
Storage Systems for Storage-Class Memory

Haris Volos, Michael Swift
Computer Sciences Department, University of Wisconsin–Madison

{hvolos, swift}@cs.wisc.edu

We make the case for storage systems that expose storage-class memory
directly to user mode programs, so that programs can read and write file
data without kernel interaction but still maintain the sharing and protection
features of file systems.

1. Introduction
Emerging device technologies including phase-change-memory
(PCM), spin-torgue transfer RAM (STT-RAM) and memristors
promise high-speed storage. These technologies collectively are
termedstorage-class memory(SCM) [3] as data can be accessed
through ordinary load/store instructions rather than through I/O re-
quests. Hence, user-mode code can access data directly, so there
is no need for the OS to mediate every access. Furthermore, exist-
ing virtual memory hardware can protect access to individual data
pages. The existing OS structure of file systems as a kernel-level
service may no longer be necessary with storage class memory, and
causes unneeded complexity and lower performance.

We propose rewriting the storage stack to create a new flexi-
ble, high-performance storage architecture enabled by storage-class
memory. While existing file systems manage a shared resource in-
accessible from user mode, storage-class memory can be mapped
into user-mode address spaces. This provides the potential of al-
lowing application to define their own file-system format without
needing to extend the kernel, yet still allowing safe sharing between
applications.

We next motivate and make the case for storage systems that
expose SCM directly to user mode programs, and then we briefly
overview our work in progress of building a user-mode file system.

2. User-mode Storage Systems for SCM
Despite rapid advancements in storage technology, the fundamen-
tal organization of an operating system’s storage architecture has
remained stable for decades: applications invoke the kernel to store
and retrieve data, which invokes a file system, which invokes a
block driver. There have been additions to this stack, such as log-
ical volume managers and RAID controllers, but the structure has
remained constant. While there have been attempts to move the
file system code to user mode, these systems change the environ-
ment for file system code but do not change the layering of com-
ponents [6, 9]. In addition, some applications, such as databases,
bypass the file system but still rely on the lower levels of the stor-
age stack.

Four features of past storage technologies require this design:
(1) Disks and other common storage devices do not implement
any protection mechanism. Thus, the operating system uses per-
missions on files to decide which processes have access to which
blocks on disk, (2) Disks are accessed through a single shared
queue and benefit significantly from scheduling, (3) Slow disks
benefit from shared caching, so that each process need not fetch
data itself from disk, (4) Disks use DMA to read/write data, which

500B-9.77KB 4KB-256KB

File size range

0
20
40
60
80

100
550
570

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

libFS

ext4

Figure 1. Execution time of the PostMark benchmark. Time axis is
not continuous.

does not respect memory protection. Hence, user-mode access to
disks presents a security vulnerability.

However, SCM suffers from none of these limitations: as mem-
ory, it can be protected by existing memory-translation hardware.
Furthermore, it has much less need for scheduling, as there are not
long seek or rotation latencies. Because SCM provides speeds near
DRAM, caching data may be unnecessary. Finally, DMA may still
be useful for offloading large transfers from the CPU, but can be
initiated by the CPU and hence protected.

With these features in mind, this proposal seeks to redesign how
operating systems support the file abstraction, which we believe
will remain important for organizing data as it provides useful
features such as naming, block indexing, protection or sharing data
between processes. We seek two benefits from this redesign. First,
direct access to file data from user-level can be lower latency than
going through the kernel, as it avoids the costs changing mode and
cache pollution from entering the kernel [2, 8]. As storage speeds
increase, this overhead may dominate the cost of accessing the
data. Recent work on solid-state storage showed that for high-speed
connections, software overhead significantly limited the available
bandwidth to storage [1].

To estimate the performance benefit of direct-access, we wrote
a simple library file system (libFS) that stores data in memory.
libFS is capable enough to support the PostMark benchmark. Fig-
ure 1 presents the execution time of PostMark running on theext4
(kernel-mode) andlibFS (user-mode) file systems. To provide a
basis of fair comparison we ran ext4 on top of RAMdisk. That
is, both file systems store data in memory. PostMark parameters
are 3000 files, 1000000 transactions, and 50/50 read/append and
create/delete biases. We performed tests with two file size ranges,
500B-9.77KB (benchmark default) and 4KB-256KB. As shown
in the figure, direct access enables up to one order of magnitude
performance improvement. While this result should only be in-
terpreted as an upper bound of the performance benefit of direct-
access, we believe it demonstrates the potential behind this ap-
proach.

As a second benefit, there can be much greater flexibility in the
organization of file system data. Currently, most operating systems
use a single file system implementation for all processes. However,
there are several examples of storage systems that store many

1



large objects within a single file to avoid the file system overhead
of separate files. For example, Google’s GFS is often used to
store many large objects within a single file. Similarly, Facebook’s
Haystack photo-storage architecture stores many images within
a single file. These layouts provide faster indexing of file data
and require less dynamic memory to hold per-file metadata, such
as inodes, compared to kernel-level files. While a better kernel-
level file system could provide similar benefits, the difficulties
of supporting multiple file systems on a single machine and the
complexities of kernel development encourage this application-
level layering of objects within files. But, as a result the naming,
protection, and concurrency benefits of files are lost.

3. Towards a User-mode File System
We propose that file systems for SCM should be implemented
largely as a library linked into an application, rather than as a shared
kernel-level service. Implementing a file system at user level pro-
vides flexibility, as an application can determine a layout that is
most efficient for its data. In addition, for SCM, it can improve per-
formance by avoiding costly transitions to the kernel. Existing user-
mode file-system implementations retain the shared service model,
executing as an independent process, and hence provide flexibil-
ity but not performance [6, 9]. Past objections about user-mode
file systems [10] focus on the need to re-enter the kernel to ac-
cess a slow device, and the overhead of IPC to a file-system server.
However, with SCM and a library file system, neither objection still
holds.

We are building theMemory File System(MFS) that allows
applications to retain the existing file abstraction but perform most
file operations, such as opening files and reading/writing data,
without kernel involvement. In MFS, a small kernel component,
the MFS kernelprovides access to data stored in SCM. A user-
mode library,MFS lib is linked to applications and provides the file
system API.

The MFS kernel’s role in file access is to securely record and
enforce resource usage, but not to determine how it is used. The
MFS kernel exposes SCM to the MFS lib in the form of memory
extents that the MFS lib uses to store data and metadata. While the
MFS kernel records the memory extents in use by a file so that a
process with permission to read a file can access those extents, it
is the responsibility of MFS lib to decide how file data maps into
extents. The MFS lib should therefore manage its own metadata to
store the mapping of file offsets to extends. Finally, the MFS kernel
lets the MFS lib to group a set of files into a collection for sharing
and protection. While the MFS kernel ensures that a process has
access to all the extents in a file or collection of files, it completely
delegates responsibility for naming and indexing to the MFS lib.

3.1 Challenges

Obviously, the above description is incomplete and there are several
remaining challenges and open research questions that need to be
addressed before having a user-mode file system that is as robust
and capable as its kernel-mode counterpart. Below we identify a
couple of them.

Protection. While page-based protection provided by the MMU
may be sufficient for enforcing access control to data, it may be
cumbersome for metadata, which may benefit from a more fine-
grain protection mechanism.

Integrity. A file system must protect the integrity of its metadata,
such as inode and directory structures. With MFS, this code is
implemented by the MFS lib rather than in the kernel. Some file
systems may be not satisfied with enforcing integrity in user-mode
libraries.

Concurrency. Different file systems enforce different concur-
rency semantics, such as what happens with concurrent reads and
writes to the same portion of the file. There must be therefore sup-
port for concurrency control so that multiple processes can atomi-
cally write to a file or insert files into a directory simultaneously.

4. Related Work
There have been several prior projects investigating the integration
of storage-class memory into file systems. Initially cast as non-
volatile RAM (NVRAM), these memories can be used as persistent
write buffers to reduce the latency of writing data [4] or hold
frequently changing metadata [7]. However, the fundamental file
system and storage architecture are left unchanged. More recently,
Condit et al describe a file system leveraging SCM’s properties [2].
Still, the file system does not provide direct access to storage from
user mode and no flexibility in file organization.

The Exokernel [5] and Fuse [9] projects both allow implemen-
tation of file systems in user space, similar to our proposed work.
Fuse, like other user-level file systems [6, 11], retains the model of
a shared file system that accesses storage through a shared device,
such as a network or disk. The Exokernel approach is most simi-
lar, as it exposed a block interface to applications. However, it still
maintained protection of the block device within the kernel, so disk
access still required invoking a kernel-mode device driver.

5. Conclusion
We presented our work-in-progress of building storage systems that
expose storage-class memory directly to user mode programs, so
that programs can read and write file data without kernel interaction
but still maintain the sharing and protection features of file systems.
Initial experimentation with a simple library file system shows that
there is potential in exploring this approach.

References
[1] A. M. Caulfield, A. De, J. Coburn, T. Mollov, R. Gupta, and S. Swanson.

Moneta: A high-performance storage array architecture for next-
generation, non-volatile memories. InMICRO 43, Dec. 2010.

[2] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee. Better I/O through byte-addressable, persistent memory. In
SOSP 22, Oct. 2009.

[3] R. F. Freitas and W. W. Wilcke. Storage-class memory: the next storage
system technology.IBM J. Res. Dev., 52(4):439–447, 2008.

[4] D. Hitz, J. Lau, and M. Malcolm. File system design for an nfs file
server appliance. Technical Report TR 3002, NetApp, 2005.

[5] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Brice no, R. Hunt,
D. Mazières, T. Pinckney, R. Grimm, J. Jannotti, and K. Mackenzie.
Application performance and flexibility on exokernel systems. InSOSP
16, pages 52–65, Oct. 1997.

[6] D. Mazières. A toolkit for user-level file systems. InUSENIX ATC,
June 2001.

[7] E. Miller, S. Brandt, and D. Long. HeRMES: High-performance
reliable MRAM-enabled storage. InHotOS 8, May 2001.

[8] L. Soares and M. Stumm. FlexSC: Flexible system call scheduling with
exception-less system calls. InOSDI 9, Oct. 2010.

[9] M. Szeredi. Fuse: Filesystem in userspace.http://fuse.
sourceforge.net, 2005.

[10] B. Welch. The file system belongs in the kernel. InProc. of Second
USENIX Mach Symposium, pages 233–250, 1991.

[11] M. Young, A. Tevanian, R. Rashid, D. Golub, and J. Eppinger. The
duality of memory and communication in the implementation of a
multiprocessor operating system. InSOSP 11, Nov. 1987.

2


