ITERATIVE SOLUTION OF THE NEUMANN PROBLEM ON A RECTANGLE BY SUCCESSIVE LINE OVER-RELAXATION

by

Fred W. Dorr

Computer Sciences Technical Report #12 January 1968

Iterative Solution of the Neumann Problem on a Rectangle by Successive Line Over-Relaxation

Fred W. Dorr

Introduction.

Approximate solutions to the system of equations corresponding to a finite difference analog of the Neumann problem can often be found iteratively by successive line over-relaxation (SLOR). The convergence rate of this procedure is governed by the eigenvalues of an associated iteration matrix. These eigenvalues can be calculated explicitly for the Dirichlet problem on a rectangle, but for the Neumann problem this has not been accomplished. Rather, asymptotic estimates have been given for the eigenvalue which governs the rate of convergence.

Gilchrist [4] has considered the Jacobi point iterative method for the case of a square with uniform mesh. Parter [6] has given a general treatment of the rates of convergence of iterative methods for elliptic equations, which includes the Neumann problem as a special case. This estimate is used here to prove a recent conjecture of Gary concerning a problem related to the solution by SLOR of the Neumann problem on a rectangle.

The Neumann Problem.

Let R be the rectangle $[0,a] \times [0,b]$ in the (x,y)-plane, and let Γ be the boundary of R. If two functions f and g are given,

the Neumann problem is to find a solution u(x, y) to

(1)
$$\begin{cases} \Delta u = f & \text{in } R \\ \frac{\partial u}{\partial v} = g & \text{on } \Gamma \end{cases} *$$

where Γ^* is Γ with the four corners deleted, and $\frac{\partial u}{\partial v}$ is the outer normal derivative of u on Γ^* . We introduce a mesh on \bar{R} of width Δx in the x-direction, and Δy in the y-direction, with

where N_x and N_y are integers. Using the usual approximations for Δu and $\frac{\partial u}{\partial v}$, we let $\alpha = (\Delta y)^2 (\Delta x)^{-2}$ and write the finite difference equations in matrix form. Define the N_y × N_y tridiagonal matrices

$$L_{1} = \begin{bmatrix} (1+\alpha) & -1 & 0 \\ -1 & (2+\alpha) & -1 \\ & -1 & \\ & & (2+\alpha) & -1 \\ & & & -1 & (1+\alpha) \end{bmatrix}$$

and

$$L = \begin{bmatrix} (1+2\alpha) & -1 & 0 \\ -1 & (2+2\alpha) & -1 \\ & & \\ 0 & & -1 & (1+2\alpha) \end{bmatrix}$$

We now define the $N_{\mathbf{x}} \times N_{\mathbf{x}}$ block matrices

and

$$U = \begin{bmatrix} 0 & -\alpha I & & & 0 \\ 0 & -\alpha I & & & \\ & 0 & -\alpha I & & \\ & & 0 & -\alpha I \\ 0 & & 0 & \end{bmatrix}$$

Using the usual notation $u_{ij} = u(i \triangle x, j \triangle y)$, we then define the vectors

$$\mathbf{u}_{\mathbf{i}} = \begin{bmatrix} \mathbf{u}_{\mathbf{i}1} \\ \mathbf{u}_{\mathbf{i}2} \\ \vdots \\ \mathbf{u}_{\mathbf{i}N_{\mathbf{v}}} \end{bmatrix}$$

and

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N_x} \end{bmatrix}$$

Then we let $\mathcal{L} = D + U + U^T$ and the finite difference equations for the Neumann problem become

$$\mathfrak{L}\mathbf{u} = \rho$$

where $\,\rho\,$ is a vector, of the same form as $\,u\,,$ that depends on $\,\Delta\,x,\,\Delta\,y,$ f, and g.

The following properties of \mathcal{L} can be verified by direct computation:

<u>Lemma 1.</u> \pounds is positive semi-definite. The null space of \pounds is one-dimensional, and is spanned by the vector $\stackrel{-}{e}$, all of whose components are 1.

This says that solutions to $\mathfrak{L}u=\phi$ differ only by an additive constant. This is to be expected, since it is a property of analytic solutions to the Neumann problem.

For a real parameter $\ \frac{1}{2} < \gamma < 1$, define

(3)
$$\begin{cases} N = \gamma D + U^{T} \\ P = (\gamma - 1)D - U \end{cases}$$

Now D is positive definite [7, p. 23] so N is non-singular. Thus we can define

$$M = N^{-1} P \qquad .$$

The SLOR iteration for the Neumann problem is then

(5)
$$\begin{cases} u^{(0)} & \text{arbitrary} \\ u^{(n+1)} = M u^{(n)} + N^{-1} \rho \end{cases}$$

If one writes (5) in terms of the smaller blocks in the matrices involved, it is clear that at each step one solves $N_{_{\rm X}}$ tridiagonal systems. These can be solved very efficiently, so that the computational effort involved in each iteration is not too great.

We can now state the following convergence result:

Lemma 2. Assume that $\rho^T = 0$, so that $\mathfrak{L}u = \rho$ has a solution. Then for any choice of $u^{(0)}$, the iterates $u^{(n)}$ converge to a solution of $\mathfrak{L}u = \rho$.

<u>Proof.</u> This follows from a Theorem of Keller [5, p. 285], since the matrix

$$N + N^* - \mathcal{L} = (2\gamma - 1)D$$

is positive definite.

If we define the errors $e^{(n)} = u - u^{(n)}$, then it is easy to see that $e^{(n)} = M^n e^{(0)}$. Thus to examine the rate of convergence of the iterative scheme, we should examine the form of $M^n \times P$ for an arbitrary vector X. To do this, introduce the following notation:

$$\{\lambda_i \mid 1 \le i \le N_x N_y \} = \text{eigenvalues of } M$$

$$\lambda_0 = \max\{|\lambda_i| \mid |\lambda_i| < 1\}$$

 $p(\lambda_i)$ = maximum degree of any Jordan block corresponding to an eigenvalue λ_i of M

$$\mathbf{J}_{0} = \max \{ \mathbf{p}(\lambda_{i}) | |\lambda_{i}| = \lambda_{0} \}$$

$$\mathbf{J}_{0} = \{ \mathbf{j} | |\lambda_{j}| = \lambda_{0}, \ \mathbf{p}(\lambda_{j}) = \mathbf{p}_{0} \}$$

 $n_0 = number of elements in J_0$.

Then we have the following:

Theorem 1. Let S be a non-singular matrix such that $S^{-1}MS$ is in Jordan normal form, with the columns $s_1, s_2, \ldots, s_{N_X N_Y}$ of S normalized and ordered so that

(i)
$$s_1 = \vec{e}$$

(ii)
$$(M - \lambda_j I) s_j = 0$$
 for $2 \le j \le n_C + 1$

(iii)
$$(M - \lambda_j I)^{p_0} s_{n_0 + 1 + j} = 0$$
 but

$$(M - \lambda_j I)^{p_0 - 1} s_{n_0 + 1 + j} \neq 0 \text{ for } 1 \leq j \leq n_0$$
.

For an arbitrary vector x, let $x = \sum_{j=1}^{N} \alpha_j s_j$. Then as $n \to \infty$,

$$\| M^{n} x - \alpha_{1} \overrightarrow{e} \|_{\infty} \sim (\frac{n}{p_{0}-1}) \lambda_{0}^{n+1-p_{0}} \| \sum_{j=2}^{n_{0}+j} \alpha_{0}+j s_{j} \|_{\infty}$$

<u>Proof.</u> The existence of the s_j in this form follows from the definition of p_0 , n_0 , and the Jordan normal form (and also because $\overrightarrow{Me} = \overrightarrow{e}$, and Lemmas 1 and 2 ensure that 1 is a simple eigenvalue of M). We can then write

$$M^{n}x = \alpha_{1} \stackrel{\longrightarrow}{e} + \frac{\sum_{v=2}^{N} y}{\sum_{v=2}^{N} \alpha_{v} M^{n} s_{v}}$$

Let s_j be the eigenvector associated with an eigenvalue λ_j of M , and let s_j be the $i^{\mbox{th}}$ generalized eigenvector associated with s_j

and $\,\lambda_{\,\boldsymbol{i}}^{}$. Then it is easy to show by induction that

$$M^{n} s_{j_{i}} = \sum_{v=0}^{j_{0}-i} {n \choose v} \lambda_{j}^{n-v} s_{j_{v+i}}$$

where \mathbf{j}_0 is the degree of this particular Jordan block, and the $\mathbf{s}_{\mathbf{j}_{\nu}}$ are ordered so that

$$(M - \lambda_j I) s_{j_v} = s_{j_{v+1}}$$

Thus we have

$$M^{n} s_{j_{i}} \sim {\binom{n}{j_{0}-i}} \lambda_{j}^{n+i-j_{0}} s_{j}$$

so that for the asymptotic estimate we neglect all terms except those for which $|\lambda_j| = \lambda_0$, $j_0 = p_0$, and i = 1. This completes the proof of the Theorem.

The rate of convergence.

As is the usual case for SLOR, we reduce the question of finding λ_0 to the problem of estimating the eigenvalues for the corresponding Jacobi iterative procedure. Therefore, we define the following:

(6)
$$\begin{cases} N_1 = D \\ P_1 = -(U + U^T) \\ M_1 = N_1^{-1} P_1 \end{cases}$$

We let $\{\mu_j \mid 1 \le j \le N_{\mathbf{X}} N_{\mathbf{Y}}\}$ be the eigenvalues of M_1 , and

$$\mu_0 = \max \{ |\mu_j| \mid |\mu_j| < 1 \}$$

The following is then an easy consequence of known facts about $\, \pounds \,$ and the Jacobi method:

 $\underline{\text{Lemma 3}}.$ Let μ be an eigenvalue of $M_{\mbox{\scriptsize 1}}$. Then:

- (i) μ is real
- (ii) $-\mu$ is an eigenvalue of M_1
- (iii) -l is an eigenvalue of \mathbf{M}_{l} , so the Jacobi method is not always convergent.

We now define the $\, {\rm N}_{_{\mathbf{X}}} \times {\rm N}_{_{\mathbf{X}}} \,$ block matrix

$$S(\delta) = \begin{bmatrix} \delta I & & & 0 \\ & \delta^2 I & & \\ & & & & N \\ 0 & & & \delta^{\mathbf{X}} I \end{bmatrix}$$

The relationship between the $\left\{\lambda_{j}\right\}$ and $\left\{\mu_{j}\right\}$ is then provided by the following:

Lemma 4. (i) If $Mx = \lambda x$ for $x \neq 0$, then $\lambda \neq 0$. Thus $M_1 y = \mu y$ for $y = S^{-1}(\lambda^{\frac{1}{2}})x$ and $\mu = (\lambda \gamma + 1 - \gamma)(\lambda)^{-\frac{1}{2}}$.

(ii) If $M_1 y = \mu y$, let λ be a root of the equation

$$\gamma \lambda - \mu \lambda^{\frac{1}{2}} + 1 - \gamma = 0 .$$

Then $M x = \lambda x$ for $x = S(\lambda^{\frac{1}{2}}) y$.

<u>Proof.</u> If $Mx = \lambda x$, then $(\lambda N - P)x = 0$. If $\lambda = 0$, then -Px = 0, so then

x = 0 because -P is non-singular. The rest of the Lemma follows by a standard argument [2, p. 250].

The two SLOR eigenvalues corresponding to $\mu = 1$ and $\mu = -1$ are:

and

$$\lambda_1 = 1$$

$$\lambda_2 = \left(\frac{1 - \gamma}{\gamma}\right)^2 .$$

Now

 $(\frac{1-\gamma}{\gamma})^2 < (\frac{1-\gamma}{\gamma}) < 1$, so that again by a standard argument [2, p. 253], we should choose

$$\gamma_0 = \frac{1}{2} \left(1 + \left(1 - \mu_0^2 \right)^{\frac{1}{2}} \right)$$

since then any other eigenvalues $\,\mu_{\nu}^{}\,$ less than $\,\mid\,\mu_{\,\,0}^{}\,\mid\,$ in magnitude satisfy

$$\mu_{\nu}^{2} < \mu_{0}^{2} = 4 \gamma_{0} (1 - \gamma_{0})$$

so that if λ_{y} corresponds to μ_{y} then

$$|\lambda_{v}| = (\frac{1-\gamma_{0}}{\gamma_{0}})$$

Finally, notice that for this choice of γ we have

$$\lambda_{c} = (1 - (1 - \mu_{0}^{2})^{\frac{1}{2}}) (1 + (1 - \mu_{0}^{2})^{\frac{1}{2}})^{-1}$$

An estimate for μ_0 is provided by the following Theorem of Parter [6, p. 343]:

<u>Lemma 5.</u> Let Λ be the smallest non-zero eigenvalue λ of the problem

$$\int \Delta u + \lambda u = 0 \qquad \text{in R}$$

$$\frac{\partial u}{\partial v} = 0 \qquad \text{on } \Gamma^*$$

$$u \not\equiv 0$$

Then $\mu_0 \sim 1 - \frac{\Lambda}{2} (\Delta x)^2 + o(\Delta x \Delta y)$ as Δx and Δy tend to 0.

For the Neumann problem on a rectangle, these eigenvalues are [1, p. 429]

$$\mu_{mn} = \pi^2 (m^2 a^{-2} + n^2 b^{-2})$$

where $m, n \ge 0$. Thus

$$\Lambda = \pi^2 c^{-2}$$

for c = max(a, b). We can summarize this in the following:

Theorem 2. If SLOR is used to solve the Neumann problem on a rectangle with relaxation parameter $\gamma_0 \sim \frac{1}{2} \left(1 + \pi \, c^{-1}(\Delta \, x)\right)$ then the rate of convergence is governed by the quantity

$$\lambda_0 \sim 1 - 2\pi c^{-1} (\Delta x)$$

Application to the results of Gary.

In [3], Gary considered the following class of problems: Let $R(\alpha) = [0,a] \times [0,\alpha^{\frac{1}{2}}a]$ for $0 < \alpha \le 1$. Solve the Neumann and Dirichlet problems on this region by SLOR with Nx and Ny fixed, and let the rates of convergence be $\lambda_N(\alpha)$ and $\lambda_D(\alpha)$ respectively.

From computational results, Gary conjectured that $\lambda_D^{}(\alpha)$ decreases

as α decreases, but that $\lambda_N^{}(\alpha)$ is independent of α .

The Jacobi eigenvalues for the Dirichlet problem are

$$\mu_{\rm rs}({\rm D}) = (\alpha \cos (r\pi a^{-1}\Delta x))(\alpha + 1 - \cos(s\pi b^{-1}\Delta y))^{-1}$$

so that

$$\mu_{D}(\alpha) \sim 1 - \frac{\pi^{2}}{2} (a^{-2} + b^{-2})(\Delta x)^{2}$$

$$= 1 - \frac{\pi^{2}}{2} a^{-2} (1 + \alpha^{-1})(\Delta x)^{2}$$

and so

$$\lambda_{D}(\alpha) \sim 1 - 2\pi a^{-1} (1 + \alpha^{-1})^{\frac{1}{2}} (\Delta x)$$

Thus as α decreases, so does $\lambda_D^{(\alpha)}$.

For the Neumann problem, since $0 < \alpha \le 1$ we have c = a, so that

$$\lambda_{N}(\alpha) \sim 1 - 2\pi a^{-1} (\Delta x)$$

and $\lambda_N(\alpha)$ is independent of α .

Remarks.

- (1) These results are all for vertical SLOR, and this is the reason for the dependence of λ_0 only on Δx in Theorem 2. Corresponding results also hold for horizontal SLOR.
- (2) Computations performed on the CDC 3600 at the
 University of Wisconsin have yielded rates of convergence in good
 agreement with those predicted by Theorem 1. These results suggest

that $p_0 = 1$ for the Neumann problem, and this agrees with the usual assumption that this is the case for the Dirichlet problem.

(3) Gilchrist has shown [4] that, in the special case where a=b and $\Delta x=\Delta y$, for the point Jacobi scheme for the Neumann problem we have

$$\mu_0 \sim 1 - \frac{1}{4} \pi^2 a^{-2} (\Delta_x)^2$$

Thus the convergence rate for the Jacobi line scheme for the Neumann problem is twice that of the Jacobi point scheme. This agrees with the results for the Dirichlet problem [2, p. 270].

(4) In [3, p. 221], Gary notes that the convergence rate depends on the function u_{ij} he chooses. This is true only to the extent that the choice of function determines the coefficients α_{ν} in the expansion of the vector u in terms of generalized eigenvectors. Thus the magnitude of the error may be changed (at a given number of iterations), but the rate of convergence will not be altered by the choice of function.

REFERENCES

- 1. R. Courant and D. Hilbert, <u>Methods of Mathematical Physics</u>, vol. I, Interscience, New York, 1963.
- 2. G. Forsythe and W. Wasow, <u>Finite-Difference Methods for Partial Differential Equations</u>, Wiley, New York, 1965.
- 3. J. Gary, "On Convergence Rates for Line Overrelaxation", Math. Comp., 21(1967), pp. 220-223.
- 4. B. Gilchrist, "The Convergence Rates of Iterative Solutions of Laplace's Equation", unpublished.
- 5. H. Keller, "On the Solution of Singular and Semidefinite Linear Systems by Iteration", <u>SIAM J. Numer. Anal. Series B.</u> 2 (1965), pp. 281-290.
- 6. S. V. Parter, "On Estimating the "Rates of Convergence" of Iterative Methods for Elliptic Difference Equations", <u>Trans. Amer. Math. Soc.</u>, 114 (1965), pp. 320-354.
- 7. R. S. Varga, <u>Matrix Iterative Analysis</u> Prentice-Hall, Englewood Cliffs, N.J. 1962.