
Hathi: Durable Transactions for Memory using Flash

Mohit Saxena
U. Wisconsin-Madison

msaxena@cs.wisc.edu

Mehul A. Shah, Stavros Harizopoulos
Nou Data

{mashah,stavros}@gmail.com

Michael M. Swift
U. Wisconsin-Madison

swift@cs.wisc.edu

Arif Merchant
Google

aamerchant@google.com

ABSTRACT

Recent architectural trends — cheap, fast solid-state storage, inex-
pensive DRAM, and multi-core CPUs — provide an opportunity
to rethink the interface between applications and persistent storage.
To leverage these advances, we propose a new system architecture
called Hathi that provides an in-memory transactional heap made
persistent using high-speed flash drives. With Hathi, programmers
can make consistent concurrent updates to in-memory data struc-
tures that survive system failures.

Hathi focuses on three major design goals: ACID semantics, a
simple programming interface, and fine-grained programmer con-
trol. Hathi relies on software transactional memory to provide a
simple concurrent interface to in-memory data structures, and ex-
tends it with persistent logs and checkpoints to add durability.

To reduce the cost of durability, Hathi uses two main techniques.
First, it provides split-phase and partitioned commit interfaces, that
allow programmers to overlap commit I/O with computation and
to avoid unnecessary synchronization. Second, it uses partitioned
logging, which reduces contention on in-memory log buffers and
exploits internal SSD parallelism. We find that our implementation
of Hathi can achieve 1.25 million txns/s with a single SSD.

1. INTRODUCTION
Transactions serve two purposes that make it easier to build ro-

bust applications. First, transactions enable fine-grained concur-
rency control, allowing developers to scale applications more eas-
ily across multiple processors [8, 20]. Second, transactions provide
a simple interface for managing the durability and consistency of
application state in the face of failures [16].

However, the common interfaces to ACID transactions – DBMSs
or distributed transaction systems – are a poor fit for many modern
workloads, partially due to the cost and complexity of managing
such systems. As a result, many applications, particularly web ser-
vices, sacrifice strong consistency for simpler storage models, such
as key-value stores [14]. We believe that a key challenge of ex-
isting transaction interfaces is that they require the use of large,
complex systems (the DBMS or distributed transaction coordina-
tor) even for lightweight operations. In contrast, most file systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Eighth International Workshop on Data Management on

New Hardware (DaMoN 2012), May 21, 2012, Scottsdale, AZ, USA.
Copyright 2012 ACM 978-1-4503-1445-9 ...$10.00.

reject transactional semantics and provide only coarse-grained con-
trol over durability in the form of flushing pages or files to disk.

In this paper, we describe a lightweight, high-performance and
ACID-compliant transactional store based on durable memory trans-

actions: programs can concurrently update in-memory data struc-
tures that are consistent and persistent across failures. We leverage
three recent architectural trends in the design. First, DRAM prices
have dropped to a point that even mid-tier servers support up to
4 TB of memory. At these sizes, many workloads can execute in
core rather than from disk — an observation also made by oth-
ers [19, 23]. Second, power considerations have driven processor
manufacturers away from uni-processors towards multi-core chips,
so concurrency between threads becomes a key concern. Third,
flash-based solid-state drives (SSDs) provide scalable bandwidth
and 1-2 orders of magnitude lower latency than the fastest disks.

Hathi is a high-speed, durable, main-memory transactional store
that leverages these trends. It presents an in-memory transactional
heap interface that is automatically made persistent on fast SSDs.
Thus, programs can create and manipulate in-memory data struc-
tures, but ensure the data is durable with little extra effort. To do so,
Hathi combines the simple and highly concurrent interface (“ACI”)
of transactional memory [20] with an SSD-optimized write-ahead
logging and checkpointing scheme for durability (“D”). Thus, a
programmer can wrap a section of program in a transaction to make
updates durable and consistent. As flash storage is fast but still
much slower than memory, Hathi implements two approaches to
reduce and eliminate the overhead of persistence.

First, Hathi provides options at transaction commit to control
whether the program blocks, similar to but more fine-grained than
asynchronous file I/O. This control has not previously been avail-
able for memory transactions, and allows developers to leverage ap-
plication knowledge for increased performance. Specifically, Hathi
exposes split-phase commit, which decouples the installation of in-
memory updates from the flush of transaction log records. Using
this interface, applications can continue with other tasks and later
check for completion of the commit, thereby overlapping compu-
tation and commit I/O.

Second, Hathi uses partitioned logging, in which each thread
maintains a separate log. Partitioned logging leverages the SSD’s
internal parallelism and avoids contention on in-memory log buffers
that hold the tail of the transaction log. For full consistency, Hathi
ensures that all preceding transactions from all threads are durable
before marking a transaction as durable. However, Hathi also pro-
vides partitioned commit, which allows application threads to com-
mit transactions that operate on independent data structures with-
out coordinating with the logs from other threads. With these in-
terfaces, applications retain the recoverability guarantees of syn-
chronous commit at speeds closer to asynchronous commit. Our

experiments with these interfaces show 4-5x throughput improve-
ments over synchronous commit.

With these optimizations, we show that Hathi reaches 1.25 mil-
lion txns/sec on a high-end FusionIO drive and nearly 200 K txn-
s/sec on a consumer-grade Intel X-25M SSD. Thus, Hathi provides
durable transactions at little additional cost over non-durable trans-
actional memory. At these speeds, we believe Hathi is suitable for
building not only user-facing applications, but also infrastructure
applications like file systems, key-value stores, massively multi-
player online games and social-network graphs.

Persistent memory [24, 29] and persistent object stores [27, 30]
have been proposed in the past. However, Hathi is the first to rely
on commodity processor and storage technology (i.e., no phase-
change memory or battery-backed DRAM), and operate at near-
DRAM speed, courtesy of its interfaces for split-phase and parti-
tioned commit. In addition, Hathi provides a low-level unstruc-
tured memory space that makes few demands of the programmer,
allowing it to be used as a building block for these systems. In sum-
mary, Hathi provides a simple application interface, fast and scal-
able mechanisms for transaction commit, and fine-grained durable
memory transactions.

2. BACKGROUND
Hathi is enabled by recent developments in solid-state drives

(SSDs). Internally, SSDs are comprised of multiple flash chips ac-
cessed in parallel. As a result, they provide scalable bandwidths
limited mostly by the interface between the drive and the host ma-
chine (generally SATA or PCIe) [7, 11]. In addition, SSDs provide
access latencies orders of magnitude faster than traditional disks.
For example, FusionIO enterprise ioDrives provide 25 µs read la-
tencies and up to 600 MB/sec throughput [1]. Consumer grade
SSDs provide latencies down to 50-85 µs and bandwidths up to
250 MB/sec [18]. To fully saturate the internal bandwidth of the
device, enterprise SSDs support longer I/O request queues.

With current technology, SSD bandwidth is comparable to or ex-
ceeds network bandwidth (1.9 Gb/s read, 0.7 Gb/s write for a com-
modity SSD [18]). However, the performance of random writes
may be much lower, consumer-grade devices can only provide 3000-
8000 random writes per second. Thus, sustaining fine-grained up-
dates at full network latency requires mechanisms to tolerate the
write latency and queueing delays from prior writes.

3. INTERFACE AND DURABILITY

OPTIONS
Hathi provides programmers with a familiar set of simple prim-

itives that facilitates them to build fast, robust, and flexible persis-
tent memory regions. Rather than forcing programs to use low-
level file primitives or convert their data into a database format,
Hathi enables a program to use any in-memory data structure for
durable data with persistent heaps. Heaps are persistent memory
regions that applications can read or write using a software trans-
actional memory (STM)-like interface. Hathi provides a pmalloc
interface to create a heap, which allocates a segment of memory
and associates it with a checkpoint file on an SSD. A program can
then perform consistent reads and writes to the heap using the inter-
face shown in Figure 1. A read from a given heap address and size
copies the memory region to a user-specified buffer, and a write to
a heap updates an in-memory copy of the data. A transaction can
abort, which erases all updates, or commit, which makes updates
persistent and visible to other threads.

Persistent memory is an invaluable asset for applications that re-
quire both high throughput and durability. Some such applications

Figure 1: Hathi architecture and interface.

Figure 2: Hathi hash table insert: example usage of memory

transactions.

include file system journaling, high-throughput main memory key-
value stores, social network graph databases, main memory trans-
action processing systems, persistent logs for highly available net-
work servers, and massively multiplayer online games [10, 28].

For example, Figure 2 demonstrates how to update a hash ta-
ble within a transaction. The transaction encompasses both data
reads, to provide concurrency control, memory allocation, and up-
dates. At transaction commit, a runtime system ensures the up-
dates are consistent (i.e., no interleaving with other transactions)
and durable. As the transaction executes, Hathi writes the updates
to a per-thread log, and then forces the log to an SSD to make the
update durable.

File systems and databases provide disk-based journaling capa-
bilities for transactional updates. Hathi provides durability for main

START(hp)

for(all i)

COMMIT (sync)

READ(hp,0,10,buf)

buf[i] += 1

WRITE(hp,11,10,buf)

READ(hp,11,10,buf)

START(hp)

for(all i)

buf[i] −= 2

WRITE(hp,0,10,buf)

COMMIT (sync)

DEPENDENT TRANSACTIONS

START(hp)

READ(hp,0,10,buf)

for(all i)

buf[i] += 1

WRITE(hp,0,10,buf)

COMMIT (partition)

buf[i] −= 2

START(hp)

READ(hp,11,10,buf)

for(all i)

WRITE(hp,11,10,buf)

COMMIT

PARALLEL TRANSACTIONS

(partition)

Figure 3: Dependent and parallel transactions.

memory transactions through a log stored on an SSD. Although
flash latencies are low, they are much larger than latencies to main
memory. So, programmers still must be careful about when to wait
for updates to become durable. Hathi provides programmers with
three options to commit that control its durability guarantee: sync,
async, and partition.
Sync and Async. Sync and async are similar to database syn-
chronous and asynchronous commit and the fsync() file system
operation. Synchronous commit only returns after forcing the trans-
action’s log records and the records of all preceding transactions’
to stable storage. This ensures that the update is durable and appli-
cation data structures are consistent, because all prior updates were
also written to the SSD. In contrast, asynchronous commit returns
as soon as the transaction finishes updating memory, and does not
wait to force the log records to storage. Even with this option, the
heap recovers to a consistent point in the transaction history, al-
though it may lose recently committed asynchronous transactions.
Partition. Commit’s third option, partition, relaxes the isolation
guarantee for better performance. Hathi has a separate log partition
for each thread (see Section 4). Partition commit simply forces the
log for the local thread. This option is useful when an application
uses transactions for atomicity and durability but not for isolation,
and may be used when each application thread operates on different
(partitioned) data. Such partitioning may be easy when updating
regular data structures such as a hashtable or a matrix.

This commit option potentially allows for more overlap between
computation and I/O across threads than synchronous commit, be-
cause a thread need not wait for preceding transactions in other
threads to become stable. Although applications can mix this op-
tion with the others above, they must be careful to ensure the inde-
pendence of partition commit. Figure 3 shows an example of de-
pendent transactions, which cannot use partition, and parallel ones
that can.
isStable. Hathi provides an additional interface to query whether a
prior asynchronous transaction is durable. On success, async com-
mit returns the logical sequence number (LSN) for the transaction.
The isStable(lsn,wait) call indicates whether a transaction with that
LSN is stable and recoverable, and optionally waits until it is. A
transaction is recoverable if all transactions it is dependent on are
durable, which may be all preceding transactions. This interface
allows applications to make commit split-phase: initiate commit
early, and then wait for it to complete later. For example, an event-
driven server can continue with other client transactions and return
results once the log flushes. In this way, Hathi can overlap I/O and
computation, getting recoverability at nearly the same throughput
as asynchronous commit.

4. DESIGN AND IMPLEMENTATION
Unlike traditional databases, Hathi does not maintain a backing

store: storage contains only logs and checkpoints, and the logs con-
tain only redo records of updates. Checkpoints are copies of the
heap kept on an SSD, and allow trimming the logs to reduce re-

covery time. Hathi checkpoints the heap incrementally to avoid
stalling the system.

We implemented a prototype of Hathi by modifying an exist-
ing software transactional memory system (TinySTM [15]), used
for concurrency control, to add write-ahead logging and recovery
for durability. Hathi’s transaction API wraps the underlying STM
calls, which maintain a log of updates to apply when a transaction
completes. The STM ensures transactions are isolated by acquiring
locks on each memory location referenced, and will abort one or
more transactions when it detects conflicting lock request. On suc-
cessful commit, Hathi tags the transaction with a logical sequence
number (LSN) given by the STM and inserts them into the thread’s
log. The LSN is a global counter that the STM atomically incre-
ments before releasing all locks, thus ordering all transactions. For
all commit types, Hathi reflects the transaction updates in-memory
and releases locks before the log records reach the SSD to allow
other threads to proceed.
Partitioned Logging. Hathi employs partitioned logging both in
memory and in storage: each core maintains its own transaction
log that can be independently flushed to a separate location in stor-
age. Merging the logs provides a logical global log. Partitioned
logging is well suited to both SSDs and multi-core architectures:
SSDs require multiple outstanding requests to saturate their band-
width, and partitioned logging allows multiple cores to generate
requests simultaneously. In addition, partitioned logging reduces
lock contention, since threads access their local log without syn-
chronization. Hathi further reduces latency with direct I/O to by-
pass the file-system buffer pool.

Partitioned logging complicates recovery by raising the possi-
bility that later transactions from one thread will become durable
before earlier transactions of another. This potentially leaves a gap
in the transaction sequence on failure, resulting in an inconsistent
application data structure. During recovery, it may therefore be
inconsistent to replay all committed transactions in all logs. On re-
covery, Hathi takes care to only replay transactions up to the first
missing transaction.

Thus, Hathi maintains two invariants that tie together logging
and checkpointing for correctness of its recovery algorithm. First,
each transaction has an LSN that is consistent with the partial or-
der of transaction dependencies; a transaction can only depend on
transactions with lower LSNs. When logging, a transaction is not
recoverable until all preceding transactions in this total order are
recoverable. Second, to ensure that all updates are consistently ap-
plied to a checkpoint, we must maintain the write-ahead logging

discipline: a chunk of memory in a checkpoint cannot be used for
recovery until the effects of all transactions reflected in that chunk
have been made recoverable.

The Hathi interface enables applications to control durability of
their data. Hathi maintains a global variable, min_lsn, that tracks
the youngest recoverable transaction. Each transaction log main-
tains the latest LSN that is on the non-volatile store; the min_lsn

is the minimum or oldest of these. Each thread updates this variable
after flushing its log. For synchronous commit, Hathi flushes the lo-
cal log and waits until min_lsn exceeds or equals the transaction
LSN. To improve throughput, synchronous commit batches mul-
tiple transactions into a single log flush, a technique called group

commit [17].
Partitioned commit annotates the transaction’s log record with a

partition flag, flushes the log, and does not wait for min_lsn. The
flag indicates that the transaction can safely be recovered, even if
preceding transactions from other threads are not available. Asyn-
chronous commit also does not wait and, like group commit, defers
forcing the log until either a fixed time period elapses or a fixed

amount of log space is used. Thus, partitioned commit provides
the durability semantics of synchronous commit for the local log,
and the performance of asynchronous commit across logs. Finally,
isStable compares the given LSN against min_lsn and waits if
necessary.

Algorithm 1 Hathi Memory Checkpointing

1: for chunk in heap do

2: tx_start

3: tx_read(chunk,copyBuffer)
4: chunkLSN = tx_commit(async)
5: end for

6: isStable(lastChunkLSN,true)
7: update checkpoint header
8: sleep(timer)

Checkpointing and Log Trimming. In checkpointing, Hathi pe-
riodically writes memory in configurable fixed-sized chunks to the
SSD. When a checkpoint is needed, a separate checkpoint thread
walks through the heap and writes out chunks, with each write pro-
tected by an STM transaction. This method ensures consistency
with concurrent transactions, without the need to pause execution
because both chunks and log records use the same log sequence
number space. Although non-intrusive, this incremental check-
pointing method allows for a transaction to straddle a chunk that
has been checkpointed and one that has not. In such case, a chunk
of memory in a checkpoint cannot be used for recovery until the
effects of all transactions reflected in that chunk have been made
recoverable, that is, written to disk so they can be re-applied to
chunks that do not include their effects. Thus, a checkpoint is not
valid until all transactions reflected in any of its chunks have been
made recoverable (similar to write-ahead logging). Once Hathi has
created a valid checkpoint of the entire heap, it discards unneeded
older checkpoints and garbage collects log records prior to the ear-
liest chunk in the new checkpoint since their effects are already
included.

Algorithm 1 describes checkpointing. Since the workload fits in
main memory, we can safely require that enough storage space is
available for more than two checkpoints. Thus, we need not en-
sure that all transactions are durable before starting the checkpoint,
as the previous checkpoint can still be used for recovery. Hathi
first copies data from the persistent heap into a temporary buffer
using an STM read, and then writes out the chunk and its LSN to
checkpoint space. Once all chunks have been written, it writes a
checkpoint header that indicates what checkpoints and log records
can be garbage collected.
Recovery. Hathi performs recovery by loading a checkpoint and
then replaying logs. It reads the checkpoint header to find the LSN
of the oldest checkpoint chunk. Starting with that chunk, Hathi re-
plays logs and checkpoints in LSN order until it reaches the end
of one thread’s log and a gap in the LSNs, which indicates a miss-
ing transaction. It then continues to scan logs and replays records
labeled partition, which can still be safely applied.

In summary, Hathi provides novel interfaces and mechanisms de-
signed to provide durability for memory-resident datasets and op-
timized for new flash SSDs and multi-core processors. Partitioned
and split-phase commit interfaces provide low-level control over
latency to application programmers. Partitioned logging and re-
covery, chunk-based incremental checkpointing and log trimming
mechanisms optimize for the performance of flash SSDs which
possess fast random access and high internal parallelism.

5. EVALUATION
Our current implementation of Hathi supports partitioned log-

ging, incremental checkpointing, and recovery. In this section, we
present experiments that show: (i) the cost of durability, (ii) the
value of partitioned logging, and (iii) the performance tradeoffs of
different durability options.
Methodology. We use two setups in these experiments. To emu-
late a high-end system, we use a 3.0 GHz Intel Xeon HP Proliant
quad-core server with 8 GB DRAM and a 80 GB PCIe FusionIO
ioDrive. On this, we run a synthetic workload of low-contention
memory transactions for analyzing the overhead of providing dura-
bility. Each thread continuously executes transactions that read and
write six random words in a 4 GB heap. The second system runs
the travel reservation workload from STAMP transactional mem-
ory benchmark suite [22] that we ported to Hathi. This ran on a
2.5 GHz Intel Core 2 quad with 1 GB heap and a consumer-grade
SSD, an Intel X-25M. We use a 10 ms group commit timer and
maximum 512 KB log buffer for each thread.
Durability Costs. Figure 4(a) compares the performance of the
high-end system running with Hathi with durable transactions us-
ing partitioned logging (PL) and asynchronous commit, against
the base STM system without durability (STM). The STM system
peaks in throughput at 4 threads with 100% CPU utilization. Af-
ter 4 threads, the throughput drops because of increased contention
over the STM’s commit lock. With Hathi at 8 threads, we reach
1.25 M txns/sec with 70% CPU utilization, which is only 38% short
of the peak STM throughput. Similarly, on the STAMP work-
load, Hathi reaches nearly 200 K txns/sec, only 15% short of the
STM-only throughput. These results indicate that the added cost
of durability is low for these workloads with Hathi. As a compari-
son, recent work on persistent memory using future projections of
phase-change memory performance achieved only 1.3-1.6 M txn-
s/sec with 4 cores [12, 29], not much better than Hathi in the high-
end configuration.
Partitioned Logging. Figure 4(a) also compares the transaction
throughput for single log (SL) and partitioned log (PL) on Fusio-
nIO. PL is more than 130% faster than SL, which utilizes less than
20% CPU. Thus, the single log is clearly the bottleneck. Single log
performance degrades after 4 threads because of write serialization
to ensure sequential I/O. In contrast, as we increase the number of
threads and log partitions with PL, the throughput increases almost
linearly. We note that partitioned logging benefits from more con-
current I/O requests and low access latencies of the storage device,
as the seek costs in a disk would make partitioned logging more
expensive.

We also investigate the impact of logging on the average trans-
action latency of the high-end system with asynchronous commit.
With 4 threads on FusionIO, the average transaction latency for
flash is only 14 ms. This is higher than the group-commit latency of
10 ms due to the queuing delay behind other log flushes. In compar-
ison, using a single log raises latency to 25 ms, again demonstrating
the value of partitioned logging in keeping latencies down.
Durability Tradeoffs. Using the STAMP workload, we investigate
the performance impact of different durability options. Figure 4(b)
shows the performance of split-phase and partitioned commit with
different time intervals between calling isStable to wait for all
previous transactions to become durable. As expected, when en-
suring durability every 0.2 ms, transaction throughput is only 13%
of asynchronous commit. However, allowing transactions to stay in
memory for 2 ms achieves 50% of asynchronous performance. Us-
ing partitioned commit in addition to split-phase commit increases
performance by 20% and is only 40% below asynchronous commit.
These results demonstrate that the use of split-phase and partitioned

0

500

1000

1500

2���

�500

1 � 4 8

STM

P�

S�

Num�er of �� ��reads

�
�
�
	

�
�
g
	
p
�
t
(
�
�
�
�
�
/
�
)

(a) Durability costs

�
�
�
�
��
�
�
�
�
�
�
�
�
l�
�i
�
�
��
��
ll
�
�
y
n
c
�%
�

!"

6

$"

&

'*+,-b.37 9:; <* '*+,-b.37 ; <* =->,','?@3A BC.. -*D@E7 F9 <*

GHIIJK LHOQ

(b) Commit mode performance

Figure 4: Durability costs and commit modes’ performance.

commit to make a set of updates durable provide a middle-ground
between the performance of asynchronous commit and the recov-
erability of synchronous commit.

6. RELATED WORK
Hathi derives inspiration from past work on storage-class mem-

ory (SCM), main-memory data stores, and persistent objects and
databases.

NV-Heaps [12] and Mnemosyne [29], investigated the use of
SCM and new processor primitives to provide support for persis-
tent memory. Hathi achieves the same goal using existing hardware
and commercially available flash memory technology. FlashVM
and SSDAlloc [25, 9] are hybrid SSD/RAM memory managers op-
timized for the performance characteristics of SSDs. They do not
support Hathi’s transactional semantics to provide durability for ar-
bitrary main-memory data structures. Hathi is similar to past work
on durable memory transactions, such as eNVy [31], RVM [24] and
Rio Vista [21]. Hathi differs in its architecture, providing word-
level persistence rather than the page level of RVM, and persists
data to flash rather than relying on a battery or specialized memory
controller, as in Rio/Vista and eNVy (for uncommitted data).

Persistent object stores such as Texas [27], QuickStore [30], Grasshop-
per and Cricket [13, 26] provide a high-level structured object-
interface to applications. They also provide safety properties, such
as ensuring pointers in persistent data structures reference only per-
sistent data. Hathi provides a low-level unstructured memory inter-
face over which these systems can be layered to provide the same
guarantees. In addition, Hathi operates at near-DRAM speeds us-
ing commodity hardware because of its low-level commit interface
that allows fine-grained control on transaction latency. FusionIO’s
Auto Commit Memory [2] is similar to Hathi and provides atomic
and durable data updates with memory semantics for programming.
In addition, Hathi provides general-purpose transactions with sup-
port for flexible commit interfaces to persist data.

Closely related to Hathi are other main memory data stores. These
fall into three categories: relational stores, e.g., TimesTen and VoltDB
[5, 6]; object stores, e.g. GemStone and RamCloud [3, 23]; and
key-value stores, e.g. memcached [4]. The key-value stores tend to
reject transactional semantics. The relational and object stores are
tuned for high-throughput transactions, but focus on scaling across
a cluster and provide durability through replication to other ma-

chines rather than to a local storage device, as Hathi does.

7. CONCLUSIONS
Programmers trained in the era of disks have learned that persist-

ing data requires complex software and rich interfaces to overcome
the long latency to storage. However, large memory sizes, multi-
core processors, and high-speed flash storage enable a new gen-
eration of storage interfaces that reduce the gap between volatile
and persistent data. Rather than maintaining two copies of data
in different formats, durable memory stores enable a single data
representation, optimized for in-memory access, that can also be
recovered reliably when failure occurs.

In this paper, we describe Hathi, a high-speed, main-memory,
durable transaction store that harnesses recent technology advances.
We show the use of existing hardware and persistent memory avail-
able today, without the need to wait for next-generation non-volatile
memory technologies. Hathi provides a powerful interface that
eases application development, and still retains much of the per-
formance of the underlying hardware. The flexible interface of
Hathi also opens up new opportunities for application developers
to explore the use of different persistent memory data structures
and declarative programming styles.

Acknowledgments

This work is supported in part by National Science Foundation
(NSF) grant CNS-0834473. Swift has a significant financial in-
terest in Microsoft.

8. REFERENCES
[1] Fusion-IO PCI-e ioDrive.

www.fusionio.com/products/iodrive.

[2] FusionIO Auto-Commit Memory. http://www.
fusionio.com/blog/auto-commit-memory\

\-cutting-latency-by-eliminating-block-i/

o.

[3] GemStone Object Server.
www.gemstone.com/products/gemstone.

[4] memcached: High-performance Main-Memory Key-Value
Store. www.memcached.org.

[5] Oracle TimesTen In-Memory Database.
www.oracle.com/timesten.

[6] VoltDB: SQL DBMS with ACID. www.voltdb.com.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for ssd
performance. In USENIX, 2008.

[8] M. K. Aguilera, A. Merchant, M. A. Shah, A. C. Veitch, and
C. T. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In SOSP, 2007.

[9] A. Badam and V. S. Pai. SSDAlloc: Hybrid ssd/ram memory
management made easy. In NSDI, 2011.

[10] T. Cao, M. Vaz Salles, B. Sowell, Y. Yue, A. Demers,
J. Gehrke, and W. White. Fast checkpoint recovery
algorithms for frequently consistent applications. In
SIGMOD, 2011.

[11] F. Chen, R. Lee, and X. Zhang. Essential roles of exploiting
internal parallelism of flash memory based solid state drives
in high-speed data processing. In HPCA, 2011.

[12] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. Nv-heaps: Making
persistent objects fast and safe with next-generation,
non-volatile memories. In ASPLOS, 2011.

[13] A. Dearle, R. di Bona, J. Farrow, F. Henskens, A. Lindström,
J. Rosenberg, and F. Vaughan. Grasshopper: an orthogonally
persistent operating system. In Journal of Computer Systems,
volume 7, pages 289–312, 1994.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available
key-value store. In SOSP, 2007.

[15] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance
tuning of word-based software transactional memory. In
PPoPP, 2008.

[16] J. Gray. The transaction concept: Virtues and limitations. In
VLDB, 1981.

[17] P. Helland, H. Sammer, J. Lyon, R. Carr, and P. Garrett.
Group commit timers and high-volume transaction systems.
In Tandem TR 88.1, 1988.

[18] Intel. X-25 mainstream ssd datasheet.
http://www.intel.com/design/flash/nand/

mainstream/index.htm.

[19] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. J. Abadi. H-store: a
high-performance, distributed main memory transaction
processing system. Proc. VLDB Endow., 1(2):1496–1499,
2008.

[20] J. R. Larus and R. Rajwar. Transactional Memory. Morgan &
Claypool Publishers, 2006.

[21] D. Lowell and P. Chen. Free transactions with rio vista. In
SOSP, 1997.

[22] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for
multi-processing. In IISWC, 2008.

[23] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann,
and R. Stutsman. The case for ramclouds: scalable
high-performance storage entirely in dram. SIGOPS Oper.

Syst. Rev., 43:92–105, January 2010.

[24] M. Satyanarayanan, H. Mashburn, P. Kumar, D. Steere, and

J. Kistler. Lightweight recoverable virtual memory. In ACM

Transactions on Computer Systems, 1994.

[25] M. Saxena and M. M. Swift. FlashVM: Virtual Memory
Management on Flash. In Usenix Annual Technical

Conference, 2010.

[26] E. Shekita and M. Zwilling. Cricket: A mapped, persistent
object store. In Workshop on Persistent Object Systems,
1990.

[27] V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas: good, fast,
cheap persistence for c++. In SIGPLAN OOPS Mess, 1993.

[28] M. Vaz Salles, T. Cao, B. Sowell, A. Demers, J. Gehrke,
C. Koch, and W. White. An evaluation of checkpoint
recovery for massively multiplayer online games. In VLDB,
2009.

[29] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In ASPLOS, 2011.

[30] S. J. White and D. J. Dewitt. Quickstore: A high
performance mapped object store. In VLDB Journal, pages
629–673, 1995.

[31] M. Wu and W. Zwaenepoel. eNVy: A non-volatile, main
memory storage system. In ASPLOS-VI, 1994.

