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Abstract
Flash-based solid-state drives have revolutionized stor-
age with their high performance. Their sophisticated in-
ternal mechanisms have led to a plethora of research on
how to optimize applications, file systems, and internal
SSD designs. Due to the closed nature of commercial de-
vices though, most research on the internals of an SSD,
such as enhanced flash-translation layers, is performed
using simulation or emulation. Without implementation
in real devices, it can be difficult to judge the true benefit
of the proposed designs.

In this paper, we describe our efforts to implement two
new SSD designs that change both the internal workings
of the device and its interface to the host operating sys-
tem. Using the OpenSSD Jasmine board, we develop
a prototype of FlashTier’s Solid State Cache (SSC) and
of the Nameless Write SSD. While the flash-translation
layer changes were straightforward, we discovered un-
expected complexities in implementing extensions to the
storage interface.

We describe our implementation process and extract a
set of lessons applicable to other SSD prototypes. With
our prototype we validate the performance claims of
FlashTier and show a 45-52% performance improvement
over caching with an SSD and a 90% reduction in erases.

1 Introduction

Due to the high performance, commercial success,
and complex internal mechanisms of solid-state drives
(SSDs), there has been a great deal of work on op-
timizing their use (e.g., caching [24, 27]), optimizing
their internal algorithms (e.g., garbage collection [7, 16,
17]), and extending their interface (e.g., caching opera-
tions [29]). However, most research looking at internal
SSD mechanisms relies on simulation rather than direct
experimentation [2, 27, 29, 33].

Thus, there is little known about real-world implemen-
tation trade-offs relevant to SSD design, such as the cost

of changing their command interface. Most such knowl-
edge has remained the intellectual property of SSD man-
ufacturers [18, 26, 11, 12], who release little about the
internal workings of their devices. This limits the oppor-
tunities for research innovation on new flash interfaces,
on OS designs to better integrate flash in the storage hi-
erarchy, and on adapting the SSD internal block manage-
ment for application requirements.

Simulators and emulators suffer from two major
sources of inaccuracy. First, they are limited by the
quality of performance models, which may miss impor-
tant real-world effects. Second, simulators often simplify
systems and may leave out important components, such
as the software stack used to access an SSD.

We sought to validate two recently proposed SSD de-
signs by implementing them as hardware prototypes.
FlashTier’s Solid-State Cache (SSC) design [29] im-
proves caching performance with changes to the block
interface, flash management algorithms within the de-
vice, and the OS storage stack. Nameless Writes [33]
simplifies garbage collection and improves write perfor-
mance by moving the address-mapping function out of
the device and into the file system, and requires changes
to the same components as SSCs plus the file system.
Therefore, these designs are ideal candidates for study-
ing the disruptive nature of such systems.

We prototype both systems with the OpenSSD Jas-
mine hardware platform [30]. The OpenSSD evaluation
board is composed of commodity SSD parts, including a
commercial flash controller, and supports standard stor-
age interfaces (SATA). It allows the firmware to be com-
pletely replaced, and therefore enables the introduction
of new commands or changes to existing commands in
addition to changes to the FTL algorithms. As a real stor-
age device with performance comparable to commercial
SSDs, it allows us to test new SSD designs with existing
file-system benchmarks and real application workloads.

During prototyping, we faced several challenges not
foreseen in published work on new flash interfaces. First,
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Figure 1: OpenSSD Architecture: Major components of
OpenSSD platform are the Indilinx Barefoot SSD controller,
internal SRAM, SDRAM, NAND flash, specialized hardware
for buffer management, flash control, and memory utility func-
tions; and debugging UART/JTAG ports.

we found that the baseline performance of the OpenSSD
board was low, and that the effect of new designs was
drowned out by other performance problems. We intro-
duced a merge buffer to align writes to internal bound-
aries and a read buffer for efficient random reads.

Second, we found that passing new commands from
the file-system layer through the Linux storage stack and
into the device firmware raised substantial engineering
hurdles. For example, the I/O scheduler must know
which commands can be merged and reordered. We
developed novel techniques to tunnel new commands
through the storage stack and hardware as variations of
existing commands, which limits software changes to the
layers at the ends of the tunnel. For example, we return
cache-miss errors in the data field of a read.

Third, we encountered practical hardware limitations
within the firmware. The OpenSSD board lacks an ac-
cessible out-of-band (OOB) area, and has limited SRAM
and DRAM within the device. This made us redesign
the mechanisms and semantics for providing consistency
and durability guarantees in an SSC. We change the se-
mantics to provide consistency only when demanded by
higher level-software via explicit commands.

For the SSC design, we implemented the interface
functionality entirely within the firmware running on the
OpenSSD board. For Nameless Writes, the challenges
in passing data between the device and the host OS led
us to a split-FTL design. A minimal FTL on the device
exports primitive operations, while an FTL within the
host OS uses these primitives to implement higher-level
functionality. This split design simplifies the FTL imple-
mentation and provides a convenient mechanism to work
around hardware limitations, such as limited DRAM or
fixed-function hardware.

Controller ARM7TDMI-S Frequency 87.5 MHz
SDRAM 64 MB (4 B ECC/128 B) Frequency 175 MHz
Flash 256 GB Overprovisioning 7%
Type MLC async mode Packages 4
Dies/package 2 Banks/package 4
Channel Width 2 bytes Ways 2
Physical Page 8 KB (448 B spare) Physical Block 2 MB
Virtual Page 32 KB Virtual Block 4 MB

Table 1: OpenSSD device configuration.

With our SSC prototype, we validate that FlashTier’s
projected benefits, including better write performance
and reliability, are indeed possible. Compared to caching
with an SSD, the SSC design provides 45–52% bet-
ter write performance. Our Nameless-Write prototype,
demonstrates that the split-FTL approach may be a use-
ful method of implementing new interface designs rely-
ing on upcalls from an SSD to host.

2 Background
We use the OpenSSD platform [30] as it is the most
up-to-date open platform available today for prototyp-
ing new SSD designs. It uses a commercial flash con-
troller for managing flash at speeds close to commodity
SSDs. We prototype our own designs — FlashTier SSC
and Nameless Writes SSD — to verify their practicality
and validate if they perform as we projected in simula-
tion earlier.

2.1 OpenSSD Research Platform
The OpenSSD board is designed as a platform for im-
plementing and evaluating SSD firmware and is spon-
sored primarily by Indilinx, an SSD-controller manufac-
turer [30]. The board is composed of commodity SSD
parts: an Indilinx Barefoot ARM-based SATA controller,
introduced in 2009 for second generation SSDs and still
used in many commercial SSDs; 96 KB SRAM; 64 MB
DRAM for storing the flash translation mapping and for
SATA buffers; and 8 slots holding up to 256 GB of MLC
NAND flash. The controller runs firmware that can send
read/write/erase and copyback (copy data within a bank)
operations to the flash banks over a 16-bit I/O channel.
The chips use two planes and have 8 KB physical pages.
The device uses large 32 KB virtual pages, which im-
prove performance by striping data across physical pages
on 2 planes on 2 chips within a flash bank. Erase blocks
are 4 MB and composed of 128 contiguous virtual pages.

The controller provides hardware support to acceler-
ate command processing in the form of command queues
and a buffer manager. The command queues provide a
FIFO for incoming requests to decouple FTL operations
from receiving SATA requests. The hardware provides
separate read and write command queues, into which ar-
riving commands can be placed. The queue provides
a fast path for performance-sensitive commands. Less
common commands, such as ATA flush, idle and standby
are executed on a slow path that waits for all queued
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Figure 2: OpenSSD Internals: Major components of
OpenSSD internal design are host interface logic, flash inter-
face logic and flash translation layer.

commands to complete. The device transfers data from
the host using a separate DMA controller, which copies
data between host and device DRAM through a hardware
SATA buffer manager (a circular FIFO buffer space).

The device firmware logically consists of three com-
ponents as shown in Figure 2: host interface logic, the
FTL, and flash interface logic. The host interface logic
decodes incoming commands and either enqueues them
in the command queues (for reads and writes), or stalls
waiting for queued commands to complete. The FTL
implements the logic for processing requests, and in-
vokes the flash interface to actually read, write, copy,
or erase flash data. The OpenSSD platform comes with
open-source firmware libraries for accessing the hard-
ware and three sample FTLs. We use the page-mapped
GreedyFTL (with 32 KB pages) as our baseline as it pro-
vides support for garbage collection.

2.2 FlashTier: Solid-State Cache (SSC)
The FlashTier SSC is a new interface to flash storage
purpose-built for caching [29]. The internal flash man-
agement algorithms and device interface of SSC offload
caching functionality from the host operating system
with cache-specific commands. The SSC interface dis-
tinguishes clean data, which can be deleted from the de-
vice silently, from dirty data, which cannot. Its interface
consists of six commands: write-clean and write-dirty
to write clean and dirty data, respectively; read to read
data or return an error if it is not present; evict to re-
move data from the cache, clean to convert dirty data to
clean after it has been written back to a disk, and ex-
ists to test whether blocks are currently dirty. The SSC
interface provides consistency and durability guarantees
within the device to provide a warm cache after a sys-
tem reboot or crash. An SSC provides a unified address
space for directly translating disk addresses to physi-
cal flash addresses, rather than requiring host software

to map disk addresses to logical flash address that the
FTL translates to physical flash addresses. In addition,
SSCs provide silent eviction with which they can evict
clean data without notifying the host as an alternative to
garbage collection.

FlashTier relies on a block-level cache manager to
interpose on disk requests from the file system and
transparently shunt them to the SSC. If the SSC does
not contain the data, the manager sends the request to
the backing disk. Compared to caching with an SSD,
FlashTier promises better write performance, because it
can evict data silently instead of performing expensive
garbage collection; reduced memory on the host, because
the disk-block-to-flash-location mapping is stored in the
SSC; and better reliability, again by avoiding expensive
copies for garbage collection.

2.3 Nameless Writes
Nameless Writes [33] are a new device interface that
removes the internal mapping function of an FTL and
instead exposes physical flash addresses to the file sys-
tem. A Nameless-Write SSD chooses the location to
write data and sends back the physical address to the file
system, which stores it in its metadata. This allows the
device to control block allocation, enabling it to execute
critical tasks such as garbage collection and wear level-
ing, but removes the need for large and costly mapping
tables. Nameless Writes retain the standard reads, write
and trim commands, which it uses for file-system meta-
data, and introduces three new commands. Two com-
mands operate on physical addresses: nameless-write
writes data at an unspecified address and returns the new
physical address, and physical-read reads data by phys-
ical address. Finally, the device can send a migration-
upcall request to the host indicating that it has relocated
data as part of wear leveling or garbage collection so the
file system can update its metadata. Nameless Writes
change the device FTL, SSD interface, and file system
to move logic for allocating data blocks out of the file
system and into the device.

3 Implementation Experiences
Our goal was to validate the design claims made by
FlashTier and Nameless Writes as well as to gain expe-
rience prototyping SSD designs. We develop our proto-
types for Linux kernel version 2.6.33, and much of the ef-
fort focused on integrating the new designs into Linux’s
storage stack.

3.1 Baseline Performance
The biggest challenge with prototyping new SSD de-
signs was to first improve the performance of the base-
line platform to its maximum. This enables us to run
real workloads and get realistic results comparable to
commercial SSDs. The OpenSSD hardware is capable
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Workload Baseline OS Req. IO/s
Size

Request Size IO/s (sectors) Cause Intel 520 Disk
4 KB 2,560 9 Partial 22,528 1,497
8 KB 2,048 18 Partial 17,280 826
16 KB 1,920 36 Partial 11,008 563
32 KB 2,912 82 Align 7,136 419
64 KB 1,456 150 Par. 3,824 288

128 KB 648 256 Par. 2,056 212
256 KB 248 257 Cont. 988 149
512 KB 132 266 Cont. 500 98

Seq 4 KB 15,616 336 Partial 61,950 24,437
Seq 4+32 KB 20,736 64 Align 62,120 22,560

Table 2: Write Performance: Random write performance
(top) and sequential write performance (bottom) as compared
to an Intel 520 SSD and a disk. Columns 3 shows the aver-
age number of 512 B sectors per request sent to the device, and
Column 4 summarizes the cause of poor performance (Partial
= partial writes, Align = unaligned writes, Par = insufficient
parallelism, Cont = bank contention).

of 90 MB/sec writes and 125 MB/sec reads. However,
the reference FTL implementations delivered this per-
formance only with specific workloads, as we describe
below. For common cases such as 4 KB random writes,
performance dropped to 10 MB/sec. Thus, any perfor-
mance benefit we achieved through FlashTier or Name-
less Writes would be overwhelmed by poor baseline per-
formance. The first task of prototyping a new interface to
flash, ironically, was to make the existing interface per-
form well. We note that many of the challenges we faced
are known, and here we describe the effort required to
implement solutions.

3.1.1 Problems
We began by analyzing the peak performance achievable
by the hardware and comparing the application perfor-
mance delivered by the FTL for different workload pa-
rameters. We perform tests on an 8 GB partition on an
empty device. For read tests, data was written sequen-
tially. Table 2 shows I/O Operations/sec (IOPS) with
varying random and sequential request sizes in column
2. All measurements were made with the fio microbenck-
marking tool [22]. For comparison, the last two columns
show performance of the Intel 520 120 GB SSD, and
for a Western Digital WD1502FAEX 7200 RPM 1.5 TB
disk. Overall, random IOPS peaks at 32 KB, the vir-
tual page size of the device, and degrades with larger re-
quests. Smaller requests also suffer reduced IOPS and
much lower bandwidth. Read performance, shown in
Figure 4 was 125 MB/sec for sequential reads but only
2,340 IOPS for random reads.
Alignment and Granularity. The smallest unit of I/O
within the FTL is a 32 KB virtual page. For smaller re-
quests, the firmware has to read the old data, merge in
the new data, and finally write the updated virtual page.
Therefore, writes smaller than 32 KB suffer write ampli-
fication from this read-modify-write cycle. For exam-
ple, 8 KB blocks achieve only 2,048 IOPS (16 MB/s),

while 32 KB blocks achieve 2,912 (91 MB/s). Further-
more, writes that are not aligned on 32 KB boundaries
can suffer a read-modify-write cycle for two blocks.
Parallelism. While requests aligned and equal to the vir-
tual page size perform well, larger requests degrade per-
formance. With 512 KB requests, performance degrades
from 91 MB/sec to 67.5 MB/sec. Here, we identified the
problem as internal contention: the controller breaks the
request into 32 KB chunks, each of which is sent concur-
rently to different banks. Because there is no coordina-
tion between the writes, multiple writes may occur to the
same bank at once, leading to contention.
OS Merging. A final source of problems is the I/O
scheduler in Linux. As noted above, large sequential re-
quests degrade performance. Linux I/O schedulers —
NOOP, CFQ and Deadline — merge spatially adjacent
requests. As shown in column 3 (Req Size) of Table 2,
for the Seq 4 KB row the OS merges an average of 336
sectors (168 KB) for sequential 4 KB writes and achieves
only 61 MB/sec. When we artificially limit merging to
32 KB (64 sectors), shown in the last row (labeled Seq
4 KB+32), performance improves to 81 MB/sec. This is
still below peak rate because the requests may not all be
aligned to virtual page boundaries.

Overall, this analysis led us to develop techniques that
reduce the number of partial writes and to avoid con-
tention from large requests for maximum parallelism.
While the OS I/O scheduler can merge spatially adja-
cent requests for sequential workloads, we develop tech-
niques to achieve this goal for random patterns as well.

3.1.2 Solutions
Write performance. We address poor write perfor-
mance by implementing a merge buffer within the FTL
to stage data before writing it out. This ensures that data
can be written at virtual-page granularity rather than at
the granularity supplied by the operating system. Data
for write commands are enqueued in a FIFO order in the
SATA write buffer, from which the FTL copies it to a
merge buffer. The FTL flushes the buffer only when the
buffer is full to ensure there are no partial writes. The
buffer is striped across different flash banks to minimize
the idle time when a request waits for a free bank. This
also improves sequential write performance by nullify-
ing the impact of partial or unaligned writes for requests
merged by the I/O scheduler.

This change converts the FTL to do log-structured
writes. As a result, page address mapping can no longer
be done at 32 KB granularity. We modified the FTL to
keep mappings at 4 KB, which quadruples the size of the
mapping data structure.

Figure 3 shows the write performance of the OpenSSD
board using the reference firmware and page-mapped
FTL implementation (baseline), and with merging and
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Figure 3: Small Requests: Impact of merge buffering on write
performance.

buffering optimizations (new) on an empty device. For
the enhanced system, the random write performance for
4 KB requests from the application is nine times the base-
line, and only 1% lower than sequential writes. Sequen-
tial performance is 22% better than the baseline because
all writes are performed as aligned 32 KB operations.
With the use of a write merge buffer, random write per-
formance is close to the peak device write rate of 22,528
IOPS. This is close to commercial SSD performance and
makes the OpenSSD board useful for prototyping.
Read Performance. Sequential read performance of
the baseline FTL is excellent (125 MB/sec) because vir-
tual pages contained contiguous data. However, random
reads perform similar to random writes and achieve only
2,340 IOPS. Using a merge buffer can hurt sequential
reads if data is written randomly, because a 32 KB vir-
tual page may contain a random selection of data.

We implement two optimizations to improve perfor-
mance. First, we introduce a read buffer between flash
and the SATA buffer manager. When a virtual page con-
tains many 4 KB blocks that are valid, the FTL reads the
entire virtual page into the read buffer but discards the
invalid chunks. For pages that have only a small por-
tion overwritten, this is much more efficient than read-
ing every 4 KB chunk separately. Second, we modified
the FTL to start the DMA transfer to the host as soon
as the required chunks were in the read buffer, rather
than waiting for the whole virtual page to come directly
from flash. This reduces the waiting time for partial flash
reads. These two optimizations help us to exploit par-
allelism across different flash banks, and still make sure
that the buffer manager starts the DRAM to host transfer
only after firmware finishes the flash to DRAM transfer.

Figure 4 shows the overall performance of the base-
line and new systems for 4 KB requests. For writes, the
new system has improved performance for both random
and sequential access patterns as shown in Figure 3. For
sequential reads, the new system is 30% slower because
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Figure 4: Read/Write Performance: On baseline unopti-
mized and new optimized OpenSSD FTLs for fio benchmark
with 4 KB request sizes.

of the delay added by the read buffer. For random 4 KB
requests, the new system is twice as fast as the baseline,
largely because of the optimization to reply as soon as
only the requested data has been copied. The baseline
system, in contrast, waits for an entire 32 KB virtual page
on every 4 KB read. Thus, we sacrifice some sequential
performance to improve random performance, which is
likely to be more beneficial for a cache.

3.1.3 Lessons Learned
The experience analyzing and improving baseline SSD
performance reiterated past lessons about SSD design:

• Huge performance gains are available through
merging and buffering; designs that forgo these op-
portunities may suffer on real hardware. With larger
block sizes and increased parallelism in upcoming
devices, these techniques would be even more im-
portant to fully saturate the internal bandwidth pro-
vided by flash.
• SSD designs that are sensitive to alignment and re-

quest length may have poor performance due to I/O
scheduler merging or application workload charac-
teristics. A good SSD design will compensate for
poor characteristics of the request stream.

3.2 OS and Device Interfaces
A key challenge in implementing Nameless Writes and
the SSC is that both designs change the interface to
the device by adding new commands, new command re-
sponses, and in the case of Nameless Writes, unrequested
up-calls. In simulation, these calls were easy to add
as private interfaces into the simulator. Within Linux
though, we had to integrate these commands into the ex-
isting storage architecture.

3.2.1 Problems
We identified three major problems while implementing
support for SSC and Nameless SSD interfaces in the OS
and device: how to get new commands through the OS

5



Cache Manager 

File System or Application 

Device Mapper 

Block Layer and I/O Scheduler 

SCSI Layer 

ATA Layer 

AHCI Driver 

SSC or Nameless-
Write Device 

Request 
Queue 

ATA Command 
Queue 

Device Interface 

OS I/O  
Requests 

SSC read errors 
nw-phy-address 

nw-up-calls 
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storage stack into the device, how to get new responses
back from the device, and how to implement commands
within the device given its hardware limitations.

First, the forward commands from the OS to the device
pass through several layers in the OS, shown in Figure 5,
which interpret and act on each command differently.
Requests enter the storage stack from the file system or
layers below, where they go through a scheduler and then
SCSI and ATA layers before the AHCI driver submits
them to the device. For example, the I/O scheduler can
merge requests to adjacent blocks. If it is not aware that
the SSC’s write-clean and write-dirty commands are dif-
ferent, it may incorrectly merge them into a single, larger
request. Thus, the I/O scheduler layer must be aware of
each distinct command.

Second, the reverse path responses from the device to
the OS are difficult to change. For example, the SSC
interface returns a not-present error in response to read-
ing data not in the cache, and the nameless interfaces re-
turns the physical address for data following a nameless
write. However, the AHCI driver and ATA layer both
interpret error responses as a sign of data loss or corrup-
tion. Their error handlers retry the read operation again
with the goal of retrieving the page, and then freeze the
device by resetting the ATA link. Past research demon-
strated that storage systems often retry failed requests au-
tomatically [15, 28]. In addition, the SATA write com-
mand response has no fields with which an address can
be returned, so returning the physical location of data is
difficult.

Third, the OpenSSD platform provides hardware sup-
port for the SATA protocol (see Figure 2) in the form
of hardware command queues and a SATA buffer man-
ager. When using the command queues, the hardware
does not store the command itself and identifies the com-
mand type from the queue it is in. While firmware can

choose where and what to enqueue, it can only enqueue
two fields: the logical block address (lba) and request
length (numsegments). Furthermore, there are only two
queues (read and write), so only two commands can ex-
ecute as fast commands.

3.2.2 Solutions
We developed several general techniques for introduc-
ing new commands. We defer discussion of the detailed
mechanisms for Nameless Writes and SSCs to the fol-
lowing sections.
Forward commands through the OS. At the block-
interface layer, we sought to leave as much code as pos-
sible unmodified. Thus, we augment block requests with
an additional command field, effectively adding our new
commands as sub-types of existing commands. We mod-
ified the I/O scheduler to only merge requests with the
same command and sub-type. For the SSC, a write-dirty
command is not merged with a write-clean operation.
The SCSI or ATA layers blindly pass the sub-type field
down to the next layer. We pass all commands that pro-
vide data as a write, and all other commands, such as
exists and evict for SSCs, as read commands.

We also modified the AHCI driver to communicate
commands to the OpenSSD device. Similar to higher
levels, we use the same approach of adding a sub-type
to existing commands. Requests use normal SATA com-
mands and pass the new request type in the rsv1 reserved
field, which is set to zero by default.
OpenSSD request handling. Within the device, com-
mands arrive from the SATA bus and are then enqueued
by the host-interface firmware. The FTL asynchronously
pulls requests from the queues to be processed. Thus, the
key change needed for new requests is to communicate
the command type from arriving commands to the FTL,
which executes commands. We borrow two bits from the
length field of the request (a 32-bit value) to encode the
command type. The FTL decodes these length bits to
determine which command to execute, and invokes the
function for the command. This encoding ensures that
the OpenSSD hardware uses the fast path for new vari-
ations of read and writes, and allows multiple variations
of the commands.
Reverse-path device responses. The key challenge for
the SSC implementation is to indicate that a read request
missed in the cache without returning an error, which
causes the AHCI and ATA layers to retry the request or
shutdown the device. Thus, we chose to return a read
miss in the data portion of a read as a distinguished pat-
tern; the FTL copies the pattern into a buffer that is re-
turned to the host rather than reading data from flash.
The cache manager system software accessing the cache
can then check whether the requested block matches the
read-miss pattern, and if so consult the backing disk.
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This approach is not ideal, as it could cause an unnec-
essary cache miss if a block using the read-miss pattern
is ever stored. In addition, it raises the cost of misses, as
useless data must be transferred from the device.

We defer the discussion of the reverse path for Name-
less Writes to Section 3.4, as they demand even greater
changes to the storage stack.

3.2.3 Lessons Learned
Passing new commands to the OpenSSD and receiving
new responses proved surprisingly difficult.

• The OS storage stack’s layered design may require
each layer to act differently for the introduction of
a new forward command. For example, new com-
mands must have well-defined semantics for request
schedulers, such as which commands can be com-
bined and how they can be reordered.
• SSDs hardware and firmware must evolve to sup-

port new interfaces. For example, the hardware
command queue and the DMA controller are built
for standard interfaces and protocols, which re-
quires us to mask the command type in the firmware
itself to still use hardware accelerated servicing of
commands.
• The device response paths in the OS are difficult

to change, so designs that radically extend exist-
ing communication from the device should consider
data that will be communicated. For example, most
storage code assumes that errors are rare and catas-
trophic. Interfaces with more frequent errors, such
as a cache that can miss, must address how to return
benign failures. It may be worthwhile to investigate
overloading such device responses on data path for
SATA/SAS devices.

3.3 SSC Implementation
The SSC implementation consists of two major portions:
the FTL functions implementing the interface, such as
write-dirty and write-clean, and the internal FTL mecha-
nisms implementing FTL features, such as consistency
and a unified address space. The interface functions
proved simple to implement and often a small extension
to the existing FTL functions. In contrast, implementing
the internal features was far more difficult.

3.3.1 Interfaces
The data access routines, read, write-dirty and write-
clean are similar to existing FTL routines. As noted
above, the major difference is that the FTL tracks the
clean/dirty status of each page of data, and the read com-
mand tests to see if the page is present and can fail if
it is not. Hence, a read request checks the mapping ta-
ble in the FTL (described in Section 3.3.2) to see if the
page is present before fetching the physical location of
the data and initiating a flash read. The write-dirty and

write-clean select a physical location to write the data,
then update the page map with the new address and a
flag indicating if the bit is dirty. Finally, they initiate a
flash transfer to write out the new data. We discuss how
this data is kept consistent below.

The cache-management commands evict and clean
operate largely on the map: evict removes a mapping
and marks the corresponding flash page as empty, while
clean only clears the dirty bit in the map. The exists com-
mand is used to query the state of a range of logical block
addresses, and returns which blocks are dirty and need to
be cleaned. The SSC accesses the page map to check the
dirty bit of each page in the range, and return the result
as if it was data from a read operation.

3.3.2 Internal Mechanisms
The SSC design describes three features that differ from
standard flash FTLs. First, SSCs provide strong consis-
tency guarantees on metadata for cache eviction. Sec-
ond, SSCs present a unified address space in which the
device can be accessed with disk block addresses. Fi-
nally, SSCs implement silent eviction as an alternative
to garbage collection. We now describe the problems
and solutions associated with implementing these mech-
anisms.

Consistency and durability. The FlashTier SSC de-
sign provided durability and consistency for metadata by
logging mapping changes to the out-of-band (OOB) area
on flash pages. This design was supposed to reduce the
latency of synchronous operations, because metadata up-
dates execute with data updates at no additional cost. We
found, though, that the OpenSSD hardware reserves the
OOB area for error-correcting code and provides no ac-
cess to software. In addition, the SSC design assumed
that checkpoint traffic could be interleaved with fore-
ground traffic, while we found they interfere.

We changed the logging mechanism to instead use the
last virtual page of each 4 MB erase block. The FTL
maintains a log of changes to the page map in SRAM.
After each erase block fills, the FTL writes out the meta-
data to its last page. This approach does not provide the
immediate durability of OOB writes, but amortizes the
cost of logging across an entire erase block.

FlashTier uses checkpoints to reduce the time to re-
construct a page map on startup. We store checkpoints in
a dedicated area on each flash bank. During a checkpoint,
the FTL writes all metadata residing in SSC SRAM and
DRAM to the first few erase blocks of each flash bank.
While storing metadata in a fixed location could raise
reliability issues, they could be reduced by moving the
checkpoints around and storing a pointer to the latest
checkpoint. The FTL restores the page map from the
checkpoint and log after a restart. It loads the check-
pointed SSC SRAM and DRAM segments and then re-
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plays the page map updates logged after the checkpoint.
While the FlashTier design wrote out checkpoints on

fixed schedule, our implementation defers checkpointing
until requested by the host. When an application issues
an fsync operation, the file system passes this to the de-
vice as an ATA flush command. We trigger a checkpoint
as part of flush. Unfortunately, this can make fsync()
slower. The FTL also triggers a checkpoint when it re-
ceives an ATA standby or idle command, which allows
checkpointing to occur when there are no I/O requests.

Address mappings. The FlashTier cache manager ad-
dresses the SSC using disk logical block numbers, which
the SSC translates to physical flash addresses. How-
ever, this unification introduces a high degree of sparse-
ness in the SSC address space, since only a small frac-
tion of the disk blocks are cached within the SSC. The
FlashTier design supported sparse address spaces with a
memory-optimized data structure based on perfect hash
function [14]. This data structure used dynamically allo-
cated memory to grow with the number of mappings, un-
like a statically allocated table. However, the OpenSSD
firmware has only limited memory management features
and uses a slow embedded ARM processor, which makes
use of this data structure difficult.

Instead, our SSC FTL statically allocates a mapping
table at device boot, and uses a lightweight hash function
based on modulo operations and bit-wise rotations. To
resolve conflicts between disk address that map to the
same index, we use closed hashing with linear probing.
While this raises the cost of conflicts, it greatly simplifies
and shrinks the code.

Free-space management. FlashTier used hybrid ad-
dress translation to reduce the size of the mapping ta-
ble in the device. To reduce the cost of garbage collec-
tion, which must copy data to create empty erase blocks,
FlashTier uses silent eviction to delete clean data rather
than perform expensive copy operations.

In the prototype, we maintain a mapping of 4 KB
pages, which reduces the cost of garbage collection be-
cause pages do not need to be coalesced into larger con-
tiguous blocks. We found this greatly improved perfor-
mance for random workloads and reduced the cost of
garbage collection.

We implement the silent eviction mechanism to re-
duce the number of copies during garbage collection. If a
block has no dirty data, it can be discarded (evicted from
the cache) rather than copied to a new location. Once the
collector identifies a victim erase block, it walks through
the pages comprising the block. If a page within the vic-
tim block is dirty, it uses regular garbage collection to
copy the page, and otherwise discards the page contents.

We also implemented a garbage collector that uses
hardware copyback support, which moves data within

Name Function
nameless-write Write a data block (with no logi-

cal address) and returns its assigned
physical address

virtual-write Write a metadata block (with a file
system assigned logical address)

physical-read Read a data block using its physical
address

virtual-read Read a metadata block using its log-
ical address

free Free, or trim, a block
migration-callback Up-call into the file system to indi-

cate a data block has been moved to
a new physical address

Table 3: The Nameless Write SSD Interface.

a bank, to improve performance. Similar to FlashTier,
we reserve 7% of the device’s capacity to accommodate
bad blocks, metadata (e.g., for logging and checkpoint-
ing as described above), and to delay garbage collection.
The FTL triggers garbage collection when the number of
free blocks in a bank falls below a threshold. The col-
lector selects a victim block based on the utilization of
valid pages, which uses a hardware accelerator to com-
pute the minimum utilization across all the erase blocks
in the bank.

3.3.3 Lessons Learned

The implementation of address translation, free-space
management, and consistency and durability mecha-
nisms, raised several valuable lessons.

• Designs that rely on specific hardware capabilities
or features, such as atomic writes, access to out-of-
band area on flash, and dynamic memory manage-
ment for device SRAM/DRAM, should consider the
opportunity cost of using the feature, as other ser-
vices within the SSD may have competing demands
for it. For example, the OpenSSD flash controller
stores ECC in the OOB area and prohibits its us-
age by the firmware. Similarly, the limited amount
of SRAM requires a lean firmware image with stat-
ically linked libraries and necessitates the simpler
data structure to store the address mapping.
• Many simulation studies use small erase block

sizes, typically a few hundreds of KBs. In con-
trast, the OpenSSD platform and most commercial
SSDs use larger erase block sizes from 1–20 MB to
leverage the internal way and channel parallelism.
This requires address translation at a finer granu-
larity, which makes it even more important to op-
timize the background operations such as garbage
collection or metadata checkpointing whose cost is
dependent on mapping and erase block sizes.

8



3.4 Nameless Write Implementation
The Nameless-Write interface presented unique imple-
mentation challenges because it is a much larger change
to SSD operations. Table 3 lists the Nameless Write
commands. We focus on the additional challenges that
Nameless Writes posed beyond those with SSCs. Our
Nameless-Writes prototype is an initial implementation
of the design’s basic functionality but has not yet been
optimized for high performance.

3.4.1 Interfaces
Nameless Writes fundamentally change how an SSD in-
teracts with the OS. The first change is the nameless-
write command, which passes data but no address, and
expects the device to return a physical address or an er-
ror indicating the write failed. Passing data without an
address is simple, as the firmware can simply ignore the
address. However, a write reply message only contains
8 status bits and all other fields are reserved and can not
be used to send physical addresses through the ATA in-
terface. On an error return, the device can supply the
address of the block in the request that could not be writ-
ten. This seemed promising as a way to return the phys-
ical address. However, the device, the AHCI driver, and
the ATA layer interpret errors as catastrophic and thus we
could not use errors to return the physical address.

Our second approach was to re-purpose an existing
SATA command that already returns a 64-bit address.
Only one command, READ NATIVE MAX ADDR,
returns an address. The OS would first send
READ NATIVE MAX ADDR, to which the Nameless-
Write device returns the next available physical address.
The OS would then record the physical address, and
send the nameless-write command with that address.

We found that using two commands for a write raised
new problems. First, the READ NATIVE MAX ADDR
command is an unqueuable command in the SATA in-
terface, so both the ATA layer and the device will flush
queued commands and hurt performance. Second, the
OS may reorder nameless writes differently than the
READ NATIVE MAX ADDR commands, which can hurt
performance at the device by turning sequential writes
into random writes. Worse, though, is that the OS
may send multiple independent writes that lie on the
same flash virtual page. Because the granularity of file-
system blocks (4 KB) is different from internal flash vir-
tual pages (32 KB), the device may try to write the virtual
page twice without erasing the bock. The second write
silently corrupts the virtual page’s data.

The migration-callback command raised additional
problems. Unlike all existing calls in the SATA inter-
face, a Nameless-Write device can generate this up-call
asynchronously during background tasks such as wear
leveling and garbage collection. This call notifies the file

File System or Application 

Block Layer I/O Scheduler 
Request 
Queue 

Device Interface 

Nameless Write 
Interfaces 

Nameless Write FTL 

Raw OpenSSD 

Nameless Write 
Upcalls 

Page Read, Page Write, Block Erase 

SCSI, ATA, AHCI 

Figure 6: Nameless Write FTL. Implemented as a layer
within the host operating system that accesses OpenSSD as a
raw flash device.

system that a block has been relocated and it should up-
date metadata to reflect the new location. We first con-
sidered piggybacking this call on responses to other com-
mands, but this raises the same problem of returning ad-
dresses described above. Alternatively, the file system
could periodically poll for moved data, but this may be
too costly given the expected rarity of up-calls.

3.4.2 Internal Mechanisms
Based on the complexity of implementing the full
Nameless-Write interface within the device, we opted in-
stead to implement a split-FTL design, where the respon-
sibilities of the FTL are divided between firmware within
the device and an FTL layer within the host operating
system. This approach has been used for PCI-attached
flash devices [13], and we extend it to SATA devices as
well. In this design, the device exports a low-level inter-
face and the majority of FTL functionality resides as a
layer within the host OS.

We built the Nameless-Write FTL at the block layer
below the file system and the I/O scheduler and above
the SCSI, ATA, and AHCI layers. Figure 6 shows the
design. The FTL in the host OS implements the full set of
interfaces listed in Table 3, and we implemented a basic
firmware that provides flash-page read, flash-page write,
and flash-block erase. The host FTL converts a command
in the Nameless-Write interface into a sequence of low-
level flash operations.

The Nameless-Write FTL processes I/O request
queues before they are sent to the lower layers. For each
write request queue, the FTL finds a new flash virtual
page and assigns physical addresses in the virtual page
to the I/Os in the request queue in a sequential order. We
change the I/O scheduler to allow a request queue to be
at most the size of the flash virtual page (32 KB with
OpenSSD); going beyond the virtual page size does not
improve write performance but complicates FTL imple-
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mentation. We choose not to use the same flash virtual
page across different write request queues, since doing
so will lead to data corruption; lower layers may reorder
request queues, resulting in the device write the same vir-
tual page without erasing it. The write performance is
highly dependent on the size of the request queues, since
each request queue is assigned a flash virtual page; larger
request queues result in more sequential writes at the de-
vice level. Therefore, to improve random write perfor-
mance, we change the kernel I/O scheduler to merge any
writes (virtual or physical) to the nameless-writing SSD
device. We treat virtual writes in a similar way as physi-
cal writes. The only difference is that when we assign a
physical address to a virtual write, we keep the address
mapping in the FTL.

For read requests, we disallow merging of physical
and virtual reads and do not change other aspects of the
I/O scheduler. For virtual reads, we look up the address
mapping in the FTL.

The FTL in the host OS maintains all metadata that
were originally maintained by the device firmware, in-
cluding valid pages, free block list, block erase counts,
and bad block list. On a flush, used by fsync(), the FTL
writes all the metadata to the device and records the lo-
cation of the metadata at a fixed location.

The FTL uses the valid page information to decide
which block to garbage collect. It read the valid pages
into host DRAM, erases the block, and then writes the
data to a new physical block. Once the data has been
moved, it sends a migration-callback to notify the file
system that data has been moved. Because the FTL is in
the host OS, this is a simple function call. We note that in
this design there is a race condition that can lead to lost
data if the system fails before notifying the file system.
The proposed Nameless-Write design avoided this race
by atomically writing a record of the moved data to the
OOB area, but neither atomic writes nor OOB space is
available on OpenSSD.

Running the FTL in the kernel provides a hospitable
development environment, as it has full access to ker-
nel services. However, it may be more difficult to op-
timize the performance of the resulting system, as the
kernel-side FTL cannot take advantage of internal flash
operations, such as copy-backs to efficiently move data
within the device. For enterprise class PCI-e devices,
kernel-side FTLs following NVM-express specification
can implement the block interface directly [25] or use
new communication channels based on RPC-like mech-
anisms [23].

3.4.3 Lessons Learned
The implementation of Nameless Writes with OpenSSD
and the ATA interfaces raised several valuable lessons.

• Allowing the host OS to write directly to physical

addresses is dangerous, because it cannot guarantee
correctness properties such as a flash page is always
erased before being rewritten. This is particularly
dangerous if the internal write granularity is differ-
ent than the granularity used by the OS.
• Upcalls from the device to the OS do not fit the

existing communication channels between the host
and device, and changing the control path for re-
turning values is significantly more difficult than in-
troducing new forward commands or signalling be-
nign errors.
• Building the Nameless-Write FTL at the block layer

is simpler than at the device firmware since the
block layer has simpler interfaces and interacts with
the file system directly.
• With the knowledge of SSD hardware configura-

tion, the kernel I/O scheduler can be changed to im-
prove I/O perfomance with an in-kernel FTL.

4 Evaluation
The overall goal of implementing SSCs and Nameless
Writes in a hardware prototype is to validate the de-
sign choices. For the SSC design, the prototype is com-
plete to fully benchmark with arbitrary workloads. The
Nameless-Write prototype is complete enough to test the
performance of the new interface.

4.1 Methodology
We compare the SSC design against a system using only
a disk and a system using the optimized OpenSSD as
a cache with Facebook’s unmodified FlashCache soft-
ware [10]. We enable selective caching in the cache man-
ager, which uses the disk for sequential writes and only
sends random writes to the SSC. This feature was already
present in Facebook’s FlashCache software, upon which
we based our cache manager. We evaluate using standard
workload profiles with the filebench benchmark.

We use a system with 3 GB DRAM and a Western Dig-
ital WD1502FAEX 7200 RPM 1.5 TB plus the OpenSSD
board configured with 4 flash modules (128 GB total).
We reserve a 75 GB partition on disk for test data, and
configure the OpenSSD firmware to use only 8 GB in or-
der to force garbage collection. We compare three sys-
tems: No-Cache uses only the disk, SSD uses unmodi-
fied FlashCache software in either write-through (WT) or
write-back (WB) mode running on the optimized base-
line SSD (Section 3.1). The SSC platform uses our SSC
implementation with a version of FlashCache modified
to use FlashTier’s caching policies, again in write-back
or write-through mode.

4.2 SSC Prototype Performance
Figure 7 shows the performance of the filebench work-
loads — fileserver (1:2 reads/writes), webserver (10:1
reads/writes), and varmail (1:1:1 reads/writes/fsyncs) —
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Figure 7: SSC Prototype Performance. The performance
of write-back and write-through caches using SSD and SSC
relative to no-cache disk execution.

using SSD and SSC in write-back and write-through
caching modes, similar to FlashTier [29]. The perfor-
mance is normalized to the No-Cache system.

First, we find that both SSD and SSC systems sig-
nificantly outperform disk for all three workloads. This
demonstrates that the platform is fast enough to execute
real workloads and measure performance improvements.
Second, we find that for the write-intensive fileserver
workload, the SSC prototype shows benefits of silent
eviction. In the write-back configuration, the SSC per-
forms 52% better than the improved baseline SSD. In the
write-through configuration, the SSC performs 45% bet-
ter. For the read-intensive webserver workload, we find
that most data accesses are random reads and there is
no garbage collection overhead or silent eviction benefit,
which repeats FlashTier projections. In addition, there
was little performance loss from moving eviction deci-
sions out of the cache manager and into the FTL.

These tests are substantially different than the ones re-
ported for FlashTier (different workloads, page-mapped
vs. hybrid FTL, different performance), but the overall
results validate that the SSC design does have the poten-
tial to greatly improve caching performance. The benefit
of the SSC design is lower with OpenSSD largely be-
cause the baseline uses a page-mapped FTL instead of a
hybrid FTL, so garbage collection is less expensive.

Third, we find that silent eviction reduces the number
of erase operations, similar to FlashTier’s results. For the
fileserver workload, the system erases 90% fewer blocks
in both write-back and write-through modes. This reduc-
tion occurs because silent eviction creates empty space
by aggressively evicting clean data that garbage collec-
tion keeps around. In addition, silent eviction reduces
the average latency of I/O operations by 39% with the
SSC write-back mode compared to the SSD and 31% for
write-through mode.

Overall, our results with OpenSSD correlate with the
published FlashTier results. The major difference in
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Figure 8: Read/Write Performance: On baseline, new (opti-
mized) OpenSSD FTLs, and Nameless split-FTL for fio bench-
mark with 4 KB request size.

File System Size
FTL 4 GB 8 GB 16 GB 32 GB 48 GB
Page-Map 2.50 MB 9.10 MB 17.8 MB 35.1 MB 52.8 MB
Nameless 94 KB 189 KB 325 KB 568 KB 803 KB

Table 4: FTL Memory Consumption.

functionality between the two systems is different consis-
tency guarantees: FlashTier’s SSC synchronously wrote
metadata after every write-dirty, while our OpenSSD
version writes metadata when an erase block fills or af-
ter an ATA flush command. For the fsync and write-
intensive varmail workload, we find that the cost of con-
sistency for the SSC prototype due to logging and check-
points within the device is lower than the extra syn-
chronous metadata writes from host to SSD. As a result,
the SSC prototype performs 27% better than the SSD
system in write-back mode. In write-through mode, the
SSD system does not provide any data persistence, and
outperforms the SSC prototype by 5%.

4.3 Nameless Writes Prototype
We evaluate the Nameless-Write prototype to validate
the performance claims of the interface and memory con-
sumption as projected earlier in simulation [33]. We
compare Nameless-Write prototype against the baseline
unoptimized and optimized page-mapped FTL. We mea-
sure performance with fio microbenchmarks and mem-
ory consumption with different file system images. We
execute the experiments on an OpenSSD board with two
flash chips (8 flash banks with 64 GB total).

Figure 8 shows the random (4 KB blocks) and sequen-
tial write and read performance with the baseline, opti-
mized, and Nameless-Write FTLs. For sequential writes,
sequential reads, and random reads, the Nameless-Write
FTL has similar IOPS as the baseline page-mapped FTL.
It assigns physical addresses in sequential order, which
is the same as the baseline FTL. For random writes,
Nameless-Writes perform better than the baseline but
worse than sequential write of any FTL. Even though we
change the I/O scheduler to merge random writes, we
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find the random write request queue size is smaller than
the size of the flash virtual page.

Table 4 presents the memory usage of the page-
mapped FTL (baseline or optimized) and the Nameless-
Write FTL with different file system image sizes (from
4 GB to 48 GB). We used Impressions to create these file
system images [1]. The memory consumption includes
the address mapping tables and all additional FTL meta-
data. The Nameless-Write FTL uses much less mem-
ory than the page-mapped FTL. Unlike the page-mapped
FTL, the Nameless-Write FTL does not need to store the
address mappings for nameless writes (data) and only
stores address mappings for virtual writes (metadata).

Overall, we find that the core Nameless-Write design
performs similar to the page-mapped FTL and provides
significant memory savings as projected earlier [33].
The major source of performance difference between
Nameless-Write and optimized page-mapped FTL is the
additional flash optimizations, such as random write
buffering, required to overcome the mismatch between
hardware and software page sizes.

5 Related Work
Our work builds on past work on prototyping flash de-
vices and introducing new storage interfaces.
Hardware Prototypes. Research platforms for charac-
terizing flash performance and reliability have been de-
veloped in the past [4, 5, 9, 20, 21]. In addition, there
have been efforts on prototyping phase-change memory
based prototypes [3, 6]. However, most of these works
have focused on understanding the architectural trade-
offs internal to flash SSDs and have used FPGA-based
platforms and logic analyzers to measure individual raw
flash chip performance characteristics, efficacy of ECC
codes, and reverse-engineer FTL implementations. In
addition, most FPGA-based prototypes built in the past
have performed slower than commercial SSDs, and pro-
hibit analyzing the cost and benefits of new SSD designs.
Our prototyping efforts use OpenSSD with commodity
SSD parts and have an internal flash organization and
performance similar to commercial SSD. There are other
projects creating open-source firmware for OpenSSD for
research [31, 32] and educational purposes [8]. Further-
more, we investigated changes to the flash-device inter-
face, while past work looks at internal FTL mechanisms.
New Flash Interfaces. In addition to FlashTier [29]
and Nameless Writes [33], there have been commer-
cial efforts on exposing new flash interfaces for file sys-
tems [19], caching [11, 18, 24] and key-value stores [12].
However, there is little known to the application de-
velopers about the customized communication channels
used by the SSD vendors to implement new application-
optimized interface. We focus on these challenges and
propose solutions to overcome them.

While we re-use the existing SATA protocol to ex-
tend the SSD interface, another possibility is to bypass
the storage stack and send commands directly to the de-
vice. For example, Fusion-io and the recent NVM Ex-
press specification [25] attach SSDs to the PCI express
bus, which allows a driver to implement the block in-
terface directly if wanted. Similarly, the Marvell Drag-
onFly cache [23] bypasses SATA by using an RPC-like
interface directly from a device driver, which simplifies
integration and reduces the latency of communication.

6 Discussion and Conclusions
Implementing novel SSD interfaces in a hardware pro-
totype was a substantial effort, yet ultimately proved its
value by providing a concrete demonstration of the per-
formance benefits of FlashTier’s SSC design.

Overall, we found the effort required to implement the
two designs was comparable to the effort needed to use
a simulator or emulator. While we faced challenges in-
tegrating new commands into the operating system and
firmware, with a simulator or emulator we would have
struggled to accurately model realistic hardware and to
ensure we appropriately handled concurrent operations.
With real hardware, there is no need to validate the ac-
curacy of models, and therefore, OpenSSD is a better
environment to evaluate new SSD designs.

A major benefit of using OpenSSD is the ease of test-
ing workloads. A design that only changes the internal
workings of the device may be able to use trace-based
simulation, but designs that change the interface have to
handle new requests not found in existing traces. In con-
trast, working with OpenSSD allows us to run real appli-
cation benchmarks and directly measure performance.

Working with a hardware prototype does raise addi-
tional challenges, most notably to add new commands to
the storage stack. Here, our split-FTL approach may be
promising. It leaves low-level flash operations in the de-
vice and runs the bulk of the FTL in the host OS. This
approach may be best for designs with hardware require-
ments beyond the platform’s capabilities, and for designs
that radically change the device interface.

Finally, our prototyping efforts demonstrate that the
ability to extend the interface to storage may ultimately
be limited by how easily changes can be made to the
OS storage stack. Research that proposes radical new
interfaces to storage should consider how such a device
would integrate into the existing software ecosystem. In-
troducing new commands and returning benign errors is
difficult yet possible by tunneling them through native
commands, and overloading the data path from the de-
vice to host. However, augmenting the control path with
device upcalls requires significant changes to many OS
layers, and thus may be better implemented through new
communication channels.
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