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Abstract

There is currently a lot of interest in develop-
ing Internet query processors that can pose elab-
orate queries on XML data on the Web. Such
query processors can query data sources that have
static XML files, but they should also be able
to query“hidden Web” data sources that export
an XML view of data stored in a database. To
optimize queries that involve these hidden Web
data sources, we need to have XML statistics that
can be used to estimate the selectivity of queries
posed to these sources. Since we can only access
the data at a hidden Web data source by issuing
queries, we need to developon-line XML statis-
tics that are built by observing queries to a hidden
Web data source and their result sizes.

In this paper, we assume that queries to a hidden
Web data source are XPath selections from a vir-
tual XML document that represents all the data at
this source. We observe the user XPath queries
to the data source and convert them to a more ab-
stract and generalized form that we callannotated
path expressions. We describe an on-line statistics
structure that stores such annotated path expres-
sions and information about their selectivity for
use in estimating the selectivity of future XPath
queries. We experimentally demonstrate the con-
vergence and accuracy of our proposed on-line
statistics using real and synthetic XML data sets.

1 Introduction
There is currently a lot of interest in developing Internet
query processors that can “query the Web.” Such query
processors would retrieve and integrate data from multi-
ple Web sources. They would provide the user with high-
quality information that is much more useful than that
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Figure 1: Querying the Web using XML

which can be obtained today, even with advanced search
engines.

The emergence of XML as a standard data representa-
tion format for Web data is a key factor in facilitating the
development of such Internet query processors. XML pro-
vides a common format for all Web sources to export their
data, so Internet query processors can be built assuming
that all the data that they query will be in XML. Examples
of systems that query XML data over the Internet include
Niagara [NDM+01] and Xyleme [Xyl01].

These Internet query processors can easily query data
that is in XML files on the Web. We call thisstatic XML
data. However, most of the data on the Web isnot in static
XML files, or even HTML files. Most of the data on the
Web is “hidden” in databases and can only be accessed by
posing queries over these databases [RGM01, Bright]. This
portion of the Web is known as thehidden Web. Sometimes
it is also referred to as thedeep Web.

XML has gained almost universal acceptance as the
standard format for interchanging data between data
sources on the Internet [FLM98]; even more so than as a
format for storing static data. As such, we can expect that
hidden Web data sources will export the data they produce
in response to user queries in XML format. Therefore, it
should be possible – and highly desirable – for Internet
query processors like Niagara to query hidden Web data us-
ing the same XML query processing framework that they
use to query the static Web, as shown in Figure 1. Optimiz-
ing XML queries over hidden Web data sources requires
statisticsabout these sources. Providing such statistics is
the focus of this paper.



Querying the hidden Web is of particular importance
because the size of the hidden Web is up to 400 to 500
times larger than the size of the “static Web.” Further-
more, data in the hidden Web is typically very high-quality
data [Bright]. Examples of hidden Web data sources in-
clude the FactFinder database of census information from
the U.S. Census Bureau [Census] and the EDGAR database
of company financial statements from the Securities and
Exchange Commission [EDGAR].

These data sources do not currently present their re-
sponses to user queries as as XML, but rather as HTML.
However, as XML gets deployed on a wider scale, we can
expect that many hidden Web data sources will start export-
ing their data as XML. Furthermore, it is often possible to
build wrappersaround Web sites that can present an XML
view of the HTML data at these sites [PGMW95]. As such,
even though XML data from hidden Web data sources is
not widely available yet, it should be useful to include the
ability of dealing with such data in Internet query proces-
sors like Niagara.

1.1 A Motivating Example
As an example of the queries that can be made possible
by XML based Internet query processors querying hidden
Web data sources, consider the query in Figure 2 expressed
in the XQuery language [CFR+01]. This is a join query
that asks for price quotes under $25,000 from car dealers
in Madison for year 2002 cars that received a 5 star rating
in the government crash tests. The URLs in this query are
for actual Web sites that can be queried to provide the re-
quired information, albeit in HTML not XML. However, as
mentioned above, it would be reasonable to expect that this
information may be available in XML in the near future,
thereby making such a query feasible.

The query in Figure 2 uses XPath [CD99] path expres-
sions to query the hidden Web data sources. Each path ex-
pression specifies a navigation through the structure of the
XML data based on a sequence of tags, with possible con-
ditions at each step to filter out some of the XML elements
encountered at this step. For example, the path expres-
sion //newcar/quote[city="Madison"] speci-
fies finding XML elements withnewcar tags anywhere
in the specified XML document, and finding all XML el-
ements directly contained within thesenewcar elements
that have aquote tag. The condition between braces spec-
ifies that we should only returnquote elements that di-
rectly contain an element with a tagcity whose value is
“Madison.” The XQuery language uses XPath path expres-
sions to navigate through XML data, and we assume that
queries to hidden Web data sources are in the form of XPath
path expressions (we present more details in Section 3.1).

In this paper, we focus on the problem of estimating the
selectivity of XPath path expressions issued to hidden Web
data sources. This is required for optimizing queries like
the one in Figure 2. Estimating the selectivity of these
XPath path expressions requiresstatisticsabout the data at
the hidden Web data sources. More accurately, it requires
statistics about theXML viewof the data at these sources.

1.2 On-line XML Statistics for the Hidden Web

The typical approach for building statistics for relational or
XML data is to scan the entire data and summarize it in
a structure that occupies a small amount of memory. This
does not work for XML data on the hidden Web becausewe
do not have access to the entire data. We only have access
to queries on this data and their results.

Most hidden Web data is stored in relational databases,
and sometimes in document databases. It isnot stored as
native XML. Rather, the XML view of the data is computed
only in response to user queries. Thus, we cannot scan the
entire data to build statistics.

Moreover, even if this data were to be fully converted
to native XML (which is highly unlikely), we would still
not have access to the entire data due to proprietary rights.
The owners of data are typically not willing to export their
entire data, even if they are willing to export answers to
queries over this data. For example, we can easily get the
price of an individual book from Amazon.com but not their
entire price list.

We developon-line XML statisticsfor this environment.
These statistics are constructed byobserving user queries
to hidden Web data sources and their results. The statistics
are builtper hidden Web data source. They use information
from past queries to a data source to estimate the selectivity
of different future queries to this data source. We do not
require any cooperation from the hidden Web data sources
in building these statistics; the statistics are based solely
on feedback from user queries. To reduce the construction
overhead and the complexity of the statistics, we assume
that we can only use thesizesof the query results (i.e., the
number of XML elements they contain) for constructing
the on-line XML statistics, and not the actual XML data in
these results.

The problem we have described is daunting in the ex-
treme: we are asking for statistics about an enormous, com-
plex, opaque data set; we cannot even view this data set,
being able only to observe it indirectly as queries and their
results hint at its structure and size. In such a situation, it is
unrealistic to expect solutions of the same quality as those
that have been developed for the highly constrained envi-
ronment of query optimization for relational data or static
XML data. That is not our goal. Instead, we seek to take
the first step toward developing techniques that yield statis-
tics that are substantially better than having no statistics at
all for hidden Web data sources. The information that these
statistics provide should, hopefully, be useful in optimizing
queries over the hidden Web.

The rest of this paper is organized as follows. Section 2
presents an overview of related work. Section 3 contains a
detailed definition of the problem that we are addressing.
Section 4 introducespath annotations, which we use in our
on-line statistics. Section 5 describes these statistics, which
we callon-line annotated path tables. Section 6 presents an
experimental evaluation of our proposed technique. Sec-
tion 7 contains concluding remarks.



FOR $r IN document("http://www.nhtsa.gov/")//safety/car[year=2002 and rating=5]
$q IN document("http://autos.yahoo.com/")//newcar/quote[city="Madison"]

WHERE $r/make=$q/make and $r/model=$q/model and $q/price<25000
RETURN $q/dealer

Figure 2: An example query in the XQuery language

2 Related Work

Statistics forstaticXML data have been proposed by Chen
et al. in [CJK+01] and by us in [AAN01]. The techniques
in [CJK+01] build statistics that are used to estimate the se-
lectivity of twig queries. Twig queries are branching path
expressions which can include conditions on the values of
the leaf nodes of the branches. The statistics we propose
in [AAN01] provide more accurate selectivity estimates for
the case of simple path expressions, which are path expres-
sions that have one branch and navigate in the XML data
based on structure, without conditions. The techniques in
both these papers are not applicable to the hidden Web, be-
cause they require the entire XML data to be read to con-
struct the statistics.

Querying multiple hidden Web data sources in an In-
ternet query processor is similar to querying multiple
data sources indata integration systemssuch as Tuk-
wila [IFF+99], Garlic [ROH99], or HERMES [ACPS96].
Data integration systems optimize and execute queries over
diverse data sources, so they must address the problem of
obtaining statistics for these sources.

Some systems require the data sources to explicitly ex-
port the statistics required for query optimization [NGT98,
ROH99]. This is not applicable to our problem of build-
ing statistics for the hidden Web, because the hidden Web
data sources are autonomous and provide no information
beyond answers to user queries.

Another approach is to design the data integra-
tion system to allow for run-time re-optimization of
queries [IFF+99]. This approach assumes that the query
optimizer will have little or no statistics about the data
sources, so it may choose an inefficient query execution
plan. As the plan is executed, more information about
the data sources is obtained, and the query processor may
choose to re-optimize the query based on this new informa-
tion. Providing statistics at query optimization time, as we
do in this paper, helps the query optimizer choose a good
initial plan. Starting with this good plan, it may still be pos-
sible to improve the performance of the query by run-time
re-optimization, although the need for such re-optimization
will be less because the initial plan is good.

The HERMES system records the result sizes of queries
issued to data sources and uses the recorded values to
estimate the selectivity of future queries issued to these
sources [ACPS96]. We also use the result sizes of queries
to build statistics, but we focus on XML path expressions
over hidden Web data sources, while the HERMES sys-
tem focused on function calls to external programs or data
sources in a distributed mediator system. Their techniques
for gathering, summarizing, and using statistics do not ex-
tend to our problem.

3 Problem Definition

3.1 Our Model for Hidden Web Queries

We view a hidden Web data source as avirtual XML doc-
ument. This virtual XML document represents all possible
XML query results that the data source can produce in re-
sponse to user queries. If the data source can present dif-
ferent XML views of the same data, each of these views is
considered to be a separate part of the virtual XML doc-
ument. For example, the car safety rating data source we
accessed in the query in Figure 2 may be able to present an
XML view of the safety ratings of cars grouped by make,
and another XML view of the different cars grouped by
safety rating. Each of these two XML views of the data
would be a different part of the virtual XML document rep-
resenting the data source, and the car safety data would be
replicated in both these parts.

The virtual XML document representing a hidden Web
data source can be very large, since it contains the answers
to all possible user queries that the data source can support,
with the data replicated possibly many times. However,
this is not a problem because this virtual XML document
is never materialized. Only parts of this document are ever
materialized, and only in response to user queries.

We assume that queries to a hidden Web data source are
in the form ofXPath path expressions[CD99] that select
parts of the virtual XML document representing this data
source. XPath is the standard path expression language for
selecting parts of an XML document based on structure and
content. It is a powerful language that can express many
kinds of selections, including most queries that can be input
using current HTML forms. Furthermore, XPath is used
in XML query standards such as XQuery [CFR+01] and
XSLT [Clark99].

We consider XPath path expressions of the form
//a1/a2/ · · · /an. Each step,ai, of the query path ex-
pression is either of the formti, whereti is a tag name,
or of the formti[ci] whereti is a tag name andci is an
arbitrarily complex condition. Such queries find element
nodes with tag namet1 anywhere in the XML tree repre-
senting the document. If there is a conditionc1, element
nodes that do not satisfy it are filtered out. From the re-
maining nodes, the queries navigate down to allt2 chil-
dren, then down to allt3 children, and so on until they
reachtn element nodes. At each step, if there is a con-
dition, nodes that do not satisfy it are filtered out. Our
goal is to estimate the number oftn nodes that are reached
by this navigation. Examples of XPath queries that we
consider are//safety/car[make="Saturn" and
year=2002]/rating , and //chapter[@title=
"Introduction"]/section[1]/paragraphs .
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3.2 Problem Definition

We consider the following setting: As part of answering
user queries, an Internet query processor issues queries to
a hidden Web data source. These queries are in the form of
XPath path expressions that select parts of the virtual XML
document representing this source. The XPath queries are
executed by the data source, and their results (the XML
elements they select) are returned to the Internet query pro-
cessor, where they are used to answer the user queries.

We observe the XPath queries issued to a hidden Web
data source and their result sizes (the number of XML el-
ements they return). Our objective is to use these obser-
vations to construct on-line XML statistics for the hidden
Web data source (Figure 3). These statistics should lever-
age the information obtained from past XPath queries to es-
timate the selectivity of future XPath queries issued to the
data source, including XPath queries that are seen for the
first time. Selectivity estimation accuracy should increase
as more queries are observed. Furthermore, there should
be a mechanism for bounding the amount of memory con-
sumed by the statistics to any given value.

4 Path Annotations
A simple way of building on-line XML statistics would be
to cache the XPath queries issued to a data source and their
result sizes. This way, if an XPath query whose selectiv-
ity is being estimated is identical to a query that was pre-
viously issued, we would find this query and its exact re-
sult size in the query cache. We would, therefore, have
a fully accurate selectivity estimate for this query, assum-
ing a read-only data source. However, for this technique
to work, it must cacheeveryquery and its result size. If
the query workload consists of a large number of queries,
the statistics data structure will grow unacceptably large.
Furthermore, this simplistic solution is of no use for XPath
queries that are seen for the first time. Our on-line XML
statistics must fit in a small amount of memory, and they
must be able to generalize the information obtained from
previously seen XPath queries to estimate the selectivity of
future XPath queries that are seen for the first time. To al-
low for this, we usepath annotations.

We convert XPath path expressions into more abstract
and generalannotated path expressions, and we use these
annotated path expressions for selectivity estimation. An
annotated path expression representsall XPath path expres-

sions that have a particular form, so it provides a degree of
summarization. The annotated path expression for one or
more observed XPath queries can be used to estimate the
selectivity ofdifferentfuture XPath queries that correspond
to this annotated path expression. The intuition behind an-
notated path expressions is that it is unlikely that we will
see the exact same XPath query over and over in a query
workload, but it is highly likely that we will see XPath
queries of the same form. Next, we describe the details of
two types of path annotations:condition annotationsand
structure annotations.

4.1 Condition Annotations

We consider XPath path expressions of the form
//a1/a2/ · · · /an, where each step,ai, of the path expres-
sion can be of the formti[ci], whereti is a tag name andci

is an arbitrary condition. Allowing arbitrary conditions in
the XPath path expressions creates the problem of how to
deal with these conditions in the on-line XML statistics.

On the one hand, to be realistic, we must allow condi-
tions in the XPath queries that we consider. Without con-
ditions, users would be able to express only a very limited
and weak form of selections from the virtual XML doc-
ument corresponding to a hidden Web data source. For
example, without conditions, users would be able to ask
a car safety data source for “the safety rating of all cars”
(//safety/car/rating ) but not for “the safety rating
of 2002 Saturns” (//safety/car[make="Saturn"
and year=2002]/rating ).

On the other hand, conditions complicate the con-
struction of statistics because we cannot ignore their
effect, nor can we isolate it. The selectivity of the
XPath query //safety/car[make="Saturn"
and year=2002]/rating is much smaller
than the selectivity of the unconditional query
//safety/car/rating . Thus, we cannot ignore
the effect of the condition[make="Saturn" and
year=2002] . This is generally true of all conditions
in typical XPath steps: their effect on selectivity is large
and cannot be ignored. But at the same time, the effect of
conditions on selectivity cannot be isolated as for static
XML data.

When building statistics for static XML data, we can
– conceptually, at least – traverse the data and count
the number of XML elements that are reachable by the
path //safety/car , and the number of these ele-
ments that satisfy the condition[make="Saturn" and
year=2002] . Thus, we can conceptually isolate the ef-
fect of the condition on selectivity. However, when build-
ing statistics for hidden Web data sources, we can only ob-
serve the entire XPath queries and their result sizes, with
no opportunity for isolating single conditions or naviga-
tion steps. Furthermore, a condition on a tag in a partic-
ular XPath query can have a different effect on selectiv-
ity from the same condition on the same tag in a differ-
ent XPath query. For example, the condition on tagC in
the XPath query//B/C[cond1] can have a different ef-



fect on selectivity from the same condition in the query
//A/B[cond2]/C[cond1].

Our solution to the problem of handling conditions in
the XPath queries when building on-line XML statistics is
to make the assumption thatconditions have a uniform ef-
fect on selectivity. This means that a condition on a tag
in an XPath path expression has the same effect on selec-
tivity as any other condition on this tag. To use an XPath
path expression in our statistics, weannotateevery tag in
this path expression withU or C depending on whether or
not this tag has a condition. If a tag,A, has no condition,
we annotate it with aU , for unconditional. If the tag,A,
has a condition (i.e., the XPath step isA[cond], for some
conditioncond), we annotate the tag,A, with aC, for con-
ditional. Thus, for selectivity estimation purposes, a tag,A,
becomes eitherAU or AC . We treatAU andAC asdistinct
tags.

Since we assume that conditions have a uniform effect
on selectivity, selectivity information obtained fromAC

tags can be used to estimate the selectivity of subsequent
AC tags, regardless of the condition that caused theC an-
notation. However, since we treatAU andAC as distinct
tags, information aboutAU cannotbe used to estimate the
selectivity ofAC , and vice versa.

The assumption that conditions have a uniform effect
on selectivity is admittedly a strong one, especially since
we allow arbitrarily complex conditions. For example,
this assumption implies that the conditions in the two
XPath queries //safety/car[make="Saturn"
and year=2002] and
//safety/car[body style="sedan"] will
be considered to have the same effect on selectivity.
However, this assumption reduces the difficult problem
of handling conditions in the XPath queries to a tractable
problem for which we propose a simple and uniform
solution. Furthermore, many hidden Web data sources
allow only very stylized forms of queries, such as those
corresponding to HTML forms. In this case, all conditions
will have a similar form, so the assumption that they all
have the same effect on selectivity may well hold. Also,
our experiments demonstrate that our statistics converge to
an adequate accuracy, even with this assumption.

4.2 Structure Annotations
Another problem that we face when designing on-line
XML statistics for hidden Web data sources is that the re-
sult of an XPath query does not give any information about
the part of the XML tree that was navigated to get this re-
sult.

For example, consider the XPath query//A/B/C. Fig-
ure 4 shows an XML tree in which the path//A/B/C oc-
curs a certain number of times with only oneA node and
oneB node for all theC nodes. Figure 5 shows a differ-
ent XML tree in which the path//A/B/C occurs the same
number of times as in the first XML tree, but with oneA
node and oneB nodeper C node. Knowing the result of
the XPath query//A/B/C does not help us to distinguish
between these two cases. The result of this query gives us
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information about the number ofC nodes, not the number
of A or B nodes. The result of an XPath path expression
gives no information about its prefixes. This is different
from the case of static XML data, in which we have full
access to the XML tree and can explore it any way we want
to get the required information.

In our on-line XML statistics,we do not make any
guesses about the structure of the XML tree. Such guesses
would be hard to justify given the limited information about
the structure of the tree provided by XPath queries. Instead,
we only consider the selectivity offull XPath path expres-
sions.

We distinguish between the target tag of an XPath path
expression and the tags used for navigating the XML tree
to get to this target tag. In an XPath query, say//A/B/C,
we annotate the final tag,C, with an annotationD, for des-
tination, and the preceding tags,A andB, with an anno-
tationN , for navigation. Thus, the XPath query becomes
//AN/BN/CD. We only have selectivity information for
destination tags. Navigation tags are needed to get to the
destination tag, but we do not have selectivity information
for them. In general, we treatAN andAD asdistinct tags.
Information aboutA as the destination of an XPath query
does not help us for XPath queries that useA for naviga-
tion.

We combine the condition annotations and structure an-
notations for path expression tags. Thus, a tag,A, gets
annotated asANU , ANC , ADU , or ADC . These annotated
tags are treated as four distinct tags. Selectivity information
for one does not help us for queries involving another. As
an example of path annotation, the XPath path expression
//A[2]/B/C[@a = ”val”] becomes//ANC/BNU/CDC .
We call this anannotated path expression.



pi ni si

//ANU/BNC/CDU 5 25
//ANC/BNC/CDU 7 90
//ANU/BNU/CDC 13 67
//CDU 2 19
//FNC/GNC/HDU 2 2

· · · · · · · · · · · ·
//BNC/CDU 4 90

Figure 6: An on-line annotated path table

5 On-line Annotated Path Tables
In this section, we describe a novel kind of on-line XML
statistics for hidden Web data sources, which we callon-
line annotated path tables. An on-line annotated path table
stores information foronehidden Web data source. The ta-
ble stores the annotated path expressions corresponding to
the XPath queries issued to this data source and information
about their selectivities. This information is used to esti-
mate the selectivity of XPath queries subsequently issued
to the data source, and the table is updated with feedback
information from the execution of these queries.

Every entry in an on-line annotated path table corre-
sponds to one annotated path expression. The entry stores
information about all previously executed XPath queries
that correspond to this annotated path expression. In par-
ticular, an entry,i, stores the annotated path expression it
represents,pi, the number of observed XPath queries that
correspond to this annotated path expression,ni, and the
total result size of all theseni queries,si (i.e., the sum of
all the individual result sizes). To reduce the amount of
memory required by the table, the entries can storehash
valuesof the annotated path expressions they represent in-
stead of the full path expressions themselves. Using this
optimization, each entry requires 3 integers (12 bytes), one
for each ofhash(pi), ni, andsi.

Figure 6 shows an example on-line annotated path table.
For clarity of exposition, the figure shows the table storing
actual annotated path expressions. In our implementation
of on-line annotated path tables, we do not store the full
annotated path expressions but only their hash values.

When an XPath query is issued to a hidden Web data
source, we observe the actual result size of the query and
use it to update and refine the on-line annotated path ta-
ble corresponding to this data source. First, we determine
the annotated path expression corresponding to the XPath
query. Next, we look up this annotated path expression in
the on-line annotated path table. If the annotated path ex-
pression is found in the table, the correspondingni value is
incremented by 1, and the result size of the XPath query is
added to the correspondingsi value. If the annotated path
expression is not found in the table, a new entry is created
for this path expression, withni equal to 1 andsi equal to
the result size of the XPath query.

To estimate the selectivity of an XPath query using an
on-line annotated path table, we determine the annotated
path expression corresponding to this query and look up

this path expression in the table. If the path expression is
found in the table, the estimated selectivity of the XPath
query issi/ni. This is the average selectivity of all previ-
ous executions of XPath queries corresponding to this an-
notated path expression. Under our assumptions, the result
size of a query corresponding to an annotated path expres-
sion can be used as a predictor of the result size of any
other query corresponding to the same annotated path ex-
pression. The selectivity estimatesi/ni reflects informa-
tion aboutall previous queries that correspond to the same
annotated path expression as the current query.

If the annotated path expression corresponding to the
XPath query whose selectivity is being estimated is not
found in the table, we estimate the selectivity to be 0. In
this case, there is no information about previous queries
that correspond to the same annotated path expression as
the current query.

An on-line annotated path table collects and aggregates
information about the selectivities of XPath queries issued
to a hidden Web data source. The path annotations allow
us to aggregate information from several queries in one ta-
ble entry. They also allow us to generalize the information
obtained from observed XPath queries to estimate the se-
lectivity of different, previously unseen XPath queries. As
more XPath queries are observed, more and more infor-
mation is added to the table, so the selectivity estimates it
provides become more accurate.

5.1 Table Summarization
The previous section describes how weaddannotated path
expressions to an on-line annotated path table. If we only
add path expressions to the table, it will grow indefinitely.
This is clearly unacceptable. Hence, we need a mechanism
to removepath expressions from the table so that we can
bound the amount of memory it consumes.

When building statistics for static XML data, a common
approach is to build the statistics completely, with no re-
strictions on the amount of memory that they consume, and
then to summarize the statistics so that they fit in the avail-
able memory [AAN01, CJK+01]. For our on-line statistics,
there is no notion of the construction of the statistics being
completed. Information is continuously added to the statis-
tics when user queries are issued. Thus, we cannot build
the statistics “to completion” and then summarize them.

Instead, to bound the amount of memory consumed by
an on-line annotated path table, we specifytwo memory
thresholds: atarget threshold, t1, and atrigger threshold,
t2, such thatt1 ≤ t2. When the table size reachest2, a
table summarization process is triggered. The table is sum-
marized until its size drops tot1 or less.t1 can be viewed
as the available memory budget at which we want the table
size to stabilize. However, we allow the table to grow to
t2 so that there is an opportunity for collecting enough in-
formation to improve selectivity estimation accuracy. This
additional information that is collected also improves the
accuracy of the table summarization process. Allowing the
table to grow tot2 also adds stability to the table summa-
rization process.



The trigger threshold,t2, can have any value greater
than or equal to the target threshold,t1. The greater the dif-
ferencet2 − t1, the fewer times the table has to be summa-
rized. Fewer summarizations can potentially mean greater
accuracy for the table. In this paper, we sett2 = αt1, where
α ≥ 1 is a parameter of the table construction process. An-
other alternative could to be to sett2 = min(αt1, β), where
β is the maximum memory size to which we are willing to
allow the table to grow.

To summarize an on-line annotated path table when its
size reaches the trigger threshold,t2, we remove from the
table the entries with thelowestsi values. A low si value
for a table entry can mean one of two things. It can mean
that the annotated path expression of this entry occurs only
infrequently in the virtual XML document representing the
hidden Web data source, so the total result size of all XPath
queries corresponding to this annotated path expression
will be small even if there are many such queries. A lowsi

value for a table entry can also mean that few XPath queries
issued to the data source correspond to the annotated path
expression for this entry. In both these cases, the entry with
the lowsi value is a good candidate for removal because it
represents an infrequently occurring path or an infrequently
queried path.

When we remove entries with lowsi values from an on-
line annotated path table, we can aggregate the information
contained in the removed entries in table entries that corre-
spond to special path expressions that we callstar path ex-
pressions. An on-line annotated path table can have entries
for twostar path expressions: a path expression//∗DU , and
a path expression//∗DC . The entry for path expression
//∗DU contains the totalni andsi values of all removed
entries whose path expressions have onlyU annotations on
their tags (i.e., path expressions with only unconditional
navigation ). The entry for path expression//∗DC con-
tains the totalni andsi values of removed entries whose
path expressions have aC annotation on some tag or tags
(i.e., path expressions with some conditional navigation).

We make the distinction between path expressions with
conditional and unconditional navigation because of the
high impact that conditions have on selectivity. The ta-
ble entries for the star path expressions represent the infor-
mation contained in the removed table entries at a coarser
granularity. They are similar to the star paths we used in our
work on building statistics for static XML data [AAN01].

Another alternative isnot to use star paths. In this case,
the entries removed from an on-line annotated path table
are simply discarded and the information they contain is
lost.

6 Experimental Evaluation
6.1 Experimental Setup
6.1.1 Data Sets
Our goal in this paper is to build on-line XML statistics
for hidden Web data sources that export their responses to
user queries in XML. Unfortunately, as mentioned earlier,
publicly available hidden Web data sources do not currently

export their data in XML, although we can expect them to
do so in the near future. As such, we evaluate our proposed
statistics usingstaticXML data.

To evaluate our on-line annotated path tables on a partic-
ular static XML document, we issue a sequence of XPath
queries on this document. We build the on-line anno-
tated path table for this XML document by observing these
queries and their result sizes. In the process, we also use
the table for estimating the selectivity of the queries, just as
we would do for a hidden Web data source. Nowhere in our
experiments do we assume that we have access to the XML
document. We only use the sequence of XPath queries on
the document and their result sizes. The scenario would be
exactly the same for a true hidden Web data source, except
that instead of the queries being on astaticXML document,
they would be on thevirtual XML document representing
the data source. Thus, we are using the static XML doc-
uments in our experiments as proxies for the virtual XML
documents that would be queried in the hidden Web.

We present the results of experiments on two real data
sets and one synthetic data set. The first real data set
consists of protein sequence data from the SWISS-PROT
database [SPROT]. This data set is 141MB in size, and it
contains 4,243,031 XML elements. The second real data
set consists of bibliographic entries from the DBLP bib-
liography [DBLP]. This data set is 48MB in size, and it
contains 1,399,765 XML elements. In a real deployment
of our technique, SWISS-PROT and DBLP would be data
sourcesthat export an XML view of parts of the data that
they store in relational or other databases.

The synthetic data set we use in our experiments
is generated using the XML data generator described
in [ANZ01]. The tree representing the structure of this data
set has 8 levels, and the nodes of this tree (which corre-
spond to the XML elements) have frequencies that follow
a Zipfian distribution with parameterz = 1 [Zipf49]. The
data set is 17MB in size, and it contains 1,000,000 XML
elements. The values stored within the XML elements are
a total of 1,000,000 text words generated from a Zipfian
distribution with 10,000 distinct words andz = 1. More
details about this data set can be found in Appendix A.

6.1.2 Query Workloads
The query workloads we use in our experiments consist of
1000 XPath queries each. All queries ask for paths that
do occur one or more times in the data. Each query has a
random number of navigation steps between 1 and 4.

To generate a query in our workloads, we choose a ran-
dom node from the XML tree of the data set and make it the
destination node of the query path expression. This node
can be an internal node or a leaf node of the XML tree.
If the length of the query path expression to be generated
is greater than 1, the ancestors of this destination node be-
come navigation steps in the query path expression. This
fully specifies thenavigationcomponent of the query path
expression (the sequence of tags).

To control the generation ofconditionsin the query path
expressions, we specify a parameter,p, of the query gener-



p SWISS-PROT DBLP Synth
0% 424,129 56,941 17,753
10% 352,122 49,580 15,986
25% 249,392 36,745 11,324
50% 128,030 25,014 6,737

Table 1: Average result sizes of the query workloads

ation process which we call thecondition probability. This
parameter is the probability of any step in the generated
XPath query path expressions having a condition on its tag.
For every step of a generated query path expression, we flip
a coin with success probabilityp to determine whether or
not this step includes a condition.

The conditions we generate for XPath steps consist of
one to threecondition atomsconnected by the logical oper-
ators “and” or “or.” 80% of the generated conditions have
one condition atom, 10% have two atoms, and 10% have
three atoms. The condition atoms are connected by “and”
with probability 50% and by “or” with probability 50%.

To generate a condition atom for an XPath step corre-
sponding to a particular node in the XML tree, we check if
this node is an internal node or a leaf node. If it is a leaf
node, the generated condition atom istext()=" val " ,
whereval is the string value contained in this leaf node.
This condition atom specifies that we only want leaf nodes
that contain this particular string value. If the node in the
XML tree that corresponds to the XPath step for which we
want to generate a condition atom is an internal node, the
generated condition atom depends on whether or not this
node has children that contain string values. If the node has
one or more children that contain string values, we choose
one of these children at random, sayC, and we generate the
condition atomC=" val " , whereval is the string value
contained inC. If the node has no children that contain
string values, we choose one of its children at random, say
D, and we generate the condition atomD. This specifies a
condition based solely on the structure of the XML data.

Our query generation process generates diverse work-
loads. Some queries ask for internal nodes and some ask
for leaf nodes. Some have conditions and some do not.
The conditions in the queries are based on both structure
and values, and some of them are atomic while others
are complex. Examples of XPath query path expressions
generated by our query generation process for the DBLP
data set include//inproceedings[year="1999"
and author="Jones"]/booktitle and//arti-
cle/journal[text()="Algorithmica"] .

In our experiments, we use workloads with condition
probability p = 0%, 10%, 25%, and 50%. The average
result sizes of the 1000 queries in these four workloads on
each of the three data sets are presented in Table 1. We use
the Xalan XPath processor [Xalan] to execute the queries
in our workloads and obtain their result sizes.

To simulate a sequence of user queries to a hidden Web
data source, we start with an empty on-line annotated path
table and issue the queries in a workload one by one. For
every query, we estimate its selectivity using the on-line
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Figure 7: Convergence (SWISS-PROT)

annotated path table and we measure estimation accuracy
by comparing the estimated and actual selectivity values.
After query execution, the actual result size of the query
is used to update the information in the path table, thereby
making it more accurate.

6.1.3 Error Metric

The error metric we use to measure selectivity estima-
tion accuracy is theaverage absolute error. The aver-
age absolute error for a set ofN queries is defined as
1
N

∑N
i=1 |est − act|, whereest is the estimated selectiv-

ity andact is the actual selectivity.
Except for the convergence experiment in Section 6.2,

we evaluate our techniques based on the average estima-
tion error of thelast 800 queriesof each workload. We
assume that the first 200 queries aretraining queries and
the remaining 800 queries arevalidationqueries.

The errors we present may be better viewed in the con-
text of the average result sizes of the queries in our query
workloads (Table 1).

6.1.4 Default Parameters

Our default memory allocation for on-line statistics is to
use a target threshold,t1, of 500 bytes, and a trigger thresh-
old, t2 = αt1. Our default value forα is α = 2, so t2 is
1000 bytes. We use a small memory allocation because the
simple information reflected in on-line annotated path ta-
bles does not require a lot of memory to store, especially
for 1000 queries. Furthermore, our statistics represent in-
formation about a single hidden Web data source, and an
Internet query processor may deal with thousands of such
sources. As such, we have to be very parsimonious with
our memory allocation.

When summarizing on-line annotated path tables, our
default is to use star path expressions to represent the re-
moved table entries.

Unless otherwise specified, we use workloads with the
condition probability parameter,p, set to 25%.

6.2 Convergence

In this section, we study the convergence of the selectivity
estimates provided by on-line annotated path tables. We
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Figure 9: Convergence (synthetic)

address the issue of how fast the tables “learn” the struc-
ture of the data by observing XPath queries and their result
sizes.

To study convergence, we group the queries in our work-
loads into batches of 100 queries each, and we compute the
average absolute error for each batch. Figures 7–9 show
these errors for all three data sets and the four different
query workloads corresponding to four different condition
probabilities. The figures show that on-line annotated path
tables have good convergence properties for all data sets
and workloads.

6.3 Memory Requirement and Summarization
In this section, we investigate the effect of the amount of
available memory on the accuracy of on-line annotated path
tables. We also study the effectiveness of star paths in table
summarization.

Figures 10–12 show the average estimation errors using
on-line annotated path tables for the three data sets and dif-
ferent memory allocations. The figures show the errors for
workloads withp = 25% and two methods of table summa-
rization: using star path expressions, andnotusing star path
expressions (i.e., discarding the table entries with lowsi

values and losing the information they contain). The errors
shown are for the last 800 queries in each query workload
(the validation queries). Thex-axis in each of these figures
shows the target threshold,t1. The trigger threshold,t2, is
always set to2t1.
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Figure 11: Memory and summarization (DBLP)

The figures show that giving on-line annotated path ta-
bles more memory results in an increase in estimation ac-
curacy. However, the figures also show that estimation ac-
curacy does not increase significantly when increasing the
available memory beyond 700 bytes. The information cap-
tured by on-line annotated path tables does not require a lot
of memory to represent, so the memory required for max-
imum accuracy will typically be in the range of hundreds
of bytes. Such a small memory requirement is important
if we have to build statistics for thousands of hidden Web
data sources, as we expect the case will be if we want to
query the entire Internet.

As for using star path expressions for summarization,
the picture is not as clear. On the one hand, star path ex-
pressions allow us to retain some of the information con-
tained in entries deleted from the path table, although at a
coarser granularity. These star path expressions may, there-
fore, lead to increased estimation accuracy. This is the case
for the SWISS-PROT data set (Figure 10).

On the other hand, the information contained in the star
path expressions may have come from deleted path table
entries with widely varyingsi values. In this case, the
star path expressions can be an inaccurate representation
of the deleted path table entries and may actually lead to
a decreasein estimation accuracy. This is the case for the
DBLP and synthetic data sets (Figures 11 and 12).

Fortunately, the difference in estimation accuracy be-



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200 400 600 800 1000

A
bs

ol
ut

e 
E

rr
or

Memory (Bytes)

Star
No star

Figure 12: Memory and summarization (synthetic)
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tween using and not using star path expressions is always
small. Thus, the decision of whether or not to use these
path expressions will have a minimal effect. We choose
to be aggressive about retaining information about entries
deleted from the on-line annotated path table during sum-
marization, so we use star path expressions.
6.4 Effect of Conditions in the XPath Queries
On-line annotated path tables rely on the assumption that
conditions have a uniform effect on selectivity. In this sec-
tion, we investigate the effect of this simplifying assump-
tion on estimation accuracy.

Figure 13 shows the average selectivity estimation error
for the validation queries in workloads with different values
of the condition probability parameter,p, on the SWISS-
PROT data set. Asp increases, the number of conditions
in the query path expressions in the workload increases,
so the assumption that conditions have a uniform effect on
selectivity holds less and less. This leads to an increase in
selectivity estimation error with increasingp, even as the
average result size of the queries in the workload decreases
with increasingp. However, the error remains adequately
low. At its maximum (p = 50%), the estimation error is
around 20% of the average result size.

6.5 Sensitivity to the Parameterα
In this paper, we set the trigger threshold,t2, using the for-
mula t2 = αt1. Figure 14 shows the estimation error for
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Figure 15: Comparison to static statistics (SWISS-PROT)

different values of the parameterα on the SWISS-PROT
data set. As expected, increasingα leads to an increase in
estimation accuracy, because it allows the on-line annotated
path table to grow more and collect more information be-
fore triggering summarization, and because it reduces the
number of table summarizations. However, the error is flat
for all values ofα. On-line annotated path tables are not
sensitive to this parameter.

6.6 Comparison to Static XML Statistics
In this section, we compare the on-line XML statistics we
propose in this paper to the static XML statistics that we
proposed in [AAN01]. In that paper, we identified two
types of static XML statistics as winners among several
techniques:path trees with global-* summarization, and
Markov tables withm = 2 and suffix-* summarization
(see [AAN01] for details).

We compare the on-line annotated path tables that we
propose in this paper to these two kinds of static XML
statistics. Since the static XML statistics can only handle
navigations based on the structure of the XML data and
cannothandle conditions in the query path expressions, we
only compare them to on-line statistics for workloads with
no conditions(p = 0%).

Figures 15–17 show the selectivity estimation errors for
workloads with no conditions using path trees and Markov
tables as well as on-line annotated path tables. The errors
are shown for the last 800 queries in the workloads (the
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Figure 17: Comparison to static statistics (synthetic)

validation queries) for all three data sets and different mem-
ory allocations. For static statistics, the memory allocations
shown on thex-axis are the total number of bytes given to
the statistics. For on-line statistics, the memory allocations
shown are the target threshold,t1. The figures show that
on-line XML statistics are comparable in performance to
static XML statistics, and sometimes even better.

On-line annotated path tables are built based only on
observing user queries and their result sizes. This is much
more limited information than is available for static XML
statistics, which are built by reading the entire XML data
set and processing it as needed. We expect the static statis-
tics built using full information to be more accurate than
the on-line statistics built using limited information. This is
what we see in Figure 15 and in small memory allocations
in Figure 16. However, the good news from these figures
is that the on-line statistics are comparable in accuracy to
the static statistics. Thus, even though wecannotuse static
XML statistics for hidden Web data sources because we do
not have access to the data, this experiment shows that on-
line XML statistics, the only alternative wecanuse, are not
much less accurate.

The surprising result that we see in Figure 16, and more
strikingly in Figure 17, is that on-line XML statistics can be
more accuratethan static XML statistics. This is because
on-line XML statistics areworkload aware. On-line XML
statistics try to retain information about paths in the data

that are queried by the user. Static XML statistics, even
though they have access to more information, summarize
the data without considering user queries. Thus, they may
discard some information during summarization that, while
not significant from the point of view of capturing a data
distribution, is frequently queried by the user. If the on-line
statistics keep this information, they can be more accurate
than the static statistics.

7 Conclusions
We propose a novel type of XML statistics for hidden Web
data sources that we callon-line annotated path tables. An
on-line annotated path table for a hidden Web data source
stores the XPath query path expressions that were issued
to this data source in a more generalized form known as
annotated path expressions. The table also stores aggre-
gate information about the result sizes of the queries cor-
responding to these annotated path expressions. This in-
formation can be leveraged to estimate the selectivity of
subsequent user queries, even if these queries are seen for
the first time. A summarization algorithm ensures that the
amount of memory used by the table remains bounded.

We experimentally demonstrate using real and synthetic
data sets that on-line annotated path tables have good con-
vergence behavior, and that they work well across a wide
range of parameter values. We also show that they are com-
parable to static XML statistics, and sometimes even better.

To the best of our knowledge, this paper is the first to
address the issue of XML statistics for the hidden Web.
Our goal in this work was to take a first step toward tech-
niques that solve the daunting problem of gathering and
using statistics for queries over the hidden web. As such a
first step, our work opens a wide range of interesting possi-
bilities for future work.

In this paper, we assume that queries to a hidden Web
data source are XPath selections from a virtual XML doc-
ument representing the data at this source. This model of
querying hidden Web data sources is easy to incorporate
into XML query processors, and it is general and expres-
sive enough to handle current hidden Web interfaces. How-
ever, it would be interesting to investigate other models for
querying hidden Web data sources, and to determine the
impact of these models on query optimization and process-
ing and on statistics gathering.

In this paper, we assume that a condition on a tag in
an XPath query has the same effect on selectivity as any
other condition on this tag. Developing more elaborate
techniques for handling XPath conditions is a possible area
for future work.

Also, we do not try to infer any information about the
structure of the XML tree from the results of the XPath
queries. We only use selectivity information at the gran-
ularity of whole path expressions. A possible area for fu-
ture work is inferring information about the structure of the
XML tree based on the queries in the workload and their
results. This may involve using heuristics, and it may also
involve examining the results of the user queries in detail,



and not relying only on the sizes of these results as we do
in this paper.

Finally, it may be possible to utilize semantic knowledge
or schema knowledge to construct or refine statistics for
hidden Web data sources.
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A Synthetic Data Set Used in Experiments
In our experiments, we use a synthetic data set generated
using the XML data generator described in [ANZ01]. The
tree representing the structure of this data set has 8 levels,
with a total of 8643 nodes. The average fan outs of the 7
internal levels of this tree, from the root down, are 8, 5.2,
4.1, 4.6, 2.4, 2.5, and 2.5. The tree has 2161 nodes with
repeated tag names.

The nodes of the tree have a Zipfian frequency distribu-
tion with parameterz = 1 [Zipf49]. The Zipfian frequen-
cies are assigned to the tree nodes inbreadth first order,
with the root being assigned the lowest frequency and the
rightmost leaf being assigned the highest frequency. The
total frequency of all tree nodes, which is the total number
of XML elements generated, is 1,000,000.

The spread of the number of child XML elements gener-
ated within a parent element is 75% around the mean num-
ber of such child XML elements.

The XML elements contain text words that follow a Zip-
fian distribution with parameterz = 1. We generate 10,000
distinct text words, and 1,000,000 total text words. All leaf
XML elements have text words, and 25% of the internal
XML elements have text words.


