
Generating Synthetic Complex-structured XML Data

Ashraf Aboulnaga Jeffrey F. Naughton Chun Zhang

Computer Sciences Department
University of Wisconsin - Madison

{ashraf,naughton,czhang }@cs.wisc.edu

Abstract
Synthetically generated data has always been important for evaluating and understanding new ideas in database research.
In this paper, we describe a data generator for generating synthetic complex-structured XML data that allows for a high
level of control over the characteristics of the generated data. This data generator is certainly not the ultimate solution
to the problem of generating synthetic XML data, but we have found it very useful in our research on XML data
management, and we believe that it can also be useful to other researchers. Furthermore, we hope that this paper starts
a discussion in the XML community about characterizing and generating XML data, and that it may serve as a first step
towards developing a commonly accepted XML data generator for our community.

1 Introduction

Synthetically generated data is very useful in evaluating and understanding new ideas in database research. For example,
research on relational databases often uses synthetic data from the Wisconsin benchmark [DeW93], TPC-C [TPCC], or
TPC-H [TPCH], and research on object oriented databases often uses synthetic data from the OO7 benchmark [CDN93].

Synthetic data generators allow us to generate large volumes of data with well-understood characteristics. We can
easily vary the characteristics of the generated data by varying the input parameters of the data generator. This allows us
to systematically cover much more of the space of possible data sets than relying solely on real data over which we have
little or no control. As such, using synthetic data for evaluating research ideas and testing the performance of database
systems can provide us with deeper insights and stronger conclusions than relying solely on real data. Of course, while
experimenting with synthetic data is an ideal way to explore the behavior of different solutions on data with different
characteristics, an additional validation step may be necessary to ensure that the conclusions drawn from synthetic data
extend to real world applications.

In this paper, we describe a data generator that generates synthetic complex-structured XML documents. The data
generator can generate XML documents of arbitrary complexity, and it allows the user to specify a wide range of
characteristics for the generated data by varying a number of simple and intuitive input parameters. The data generator
is certainly not a finished product, but it is our hope that making it publicly available and discussing it and related issues
will serve as a first step toward the development of a common data generator for the XML community.

An alternative to using synthetic data is to use only real data for XML research. Using only real data can be very
limiting for three reasons. First, there is not much publicly available XML data at this time. Second, all the real
XML data that we have encountered has relatively simple structure. Using more complex XML data can provide better
insights, even if this data is synthetic. Third, like all real data, we have very little control over the characteristics of real
XML data.

Our data generator can be used to generate synthetic XML data that resembles real data, but this is not the goal of
the data generator. The goal of the data generator is rather to generate XML data sets with widely varying characteristics
by varying the input parameters, thereby covering many different parts of the space of possible XML data sets. This
allows the data generator to be used in a wide range of applications to gain insights into the performance of proposed
techniques on different kinds of XML data. The simple and intuitive nature of the data generation parameters means
that the characteristics of the generated XML data will be easy to understand, even though this data may not necessarily
resemble any available real data.

The data generator generates tree-structured XML documents of arbitrary complexity. It generates XML elements
and values within these elements, but it does not currently handle the generation of attributes. The data generator starts
by generating a tree, which we call thepath tree, that represents the structure of the XML data. The data generator
assigns tag names to the nodes of this tree, and specifies the frequency distribution of the XML elements represented by
these nodes. It uses the information in this tree to generate one or more XML documents, and it also generates values
for the elements in these documents. The input parameters of the data generator provide a high degree of control over
all the steps of the data generation process.

1

We have found our data generator very helpful in our research on XML data management [AAN01, ZND+01] and in
evaluating and testing the Niagara system [Nia]. We believe that the data generator can be as useful to other researchers
as it is to us. Furthermore, we hope that this paper stimulates a discussion among researchers in the XML community
about characterizing and generating XML data. It is also our hope that our data generator can be a seed that, through
extensions and modifications by other researchers, can eventually grow into a useful common data generator for our
community. The data generator is publicly available from http://www.cs.wisc.edu/niagara.

The rest of this paper is organized as follows. Section 2 presents an overview of related work. Section 3 describes
generating the tree that represents the structure of the XML data. Section 4 describes assigning tag names to the nodes
of this tree. Section 5 describes our approach to specifying a frequency distribution for the XML elements. Section 6
presents our method of generating the XML documents from the specified structure. Section 7 provides details on
generating the values within the XML elements. Section 8 contains concluding remarks.

2 Related Work

An early example of using synthetic data to evaluate relational database systems is the Wisconsin benchmark [DeW93].
Our data generator is similar in spirit to the Wisconsin benchmark in that we do not try to assign a real world meaning
to the data that we generate. We provide a high degree of control over the characteristics of the generated XML data
without requiring it to have a real world interpretation. Other examples of synthetic data that is commonly used in
research on relational database systems include TPC-C data [TPCC] and TPC-H data [TPCH].

Synthetic data that is more complex in structure than relational data includes the graph-structured data from the
OO7 benchmark for object-oriented database systems [CDN93] and from the BUCKY benchmark for object-relational
database systems [CDN+97].

Relational, object-oriented, or object-relational data can certainly be represented in XML, but the XML represen-
tation of such data has a fairly simple structure. Our data generator can generate simple-structured data that resembles
these kinds of data, but the real power of the data generator is that it can also generate much more complex-structured
XML data while providing a much higher degree of control over the data generation process.

We are aware of several proposals for generating synthetic XML data. In [FK99], synthetic XML data is used to
evaluate different strategies for storing XML in relational database systems. The XML data used consists of elements
at one level with no nesting. The elements are randomly connected in a graph structure using IDREF attributes. This
graph-structured view of XML data is useful in some contexts, but XML data is by nature tree structured, and it may
often be useful to have a tree-structured view of this data. For example, the important notion of “element containment”
only applies to tree-structured XML data. Furthermore, the data generation process of [FK99] has very few opportunities
for varying the structure and distribution of the generated data.

In [BR01] and [SWK+01], two benchmarks are proposed for evaluating the performance of XML data management
systems. Both benchmarks use synthetic XML data that models data from high-level applications: a database of struc-
tured text documents and a directory of these documents in [BR01], and data about on-line auctions in [SWK+01]. The
structure of the data in both cases is fixed and simple, and there is very little opportunity for varying it. This kind of
data may be adequate for a benchmark that serves as a standard yardstick for comparing the performance of XML data
management systems. But if our goal is to test and evaluate a particular XML data management system or a particular
feature or component of such a system and to gain insights into its performance, then using XML data with widely
varying structure over which we have more control can be more helpful.

IBM provides a data generator that generates XML data that conforms to an input DTD [IBM]. Like the previous
approaches, the IBM data generator is limited in the control it provides over the data generation process. For example,
we can specify a maximum number of levels for the generated XML documents, but we cannot dictate that these
documents haveexactlythis number of levels. Other limitations include using only uniform frequency distributions with
no opportunity for generating skewed data.

In contrast to these proposals for generating synthetic XML data, our data generator can generate much more com-
plex data, and it provides much more control over the characteristics of the generated data. Nevertheless, it may be
possible to use ideas from these proposals to extend our data generator. For example, IDREF attributes may be used to
connect the elements of the generated documents as in [FK99].

Next, we describe the different steps of generating synthetic XML data, and we point out the input parameters that
control each step.

2

<A>

 <D/>

 <C>
 <D/>
 <D/>
 </C>

A 1

D 1

C 1B 2

D 2

Figure 1: An XML document and its path tree

3 Generating the Tree Structure of the Data

The data generation process starts by generating a tree that specifies the structure of the XML data to be generated. We
call this tree thepath tree.

Every node in the path tree represents a possible path starting from the root of the XML document. The root node
of the path tree represents the root element of the XML document. The children of a path tree node represent elements
with distinct tag names that are directly nested in the XML elements represented by this node. Thus, every path tree
node represents a set of XML elements with the same tag name and reachable by the same path from the root of the
document. Every path tree node is labeled with this tag name and with the number of XML elements it represents, which
we call thefrequencyof the node. A path tree is an annotated and simplified form of aDataGuide[GW97]. Figure 1
presents a simple XML document and its path tree.

At the start of the data generation process, only the structure of the path tree is generated. Path tree nodes are
generated without tag names or node frequencies. This information is added to the nodes later in the data generation
process.

The input parameters of the data generator include parameters that control the structure of the generated path tree
and allow us to generate arbitrarily complex trees. These parameters are thenumber of levels in the path tree, and for
every level of the path tree except the lowest level theminimum and maximum number of childrenfor nodes at this level.
Nodes at the lowest level of the path tree are all leaf nodes that have no children.

The data generator generates the path tree in a depth first manner, from root to leaves. The number of children of an
internal path tree node at a particular level of the path tree is chosen at random according to a uniform distribution from
the range specified by the input parameters for the possible number of children for nodes at this level.

4 Tag Names – Recursion and Repetition

The next step in the data generation process is assigning tag names to the path tree nodes. This step starts by traversing
the path tree in breadth first order and assigning each node a distinct tag name. The tag names used areA, B, C, . . . , Z,
AA, AB, AC, etc.

For some usage situations of the data generator, it may be acceptable for path tree nodes to have distinct tag names.
For other usage situations, it may be desirable to haverepeated tag namesin the path tree for several reasons. First,
it may be desirable to haverecursion in the generated XML data (i.e., an XML element having the same tag name
as its parent or one of its ancestors). Second, it may be desirable to have multiple XML elements with the same tag
name reachable by different paths from the root. Third, repeating the tag names of internal path tree nodes allows us
to increase theMarkovian memoryof the paths in the path tree. An important property of paths in XML data is that
the next tag encountered while traversing the path may depend on some of the previous tags encountered. Such paths
can be modeled as aMarkov process, and the number of previous tags that the next tag depends on is theorder of this
process. When the next tag depends on many previous tags, we say that the paths have a lot of Markovian memory.
This property of “the future depending on the present and some part of the past” is often exhibited in real XML data
and can be important for some applications. When all nodes of the path tree have distinct tag names, the tag names of
the children of a path tree node depend only on the tag name of this node and not on the tag names of its ancestors. In
this case, paths in the path tree can be modeled as a Markov process of order1. When there are repeated tag names in
the internal nodes of the path tree, the tag names of the children of a path tree node may depend on the tag names of its
ancestors as well as its own tag name. In this case, paths in the path tree can be modeled as a Markov process of order
greater than1, so there is more Markovian memory in the paths of the path tree.

3

B C

D

A

E

F G

H I

B C

D

A

E

F

H I

F

B C

D

A

F

H I

F

D

(a) (b) (c)

Figure 2: Markovian memory in the path tree due to repeated tag names

For example, consider the path trees in Figure 2. The nodes of the path tree in Figure 2(a) have distinct tag names.
Knowing that nodeF has a childH does not require any information about its ancestors. Paths in this path tree can be
modeled as a Markov process of order1. In Figure 2(b), the internal nodes of the path tree have repeated tag names.
In this case, determining whether nodeF has a childH requires knowing the tag name of its parent. A nodeF has a
child H only if its parent isD. Paths in this path tree can be modeled as a Markov process of order2. The path tree in
Figure 2(c) has even more repetition in the tag names of its internal nodes. Paths in this path tree can be modeled as a
Markov process of order3. We know that a nodeF has a childHonly if we know that its parent isDand its grand parent
is B.

After assigning distinct tag names to the path tree nodes, the data generator introduces different kinds of recursion
and repeated tag names into the path tree as specified by several input parameters. The data generator introducesdirect
recursion, in which some nodes have the same tag name as their parents, andindirect recursion, in which some nodes
have the same tag name as one of their ancestors. The data generator also introduces repeated tag names amonginternal
path tree nodes, which increases the Markovian memory of the paths in the path tree, and amongleaf nodes of the path
tree, which does not affect the Markovian memory of the paths in the path tree. The data generator can also introduce
repeated tag names among nodes of the path tree without restricting whether these nodes are internal nodes or leaf nodes.

5 Element Frequency Distribution

The next step in the data generation process is specifying the frequency distribution of the path tree nodes. One of the
input parameters to the data generator is thetotal number of XML elements to generate. This is the total frequency of
all path tree nodes. The frequencies of the path tree nodes follow a Zipfian distribution [Zip49]. Theskew parameter
of this distribution,z, is another input parameter of the data generator.z = 0 represents a uniform distribution, while
z > 0 represents a skewed distribution in which some path tree nodes are more frequent than others.

Frequencies are assigned to the path tree nodes inbreadth first order. An input parameter of the data generator
specifies whether these frequencies are sorted in ascending order (i.e., the root node is the least frequent), descending
order (i.e., the root node is the most frequent), or random order.

Figure 3 illustrates the different approaches for assigning frequencies to path tree nodes. The figure illustrates three
path trees in which frequencies are assigned to nodes in ascending, descending, and random orders. The total number
of XML elements that will be generated from these path trees is31, andz = 1.

6 Non-determinism in the Generated Data

The frequencies assigned to the path tree nodes as described in the previous section specify the total number of XML
elements to generate for every node. However, they do not specify the number of elements to generate for a path
tree node within any particular XML element corresponding to the parent of this node. For example, the path tree in
Figure 4 specifies that the XML document has2 A elements within which are4 B elements. Figure 4 also shows two
XML documents satisfying this definition: a document with2 B elements within eachA element, and one with all4 B

4

B 2

A 1

C 4 D 8

E 16

C 4B 8 D 2

E 1

A 16 A 2

C 1B 4

E 8

D 16

(a) (b) (c)

Figure 3: Assigning frequencies to path tree nodes in (a) ascending, (b) descending, and (c) random order

A 2

B 4

<A>

<A>

<A>

<A/>

Figure 4: Non-determinism in the generated data

elements within oneA element. We say that the first document is moredeterministicthan the second.
The path tree in Figure 4 specifies that the average number ofB elements in anA element is2. The number ofB

elements in anA element can follow any frequency distribution with a mean value of2. The variance of this frequency
distribution specifies thenon-determinismin the generated XML data. In our data generator, if the average number of
elements to generate for a path tree node within an XML element corresponding to its parent node isn, we choose the
number of elements to generate for this path tree node in any particular XML element corresponding to its parent from
a uniform distributionranging from(1 − p)n to (1 + p)n. The fractionp is an input parameter of the data generator.
The greater the value ofp, the more the non-determinism in the generated data.

The path tree with tag name and node frequency information, together with the non-determinism parameterp, fully
specify the structure of the XML data to generate. The data generator performs a depth first traversal of the path tree
and generates XML elements according to this specification. To ensure that the generated XML is well-formed, the
data generator adds a top-level<ROOT> element. Next, we describe our approach to generating values for the XML
elements.

7 Element Values

The data generator generates one or more XML documents having exactly the same structure, and it generates values
for some of the XML elements in these documents. The generated documents differ only in the values generated for
the XML elements. These generated values are strings consisting of one or moretext words. The text words follow
a Zipfian frequency distribution and are controlled by input parameters of the data generator that specify the number
of XML documents to generate, the total number of text words to generate in all these documents, and the number of
distinct text words to generate. These text words are synthetically generated and have the valuestw1 , tw2 , tw3 , etc.
The input parameters of the data generator also specify the Zipfian skew parameter,z, of the text word distribution. The
Zipfian frequencies from this distribution are assigned to text words in descending order. The first text word,tw1 , is the
most frequent. The input parameters also control the number of XML elements corresponding to internal or leaf nodes
of the path tree that have text words.

Text words for the XML elements in all generated documents are generated from the text word distribution in round-
robin order (tw1 , tw2 , . . . , tw m, tw1 , . . .). When the frequency of a text word is exhausted, we stop using this word.
This approach allows us to vary the selectivity of query predicates on the values of the elements in the generated XML
documents. Note that it is possible to generate XML documents that have no values in the generated elements.

5

8 Conclusions

In this paper, we presented a data generator for generating synthetic complex-structured XML data, which can be of use
to researchers in XML data management. The data generator has several input parameters that control the characteristics
of the generated data. The parameters all have simple and intuitive meanings, so it is easy to understand the structure
of the generated data and to set the parameters that are not important for a specific usage situation to reasonable default
values. The data generator is publicly available from http://www.cs.wisc.edu/niagara. It can easily be extended and
modified to allow for different methods of data generation not covered in this paper. Areas for possible extension include,
among others, generating attributes and references, generating data that conforms to a given DTD, and alternative ways
of generating text.

While we think our data generator and the ideas it incorporates are useful, our goal at this point is definitely not
to claim that it is a finished product. Rather, our goal in writing this paper is to initiate a discussion in the research
community with the eventual goal of developing a shared synthetic XML data generation resource.

Acknowledgements
Funding for this work was provided by NSF through grants CDA-9623632 and ITR 0086002, and by DARPA through
NAVY/SPAWAR Contract No. N66001-99-1-8908.

References

[AAN01] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. Naughton. Estimating the selectivity of XML path
expressions for Internet scale applications. Submitted for publication, 2001.

[BR01] Timo Böhme and Erhard Rahm. XMach-1: A benchmark for XML data management. InProc. German
Database Conference (BTW2001), Oldenburg, Germany, March 2001.

[CDN93] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The OO7 benchmark. InProc. ACM SIGMOD
Int. Conf. on Management of Data, pages 12–21, Washington, D.C., May 1993.

[CDN+97] Michael J. Carey, David J. DeWitt, Jeffrey F. Naughton, Mohammad Asgarian, Paul Brown, Johannes
Gehrke, and Dhaval Shah. The BUCKY object-relational benchmark. InProc. ACM SIGMOD Int. Conf. on
Management of Data, pages 135–146, Tucson, Arizona, May 1997.

[DeW93] David J. DeWitt. The Wisconsin benchmark: Past, present, and future. In Jim Gray, editor,The Benchmark
Handbook for Database and Transaction Systems. Morgan Kaufmann, second edition, 1993.

[FK99] Daniela Florescu and Donald Kossmann. Storing and querying XML data using an RDBMS.IEEE Data
Engineering Bulletin, 22(3):27–34, September 1999.

[GW97] Roy Goldman and Jennifer Widom. DataGuides: Enabling query formulation and optimization in semistruc-
tured databases. InProc. Int. Conf. on Very Large Data Bases, pages 436–445, Athens, Greece, August
1997.

[IBM] IBM XML generator. http://www.alphaworks.ibm.com/tech/xmlgenerator.

[Nia] The Niagara project. http://www.cs.wisc.edu/niagara/.

[SWK+01] Albrecht Schmidt, Florian Waas, Martin Kersten, Daniela Florescu, Ioana Manolescu, Michael J. Carey,
and Ralph Busse. The XML benchmark project. Technical Report INS-R0103, CWI, April 2001.

[TPCC] TPC benchmark C. Transaction Processing Performance Council (TPC). Available from http://www.tpc.org/.

[TPCH] TPC benchmark H. Transaction Processing Performance Council (TPC). Available from http://www.tpc.org/.

[Zip49] George K. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley, Reading, Mas-
sachusetts, 1949.

[ZND+01] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and Guy M. Lohman. On supporting
containment queries in relational database management systems. InProc. ACM SIGMOD Int. Conf. on
Management of Data, Santa Barbara, California, May 2001.

6

