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We describeHathi, a lightweight, high-performance and
ACID-compliant transactional store based ondurable memory
transactions.

1 Introduction

Transactions serve two purposes that make it easier
to build robust applications. First, transactions enable
fine-grained concurrency control, allowing developers to
scale applications more easily across multiple proces-
sors [1, 6]. Second, transactions provide a simple inter-
face for managing the durability and consistency of ap-
plication state in the face of failures [4]. However, the
commonly used transactional stores – DBMSs or dis-
tributed transaction systems – are a poor fit for many
modern workloads, mainly due to the cost and complex-
ity of managing such systems even for lightweight oper-
ations. As a result, many applications, particularly web
services, sacrifice strong consistency for simpler storage
models, such as key-value stores [3].

Hathi is a lightweight, high-performance and ACID-
compliant transactional store based ondurable mem-
ory transactions: a program updates an in-memory data
structure that is persistent and consistent across failures.
We leverage three recent architectural trends in the de-
sign. First, DRAM prices have dropped to a point that
even mid-tier servers support up to 4 TB of memory. At
these sizes, many workloads can execute in core rather
than from disk — an observation also made by oth-
ers [5, 8]. Second, power considerations have driven
processor manufacturers away from uni-processors to-
wards multi-core chips, so concurrency between threads
becomes a key concern. Third, flash-based solid-state
drives (SSDs) provide scalable bandwidth and 1-2 orders
of magnitude lower latency than the fastest disks.

Hathi presents an in-memory transactional heap inter-
face that is automatically made persistent on fast SSDs.
Thus, programs can create and manipulate in-memory
data structures, but ensure that the data is durable with

little extra effort. To do so, Hathi combines the simple
and highly concurrent interface (“ACI”) of transactional
memory [6] with an SSD-optimized write-ahead logging
and checkpointing scheme for durability (“D”). Thus, a
programmer can wrap a section of program in a trans-
action to make updates durable and consistent. As flash
storage is fast but still much slower than memory, Hathi
implements two approaches to reduce and eliminate the
overhead of persistence.

First, Hathi provides options at transaction commit
to control whether the program blocks, similar to asyn-
chronous file I/O. This control has not previously been
available for memory transactions, and allows developers
to leverage application knowledge for increased perfor-
mance. Specifically, Hathi exposessplit-phasecommit,
which decouples the installation of in-memory updates
from the flush of transaction log records. Using this in-
terface, applications can continue with other tasks and
later check for completion of the commit, thereby over-
lapping computation and commit I/O.

Second, Hathi uses partitioned logging, in which each
thread maintains a separate log. Partitioned logging
leverages the SSD’s internal parallelism and avoids con-
tention on in-memory log buffers that hold the tail of the
transaction log. For full consistency, Hathi ensures that
all preceding transactions from all threads are durable be-
fore marking a transaction as durable. However, Hathi
also providespartitioned commit, which allows applica-
tion threads to commit transactions that operate on in-
dependent data structures without coordinating with the
logs from other threads.

Finally, Hathi provides incremental checkpointing in
small chunks of the memory heap and ensures consis-
tency with concurrent transactions, without the need to
pause execution because both chunks and log records
share the same log sequence number space. After a crash,
Hathi performs recovery by first loading the checkpoint
in memory and then replaying the logs. It merges the log
records from the different log partitions and then replays
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Figure 1: Durability Cost : Comparing software trans-
actional memory (STM), Hathi with single (SL) and par-
titioned logs (PL).

them in log sequence order.
With these new interfaces and mechanisms, we find

that Hathi provides significant improvement in transac-
tion throughput over the traditional mechanisms for pro-
viding durability and the synchronous commit interface.
At these speeds, we believe Hathi is suitable for build-
ing not only user-facing applications, but also infrastruc-
ture applications like distributed file systems, key-value
stores, massively multi-player online games and social-
network graphs.

2 Results

We evaluate Hathi to measure the cost of durability and
the value of partitioned logging. We use two setups in
these experiments. To emulate a high-end system, we
use a 3.0 GHz Intel Xeon HP Proliant dual quad-core
server with 8 GB DRAM and a 80 GB PCIe FusionIO
ioDrive. It runs different transaction threads that copy
six memory words at random offsets within the heap to
minimize the cost of STM contention and only measure
the cost of durability. To emulate a mainstream system,
we use a 2.5 GHz Intel Core 2 quad with 1 GB heap and a
consumer-grade SSD, an Intel X-25M. It runs the travel
reservation workload (vacation) from STAMP transac-
tional memory benchmark suite [7] that we ported to
Hathi.

Figure 1 shows that Hathi reaches 1.25 million txn-
s/sec on a high-end FusionIO drive on the high-end sys-
tem. Similarly, on the mainstream setup, Hathi achieves
nearly 200 K txns/sec on the consumer-grade Intel X-
25M SSD. This is less than 38% and 15% short of the
peak STM throughput respectively. With the use of sep-
arate logging threads Hathi could eliminate blocking and
further improve the CPU and I/O utilization, and poten-
tially reaching the same throughput as the STM with

durability. Thus, Hathi provides durable transactions
at little additional cost over non-durable transactional
memory. These results also indicate that the added cost
of durability with Hathi is low for these workloads. As a
comparison, recent work on persistent memory using fu-
ture projections of phase-change memory performance
achieved only 1.3-1.6 M txns/sec with 4 cores [2, 9], not
much better than Hathi in the high-end configuration.

Figure 1 also compares the transaction throughput for
single log (SL) and partitioned log (PL) on the Fusio-
nIO device. At best, SL achieves only 45% the perfor-
mance of PL, with only 20% CPU utilization and 10% of
peak FusionIO bandwidth. Thus, the single log is clearly
the bottleneck. Single log performance degrades after 4
threads because of write serialization to ensure sequen-
tial I/O. In contrast, as we increase the number of threads
and log partitions with PL, the throughput increases al-
most linearly. We note that partitioned logging depends
on parallelism and low access latencies of the storage de-
vice, as the seek costs in a disk would make partitioned
logging more expensive.
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