
Applying Transactional Memory to Concurrency Bugs

Haris Volos1, Andres Jaan Tack2 ∗, Michael M. Swift1, Shan Lu1

1 Computer Sciences Department, University of Wisconsin–Madison
2 Skype Limited

1 {hvolos, swift, shanlu}@cs.wisc.edu, 2 andres.jaan.tack@skype.net

Abstract

Multithreaded programs often suffer from synchronization bugs
such as atomicity violations and deadlocks. These bugs arise from
complicated locking strategies and ad hoc synchronization methods
to avoid the use of locks. A survey of the bug databases of major
open-source applications shows that concurrency bugs often take
multiple fix attempts, and that fixes often introduce yet more con-
currency bugs. Transactional memory (TM) enables programmers
to declare regions of code atomic without specifying a lock and has
the potential to avoid these bugs.
Where most previous studies have focused on using TM to write

new programs from scratch, we consider its utility in fixing exist-
ing programs with concurrency bugs. We therefore investigate four
methods of using TM on three concurrent programs. Overall, we
find that 29% of the bugs are not fixable by transactional mem-
ory, showing that TM does not address many important types of
concurrency bugs. In particular, TM works poorly with extremely
long critical sections and with deadlocks involving both condition
variables and I/O. Conversely, we find that for 56% of the bugs,
transactional memory offers demonstrable value by simplifying the
reasoning behind a fix or the effort to implement a fix, and using
transactions in the first place would have avoided 71% of the bugs
examined. We also find that ad hoc synchronization put in place to
avoid the overhead of locking can be greatly simplified with TM,
but requires hardware support to perform well.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.5 [Software Engineering]:
Testing and Debugging

General Terms Languages, Reliability

Keywords Transactional memory, concurrent program, concur-
rency bug, debugging, atomicity violation, deadlock

1. Introduction

Transactional memory (TM) promises to simplify concurrent pro-
gramming by reducing the burden on programmers and to improve
performance or scalability through increased concurrency [21]. The
simplicity benefit can be achieved by writing new programs using

∗Work done while a student at the University of Wisconsin – Madison

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’12, March 3–7, 2012, London, England, UK.
Copyright © 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

transactions [46] or by rewriting existing programs to use transac-
tions [60]. However, this benefit could also be realized by applying
transaction memory to problematic code in existing programs with-
out a complete rewrite. This preserves the investment in existing
code while potentially simplifying complex synchronization code.
Applying transactional memory to concurrency bugs raises

three challenges. First, it focuses the effort on especially difficult
problems and thus stresses TM’s ability to express synchroniza-
tion requirements. Second, it forces us to consider concise code
changes, because we want to minimize the amount of code that
must be rewritten throughout the program. Finally, it stresses the
integration with existing code to avoid rewriting major portions
of the program. Fortunately, extensions to TM allowing the use
of locks [45, 53], condition variables [17, 22], and select system
calls [39, 54] simplify this task by allowing most existing code to
be moved into transactions.
We evaluate the utility of TM in complex concurrent programs

by applying it as a fix for previously found concurrency bugs in
three programs: the Mozilla web browser, the Apache httpd web
server, and the MySQL database [30]. We explore four different
approaches to using transactional memory in existing concurrent
programs. To be as unobtrusive as possible, these four methods tai-
lor the use of TM to existing lock-based synchronization code so
they do not necessarily reflect how a programmer would use TM to
write new programs. Two simple approaches place all conflicting
code in transactions. While useful, we find this sometimes requires
widespread code modifications. Two other, more sophisticated ap-
proaches compose transactions with locks and leverage the rollback
mechanism of transactional memory to preempt locks causing a
deadlock.
We find that transactional memory is not useful in 17 of 60

atomicity violations and deadlock bugs. This surprising result
arises because many concurrency bugs are not about shared data;
rather they concern synchronization, such as condition variables,
or I/O, such as file or network access. However, we do find that
straightforward uses of TM can fix 40 of the 60 bugs, and sophisti-
cated uses of TM can fix 3 additional bugs and simplify the fixes of
20 of the 40 bugs. We judge that 34 out of the 43 TM-based fixes are
simpler and preferable to developers’ fixes. These results demon-
strate that transactional memory, as proposed, is moderately useful
in concurrent programs, but that it does not ameliorate enough
predicaments to be a panacea. We also find that ad hoc synchro-
nization, such as ownership flags put in place to avoid the overhead
of locking, can be greatly simplified with TM, but requires hard-
ware support to perform well enough.

2. Related Work

As the count of cores in commodity computers rises, researchers
have devoted more effort to the problem of writing correct mul-
tithreaded code. Our work builds on past work investigating the

usefulness of transactional memory, integrating transactions into
existing code, and fixing concurrency bugs.

Usefulness of TM Our work explores the utility of TM as a use-
ful tool for fixing concurrency bugs. Several recent studies have
sought to quantify and explain the benefits of programming with
transactions as compared to locks [37, 46]. These studies found
that TM is measurably easier than fine-grained locks, and results
in fewer bugs, less development time, or better performance. Com-
pared to our work, these studies use TM for relatively simple pro-
grams with a small number of different thread types accessing a
small number of data structures, and do not require synchronization
around I/O. Thus they may not have encountered similarly diffi-
cult synchronization problems. Other work has questioned the util-
ity of software TM due to its poor performance [6], despite work
showing it can improve performance of existing multithreaded ap-
plications [54]. In contrast, our work targets transactional mem-
ory at solving complex synchronization problems in existing code
rather than exploring the benefits of developing an entire program
with transactions. Furthermore, we observe that large programs use
many different synchronization mechanisms, while these studies
focused on using just a single mechanism (locks or transactions).
Most similar to our work is the Atomic Quake project [60],

which rewrote a game engine to use transactions. The authors
sought to use transactions everywhere, and redesigned the applica-
tion to better fit transactions. They found, similar to our results, that
conditional synchronization remains a problem for transactions. In
contrast to Atomic Quake, we use transactions as one of many syn-
chronization tools, rather than applying it as the dominant synchro-
nization method.

Transactional Memory Mechanisms Our work depends on high-
quality transactional memory systems and seeks to apply them to
existing code bases. There are many proposed and developed trans-
actional memory mechanisms in hardware [14,20,34,43] and soft-
ware [12,15,16,19,21,48]. IBM has integrated transactional mem-
ory into their Blue Gene/Q supercomputer processor [1], AMD has
indicated it may implement limited transactional memory systems
in hardware [3], and GCC provides extensions for using transac-
tional memory [23]. Thus, transactional memory is reaching a ma-
turity level where it can be used in deployed applications.
Access to non-memory resources is difficult for transactional

memory systems. Past work on executing system calls within trans-
actions has shown that system calls occur regularly within lock-
based critical sections [4,51]. Proposed mechanisms to handle sys-
tem calls include making transactions inevitable [5, 50, 56] or exe-
cuting them transactionally with library support [54] or with kernel
transactions [39]. Our work leverages these mechanisms and shows
that supporting system calls within transactions is useful even for
the specific task of fixing concurrency bugs.

TM-enabled locks Our work relies on using transactions and
locks cooperatively. Due to the difficulty of providing transactional
semantics for system calls or I/O and the low performance of soft-
ware TM systems, prior work such as TxLinux propose locks ac-
celerated by transactions that provide the programmability and low
overhead of coarse-grained locks but the concurrency of transac-
tions [44,45,52]. In contrast, we seek the programmability of trans-
actions more than their concurrency. However, transactions can-
not normally coexist with the locks found in existing code without
modifying the implementation of locks [53]. Fortunately, proposed
transactional-memory semantics precisely define the interaction of
locks and transactions and enable interoperability [2,11,49]. In this
paper, we leverage the TxLock [53] design, which defers releasing
locks until a transaction commits and automatically releases locks
on abort.

Concurrency bugs While we apply transactions as a possible so-
lution to concurrency bugs, other research has looked at automated
methods to generate locking code [25] or to dynamically avoid con-
currency bugs through scheduling [8, 8, 26, 31, 40, 41]. Our work
focuses on the utility of transactional memory to express hard syn-
chronization requirements, while those projects focus more specif-
ically on fixing bugs, perhaps temporarily until a developer creates
a permanent patch.

3. Applying TM to Concurrency Bugs

The goal of our work is to investigate whether transactional mem-
ory’s simple interface can address challenging synchronization
problems in concurrent programs. To that end, we apply TM to
concurrency bugs, where developers either left out synchronization
statements or coded them incorrectly. We do not attempt to rewrite
the whole program using transactional memory for two reasons:
the current performance of software TM is too low for some uses,
and not all system calls can be handled transactionally. For exam-
ple, state-of-the art TM systems fall back on a single global lock
for difficult I/O operations, and cannot handle two-way communi-
cation.
Instead, we look at transactional memory as a tool that can

be useful in solving difficult synchronization problems. Thus, our
approach is to look for solutions that require a minimum of code
changes and allow transactions to co-exist with existing lock-based
synchronization code. To that extent, our approach to applying
transactional memory to concurrency bugs does not necessarily
reflect how a programmer would use transactional memory to write
new programs.

3.1 Concurrency bugs

We focus on two classes of concurrency bugs that transactional
memory was designed to address. In a deadlock (DL) the order of
lock operations may lead to circular wait between threads. Dead-
locks can also occur with condition variables, for example when
waiting with a lock held. TM addresses deadlock by (i) removing
the use of multiple locks that enable deadlock, and (ii) automat-
ically aborting one or more waiting threads. In an atomicity vio-
lation (AV), code is not protected from interleaving with other
threads accessing the same shared data. TM addresses atomicity
violations by making it simple to declare atomicity without having
to select the right lock: TM detects conflicts with all other threads,
not just those holding the same locks. TM alone does not address
ordering violations, which occur when the program requires that
events in two threads happen in a certain order but does not enforce
the ordering, so we do not consider these bugs.
Writing correctly synchronized code can be challenging: it may

require the addition of synchronization code throughout a program
when a variable becomes shared. More importantly, it requiresnon-
local reasoning to understand how introducing new synchroniza-
tion code in one location can affect code elsewhere. For example,
adding a new lock requires considering whether it can introduce
deadlock with all existing locks.
The difficulty in fixing a bug comes from the conceptual effort

of creating the patch, which is how difficult it is to find a solu-
tion, and the implementation effort, the amount of code that must
be changed, both of which we evaluate with transactional memory.
Due to the non-local nature of concurrency bugs, the conceptual
effort can be harder than the implementation effort, as it requires
finding all the code regions that have contributed to the bug, and
making sure that the new fix will not introduce new correctness
problems (e.g., no deadlock, no double-acquire of locks). In con-
trast, the implementation effort is largely mechanical and relates to
how many code locations must change. Ideally, transactional mem-
ory will prove to have less conceptual effort, because of its simple

interface and strong semantics, as well as less implementation ef-
fort, because less code needs to be changed.
Indeed, evidence suggests that concurrency bug fixes frequently

take a long time to produce and often fail to fix the problem or
introduce new bugs as a result of the above challenges. Consider
atomicity violations, where the logic of the fix is straightforward:
hold a lock while executing critical regions of code. In studying
concurrency bug fixes, we have seen that the reality of fixing these
bugs is far more complex:

• In Mozilla, programmers used the wrong lock to fix an atom-
icity violation (Mozilla#18025), which was not discovered
until diagnosing another atomicity violation four years later
(Mozilla#133773).

• In an Apache bug, although the buggy code involved only one
function, developers had to make code changes in another two
places to declare new lock variables and initialize these locks
(Apache#25520).

• Performance concerns further complicate the fixing process in
a MySQL bug: programmers implemented their own conflict
checking, abort, rollback, and re-execution mechanisms to fix
an atomicity violation bug without using locks (MySQL#16582).

Deadlock bugs lead to similar problems. Their fixes frequently
require re-ordering, adding and removing synchronization code.

• In several cases, fixing one deadlock bug introduced another
deadlock bug, taking months or even a year to completely fix
the problem (Mozilla#54743,#79054, #60303,#90994).

• In a Mozilla deadlock bug, the developers were so frustrated
that they intentionally introduced a data-race bug in order to fix
the original deadlock bug (Mozilla#123930).

These experiences demonstrate that writing correctly synchro-
nized concurrent code is hard, and easier coding techniques would
be welcomed.

3.2 Transactional Memory

Transactional memory allows a programmer to declare a block of
code as an atomic region with the atomic keyword, and the TM
system ensures that each atomic region executes to completion or
not at all (atomicity), and that intermediate states of memory are
not visible to other atomic regions (isolation). This simple interface
aims to ease concurrent programming as compared to alternatives
by helping the programmer to avoid correctness pitfalls.
A speculation-based implementation of atomic regions allows

multiple regions to execute concurrently through memory transac-
tions. 1 The implementation must detect and resolve conflicts be-
tween concurrent atomic regions by aborting and re-executing one
of the transactions involved.
Both software and hardware implementations have been pro-

posed. Software TM implementations instrument code to record
the locations read and written and detect conflicts either at commit
or while the transaction executes. As a result, software TM imple-
mentations may slow down critical sections by 3-5x [12]. Proposed
hardware TM implementations, in contrast, perform these opera-
tions in hardware with less slowdown to critical-section code [20,
34]. However, feasible hardware TM implementations often bound
the number of distinct memory locations that can be accessed
within a transaction. Thus, they are best paired with a software TM
for fallback when transactions exceed hardware limits [10, 13, 29].

1 In this paper, we use the term atomic region to refer to the language level
construct and the term memory transaction to refer to the implementation
of an atomic region with a speculation-based transactional memory system.

4. Bug-Fix Methodology

We develop a set of different uses of transactional memory to
solve hard concurrency problems. We present our mechanisms for
fixing concurrency bugs as a set of recipes: the ingredients are the
underlying mechanisms provided by transactional memory, while
recipes describe how to combine the mechanisms to fix specific
classes of bugs.

4.1 Transactional Memory Ingredients

Our fix recipes rely on four mechanisms, each of which we describe
below. We describe possible implementations below, and defer dis-
cussion of specific mechanisms used in experiments to Section 5.1.
Not all proposals for transactional memory support all these mecha-
nisms, and this study demonstrates the added value of such support.

Atomic regions allow a programmer to declare a region of code
atomic, and the underlying implementation ensures that it exe-
cutes atomically in isolation. Thus, other atomic regions cannot
view updates performed by the code region until it has executed
entirely and this region cannot see changes made by other re-
gions during its own execution. Atomic regions may be imple-
mented through either memory transactions or locks. All transac-
tional memory systems support atomic regions, although they may
be limited in size and complexity for some hardware proposals,
for example to the size of the write buffer, cache or a fixed num-
ber of cache lines [9, 42]. Lock implementations have unlimited
size, and use either a global lock or perform lock inference, which
(semi-)automatically assigns distinct fine-grain locks to atomic re-
gions [7, 18, 33]. Locks remove the need for rollback and thus can
easily support I/O operations.

Explicit rollback leverages the ability of transactional memory
implementations to rollback partially executed transactions. It can
be used for retry-style synchronization [22], akin to condition vari-
ables: a thread aborts the current transaction and suspends until a
variable the transaction read has changed, at which point the thread
retries the transaction. This allows a thread to wait until a condi-
tion is satisfied as a result of another thread’s actions. Not all TM
mechanisms support rollback, as atomic regions implemented with
locks cannot roll back.
In addition to these two basic mechanisms, which have been ex-

plored in the past, we also identify two additional mechanisms that
use transactions and locks cooperatively to simplify synchroniza-
tion.

Preemptible resources can safely be acquired inside a memory
transaction and automatically released if the transaction aborts.
With this mechanism, the no-preemption requirement for dead-
lock can be removed if one thread is in a transaction and aborts
and releases contested resources. Several proposed designs allow
standard locks to be acquired and preempted within a transac-
tion [27, 45, 53]. Reversible I/O operations extend the set of opera-
tions that can take place within a transaction to include system calls.
Transactional system interfaces such as TxOS [39] or xCalls [54]
may be used to enable reversible I/O. Unfortunately, some forms of
I/O, such as two-way communication, cannot be made reversible
with these techniques.

Atomic/lock serialization properly synchronizes accesses pro-
tected under an atomic region with accesses protected under a lock
so that code protected using locks cannot see intermediate state
of an atomic section that has not yet completed, and vice-versa.
The cxspinlock construct from TxLinux [45] and speculative lock
elision using transactions [38, 42, 47] provide this by beginning
transactions in all critical sections. Another possible implementa-
tion is to grab a global reader/writer lock in shared mode when
acquiring a lock, and exclusively when executing a transaction.

lock (A)

...

lock (B)

...

unlock(A)

unlock(B)

lock (B)

...

lock (A)

...

unlock(A)

unlock(B)

Source 1 Source 2 Source 1 Source 2

read x

write x

lock (A)

read x

write x

unlock(A)

Source 1 Source 2

lock (A)

...

lock (B)

...

unlock(A)

unlock(B)

lock (B)

...

lock (A)

...

unlock(A)

unlock(B)

(a) Recipe 1 (c) Recipe 3(b) Recipe 2 (d) Recipe 4

atomic {

 lock (B)

 ...

 lock (A)

 ...

 unlock(A)

 unlock(B)

}

atomic {

 lock (A)

 ...

 lock (B)

 ...

 unlock(A)

 unlock(B)

}

atomic {

 read x

 write x

}

atomic {

 lock (A)

 ...

 lock (B)

}

 È
unlock(A)

unlock(B)

atomic {

 lock (A)

 read x

 write x

 unlock (A)

}

read x

write x

lock (A)

read x

write x

unlock(A)

Source 1 Source 2

atomic {

 read x

 write x

}

Figure 1. Example uses of our fix recipes.

This construct ensures that code synchronized with transactions
correctly interoperates with code using locks, and therefore allows
any atomicity violation to be fixed by placing the relevant code in a
transaction, whether or not other code uses locks for atomicity. We
stress that we evaluate this mechanism to see whether it is useful,
not because it is efficient in software.

4.2 Recipes

We use two straightforward fix methods (recipes 1 and 2) that
rely primarily on atomic regions and have broad applicability. In
addition, we describe two sophisticated methods (recipes 3 and 4)
that use additional ingredients beyond atomic regions, have limited
applicability but require less effort to apply.

4.3 Simple Approaches

Recipe 1: Replacement of Deadlock-prone Locks
Remove all locks contributing to a deadlock and insert atomic

regions in their places. Similarly to lock coarsening, this fixes
deadlock bugs by preventing circular wait .

This approach can solve a large set of deadlocks and simplify com-
plex locking protocols. When deadlock would occur, the trans-
actional memory system either prevents deadlock by serializing
the threads involved (similar to lock coarsening), or automatically
aborts one or more transactions and allows the others to make
progress. Unlike lock coarsening, a transactional solution preserves
the concurrency of fine-grained locking if independent atomic re-
gions can execute concurrently. However, the overhead of soft-
ware TM may degrade performance unacceptably if transactions
occur in critical-path code. In addition, this approach cannot solve
deadlocks involving non-lock resources (e.g., conditional variables,
pipes), because transactions only protect concurrent access to mem-
ory.
Conceptually, replacing deadlock-prone locks with transactions

is simple because the identity of the locks is available when a
deadlock occurs. Compared to fixing the locks, the developer does
not need to reason about how to change the order in which locks
are acquired or whether a lock can be removed. In addition, a
developer needs not reason about which code path leads to locks
being acquired out of order. This fix is largely mechanical, but may
be time-consuming to apply to existing code if the locks protecting
data are acquired in many places.

Recipe 2: Wrap All
Wrap all conflicting code regions in atomic regions, effectively

fixing atomicity violation bugs.

Atomicity violations can be fixed by placing all conflicting code
regions (regions that access shared data where at least one region
performs a write) in atomic regions. This ensures that the memory
accesses of those regions are protected under a common synchro-

nization mechanism. For code with completely missing synchro-
nization all synchronization is done with transactions. When some
code already uses locks, this fix can be applied by either replac-
ing existing locks with transactions, or acquiring those locks within
transactions (using a transaction-safe lock such as TxLocks [53] or
cxspinlocks [45]).
Compared to locks, fixing atomicity violations with atomic re-

gions has low conceptual effort: a programmer introduces atomic
regions by placing begin/end transaction markers around a portion
of code, without worrying about lock granularity for concurrency
and whether the fix introduces new deadlocks. In contrast, a pro-
grammer relying on locks to solve an atomicity bug must identify
the right lock to use. If such lock does not exist, the programmer
must introduce a new lock, and reason where the new lock falls into
the lock hierarchy to avoid deadlocks with existing locks
The effort to wrap code in atomic regions is largely mechanical,

but requires identifying all code that accesses the protected data. If
a lock exists and is known, the effort to use transactions is similar
to using existing locks. However, if a lock does not exist, using TM
is simpler, because a programmer introducing a new lock to fix the
bug has to add code to manage the new lock.

4.4 Sophisticated Approaches

The preceding approaches relied on the normal application of trans-
actional memory: place all access to a subset of shared data within
transactions to reap the benefits. However, we have identified two
further methods that use TM’s mechanisms in different ways.

Recipe 3:(Asymmetric) Deadlock Preemption
Make at least one thread (dynamic path) involved in the dead-

lock preemptible by wrapping the corresponding static code regions
in a single abortable atomic region (memory transaction).

This recipe fixes deadlock bugs by removing the non-preemption
requirement for deadlock. At least one of the threads involved in
the deadlock must begin a transaction before acquiring the locks
involved with the deadlock. When deadlock occurs, the transaction
aborts, and releases any locks it acquired before retrying. This al-
lows at least one thread to proceed. Note that not all threads need to
execute transactions: as long as one thread involved with the dead-
lock can abort, it can break the circular wait for all threads. Thus,
this solution can be efficient, because most threads can execute un-
changed with locks. Preferably, the preemptible thread should be
low priority or infrequently run to minimize the performance im-
pact of executing its critical sections within a transaction.
For this fix to work, all resources acquired transactionally must

be revocable: locks must be released on abort, and I/O operations
must be undone. It also requires a deadlock detector to determine
when to abort the transaction. Furthermore, this recipe is unique in
that transactions are used only for rollback and not isolation; locks
still provide mutual exclusion between threads.

Deadlock preemption can cause livelock if the preempted thread
restarts and acquires locks before the other threads finish. Exponen-
tial backoff before retry, already used for contention management
in TM systems, can prevent this livelock. However, livelock can
also occur if useful work performed by a transaction before the
deadlock is needed to make progress, as in the work performed in
a monitor before waiting on a condition variable. Thus, this recipe
is not useful in such cases.
Like Recipe 1, this recipe requires identifying a deadlocked

thread. Unlike Recipe 1, it also requires ensuring that all resources
acquired in a transaction are revocable, making it slightly more
difficult to reason about than Recipe 1, which can use inevitability
mechanisms to handle complex I/O. However, this fix recipe is
simple to implement, as it keeps existing locks in place and wraps
them in a transaction.

Recipe 4: Wrap Unprotected
Wrap the code region intended to be executed atomically in an

atomic section that is serialized with all other lock critical sections.

Recipe 2 requires a developer to wrap all conflicting code re-
gions in atomic regions, even if they already use locks. This in
effect duplicates any existing effort put into using locks. In con-
trast, this recipe approach modifies only the buggy code regions
that actually contribute to the atomicity violation, and leaves un-
modified the code that correctly uses locks. This method is use-
ful for asymmetric atomicity violations: when most code regions
properly use the intended locking discipline to correctly express
their atomicity objective but some do not. While atomic regions are
conceptually serialized with all other lock critical section in this
recipe, atomic and lock critical sections may execute concurrently
if a scalable implementation of atomic/lock serialization is avail-
able. As suggested earlier, such an implementation is possible on
TM systems that support transactionally executing critical sections
such as TxLinux [45] and speculative lock elision using transac-
tions [38, 42, 47].
This approach is conceptually simpler to apply than either

Recipe 2 (wrap all accesses to the shared data in transactions)
or to using locks, as it requires the developer to identify only the
code regions that do not correctly express their atomicity objective.
Furthermore, this approach has the same implementation effort as
using an existing lock, assuming it is known. Compared to Recipe 2
it effectively saves the developer from distributed code changes.

5. Effectiveness of TM on Concurrency Bugs

In this section, we evaluate our bug-fix methods in the context of
previously found and fixed bugs in Mozilla, Apache httpd, and
MySQL [30]. The existence of fixes allows us to compare a TM
solution against the developer solution, and the log of changes
allows us to gauge the complexity of the fix, such as whether it
took multiple tries.
Our study has three main goals. First, we want to determine

whether TM has the expressive power to solve a synchronization
bug (Can TM fix the bug?). Second, we want to find whether TM
offers value to a developer when compared against locks (Can
TM fix the bug simply?). We answer these two questions first.
Finally, we give a set of examples of showing how TM can address
synchronization problems and evaluate whether the performance of
the fix using TM is satisfactory (Can TM fix the bug efficiently?).

5.1 Recipe Ingredients: Implementation

Section 4.1 presented a high-level description of the basic mech-
anisms required by the fixes. We now describe the specific imple-
mentation of each mechanism used in our study. We use Intel’s soft-
ware transactional memory (STM) compiler and runtime frame-

work as our main TM platform [24], as it runs on real hardware,
can compile the code in many open-source projects, and automat-
ically instruments the code placed in atomic regions with calls to
the STM runtime. This greatly reduces the implementation effort
needed to use transactions.

Atomic Regions. The Intel STM uses memory transactions to exe-
cute atomic regions but it reverts to a global lock [5, 50, 56], when
there are calls to unsafe operations that have visible side-effects be-
fore the transaction commits, such as un-instrumented legacy code,
synchronization and I/O [36]. Recent work on defining TM seman-
tics [2, 49] captures this dual notion of execution by differentiat-
ing between two types of atomic regions: atomic transactions and
relaxed transactions. Atomic transactions can only be used when
there are no unsafe operations, and they appear to execute atomi-
cally in a data-race-free program. In contrast, relaxed transactions
are allowed to contain unsafe operations, in which case they may
appear to interleave with non-transactional operations from other
threads. The implication to our recipes is that memory transactions
in the form of atomic transactions may only be used when unsafe
operations are replaced with their transactionally safe equivalent
ones as we describe in the preemptible resources section below.

Explicit Rollback. The Intel STM provides an abort statement,
which can be used to explicitly roll back a transaction. We use this
statement to provide a limited version of the retry mechanism,
by aborting and immediately retrying a deadlocking transaction.
The use of this mechanism precludes the use of atomic regions
that do not utilize speculation and cannot roll back. In light of the
work on TM semantics, this mechanism is only safe with atomic
transactions as implementations of relaxed transactions may not
always utilize speculation.

Preemtible Resources. We implement two classes of preemptible
resources: revocable locks and reversible I/O. We implement re-
vocable locks with TxLocks [53]. When acquired within a trans-
action, these locks are held until the transaction commits and re-
leased if the transaction aborts. In addition, they detect deadlock
both among locks and between locks and transactions, and will
abort the transaction if deadlock occurs. We enable reversible I/O
via xCalls [54]. xCalls provide a library-based implementation of
transactional semantics for common system calls. The xCall library
defers until commit time those system calls that can be delayed.
When that is not possible, system calls are executed as part of the
transaction and their side effects are reversed on abort atomically
with respect to all other transactions. xCalls reverts to inevitable
transactions for system calls that are not reversible and cannot be
deferred. Such calls produce side effects and either have ambigu-
ous/variable semantics (e.g., ioctl) or require two-way commu-
nication with a non-transactional device or service. Finally, since
xCalls is a library-based approach, it enables transactional seman-
tics only for threads running in the same process. In consideration
of TM semantics, preemptible resources extend the use of atomic
transactions into code that otherwise would have to rely on relaxed
transactions to perform unsafe operations, namely acquire locks or
do I/O.

Atomic/lock Serialization. We augment both the STM’s atomic
regions and POSIX mutex locks with a special global reader/writer
lock that provides mutual exclusion between atomic regions and
lock-based critical sections. Mutex locks acquire the global lock
in shared mode, while atomic regions acquire it exclusively. We
note this approach prevents transactions from having any concur-
rency and slows down other uses of locks. This limitation however
is an artifact of this implementation. As we suggested earlier in sec-
tion 4.1, other more scalable approaches such as cxspinlockmay be
used.

Bug App All Transactional Memory Fixes

Total R1 R2 R3 R4

DL
Mozilla 13 9 8(2) - 7(1) -
Apache 4 2 1(1) - 1(1) -
MySQL 5 1 0 - 1(1) -

AV
Mozilla 25 20 - 20(12) - 8(0)
Apache 7 5 - 5(3) - 2(0)
MySQL 6 6 - 6(2) - 4(0)

Total 60 43 9(2) 31(17) 9(3) 14(0)

Table 1. Applications and the number of concurrency bugs in each
category together with a breakdown of how many bugs each recipe can

help fix.

5.2 Methods

To evaluate whether TM can fix a bug and can simply fix a bug,
we obtained the buggy source code from application repositories
and used our recipes to apply transactions to fix the bug. We used
a set of found and fixed concurrency bugs in Mozilla, Apache
httpd, and MySQL [30], excluding order-violation bugs because
TM does not fit naturally to such bugs. For a subset of the bugs,
we implemented and tested a fix. For the remainder, which had
no reproduction scenario, we examined the code, determined what
library or function calls were made within the transaction and
sketched how to apply transactions.
For each TM fix we implement, we ensure the bug is fixed by

running either tests cases provided with the bug report or ones
we wrote. Fixing a bug raises the risk of introducing a new bug.
We ensure the correctness of our fixes by comparing them against
the existing developer fixes and ensure that they provide the same
atomicity properties. Furthermore, we ensure our changes do not
break any regression tests. While this approach to correctness does
not represent a formal proof, it provides us a degree of confidence
comparable to the developers’.
To evaluate whether TM fixes a bug simply, we qualitatively

compare our fix against the developers’ final fix, in which the
bug is actually resolved. We note that, in many places, developers
chose to fix bugs without the use of locks or by removing portions
of the code. As a result, our evaluation is not a comparison of
using locks and transactions to fix a bug but rather of comparing
what application developers currently do against transactions. To
be as objective as possible, we rate the difficulty of each TM and
developers’ fix by considering the implementation and conceptual
effort of the fix, and then pick the fix with the lowest difficulty.
In general, logic or design changes are rated as hard; changes
that require checking whether resources can be safely preempted
or dropped are rated as medium or hard; changes that require
adding a new lock in the lock hierarchy are rated as medium;
and changes that require large scale code changes such as adding
multiple atomic blocks are rated as medium or hard.
To evaluate whether TM efficiently fixes the bugs, we performed

several case study experiments where we compare the performance
of representative TM fixes to the performance of the developers’
fixes using Intel’s STM [24]. We ran tests on an Intel Core 2
2.5GHz quad-core based machine running CentOS Linux. We note
that this is not the best performing transactional memory system,
particularly given some of caveats noted above, so performance
numbers should be treated as a lower bound.

5.3 Effectiveness

In this section, we discuss our findings of whether transactional
memory is useful as a concurrency-bug fixing mechanism. We
summarize our findings in Table 1: for each application and bug
type, it lists the number of bugs that each recipe can fix. Each
number in parentheses indicates how many bugs can be fixed only
using the specific recipe.

App Difficulty Dev’ fixes Transactional Memory fixes

DL AV R1 R2 R3 R4

Mozilla
Easy 1 5 2 4 4 6
Medium 1 6 4 13 2 2
Hard 7 9 2 3 1 0

Apache
Easy 0 1 1 3 0 2
Medium 0 2 0 1 0 0
Hard 2 2 0 1 1 0

MySQL
Easy 0 1 0 2 0 4
Medium 0 3 0 4 1 0
Hard 1 2 0 0 0 0

Table 2. Characterization of developers’ and TM fixes in terms of
easy, medium, and hard difficulty. We characterize only fixes solved by

both developers and TM.

Bug type Application Downcalls

CV I/O LongAction Other

Deadlock
Mozilla 3 2 3 3
Apache 1 0 0 0
MySQL 0 0 0 0

Atomicity
Mozilla 3 3 3 0
Apache 0 2 0 0
MySQL 0 1 1 0

Total 7 8 7 3

Table 3. Characterization of our TM fixes based on the number and
type of function calls inside atomic blocks (downcalls).

Overall, we found that the TM can fix 43 out of the 60 bugs (71
percent) we investigated. As we could not reproduce all the bugs,
we implemented and thoroughly tested 18 of the 43 fixes: 7 dead-
lock and 11 atomicity violation fixes. The straightforward recipes
(Recipes 1 and 2) are sufficient to tackle 40 of the 43 bugs. The
sophisticated recipes can fix 3 more bugs: Recipe 3 (deadlock pre-
emption) can repair three deadlock bugs involving condition vari-
ables operations that could not be fixed using Recipe 1 (replace
deadlock-prone locks). These results demonstrate that straightfor-
ward TM has the expressive power to capture the synchronization
requirements regarding locks and the flexibility to execute all the
code necessary for many concurrency bugs. Furthermore, exten-
sions for failure atomicity (such as rolling back on failure) provide
an easy “out” from complex deadlocks involving locks and con-
dition variables. We describe one of these bugs in more detail in
Section 5.4.
We judge that 34 out of the 43 TM-based fixes are simpler and

preferable to developers’ fixes. Table 2 lists the number of easy,
medium, and hard fixes for each application based on the criteria of
Section 5.2. In the next two sections, we further discuss the relative
difficulty of our and the developer’ fixes.
Many TM systems have limited support for downcalls, calls to

non-transactional code in system services or other modules. Table 3
lists how many fixes have atomic blocks making direct or indirect
calls to: condition variables (CV), I/O, long actions such as garbage
collection (LongAction), and other library/module functions. Five
fixes (all in Mozilla) required support for condition variables in
transactions [17], two required a retry, eight required I/O [54],
and seven required very long transactions encompassing millions
of instructions. Thus, we found that incorporating memory transac-
tions into a concurrent program requires supporting many actions
beyond memory access within a transaction, which is similar to the
experience of the AtomicQuake developers [60].

5.3.1 Deadlock Bugs

As shown in Table 1, TM can be used to fix 12 of the 22 deadlock
(DL) bugs. We further break down the 12 bugs where TM can be
used to evaluate whether a TM fix is simpler than the fix chosen by

the application developers. Overall, we judge that a TM-based fix
is simpler than the developers’ for 10 deadlock bugs.
In analyzing the results, we found it useful to classify bugs by

the state they access and the location of the code. Preemptible
bugs occur when there are no changes to unrelated shared state
while holding the deadlocking locks; otherwise the bug is non-
preemptible because state unrelated to the locks has changed and
cannot be reverted. For example, calls to non-transactional func-
tions or system calls are non-preemptible when executed with in-
evitable transactions. Similarly, code that acquires a lock and then
returns to a caller in a different module is not preemptible, as
it would require executing the caller’s code within a transaction.
Single-module deadlock bugs involved locks defined in a single
module, whilemulti-module bugs involve locks frommore than one
module.

When TM does not work Most importantly, transactional mem-
ory in its pure atomic-region form (Recipe 1) cannot help deadlocks
caused by condition-variable wait operations. Such deadlocks can
only be approached using a combination of preemption and retry
as described in Recipe 3. However, preemption and retry cannot
help with deadlocks involving two-way communication such as in
nested monitor lockouts [28]. In such a case, one thread holds a
lock, and waits for a signal from a second thread that can only be
sent after acquiring the lock held by the first thread. Such deadlocks
may be only approached through design changes [28, 57]. This oc-
curred for example in Mozilla#65146.
We also found deadlocks that span multiple modules were dif-

ficult to fix with TM, because of the large-scale changes required
to modify multiple modules. Furthermore, in one case deadlock in-
volved a third-party plugin where it was impossible to apply TM.
As a result, we were not able to use TM to fix any bugs that spanned
non-preemptible code in multiple modules, which represent 5 dead-
lock bugs. Nevertheless, it is interesting to note that in nearly all
cases the developer’s fix was to release a lock before continuing
down the deadlocked path, which presents a dangerous decision
often accompanied with significant conceptual effort to determine
the correctness.
Other deadlocks were design bugs, for example when one thread

waits for a signal from a component that has already been destroyed
(Mozilla#27486). Thus, for problems that do not relate to circular
wait of locks, or locks with a single condition variable, transac-
tional memory provides little value. In addition, transactional mem-
ory cannot help solve deadlocks that arise through fundamental de-
sign errors rather than the mechanisms for enforcing mutual exclu-
sion.

When TM works well Simple memory-only transactions fixed
9 of the 12 deadlock bugs fixed. These 9 all involved acquiring
pairs of locks out of order. Applying Recipe 1 addressed this by re-
moving the possibility of deadlock. We found bugs involving non-
preemptible code (e.g., code that can only execute as an inevitable
transaction) can only be fixed by replacing deadlock-prone locks
with transactions, because Recipe 3 relies on the ability to roll back
at least one thread.
We rate these fixes as easy if they required few code changes

and otherwise as medium or hard depending on the code changes
required. In one case described below (Section 5.4.1), we replaced
code that held locks for an extended period with code that instead
executes a series of short transactions, with the non-preemptible
code occurring between transactions. Thus, the non-preemptible
lock that was held for a long period was changed to shorter trans-
actions that could abort to prevent deadlock. This fix we rated as
hard.
In contrast, the developers’ fix in all cases except one was to

remove the acquisition of one of the locks held to break deadlock.

Switching the acquisition order was not possible in many cases as
it would require drastic changes in the design of the lock hierarchy.
Giving up a lock is a conceptually challenging task as it requires
deep understanding of the code to reason about the safety of this
action so we judge such fixes as hard. In one case, the developer’s
fix was as simple as switching the acquisition order of locks as the
locks were acquired locally in a single function. We judge this fix
as easy and favor it compared to TM that requires replacing locks
with transactions.
The remaining 3 bugs required using revocable locks with

Recipe 3 to acquire locks within a transaction. Two of those bugs
involve condition variable operations that could not be fixed using
transactional condition variables, which commit the transaction be-
fore waiting, but could be fixed via a retry, which aborts. We rate
these fixes as hard as they require reasoning that is safe to replace
the condition variable with a retry. In addition, we found that
Recipe 3 can reduce the implementation effort to fix 6 of the 9 bugs
fixed using Recipe 1 by localizing fixes to the bug sites instead of
modifying all uses of the deadlocking locks.
Overall, we favor 2 developers’ fixes as they are as easy as TM

or easier, and favor 10 TM fixes as conceptual and implementation
effort is less than with the developer’s fix. The 2 developers’ fixes
include the one easy fix described above, and another of medium
difficulty, which requires a simple design change.

5.3.2 Atomicity-Violation Bugs

As shown in Table 1, TM can be used to fix 31 of 38 atomicity-
violation (AV) bugs. Overall, we judge that a TM-based fix is
simpler than the developers’ for 24 bugs.

When TM does not work There were 7 atomicity bugs that could
not be fixed with transactions for a variety of reasons. One situation
occurs when the application must atomically issue a long-latency
operation and process a callback event when the operation com-
pletes. For example, Mozilla holds a lock while loading a URL and
invokes a callback once the URL is fetched (bug#19421), which
can take an arbitrarily long time. Contention for the lock is not high
so its use is acceptable. However, a memory transaction is global
to the process, particularly if it uses inevitability mechanisms that
acquire a global lock. Therefore, using transactions around a long-
latency operation would prevent all other transactions from making
progress. Having support to issue asynchronous I/O and execute a
callback upon I/O completion within a transaction would help fix-
ing this problem.
In other cases, the bugs were not simply atomicity violations,

but required additional semantics: in Mozilla, one code section
required both atomicity and that only one thread executed the
code (exactly-once semantics). This requirement is beyond TM’s
guarantees.
Finally, there were several atomicity violations regarding I/O:

lost notifications waiting for I/O to arrive (Mozilla#72965) and
races between two processes reading from the same pipe (Apache
#7617). Like the last two problems, these problems arise not from
the atomicity of memory operations but from the atomicity of I/O
operations across multiple processes (the kernel and a process, or
two separate processes), which current TM systems do not address.

When TM works well Atomicity violations caused by code with
completely missing synchronization are the best-case scenario for
TM. Such bugs are fixed using Recipe 2. In our study, this type of
violation included 22 out of the 38 atomicity-violation bugs, 17 of
which could be fixed using Recipe 2. In 12 of the 17 fixes, bugs
could be fixed with a single atomic block. We judge 9 of the 12
as easy fixes, while we judge the remaining 3 fixes as medium
difficulty because we had to reason that wrapping downcalls inside
the atomic block was safe.

Bug ID Cause Characteristics Fix Perf. Lines of Code

Dev TM

Mozilla-I DL Involves locks only
1 21% 23 1039
3 85% 23 16

Apache-I DL Involves lock and
wait

3 78% 32 14

Apache-II AV Complete missing
synchronization

2 96.5% 20 5

MySQL-I AV Partial missing
synchronization

4 50% 103 4

Table 4. Bugs and corresponding fix recipes applied for demonstra-
tion purposes. Performance is relative to that of developer’s fix. Lines

of code (LOC) includes both lines added and lines modified.

In 3 of these 12 cases, the developers’ fix was to wrap actions
inside a critical section by adding a new lock, which we judge as
medium difficulty because it requires reasoning that the new lock
does not introduce a deadlock. The remaining 9 developer’s fixes
require profound understanding of the application to develop a spe-
cialized local fix, such as switching the order of statements in the
source code [30]. We judge 2 of them as easy, though, because the
fix is replacing a global variable with a local one, while we judge
the rest as hard. As an example of a hard case, the developer im-
plemented a custom optimistic concurrency protocol by copying
shared data locally, updating the copy, and then updating the shared
data atomically with a single store instruction. This is essentially a
form of optimistic concurrency control that suits TM well. The re-
maining 5 of the 17 fixes required us to find all the places where
synchronization is missing and place multiple atomic blocks. We
judge these fixes as medium. We find though that using TM to fix
these is a bit simpler than the developer fixes, again because a de-
veloper does not have an already existing synchronization mecha-
nism to exploit.
The remaining 16 of the 38 atomicity violations include asym-

metric atomicity-violation bugs, where most accesses to shared
data use the correct lock but some do not. Of these, 14 could be
fixed either using Recipe 2 or Recipe 4. Such bugs though are
easier to fix by wrapping the code region intended to be executed
atomically in an atomic section that is serialized to any other lock-
based critical section (Recipe 4), because this recipe requires fewer
changes compared to Recipe 2. Developers commonly fix such
bugs by acquiring an existing lock either because they forgot to
use it before or they used the wrong one. In 5 cases the fix was as
easy as extending the coverage of an existing lock critical section
without wrapping calls to functions that may be deadlock prone.
In these cases the developer’s fix is clearly simpler than a TM fix
that replaces existing locks with transactions. Even when the cor-
rect lock is hard to identify, using TM is no simpler because the
developer must still identify all places where the data are accessed.
Nevertheless, Recipe 4 significantly simplifies the fix, making TM
competitive with the developer’s fix.
Overall, we favor 7 developer’s fixes as they are as easy as TM

or easier, and favor 24 TM fixes as the conceptual and implemen-
tation effort is less than with the developer’s fix.

5.4 Demonstrating Applicability

To further clarify the application of transactional memory to con-
currency bugs and to evaluate its performance, we demonstrate its
application to a subset of the bugs we studied. We selected this
subset to cover the spectrum of the bugs targeted by our fix recipes.
For each bug, we give a description of the bug, present both the
developer’s and TM fix, and finally compare the two fixes. Table 4
summarizes the bugs we used.

js_SetProtoOrParent (...)

{

 LOCK (rt->setSlotLock);

 obj2 = pobj;

 while (obj2) {

 if (obj2 == obj) {

 ...

 }

 LOCK_SCOPE (obj2);

 next_obj2 = OBJ_GET_PROTO(obj2);

 UNLOCK_SCOPE (obj2);

 obj2 = next_obj2;

 }

 /* Proceed with setting */

 ...

 UNLOCK (rt->setSlotLock);

}

js_SetProtoOrParent (...)

{

 atomic {

 obj2 = pobj;

 while (obj2) {

 if (obj2 == obj) {

 ...

 }

 atomic {

 next_obj2 =

 OBJ_GET_PROTO(obj2);

 }
 obj2 = next_obj2;

 }

 /* Proceed with setting */

 ...

 }

}(a) Buggy code (b) Fixed with TM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Figure 2. A deadlock code sample from Mozilla (SpiderMonkey:
jsobj.c) modified for legibility.

5.4.1 Case Study 1:Mozilla-I: Deadlock

Figure 2 illustrates a deadlock bug found in SpiderMonkey, Mozilla’s
JavaScript engine, that involves locks only. SpiderMonkey uses an
ownership-based mechanism to synchronize accesses to an object
by multiple threads. Under this mechanism, objects are protected
by a “scope lock” and an owner field. If a thread owns an object,
it can access the object with a simple test of the owner field and
without acquiring any locks. If a thread accesses objects owned by
another thread, then SpiderMonkey follows a complex revocation
protocol to switch the object from using the owner field to using
the scope lock. Switching to a scope lock is a blocking operation
because the owning thread could be actively accessing the object.
The motivation behind this complex synchronization mechanism,
is that most objects are only ever locked by a single thread [35].
The deadlock bug occurs when two threads try to lock the same

set of objects in different orders. Suppose a first thread executing
the function in Figure 2(a) owns setSlotLock and needs to lock
an object’s scope in line 9. But that scope is exclusively owned
by a second thread, which is blocked behind setSlotLock. The
first thread cannot claim the scope from thread 2 so the threads
deadlock.

Developer fix SpiderMonkey developers solved this bug by forc-
ing threads to drop ownership of objects before blocking. This re-
quired the addition of a new condition variable and small changes
in three files. This fix adds overhead to drop and reacquire owner-
ship, yet was adopted because it reliably prevents the deadlock. We
judge this fix as hard, as the developers had to reason that dropping
ownership was safe and would not violate atomicity.

TM fixes As this deadlock involves locks only, we may fix it us-
ing either Recipe 1 or Recipe 3 if locks can be made revocable.
When using Recipe 1, we fix this bug by replacing the deadlock-
prone locks with atomic sections as shown in Figure 2(b), depre-
cating the notion of ownership, and thus eliminating the complex
revocation protocol. As there is no longer the notion of long-lived
ownership, atomic sections, which synchronize access to objects,
are shorter. While this fix is conceptually straightforward to reason
about, it has a moderate implementation complexity as it requires
modifications across 15 files to replace locks with atomics. How-
ever, as we demonstrate below it requires hardware support to per-
form well. We judge this fix as hard, similarly to the developers’
fix.
When using Recipe 3, we fix this bug by making the locks

involved in the deadlock revocable. We first interpose all calls to
lock/unlock and lock scope/unlock scope with calls to the
lock/unlock routines of our revocable lock implementation. We
then fix the deadlock bug by wrapping the single deadlocking site
inside a transaction. The deadlock-prone code executes within a

listener_thread (…)

{

 …
 LOCK (timeout);

 …
 LOCK (idlers);

 …
 COND_WAIT (wait_for_idler,

 ... idlers)

 UNLOCK (idlers)

 …
 UNLOCK (timeout)

}

1

2

3

4

5

6

7

8

9

10

11

12

13

(a) Buggy code (b) Fixed with TM

worker_thread(…)

{

 …
 LOCK (timeout);

 …
 UNLOCK (timeout);

 …
 LOCK (idlers)

 ...

 SIGNAL (wait_for_idlers)

 ...

 UNLOCK (idlers)

}

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

listener_thread (…)

{

 …
 atomic {
 LOCK (timeout);

 …
 LOCK (idlers);

 …
 if (!COND_TRY_WAIT(…))

 retry;
 UNLOCK (idlers)

 }

 …
 UNLOCK (timeout)

}

Figure 3. A deadlock code sample from Apache (httpd-2.2.0: event.c,
fdqueue.c), modified for legibility.

transaction and acquires locks revocably; if the transaction cannot
acquire a lock it aborts and retries, thus preventing any deadlock.
We judge this fix as medium difficulty, as we had to reason about
the safety of preemption.

Comparison While the first fix based on Recipe 1 has a moder-
ate implementation complexity, it substantially simplifies the lock-
ing protocol. This results in more maintainable code and addition-
ally has the advantage that it solves another four reported deadlock
bugs as a side effect of removing scope locks, which overall took
the developers a year to fix. So while hard to implement, we favor
it compared to the developers’ fix. In comparison, the second fix
based on Recipe 3 requires far fewer code changes: only to inter-
pose calls to lock/unlock routines (which could be done automati-
cally by redefining macros) and the deadlocking code. However, it
requires some conceptual effort to determine that is safe to revoke
any resources used while executing in the transaction. Furthermore,
this approach only fixes one bug, while the first fix fixed many other
deadlock bugs found later by the developers.
We measured the performance of our fixes and compared it

to the performance of the developers’ fix using the SunSpider
JavaScript benchmark [55]. We run tests in four threads running the
same SunSpider script. Even if scripts do not share data, we are still
able to exercise the multithreaded code path because all threads run
within the same runtime. The first fix performs 79% worse than the
developers’ fix. This occurs because the code is on the critical path,
as evidenced by the effort put in by developers to avoid acquiring a
lock. The second fix improves performance significantly as it per-
forms only 15% slower than the developer’s fix. This performance
improvement arises because critical path code can execute with-
out transactions or atomic operations. As there is still non-critical
path code that executes transactionally the workload experiences
some drop in performance. These results show that avoiding syn-
chronization is important and that asymmetric deadlock preemption
can provide the benefit of transactions without hurting performance
too much.
To gauge the benefit of hardware support for TM, we ran the

code on the proposed hardware TM platform LogTM-SE 2 [59].
The performance of the first fix increases to 99.3% of the devel-
oper’s fix. Thus, the performance of hardware TM is good enough
that transactions can take the place of ad hoc locking protocols [58],
such as SpiderMonkey’s ownership protocol, and thereby greatly
simplifies code.

5.4.2 Case Study 2: Apache-I: Deadlock between lock and wait

Figure 3(a) depicts a deadlock bug between lock and wait opera-
tions. This is a section of code taken from Apache in which the
listener thread holds the timeout mutex protecting the timed-out

2We simulated LogTM-SE using Wisconsin GEMS [32]. The configuration
we used is a 1GHz 8-core SPARC CMP. The operating system is Solaris 9
and the compiler we used is GCC 3.4.4.

void ap_buffered_log_writer (...)

{

 …
 s = &buffer[buf->outputCount];

 memcpy (s, str, len);

 temp = buf->outputCount + len;

 buf->outputCount = temp;

 apr_file_write(buf->handle);

 …
}

1

2

3

4

5

6

7

8

9

10

void ap_buffered_log_writer (...)

{

 …
 atomic {

 s = &buffer[buf->outputCount];

 memcpy (s, str, len);

 temp = buf->outputCount + len;

 buf->outputCount = temp;

 apr_file_write(buf->handle);

 }

 …
}

1

2

3

4

5

6

7

8

9

10

11

12

(a) Buggy code (b) Fixed with TM

Figure 4. An unsynchronized code sample from Apache (httpd-
2.0.45: mod log config.c), modified for legibility.

sockets list while waiting for an idle worker thread. The worker
thread block waits for the timeout mutex before signaling to the
listener thread its availability, thus leading to a deadlock. The lis-
tener holds this mutex while waiting to ensure that it atomically
removes a timed-out socket from the list and hands the socket off
to an idle worker.

Developer fix The Apache developer’s fix removes the circular
wait by releasing the timeout mutex before calling through the con-
ditional wait. The developers reached this fix after three failed at-
tempts. To make this fix correct, they wrote code that compensates
for breaking atomicity. We judge this fix as hard, given its history
and the compensation required.

TM fix As this deadlock does not involve only locks, we use
preemption to fix the bug as suggested by Recipe 3. While this
at first sight might appear as a nested monitor lockout, which
as discussed in Section 5.3.1 cannot be fixed with TM, careful
inspection reveals that there is no two-way communication between
the worker and listener: the worker needs to communicate to the
listener its availability but the listener does not need to assign
work to the worker immediately. We therefore modify the listener
thread to acquire locks and perform any wait operations revocably
inside a transaction, as shown in Figure 3(b). If the listener thread
executing inside the transaction does not find an idle worker, it
aborts the transaction, releases any locks it acquired, and retries
the transaction. This allows the worker thread to acquire the locks
it needs and make progress. We judge this fix as hard.

Comparison We judge this fix to be simpler than the developer
fix, because it leverages transactions to automatically guarantee
the atomicity of the listener’s operation without having to reason
and write compensating code. We measure the performance of
the two fixes using ab, the Apache HTTP server-benchmarking
tool, running on the same machine as the web server to avoid any
network bottlenecks. We saturated the machine by performing 128
multiple requests at a time. We find that the TM fix performs 22%
slower than the developer’s fix, but that overhead could be reduced
by making retry block rather than spin. Since this is performance
under a stress test workload, we expect the performance difference
between the two fixes to be less under realistic workloads. Thus,
we believe the TM fix offers a good balance between effort and
performance.

5.4.3 Case Study 3: Apache-II: Missing Synchronization
Atomicity Violation

Figure 4 illustrates a case of an atomicity violation caused by
missing synchronization. This code, taken from the Apache web
server, has a race condition in which two threads may compete over
the buffer, independently advancing outputCount and producing
either garbage in the log or buffer overflow. The race condition is
prevented by executing all the logic of the function from line 2
onwards as a critical section.

Developer Fix Apache developers fixed this bug by assigning a
lock to each log device (buffered log) that they acquire on entry
to the function ap buffered log writer. While a single static
lock could protect the entire function, concurrency favors the more
scalable solution at the expense of introducing several new locks to
the system. We judge this fix as medium difficulty.

TM Fix By following Recipe 2, we insert a single atomic block
from line 4 to 10 to protect the critical section, effectively fixing the
bug with only five lines of code. The file I/O is performed using an
xCall that defers the actual I/O until the transaction commits. We
judge this fix as easy.

Comparison Compared to the developers’ fine-grained locks, the
TM fix for this bug provides equal concurrency, as writes to differ-
ent logs can proceed in parallel. In addition, the TM fix is local: the
only code that changes is within a single function, whereas the de-
velopers’ fix required changes elsewhere in Apache to add a lock to
the buffered log structure and manage its creation. We measure
the performance of the two fixes using ab as described earlier in
Section 5.4.2. Our TM fix performs comparable to the developer’s
fix, being only 4% slower. Overall, we believe our TM fix offers
a simpler fix compared to the developer’s one without penalizing
performance.

5.4.4 Case Study 4:MySQL-I: Partially Missing
Synchronization Atomicity Violation

This MySQL atomicity violation bug occurs when the following
two queries execute in parallel:

INSERT INTO table VALUES (...);

DELETE FROM table;

The first query inserts values into a table while the second
deletes the entire table. Within MySQL, the code in Figure 5 to
execute the second command is not correctly synchronized with the
query logging code: the two queries may execute in one order while
the log lists the queries in the opposite order. This happens when an
optimized delete function releases logical isolation over the table
too early, unlocking lock open before logging and allowing the
entire insert function to begin and end before the delete is logged.
In contrast, the insert operation holds a logical lock for both the
insert and the log write.

Developer fix In the next working version of the code, this op-
timization disappeared completely, and the surrounding code was
restructured. It is unclear whether the developer was unable to fix
the bug or whether s/he recognized a fix and removed the code for
other reasons. An obvious lock-based fix is to extend the global
lock open to cover both operations, but this requires an under-
standing of that lock’s purpose as well as an understanding of the
performance implications; lock open is the most contended lock
in old versions of MySQL. We judge this fix as hard.

TM Fix Transactional memory fixed this bug with little effort
and without requiring a deep understanding of table synchroniza-
tion, as illustrated in Figure 5. An atomic/lock serializable section
(Recipe 4), on the right, wraps the physical operation of the delete
query together with logging. This atomic section is serializable
against any lock-based critical section. This includes the critical
section of thread 1 that uses lock open so any concurrent table-
modifying operation is prevented. Overall, this change is local to
the (very rare) delete-all-rows operation and obviates any need to
understand the correct logical locking to apply in this scenario. We
judge this fix as easy.

Comparison We measured the performance of our fix with two
tests: repeatedly deleting all rows from different tables, and repeat-

generate_table (...)

{

 LOCK(lock_open);

 /* Delete and regenerate

 * the table */

 ...

 UNLOCK(lock_open);

 …

 mysql_bin_log.write (...)

}

mysql_insert (…)

{

 ...

 mysql_open_table (,,,);

 /* Perform insert */

 ...

 mysql_bin_log.write (...);

 mysql_close_table (…);

}

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

Thread 2Thread 1

(a) an incorrect interleaving

generate_table (...)

{

 atomic_LS {
 LOCK(lock_open);

 /* Delete and regenerate

 * the table */

 ...

 UNLOCK (lock_open);

 ...

 mysql_bin_log.write (...)

 }
}

1

2

3

4

5

6

7

8

9

10

11

12

(b) Fixed with TM

Uses lock_open

Uses lock_open

Figure 5. An unsynchronized code sample from MYSQL, modified
for legibility.

edly inserting rows into a table. The performance of our fix is iden-
tical to that of the buggy version. Thus, the TM fix is simple, ex-
pressive and non-invasive, and therefore preferable to a rewrite of
the code.

6. Summary and Conclusions

With this study, we find that current TM is not useful in 17 of 60
atomicity-violation and deadlock bugs examined. This surprising
result arises because many concurrency bugs are not about shared
data; rather than they concern synchronization, such as condition
variables, or I/O, such as file or network access. However, we do
find that straightforward uses of TM can fix 40 of the 60 bugs, and
sophisticated uses of TM can fix 3 additional bugs and simplify the
fixes of 20 of the 40 bugs. Overall, we found that among the 43
bugs that could be fixed by TM, the TM fix may be preferable in
34 cases. These results demonstrate that transactional memory, as
proposed, is moderately useful in concurrent programs, but that it
does not address enough of the problems that cause bugs.
While replacing existing locks with transactions may require

some non-trivial implementation effort, we have seen that transac-
tions can simplify existing logic and fix other bugs as a side ef-
fect. Furthermore, the resulting code, structured as clearly identi-
fied atomic blocks, may be easier for developers to understand as
demonstrated in Case Study 1.
On the other hand, some bugs are trivially fixed with locks, for

example when extending an existing critical section to include more
code. In such cases, applying transactions yields little value. Fi-
nally, even for bugs that can be more simply fixed with TM, the
performance overhead of TM may be too large in the absence of
hardware support, because software TM is generally more expen-
sive than locking when there is no lock contention [52].
For some bugs, the primitive of atomic execution may not have

sufficient expressive power to solve the problem. We identify three
such deficiencies. First, deadlocks regarding I/O channels, such as
pipes, are not addressed by memory transactions, as the contended
resource (the I/O channel) is outside the process. Second, asyn-
chronous I/O allows the OS to write to memory at a later time, pos-
sibly after the transaction commits or aborts, thus making it work
poorly with transactional memory. Third, shared memory similarly
allows other processes to access memory, while current STMs only
enforce isolation for threads in the same process. Extending TM
along these dimensions might be a fruitful research topic. At least
for our work, such extensions would allow TM to fix five more
bugs.
Finally, in several bugs the use of STM slowed down per-

formance, especially when TM was used to replace ad hoc syn-
chronization where performance is critical. While low-performance
cases could be considered as non-applicable for TM, we believe
that as STM systems mature or as TM becomes available in hard-

ware, the performance for those cases will greatly improve, thus
making them more suitable for TM.

Acknowledgements

This work is supported in part by National Science Foundation
(NSF) grants CNS-0720565 and CNS-0834473. We would like to
thank Wei Zhang for help with the reproduction of bugs. We would
also like to thank our shepherd, Michael Scott, and the anonymous
reviewers for their invaluable feedback. Swift has a significant
financial interest in Microsoft.

References

[1] The IBM Blue Gene/Q compute chip with SIMD floating-point unit.
Hot Chips 23, Aug. 2011.

[2] A.-R. Adl-Tabatabai and T. Shpeisman. Draft specification of
transactional language constructs for C++, version 1.0. http:

//software.intel.com/file/21569, Aug. 2009.

[3] AMD Corporation. Advanced synchronization facility: Proposed
architectural specification, rev. 2.1. http://developer.amd.
com/assets/45432-ASF\ Spec\ 2.1.pdf, Mar. 2009.

[4] L. Baugh and C. Zilles. An analysis of I/O and syscalls in critical
sections and their implications for transactional memory. In Proc.
of the 2nd ACM SIGPLAN Workshop on Languages, Compilers, and

Hardware Support for Transactional Computing, Aug. 2007.

[5] C. Blundell, J. Devietti, E. C. Lewis, and M. M. Martin. Making
the fast case common and the uncommon case simple in unbounded
transactional memory. In Proc. of the 34th Annual Intnl. Symp. on
Computer Architecture, June 2007.

[6] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software transactional memory: Why is it only a
research toy? Commun. ACM, 51(11):40–46, 2008.

[7] S. Cherem, T. Chilimbi, and S. Gulwani. Inferring locks for atomic
sections. In Proc. of the SIGPLAN 2008 Conf. on Programming
Language Design and Implementation, June 2008.

[8] L. Chew and D. Lie. Kivati: Fast detection and prevention of atomicity
violations. In Proc. of the 5th ACM European Conf. on Computer
Systems, Apr. 2010.

[9] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riviere.
Evaluation of AMD’s advanced synchronization facility within a
complete transactional memory stack. In Proc. of the 5th ACM
European Conf. on Computer Systems, Apr. 2010.

[10] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott,
and M. F. Spear. Hybrid NOrec: A case study in the effectiveness
of best effort hardware transactional memory. In Proc. of the 16th
Intnl. Conf. on Architectural Support for Programming Languages

and Operating Systems, Mar. 2011.

[11] L. Dalessandro, M. L. Scott, and M. F. Spear. Transactions as the
foundation of a memory consistency model. In Proc. of the 24th
International Symp. on Distributed Computing, Sept. 2010.

[12] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by abolishing ownership records. In Proc. of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, Jan. 2010.

[13] P. Damron, A. Fedorova, Y. Lev, V. Luchango, M. Moir, and
D. Nussbaum. Hybrid transactional memory. In Proc. of the 12th
Intnl. Conf. on Architectural Support for Programming Languages

and Operating Systems, Oct. 2006.

[14] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a
commercial hardware transactional memory implementation. InProc.
of the 14th Intnl. Conf. on Architectural Support for Programming

Languages and Operating Systems, Mar. 2009.

[15] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proc.
of the 20th International Symp. on Distributed Computing, Sept.
2006.

[16] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching transac-
tional memory. In Proc. of the SIGPLAN 2009 Conf. on Programming
Language Design and Implementation, June 2009.

[17] P. Dudnik and M. M. Swift. Condition variables and transactional
memory: Problem or opportunity? In Proc. of the 4rd ACM SIGPLAN
Workshop on Languages, Compilers, and Hardware Support for

Transactional Computing, Feb. 2009.

[18] M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar. Lock allocation.
In Proc. of the 34th ACM SIGPLAN/SIGACT Symp. on Principles of
Programming Languages, 2007.

[19] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of
word-based software transactional memory. In Proc. of the 13th ACM
SIGPLAN Symp. on Principles and Practice of Parallel Programming,
Feb. 2008.

[20] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In Proc. of
the 31st Annual Intnl. Symp. on Computer Architecture, June 2004.

[21] T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory, 2nd
edition. Morgan & Claypool Publishers, 2010.

[22] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
memory transactions. In Proc. of the 10th ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming, June 1991.

[23] HIPEAC. Gcc for transactional memory. http://www.hipeac.
net/node/2419.

[24] Intel. Intel C++ STM compiler, Prototype edition. http:

//software.intel.com/en-us/articles/intel-c-

stm-compiler-prototype-edition/, 2009.

[25] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated
atomicity-violation fixing. In Proc. of the SIGPLAN 2011 Conf.
on Programming Language Design and Implementation, June 2011.

[26] H. Jula, D. M. Tralamazza, C. Zamfir, and G. Candea. Deadlock
immunity: Enabling systems to defend against deadlocks. In
Proc. of the 8th USENIX Symp. on Operating Systems Design and

Implementation, Dec. 2008.

[27] E. Koskinen and M. Herlihy. Dreadlocks: Efficient deadlock
detection. In Proc. of the 20th ACM Symp. on Parallel Algorithms
and Architectures, June 2008.

[28] B. W. Lampson and D. D. Redell. Experience with processes and
monitors in Mesa (summary). In Proc. of the 7th Symp. on Operating
System Principles, Dec. 1979.

[29] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased transactional
memory. In Proc. of the 2nd ACM SIGPLANWorkshop on Languages,
Compilers, and Hardware Support for Transactional Computing,
Aug. 2007.

[30] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics.
In Proc. of the 13th Intnl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Mar. 2008.

[31] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-aid: Detecting
and surviving atomicity violations. In Proc. of the 35th Annual Intnl.
Symp. on Computer Architecture, June 2008.

[32] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset. Computer Architecture News, pages 92–99, Sept.
2005.

[33] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
Synchronization inference for atomic sections. In Proc. of the
33rd ACM SIGPLAN/SIGACT Symp. on Principles of Programming

Languages, 2006.

[34] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
Logtm: Log-based transactional memory. In Proc. of the 12th IEEE
Symp. on High-Performance Computer Architecture, Feb. 2006.

[35] Mozilla. Performance: Page load and DHTML performance.
http://wiki.mozilla.org/Performance:Home Page,
Mar. 2010.

[36] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits,
J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy, J. Olivier,
S. Preis, B. Saha, A. Tal, and X. Tian. Design and implementation
of transactional constructs for c/c++. In Proc. of the 23rd SIGPLAN
Conf. on Object-Oriented Programming, Systems, Languages and

Application, Oct. 2008.

[37] V. Pankratius. Does transactional memory keep its promises? Results
from an empirical study. Technical Report 2009-12, University of
Karlsruhe, Germany, Sept. 2009.

[38] M. Pohlack and S. Diestelhorst. From lightweight hardware
transactional memory to lightweight lock elision. In Proc. of the 6th
ACM SIGPLAN Workshop on Languages, Compilers, and Hardware

Support for Transactional Computing, June 2011.

[39] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and E. Witchel.
Operating systems transactions. In Proc. of the 22nd ACM Symp. on
Operating System Principles, Oct. 2009.

[40] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as
allergies — a safe method to survive software failure. In Proc. of the
20th ACM Symp. on Operating System Principles, Oct. 2005.

[41] S. Rajamani, G. Ramalingam, V. P. Ranganath, and K. Vaswani.
ISOLATOR: Dynamically ensuring isolation in concurrent programs.
In Proc. of the 14th Intnl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Mar. 2009.

[42] R. Rajwar and J. R. Goodman. Transactional lock-free execution of
lock-based programs. InProc. of the 10th Intnl. Conf. on Architectural
Support for Programming Languages and Operating Systems, 2002.

[43] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory.
In Proc. of the 32nd Annual Intnl. Symp. on Computer Architecture,
June 2005.

[44] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann,
A. Bhandari, and E. Witchel. MetaTM/TxLinux: Transactional
memory for an operating system. In Proc. of the 34th Annual Intnl.
Symp. on Computer Architecture, June 2007.

[45] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan,
A. Bhandari, and E.Witchel. TxLinux: Using and managing hardware
transactional memory in an operating system. In Proc. of the 21st
ACM Symp. on Operating System Principles, Oct. 2007.

[46] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transactional
programming actually easier? In Proc. of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Jan.
2010.

[47] A. Roy, S. Hand, and T. Harris. A runtime system for software
lock elision. In Proc. of the 4th ACM European Conf. on Computer
Systems, Apr. 2009.

[48] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A high performance software transac-
tional memory system for a multi-core runtime. In Proc. of the
11th ACM SIGPLAN Symp. on Principles and Practice of Parallel

Programming, Mar. 2006.

[49] T. Shpeisman, A.-R. Adl-Tabatabai, R. Geva, Y. Ni, and A. Welc.
Towards transactional memory semantics for C++. In Proc. of the
21st ACM Symp. on Parallel Algorithms and Architectures, June
2009.

[50] M. F. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and
M. L. Scott. Implementing and exploiting inevitability in software
transactional memory. In Proc. of the 37th Intnl. Conf. on Parallel
Processing, Sept. 2008.

[51] M. M. Swift, H. Volos, N. Goyal, L. Yen, M. D. Hill, and D. A. Wood.
OS support for virtualizing hardware transactional memory. In Proc.
of the 3rd ACM SIGPLAN Workshop on Languages, Compilers, and

Hardware Support for Transactional Computing, Feb. 2008.

[52] T. Usui, Y. Smaragdakis, and R. Behrends. Adaptive locks:
Combining transactions and locks for efficient concurrency. In Proc.
of the 4rd ACM SIGPLAN Workshop on Languages, Compilers, and

Hardware Support for Transactional Computing, Feb. 2009.

[53] H. Volos, N. Goyal, and M. M. Swift. Pathological interaction of
locks with transactional memory. In Proc. of the 3rd ACM SIGPLAN
Workshop on Languages, Compilers, and Hardware Support for

Transactional Computing, Feb. 2008.

[54] H. Volos, A. J. Tack, N. Goyal, M. M. Swift, and A. Welc. xCalls:
Safe I/O in memory transactions. In Proc. of the 4th ACM European
Conf. on Computer Systems, Apr. 2009.

[55] Webkit. Sunspider javascript benchmark. http://www2.

webkit.org/perf/sunspider-0.9/sunspider.html.

[56] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transactions
and their applications. In Proc. of the 20th ACM Symp. on Parallel
Algorithms and Architectures, June 2008.

[57] H. Wettstein. The problem of nested monitor calls revisited. SIGOPS
Operating Systems Review, January 1978.

[58] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad hoc
synchronization considered harmful. In Proc. of the 9th USENIX
Symp. on Operating Systems Design and Implementation, Oct. 2010.

[59] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling hardware
transactional memory from caches. In Proc. of the 13th IEEE Symp.
on High-Performance Computer Architecture, Feb. 2007.

[60] F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguadé,
T. Harris, and M. Valero. Atomic Quake: Using transactional memory
in an interactive multiplayer game server. In Proc. of the 14th ACM
SIGPLAN Symp. on Principles and Practice of Parallel Programming,
Feb. 2009.

