rr a_le))(qH - cos(swbulAy))-—1

rs
so that
71'2 -2 -2 2
uD(oc) ~1l-—(a +b ") (Ax)
2
-1-T a2 1+a hax?
and so
-1 -1 .12.
XD(a)Nl-ZTra 1+a ) (Ax)

Thus as o decreases, so does XD(OL) .

For the Neumann problem, since 0<a =] we have c=a, so
that

-1
XN(cx) 1-2ma  (Ax)

and XN(OL) is independent of a .

Remarks.

(1) These results are all for vertical SLOR, and this is the
reason for the dependence of 7‘0 only on Ax in Theorem 2.
Corresponding results also hold for horizontal SLOR.

(2) Computations performed on the CDC 3600 at the
University of Wisconsin have yielded rates of convergence in good

agreement with those predicted by Theorem 1. These results suggest
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that Py = 1 for the Neumann problem, and this agrees with the usual
assumption that this is the case for the Dirichlet problem.

(3) Gilchrist has shown [4 ] that, in the special case where
a=b and Ax = Ay, for the point Jacobi scheme for the Neumann
problem we have

1l 22, 2
by ~l-gmia”(Bx)

Thus the convergence rate for the Jacobi line scheme for the Neumann
problem is twice that of the Jacobi point scheme. This agrees with
the results for the Dirichlet problem [2, p. 270].

(4) In [3, p. 221], Gary notes that the convergence rate
depends on the function uij he chooses. This is true only to the
extent that the choice of function determines the coefficients av
in the expansion of the vector u in terms of generalized eigenvectors.
Thus the magnitude of the error may be changed (at a given number of
iterations), but the rate of convergence will not be altered by the

choice of function.
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