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1. Irtroduction.

The development of the high speed digital computer ﬁas resulted in
extensive effoﬁs to solve numeriéally fluid pioblems whose equations of
motion are the Navier-Stokes equations (see, e.g., references [Lt]-]5] and
the additional references contained therein). The interest in these equations is
focunded not only on the fact tﬁat they incorporate boundary layer phenomena,
but also on the important observation that they result from both microscopic
and macroscopic approaches to viscoﬁs flow [6], [7].

In this paper we will discuss and illustrate a numerical method for two
d.imensgonal,steady state Navier-‘Stokes problerﬁs which applies with equal
ease to cases of small Reynolds number and to cases of large Reynolds
number. If and when such steady state flows exist, which is still usually an
open matter, the method to be described is vastly more economical and accurate
than time dependent, step-by-step methods. The power of the method is contained
in the construction of difference equations which, for all R, yvield diagonally

dominant systems of algebraic equations.



2. Differcrce Analoguzz o f th dicady S-ate Mavier-2toleg Fouations.,

In terms of the s*ream furnction v, the vorticity @, and the Reynolds

number R, the two dimensicnal, steady state Navier-Stokes equations are
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It will be convenjent to approximate coupled equations (2.1) and (2.2) by linear
elliptic difference equations, since the numerical solution of such equations is
feasikle in practice and well understood in theory [8].

For h > 0, then, consider the five points (x,y), (x+h,vy), (X, y+h), (x-h,Vy)
and (%, y-h), numbered 9,1, 2,3, 4, féspectively, in Figure 2.1. For convenience,

any function u(x,y) defined at a point numbered i will be denoted at that point

by u .
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Figure 2.1



Suppose first that u.{x,vy) is defined at the point numbered 0 in Figure
2.1. Then (2.1) will be approximated at 0 by the well known [8] Poisson

differer.ce analogue

2
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Next, suppose that ¥(x,y) is defined at the points numbered 0, 1, 2, 3

and 4 in Figure 2.1. Then (2.2) can be approximated first by the difference-

differential equation
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For notational convenience, in (2.4) set

(295) “ . A = wl - ?//3
(2.6). B=v, =y, -
Then, to assure the dominance of the coefficient of cbO in (2.4), set
(2,7) S.;i?:ioé_g_ﬁu_ , if A2 0
: wo ~dg
2.8 oW _%0 " P4
(2.8) Sy T R if A0
(2.9) é_“.’:S.Q_:_E_DS_, if B2 0
X h
(2,10) 9L _ L] “®g if B<O.
dx h °

Thus, depending on the signs of A and B, substitution of (2.7) - (2.10) into

(2.4) yields the following approximations of (2.2):
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(2.12) (—4«%&- -5—5;*,%1» (1 -%’l) e ..%3)032 Fw  +w, = 0; (Ax 0, B <0)
(2.13) (—4+%{'—B§')wo +(Dl+(l)2+ (l+'8§)w3 + (1 —-E”-ZR—)JJ4 =0; (A< 0, B= 0)
(2.14) "'4*’%&*%&)“0 + 1 -%&)wl+w2+a,3+ (1 —5-;3—)@4 =0; (A <0, B <0)

Generalizations of (2.3} and (2.11)-(2.14) to higher dimensions or for point
arrangements different from that shown in Figure 2,1 follow readily [8], but will

not be considered in this paper,

3. The Numerical Method,

Consider now fluid problems defined by (2.1) and (2.2) on a region f with

boundary conditions prescribed on the boundary f' of & . Since, in general,

one does not know how to produce analytical solutions of such problems, we

formulate next a numerical method for approximating such solutions.

and a set of

h
0 4

For-fixed h > 0, construct a set of interior grid points &

h

Rh and then apply (2.3) at each point of &

equations.

by 11/(1).

boundary grid point R' in the usual way [8]. Define an initial vector w

h

(l), apply (2.11)-(2.14) at each point of R, to

Using these values of y h

vield a linear algebraic system. Solve this system by over-relaxation and denote

(n (1

the solution by o' -,

(2)

to generate o .

(¥)

Continue,

(k+1)

2) \ (2
» ard then use (2.11)-(2.14) and v

(k+1)

gonerate y’(

in this fashion, to generate from (2.3) and . and to gonerate

to yield a system of linear algebraic

Next, in the fashion indicated above, use (2.3) and o to

Solve this system by successive over-relaxation and denote its solution



\ I}" 3 'm_'_“, (m\
fom (2,11-(2.14) arnd ' /', Tarminate the toratiop if and whon A !

{

. ; , Sul¥
for some value m , The tevminal vectors y '

Ny . c
and &' are defired to ke the

- rumerical aprroximations of yix,y) and wix, vi, respec-ively, on ﬁh o

4, Examples.

In order to illustrate the numerical method descriked in Section 3, we will
ccnsider an example of the cavitv flow of a viscous, incomp":essible fluid. Such
flows are of interest in studying the von Karman voriex strest [2] and in studying
the flow through a grooved channel ZQ] » The proklem will be formulated as foilows,

Let ®' be the urit square {ccnsult Figure 4.1} whose vertices are (0,0,

(1, 0)s (1,1) and (0,1}. Let R be the interiorof f°' . Consider a fluid in R

whose motion is defined by (2.1', (2.2) and the following boundary conditions:

(4.1) v = 0 son R°
(4.2) o= 1 son OC and CB
(4¢3) w = "1 s O OA and AB Y

Of the variety of solutions generated on the CDC 3600 by the method of

Section 3, ornly results for the three typical ones defined by h = .02, R =10,
R = 1000, and R = 3000 are shown in Figures 4.2-4.4. The respective running
times were 15 min 50 sec (for iterations converging to 10-8)9 45 min 35 sec {for

-8
iterations converging to 19 ), and 26 min 10 sec (for iterations converging to

6

10 ) The over-relation factor 1.8 was used to solve for each y/(k), while 1.3

. k) ) 0%
was used to soive for each J)( ‘s The init‘al vector w( !

was defined in each
case to be the zero vector. The maximum values of ¢ for R .- 10, 1000 and 3030

were 0,0185,0.2159, ard 0,073, respectively, ard *"ose accurred at (.26, .74,



.

1,26, ,6h1yand (.23, .06, wospectivaely, Becaus=e both ¢ oa~d . ave skew
smretsls with resgest fo te 157 lire, we rave graphed » orly akove the 45°

lire and w orly belcw “he 45° line in each of Figures 4,2-4.4,
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