
Mnemosyne: Lightweight Persistent Memory
Haris Volos∗, Michael Swift Andres Jaan Tack

University of Wisconsin–Madison Skype Limited
{hvolos, swift}@cs.wisc.edu andres.jaan.tack@skype.net

Fast, cheap, and persistent memory has long been a dream
for computer designers. Until recently, non-volatile storage
was either slow (e.g., disks) or expensive (e.g., NVRAM).
However, several new technologies promise cheap and fast
storage that survives across system boot. For example,
phase-change memory (PCM) provides near-DRAM speeds
and is currently available in sizes up to 64 MB, and memris-
tors may enable multiple terabytes of non-volatile memory
to be placed on-chip . These devices are termedstorage-
class memory(SCM) as they provide the interface of mem-
ory (load and store instructions) but the persistence of disks.

Existing operating systems are designed for a strict bifur-
cation of devices intomemory, fast random-access volatile
structures erased on reboot, andstorage, persistent, slow
block-based devices. Thus, research on SCM tends to fol-
low the same path. For example, recent work investigates use
of PCM within file systems [1], or as a low-power volatile
DRAM replacement [2]. Neither of these approaches ex-
poses the full power of SCM to programmers.

We propose that operating systems should expose a new
abstraction,persistent memory, to provide user-mode appli-
cations direct access to durable storage. This abstraction en-
ables programmers to make in-memory data structures per-
sistent without first converting them to a serialized format.

We see persistent memory not as a replacement for files,
but as a fast mechanism to store moderate amounts of data.
For example, Firefox 3 had a problem with callingfsync
too frequently , bringing the system to a crawl by fre-
quent flushes to disk. Persistent memory could address this
problem by providing low-latency storage of program state.
Other uses could be configuration changes, snapshots of in-
progress edits, and logs in distributed agreement protocols .
Applications can still use files for interchanging data.

We have three goals for our system to expose persistent
memory. First, it must be simple for a programmer to de-
clare data as persistent, and persistence must fit naturally
into existing programming models for volatile data struc-
tures. Second, and more important, the system must support
consistent modificationsof data structures. The system must
enable programmers to move data structures between con-
sistent states, automatically recovering to such a state after
a failure. Finally, we seek a design that is compatible with
existing commodity processors.

We are buildingMnemosyne1, a lightweight system for
exposing persistent memory to user-mode programs. Mnemosyne
provides three key services that simplify programmer use
of persistence. First, it providespersistent memory regions,
segments of virtual memory stored in SCM rather than

∗ Student
1 Mnemosyne is the personification of memory in Greek mythology, and is
pronouncednee–moss–see–nee.

volatile memory. Regions can be created automatically to
hold variables labeled with the keywordpersistent or al-
located dynamically. Mnemosyne virtualizes persistent re-
gions by swapping SCM pages to a backing file. Second,
Mnemosyne providespersistence primitives, low-level op-
erations that support consistently updating data such as log-
ging, shadow paging, and single variable atomic writes. Fi-
nally, Mnemosyne provides adurable memory transaction
mechanism that enables consistent in-place updates of arbi-
trary data structures. Thus, Mnemosyne provides a low-level
programming interface, similar to C, for accessing persis-
tent memory. Upon this base, higher-level services such as
garbage collection and safe references that ensure persis-
tent data does not point to volatile data, can be provided by
language frameworks.

Compared to past work on persistent memory and persis-
tent object stores such as ObjectStore, Thor, Texas, LRVM,
and QuickStore , Mnemosyne provides a low-level interface
allowing both high-level transactions as well as low-level
consistent updates. Furthermore, it operates at a much finer
granularity than the virtual memory pages used by these sys-
tems. Most importantly, SCM enables the implementation
to be much simpler, as data can be made persistent without
writing it out through the file system.

We have implemented a prototype as a pair of libraries
and a small set of modifications to the Linux kernel for allo-
cating and virtualizing SCM pages. We designed Mnemosyne
to run on conventional processors, requiring no special sup-
port beyond the necessary memory controller for SCM, and
implement it using regular x86 instructions with a perfor-
mance emulator for SCM accesses. Initial experiments show
that Mnemosyne provides a simple abstraction for pro-
grammers to make data structures persistent. We compare
Mnemosyne performance against Berkeley DB running on
a RAM disk with the performance of PCM. For small data
sizes, Mnemosyne transactions perform 50–250 percent bet-
ter than Berkeley DB. We also convert two applications,
OpenLDAP and Tokyo Cabinet, to use persistent memory
and find the performance of moving existing in-memory
data structures to persistent memory is 20–280 percent faster
than Berkeley DB’s optimized storage or flushing the whole
structure to a file.

References
[1] CONDIT, J., NIGHTINGALE , E. B., FROST, C., IPEK, E.,

LEE, B., BURGER, D., AND COETZEE, D. Better i/o through
byte-addressable, persistent memory. InSOSP 22(2009).

[2] L EE, B. C., IPEK, E., MUTLU , O., AND BURGER, D.
Architecting phase change memory as a scalable dram
alternative. InISCA 36(2009).


