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There is currently a lot of interest in developing Internet
query processors that can “query the Web.” Such quer
processors would retrieve and integrate data from multi:
ple Web sources. They would provide the user with high
quality information that is much more useful than that
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Abstract

There is currently a lot of interest in develop-
ing Internet query processors that can pose elab-
orate queries on XML data on the Web. Such
guery processors can query data sources that have
static XML files, but they should also be able
to query“hidden Web” data sources that export
an XML view of data stored in a database. To
optimize queries that involve these hidden Web
data sources, we need to have XML statistics that
can be used to estimate the selectivity of queries
posed to these sources. Since we can only access
the data at a hidden Web data source by issuing
gueries, we need to develgm-line XML statis-

tics that are built by observing queries to a hidden
Web data source and their result sizes.

In this paper, we assume that queries to a hidden
Web data source are XPath selections from a vir-
tual XML document that represents all the data at
this source. We observe the user XPath queries
to the data source and convert them to a more ab-
stract and generalized form that we catinotated
path expressionsNe describe an on-line statistics
structure that stores such annotated path expres
sions and information about their selectivity for
use in estimating the selectivity of future XPath
gueries. We experimentally demonstrate the con-
vergence and accuracy of our proposed on-line
statistics using real and synthetic XML data sets.

Introduction
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Figure 1: Querying the Web using XML

which can be obtained today, even with advanced search
engines.

The emergence of XML as a standard data representa-
tion format for Web data is a key factor in facilitating the
development of such Internet query processors. XML pro-
vides a common format for all Web sources to export their
data, so Internet query processors can be built assuming
that all the data that they query will be in XML. Examples
of systems that query XML data over the Internet include
Niagara [NDM"01] and Xyleme [Xyl01].

These Internet query processors can easily query data
that is in XML files on the Web. We call thistatic XML
data However, most of the data on the Wemistin static
XML files, or even HTML files. Most of the data on the
Web is “hidden” in databases and can only be accessed by
posing queries over these databases [RGMO01, Bright]. This
portion of the Web is known as thedden WebSometimes
it is also referred to as thaeep Web

XML has gained almost universal acceptance as the
tandard format for interchanging data between data
sources on the Internet [FLM98]; even more so than as a
format for storing static data. As such, we can expect that
hidden Web data sources will export the data they produce

in response to user queries in XML format. Therefore, it
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ing XML queries over hidden Web data sources requires
statisticsabout these sources. Providing such statistics is
the focus of this paper.



Querying the hidden Web is of particular importancel.2 On-line XML Statistics for the Hidden Web
because the size of the hidden Web is up to 400 to 500
times larger than the size of the “static Web.” Further-The typical approach for building statistics for relational or
more, data in the hidden Web is typically very high-quality XML data is to scan the entire data and summarize it in
data [Bright]. Examples of hidden Web data sources in- structure that occupies a small amount of memory. This
clude the FactFinder database of census information frorloes not work for XML data on the hidden Web because
the U.S. Census Bureau [Census] and the EDGAR databag® not have access to the entire datée only have access
of company financial statements from the Securities ando queries on this data and their results.
Exchange Commission [EDGAR]. Most hidden Web data is stored in relational databases,
These data sources do not currently present their reand sometimes in document databases. fiosstored as
sponses to user queries as as XML, but rather as HTMLnative XML. Rather, the XML view of the data is computed
However, as XML gets deployed on a wider scale, we caronly in response to user queries. Thus, we cannot scan the
expect that many hidden Web data sources will start exportentire data to build statistics.
ing their data as XML. Furthgrmore, it is often possible to Moreover, even if this data were to be fully converted
build wrappersaround Web sites that can present an XML 5 pative XML (which is highly unlikely), we would stil
view of the HTML data at these sites [PGMW95]. As such, ht have access to the entire data due to proprietary rights.
even though XML data from hidden Web data sources iSrhe gwners of data are typically not willing to export their
not widely available yet, it should be useful to include the gptire data, even if they are willing to export answers to
ability of dealing with such data in Internet query proces-queries over this data. For example, we can easily get the
sors like Niagara. price of an individual book from Amazon.com but not their

1.1 A Motivating Example entire price list.

As an example of the queries that can be made possib We developpn-line XML statisticgor this environment.

: . hese statistics are constructeddiyserving user queries
by XML based Internet query processors querying hidden '~ . e
Y query p ors guerying hi éa hidden Web data sources and their resulike statistics

are builtper hidden Web data sourc&hey use information
l1‘§om past queries to a data source to estimate the selectivity
f differentfuture queries to this data source. We do not
equire any cooperation from the hidden Web data sources
in building these statistics; the statistics are based solely
on feedback from user queries. To reduce the construction
verhead and the complexity of the statistics, we assume
that we can only use th&zesof the query results (i.e., the

in the XQuery language [CFRO1]. This is a join query

that asks for price quotes under $25,000 from car deale
in Madison for year 2002 cars that received a 5 star ratin
in the government crash tests. The URLs in this query ar
for actual Web sites that can be queried to provide the re
quired information, albeit in HTML not XML. However, as

mentioned above, it would be reasonable to expect that thi

information may be available in XML in the near future, . .
number of XML elements they contain) for constructing

thereby making such a query feasible. . - .
The query in Figure 2 uses XPath [CD99] path expres—the on-line XML statistics, and not the actual XML data in

sions to query the hidden Web data sources. Each path erese results.
pression specifies a navigation through the structure of the The problem we have described is daunting in the ex-
XML data based on a sequence of tags, with possible corfreme: we are asking for statistics about an enormous, com-
ditions at each step to filter out some of the XML elementsPlex, opaque data set; we cannot even view this data set,
encountered at this step. For example, the path expre§eing able only to observe it indirectly as queries and their
sion //newcar/quote[city="Madison"] speci-  results hint at its structure and size. In such a situation, it is
fies finding XML elements witmewcar tags anywhere unrealistic to expect solutions of the same quality as those
in the specified XML document, and finding all XML el- that have been developed for the highly constrained envi-
ements directly contained within theewcar elements ronment of query optimization for relational data or static
that have uote tag. The condition between braces spec-XML data. That is not our goal. Instead, we seek to take
ifies that we should only returquote elements that di- the first step toward developing techniques that yield statis-
rectly contain an element with a taify whose value is  tics that are substantially better than having no statistics at
“Madison.” The XQuery |anguage uses XPath path expresa” for hidden Web data sources. The information that these
sions to navigate through XML data, and we assume tha$tatistics provide should, hopefully, be useful in optimizing
queries to hidden Web data sources are in the form of XPatfiueries over the hidden Web.
path expressions (we present more details in Section 3.1). The rest of this paper is organized as follows. Section 2
In this paper, we focus on the problem of estimating thepresents an overview of related work. Section 3 contains a
selectivity of XPath path expressions issued to hidden Weldetailed definition of the problem that we are addressing.
data sources. This is required for optimizing queries likeSection 4 introducegath annotationswhich we use in our
the one in Figure 2. Estimating the selectivity of theseon-line statistics. Section 5 describes these statistics, which
XPath path expressions requistatisticsabout the data at we callon-line annotated path tableSection 6 presents an
the hidden Web data sources. More accurately, it requiresxperimental evaluation of our proposed technique. Sec-
statistics about thXML viewof the data at these sources. tion 7 contains concluding remarks.



FOR $r IN documenti("http://www.nhtsa.gov/")//safety/car[year=2002 and rating=5]

$g IN document("http://autos.yahoo.com/")//newcar/quote[city="Madison"]
WHERE $r/make=%$qg/make and $r/model=$g/model and $g/price<25000
RETURN $qg/dealer

Figure 2: An example query in the XQuery language
2 Related Work 3 Problem Definition

Statistics forstatic XML data have been proposed by Chen 3.1 Our Model for Hidden Web Queries
et al. in [CIKF01] and by us in [AANO1]. The techniques
in [CIKT01] build statistics that are used to estimate the seWe view a hidden Web data source agidual XML doc-
lectivity of twig queries Twig queries are branching path ument This virtual XML document represents all possible
expressions which can include conditions on the values oKML query results that the data source can produce in re-
the leaf nodes of the branches. The statistics we proposgponse to user queries. If the data source can present dif-
in [AANO1] provide more accurate selectivity estimates for ferent XML views of the same data, each of these views is
the case of simple path expressions, which are path expresonsidered to be a separate part of the virtual XML doc-
sions that have one branch and navigate in the XML datament. For example, the car safety rating data source we
based on structure, without conditions. The techniques iccessed in the query in Figure 2 may be able to present an
both these papers are not applicable to the hidden Web, b&ML view of the safety ratings of cars grouped by make,
cause they require the entire XML data to be read to conand another XML view of the different cars grouped by
struct the statistics. safety rating. Each of these two XML views of the data
Querying mu|t|p|e hidden Web data sources in an |n_WOU|d be a different part of the virtual XML document rep-
ternet query processor is similar to querying multiple 'ésenting the data source, and the car safety data would be
data sources irdata integration systemsuch as Tuk- replicated in both these parts.
wila [IFFT99], Garlic [ROH99], or HERMES [ACPS96]. The virtual XML document representing a hidden Web
Data integration systems optimize and execute queries ovelata source can be very large, since it contains the answers
diverse data sources, so they must address the problem wfall possible user queries that the data source can support,
obtaining statistics for these sources. with the data replicated possibly many times. However,
Some systems require the data sources to explicitly exthis is not a problem because this virtual XML document
port the statistics required for query optimization [NGT98, is never materializedOnly parts of this document are ever
ROH99]. This is not applicable to our problem of build- materialized, and only in response to user queries.
ing statistics for the hidden Web, because the hidden Web We assume that queries to a hidden Web data source are
data sources are autonomous and provide no informatioim the form of XPath path expressiof€D99] that select
beyond answers to user queries. parts of the virtual XML document representing this data
Another approach is to design the data integra-source. XPath is the standard path expression language for
tion system to allow for run-time re-optimization of selecting parts of an XML documentbased on structure and
gueries [IFF99]. This approach assumes that the querycontent. It is a powerful language that can express many
optimizer will have little or no statistics about the data kinds of selections, including most queries that can be input
sources, so it may choose an inefficient query executionising current HTML forms. Furthermore, XPath is used
plan. As the plan is executed, more information aboutn XML query standards such as XQuery [CF&L] and
the data sources is obtained, and the query processor ma§sLT [Clark99].
choose to re-optimize the query based on this new informa- We consider XPath path expressions of the form
tion. Providing statistics at query optimization time, as we//a; /az/ - - - /a,,. Each stepa;, of the query path ex-
do in this paper, helps the query optimizer choose a goo@ression is either of the forr), wheret; is a tag name,
initial plan. Starting with this good plan, it may still be pos- or of the form¢;[c;] wheret; is a tag name and; is an
sible to improve the performance of the query by run-timearbitrarily complex condition. Such queries find element
re-optimization, although the need for such re-optimizatiomodes with tag namg anywhere in the XML tree repre-
will be less because the initial plan is good. senting the document. If there is a condition element
The HERMES system records the result sizes of queriesodes that do not satisfy it are filtered out. From the re-
issued to data sources and uses the recorded values maining nodes, the queries navigate down totalthil-
estimate the selectivity of future queries issued to theseren, then down to aliz children, and so on until they
sources [ACPS96]. We also use the result sizes of querieagacht,, element nodes. At each step, if there is a con-
to build statistics, but we focus on XML path expressionsdition, nodes that do not satisfy it are filtered out. Our
over hidden Web data sources, while the HERMES sysgoal is to estimate the number#®f nodes that are reached
tem focused on function calls to external programs or datdy this navigation. Examples of XPath queries that we
sources in a distributed mediator system. Their techniquesonsider are/safety/carfmake="Saturn" and
for gathering, summarizing, and using statistics do not exyear=2002]/rating , and //chapter[@title=
tend to our problem. "Introduction"])/section[1]/paragraphs



, Hidden  SiONS that have a particular form, so it provides a degree of
A Queties Intemet Bﬁ?@[@ﬁggﬁ/c xw  D2@Pse symmarization. The annotated path expression for one or
Processor ' ”te”‘ai@ more observed XPath queries can be used to estimate the
XML Results D, XML Results selectivity ofdifferentfuture XPath queries that correspond
Selective] Refinement using to this annotated path_ expression. '_rhe intuition behind an-
Estimates XPath, Result size> notated path expressions is that it is unlikely that we will
see the exact same XPath query over and over in a query
On-line XML workload, but it is highly likely that we will see XPath
Statistics queries of the same form. Next, we describe the details of
two types of path annotationgondition annotationgand
Figure 3: On-line XML statistics structure annotations

3.2 Problem Definition 4.1 Condition Annotations

We consider the following setting: As part of answering . :
user queries, an Internet query processor issues queriesﬂ\g}e consider XPath path expressions of the form
a hidden Web data source. These queries are in the form @f %1/42/ -~ - /an, Where each stepy;, of the path expres-
XPath path expressions that select parts of the virtual xmLSton can _be of the fo_r_mL- [ei], whgreti IS a tag name gmj :
an arbitrary condition. Allowing arbitrary conditions in

document representing this source. The XPath queries at :

executed by the data source, and their results (the xmithe XP_ath path Expressions creates_the problem_ Of how to
elements they select) are returned to the Internet query pr&i€@l With these conditions in the on-line XML statistics.
cessor, where they are used to answer the user queries. . ©On the one hand, to be realistic, we must allow condi-

We observe the XPath queries issued to a hidden welions in the XPath queries that we consider. Without con-

data source and their result sizes (the number of XML elditions, users would be able to express only a very limited

ements they return). Our objective is to use these obsefNd weak form of selections from the virtual XML doc-
vations to construct on-line XML statistics for the hidden Ument corresponding to a hidden Web data source. For

Web data source (Figure 3). These statistics should levef£¥@mple, without conditions, users would be able to ask
age the information obtained from past XPath queries to e<2 Car saféty data source for *the safety rating of all cars
timate the selectivity of future XPath queries issued to thd//Safety/car/rating ) but not for “the safety rating
data source, including XPath queries that are seen for th@f 2002 Saturns”/(safety/car[make="Saturn

first time. Selectivity estimation accuracy should increaséd_year=2002]/rating ) _

as more queries are observed. Furthermore, there should On the other hand, conditions complicate the con-

be a mechanism for bounding the amount of memory construction of statistics because we cannot ignore their

sumed by the statistics to any given value. effect, nor can we isolate it. The selectivity of the
XPath  query /Isafety/car[make="Saturn"
: and year=2002]/rating is much smaller
4 Path Annotations than the selectivity of the unconditional query
A simple way of building on-line XML statistics would be //safety/car/rating . Thus, we cannot ignore

to cache the XPath queries issued to a data source and thélre effect of the conditionfmake="Saturn" and
result sizes. This way, if an XPath query whose selectivyear=2002] . This is generally true of all conditions
ity is being estimated is identical to a query that was predn typical XPath steps: their effect on selectivity is large
viously issued, we would find this query and its exact re-and cannot be ignored. But at the same time, the effect of
sult size in the query cache. We would, therefore, haveconditions on selectivity cannot be isolated as for static
a fully accurate selectivity estimate for this query, assumXML data.
ing a read-only data source. However, for this technique When building statistics for static XML data, we can
to work, it must cacheveryquery and its result size. If — conceptually, at least — traverse the data and count
the query workload consists of a large number of queriesthe number of XML elements that are reachable by the
the statistics data structure will grow unacceptably largepath //safety/car , and the number of these ele-
Furthermore, this simplistic solution is of no use for XPath ments that satisfy the conditigmake="Saturn" and
queries that are seen for the first time. Our on-line XMLyear=2002] . Thus, we can conceptually isolate the ef-
statistics must fit in a small amount of memory, and theyfect of the condition on selectivity. However, when build-
must be able to generalize the information obtained fromng statistics for hidden Web data sources, we can only ob-
previously seen XPath queries to estimate the selectivity oferve the entire XPath queries and their result sizes, with
future XPath queries that are seen for the first time. To alno opportunity for isolating single conditions or naviga-
low for this, we usepath annotations tion steps. Furthermore, a condition on a tag in a partic-
We convert XPath path expressions into more abstraatlar XPath query can have a different effect on selectiv-
and generahnnotated path expressigrand we use these ity from the same condition on the same tag in a differ-
annotated path expressions for selectivity estimation. Arent XPath query. For example, the condition on an
annotated path expression represalit§Path path expres- the XPath query//B/C|cond;] can have a different ef-



fect on selectivity from the same condition in the query
/] A/ Blconds]/Ccond,].

Our solution to the problem of handling conditions in ®
the XPath queries when building on-line XML statistics is
to make the assumption thednditions have a uniform ef- (8)
fect on selectivity This means that a condition on a tag
in an XPath path expression has the same effect on selec- © ©
tivity as any other condition on this tag. To use an XPath
path expression in our statistics, \@anotateevery tag in ' ' '
this path expression withi or C' depending on whether or Figure 4: Minimum number of ancestors for
not this tag has a condition. If a tag, has no condition,
we annotate it with &/, for unconditional If the tag, A,
has a condition (i.e., the XPath stepA$cond], for some

conditioncond), we annotate the tagl, with aC, for con-
ditional. Thus, for selectivity estimation purposes, a tag, i ; :
becomes eithed” or A°. We treatA?” and A® asdistinct ® @& )
tags

Since we assume that conditions have a uniform effect ® (B) - (8
on selectivity, selectivity information obtained from®

tags can be used to estimate the selectivity of subsequent © (© ©
AC tags, regardless of the condition that causedtran- : : :

notation. However, since we tredt” and A as distinct

tags, information aboutV cannotbe used to estimate the Figure 5: Maximum number of ancestors for
selectivity of A, and vice versa.

The assumption that conditions have a uniform effect,,-mation about the number 6t nodes, not the number
on selectivity.is a'dmittedly a strong one, especially sinCey¢ 4 or B nodes. The result of an XPath path expression
we allow arb_ltrarl_ly C_Omp'ex condltlons_._ For_ example, gives no information about its prefixes. This is different
this assumption implies that the conditions in the tWOfom the case of static XML data, in which we have full
XPath —queries //safety/car[make="Saturn" access to the XML tree and can explore it any way we want
and year=2002] and 14 get the required information.

/[safety/car[body _style="sedan"] will . .
be considered to have the same effect on selectivity. In our on-line XML statistics,we do not make any

However, this assumption reduces the difficult problemguesSes about the structure of the XML tr8eich guesses

of handling conditions in the XPath queries to a tractableWOUId be hard to justify given the limited information about

problem for which we propose a simple and uniformthestructureofthetree provided by XPath queries. Instead,

solution. Furthermore, many hidden Web data source¥’® only consider the selectivity édll XPath path expres-

allow only very stylized forms of queries, such as those>°" >

corresponding to HTML forms. In this case, all conditions ~ We distinguish between the target tag of an XPath path
will have a similar form, so the assumption that they all€xpression and the tags used for navigating the XML tree
have the same effect on selectivity may well hold. Also,t0 get to this target tag. In an XPath query, $gyi/ B/C,
our experiments demonstrate that our statistics converge #§€ annotate the final tag;, with an annotatior, for des-

an adequate accuracy, even with this assumption. tination, and the preceding tags, and B, with an anno-
tation N, for navigation Thus, the XPath query becomes
4.2 Structure Annotations //AN /BN /CP. We only have selectivity information for

Another problem that we face when designing on-linedestination tags. Navigation tags are needed to get to the
XML statistics for hidden Web data sources is that the re-destination tag, but we do not have selectivity information
sult of an XPath query does not give any information aboufor them. In general, we treat" and A” asdistinct tags

the part of the XML tree that was navigated to get this re-Information about4 as the destination of an XPath query

sult. does not help us for XPath queries that uséor naviga-
For example, consider the XPath quépA/B/C. Fig-  tion.
ure 4 shows an XML tree in which the patiiA/B/C oc- We combine the condition annotations and structure an-

curs a certain number of times with only odenode and  notations for path expression tags. Thus, a tdggets
one B node for all theC nodes. Figure 5 shows a differ- annotated agi™¥V, AN, APU or APC. These annotated
ent XML tree in which the pati/A/B/C occurs the same tags are treated as four distinct tags. Selectivity information
number of times as in the first XML tree, but with ore  for one does not help us for queries involving another. As
node and oné3 nodeper C' node. Knowing the result of an example of path annotation, the XPath path expression
the XPath query /A/B/C does not help us to distinguish //A[2]/B/C[@Qa = "val”] becomeg /ANC BNV /CPC.
between these two cases. The result of this query gives U&fe call this arannotated path expression



[ pi | ni | si ] this path expression in the table. If the path expression is

/J/ANU /BNC/CPU 1 5 | 25 found in the table, the estimated selectivity of the XPath
/JANC /BNC /cPU 7 | 90 query iss; /n;. This is the average selectivity of all previ-
//ANU /BNU /cDC | 13 | 67 ous executions of XPath queries corresponding to this an-
//CPU 2 |19 notated path expression. Under our assumptions, the result
//FNC/GNC /DU | 2 2 size of a query corresponding to an annotated path expres-
,,,,,, sion can be used as a predictor of the result size of any
//BNC /DU 4 | 90 other query corresponding to the same annotated path ex-
pression. The selectivity estimatg/n; reflects informa-
Figure 6: An on-line annotated path table tion aboutall previous queries that correspond to the same
annotated path expression as the current query.
5 On-line Annotated Path Tables If the annotated path expression corresponding to the

XPath query whose selectivity is being estimated is not
found in the table, we estimate the selectivity to be 0. In
this case, there is no information about previous queries

line annotated path table#\n on-line annotated path table ;
stores information foonehidden Web data source. The ta- th:tcz?:;ﬁ%%ne?;o the same annotated path expression as

ble stores the annotated path expressions corresponding%

the XPath queries issued to this data source and informatian An on_-Ime annotated path F"’.‘ble collects and aggregates
about their selectivities. This information is used to esti-/1ormation about the selectivities of XPath queries issued

mate the selectivity of XPath queries subsequently issueH) a hidden Web data source. The path annotations allow

to the data source, and the table is updated with feedbaczfetgrﬁ?g?%ztea'ln;gr;n”gtl'vogsﬂtgm :ﬁ;’gﬁ;g%ﬁg?ﬁféﬁggﬁgﬁ'
information from the execution of these queries. Y. y 9

. . obtained from observed XPath queries to estimate the se-
Every entry in an on-line annotated path table corre

X lectivity of different, previously unseen XPath queries. As
sponds to one annotated path expression. The entry sto y b y 9

i i bout all ousl| ted XPath OlfFore XPath queries are observed, more and more infor-
information about all previously execute ath queriesS,ation is added to the table, so the selectivity estimates it
that correspond to this annotated path expression. In pa

. " P<brovides become more accurate.
ticular, an entry;, stores the annotated path expression |tFJ

representsp;, the number of observed XPath queries that5.1 Table Summarization

correspond to this annotated path expressignand the  The previous section describes how addlannotated path
total result size of all these, queries,s; (i.e., the sum of  expressions to an on-line annotated path table. If we only
all the individual result sizes). To reduce the amount ofadd path expressions to the table, it will grow indefinitely.
memory required by the table, the entries can st@eh  Thjs is clearly unacceptable. Hence, we need a mechanism
valuesof the annotated path expressions they represent inp removepath expressions from the table so that we can
stead of the full path expressions themselves. Using thiggound the amount of memory it consumes.
optimization, each entry requires 3 integers (12 bytes), one \yhen puilding statistics for static XML data, a common
for each ofhash(p;), ni, ands;. approach is to build the statistics completely, with no re-
Figure 6 shows an example on-line annotated path tablestrictions on the amount of memory that they consume, and
For clarity of exposition, the figure shows the table storingthen to summarize the statistics so that they fit in the avail-
actual annotated path expressions. In our implementatiogible memory [AANO1, CJKO01]. For our on-line statistics,
of on-line annotated path tables, we do not store the fulthere is no notion of the construction of the statistics being
annotated path expressions but only their hash values.  completed. Information is continuously added to the statis-
When an XPath query is issued to a hidden Web dataics when user queries are issued. Thus, we cannot build
source, we observe the actual result size of the query anghe statistics “to completion” and then summarize them.
use it to update and refine the on-line annotated path ta- |nstead, to bound the amount of memory consumed by
ble corresponding to this data source. First, we determinan on-line annotated path table, we spetifyp memory
the annotated path expression corresponding to the XPathresholds: darget thresholgt;, and atrigger threshold
query. Next, we look up this annotated path expression in,, such thatt; < ¢»,. When the table size reachas a
the on-line annotated path table. If the annotated path exable summarization process is triggered. The table is sum-
pression is found in the table, the correspondipgalueis  marized until its size drops tq or less.t; can be viewed
incremented by 1, and the result size of the XPath query igs the available memory budget at which we want the table
added to the correspondirgvalue. If the annotated path size to stabilize. However, we allow the table to grow to
expression is not found in the table, a new entry is created, so that there is an opportunity for collecting enough in-
for this path expression, with; equal to 1 and; equalto  formation to improve selectivity estimation accuracy. This
the result size of the XPath query. additional information that is collected also improves the
To estimate the selectivity of an XPath query using anaccuracy of the table summarization process. Allowing the
on-line annotated path table, we determine the annotatetdble to grow tot; also adds stability to the table summa-
path expression corresponding to this query and look upization process.

In this section, we describe a novel kind of on-line XML
statistics for hidden Web data sources, which we call



The trigger threshold{,, can have any value greater export their data in XML, although we can expect them to
than or equal to the target threshald, The greater the dif- do so in the near future. As such, we evaluate our proposed
ferencets — t1, the fewer times the table has to be summa-statistics usingtatic XML data.
rized. Fewer summarizations can potentially mean greater To evaluate our on-line annotated path tables on a partic-
accuracy for the table. In this paper, weset aty, where  ular static XML document, we issue a sequence of XPath
«a > 1is a parameter of the table construction process. Angueries on this document. We build the on-line anno-
other alternative could to be to 9gt= min(«t1, 3), where  tated path table for this XML document by observing these
0 is the maximum memory size to which we are willing to queries and their result sizes. In the process, we also use
allow the table to grow. the table for estimating the selectivity of the queries, just as

To summarize an on-line annotated path table when itsve would do for a hidden Web data source. Nowhere in our
size reaches the trigger threshalg, we remove from the experiments do we assume that we have access to the XML
table the entries with thipwests; values A low s; value  document. We only use the sequence of XPath queries on
for a table entry can mean one of two things. It can mearnthe document and their result sizes. The scenario would be
that the annotated path expression of this entry occurs onlgxactly the same for a true hidden Web data source, except
infrequently in the virtual XML document representing the that instead of the queries being ostaticXML document,
hidden Web data source, so the total result size of all XPatthey would be on th&irtual XML document representing
queries corresponding to this annotated path expressidie data source. Thus, we are using the static XML doc-
will be small even if there are many such queries. Algw uments in our experiments as proxies for the virtual XML
value for a table entry can also mean that few XPath queriedocuments that would be queried in the hidden Web.
issued to the data source correspond to the annotated path We present the results of experiments on two real data
expression for this entry. In both these cases, the entry witlsets and one synthetic data set. The first real data set
the lows; value is a good candidate for removal because ittonsists of protein sequence data from the SWISS-PROT
represents an infrequently occurring path or an infrequentlyglatabase [SPROT]. This data set is 141MB in size, and it
gueried path. contains 4,243,031 XML elements. The second real data

When we remove entries with lowy values from an on- set consists of bibliographic entries from the DBLP bib-
line annotated path table, we can aggregate the informatiolipgraphy [DBLP]. This data set is 48MB in size, and it
contained in the removed entries in table entries that corresontains 1,399,765 XML elements. In a real deployment
spond to special path expressions that westall path ex-  of our technique, SWISS-PROT and DBLP would be data
pressionsAn on-line annotated path table can have entriesourceshat export an XML view of parts of the data that
for twostar path expressions: a path expresgjarP’V, and  they store in relational or other databases.

a path expressiof/*”¢. The entry for path expression The synthetic data set we use in our experiments
//+PY contains the totah; ands; values of all removed is generated using the XML data generator described
entries whose path expressions have dhlgnnotations on in [ANZO1]. The tree representing the structure of this data
their tags (i.e., path expressions with only unconditionalet has 8 levels, and the nodes of this tree (which corre-
navigation ). The entry for path expressigf«”¢ con-  spond to the XML elements) have frequencies that follow
tains the totalh; ands; values of removed entries whose a Zipfian distribution with parameter = 1 [Zipf49]. The
path expressions have(aannotation on some tag or tags data set is 17MB in size, and it contains 1,000,000 XML
(i.e., path expressions with some conditional navigation). elements. The values stored within the XML elements are

We make the distinction between path expressions witta total of 1,000,000 text words generated from a Zipfian
conditional and unconditional navigation because of thedistribution with 10,000 distinct words and = 1. More
high impact that conditions have on selectivity. The ta-details about this data set can be found in Appendix A.
ble entries for the star path expressions represent the infor-
mation contained in the removed table entries at a coarsét1-2  Query Workloads
granularity. They are similar to the star paths we used in ouff he query workloads we use in our experiments consist of
work on building statistics for static XML data [AANO1]. 1000 XPath queries each. All queries ask for paths that

Another alternative isotto use star paths. In this case, do occur one or more times in the data. Each query has a
the entries removed from an on-line annotated path tablandom number of navigation steps between 1 and 4.
are simply discarded and the information they contain is 10 generate a query in our workloads, we choose a ran-

lost. dom node from the XML tree of the data set and make it the
destination node of the query path expression. This node
6 Experimental Evaluation can be an internal node or a leaf node of the XML tree.

If the length of the query path expression to be generated
is greater than 1, the ancestors of this destination node be-
6.1.1 Data Sets come navigation steps in the query path expression. This
Our goal in this paper is to build on-line XML statistics fully specifies thenavigationcomponent of the query path
for hidden Web data sources that export their responses texpression (the sequence of tags).

user queries in XML. Unfortunately, as mentioned earlier, To control the generation @bnditionsin the query path
publicly available hidden Web data sources do not currenthexpressions, we specify a parametegf the query gener-

6.1 Experimental Setup
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ation process which we call thoondition probability This < A
parameter is the probability of any step in the generated 20000 |
XPath query path expressions having a condition on its tag.
For every step of a generated query path expression, we flip 0 0 200 200 50 80 1000

a coin with success probabilityto determine whether or
not this step includes a condition.

The conditions we generate for XPath steps consist of
one to threeondition atomgonnected by the logical oper-
ators “and” or “or.” 80% of the generated conditions have
one condition atom, 10% have two atoms, and 10% hav

Queries

Figure 7: Convergence (SWISS-PROT)

annotated path table and we measure estimation accuracy
by comparing the estimated and actual selectivity values.
After query execution, the actual result size of the query

three atoms. The condition atoms are connected by “and. ; L
. " s e is used to update the information in the path table, thereby
with probability 50% and by “or” with probability 50%. making it more accurate.

To generate a condition atom for an XPath step corre-
sponding to a particular node in the XML tree, we checkifg.1.3 Error Metric
this node is an internal node or a leaf node. If it is a leaf . . .

" P " The error metric we use to measure selectivity estima-
node, the generated condition atonteéxt()= val ",

- ) . e tion accuracy is theaverage absolute error The aver-
whereval is the string value contained in this leaf node. age absolute error for a set of queries is defined as
This condition atom specifies that we only want leaf nodes’” __ x . . .
that contain this particular string value. If the node in the & 2i=1 [¢st — act|, whereest is the estimated selectiv-
XML tree that corresponds to the XPath step for which wely @ndact is the actual selectivity. _ _
want to generate a condition atom is an internal node, the EXcept for the convergence experiment in Section 6.2,
generated condition atom depends on whether or not thi¢’® €valuate our techniques based on the average estima-
node has children that contain string values. If the node halion error of thelast 800 queriesof each workload. We
one or more children that contain string values, we choos@SSume that the first 200 queries &aning queries and
one of these children at random, €@yand we generate the the remaining 800 queries avalidationqueries.
condition atomC="val ", whereval is the string value The errors we present may be better viewed in the con-
contained inC. If the node has no children that contain text of the average result sizes of the queries in our query
string values, we choose one of its children at random, saj¥orkloads (Table 1).

D, and we generate the condition at@nThis specifies a
condition based solely on the structure of the XML data.
Our query generation process generates diverse worlour default memory allocation for on-line statistics is to

loads. Some queries ask for internal nodes and some asis€ a target thresholtl,, of 500 bytes, and a trigger thresh-
for leaf nodes. Some have conditions and some do nogld, t2 = at;. Our default value forv is o = 2, sot2 is

The conditions in the queries are based on both structur000 bytes. We use a small memory allocation because the
and Va|ues, and some of them are atomic while other§imp|e information reflected in on-line annotated path ta-
are complex. Examples of XPath query path expressionBles does not require a lot of memory to store, especially
generated by our query generation process for the DBLHfor 1000 queries. Furthermore, our statistics represent in-

6.1.4 Default Parameters

data set include/inproceedings[year="1999" formation about a single hidden Web data source, and an
and author="Jones"]/booktitle and//arti- Internet query processor may deal with thousands of such
cle/journal[text()="Algorithmica"] . sources. As such, we have to be very parsimonious with

In our experiments, we use workloads with condition ©ur memory allocation.
probability p = 0%, 10%, 25%, and 50%. The average When summarizing on-line annotated path tables, our
result sizes of the 1000 queries in these four workloads oflefault is to use star path expressions to represent the re-
each of the three data sets are presented in Table 1. We ugved table entries.
the Xalan XPath processor [Xalan] to execute the queries Unless otherwise specified, we use workloads with the
in our workloads and obtain their result sizes. condition probability parametep, set to 25%.

To simulate a sequence of user queries to a hidden Web
data source, we start with an empty on-line annotated patf-2 Convergence
table and issue the queries in a workload one by one. Fdn this section, we study the convergence of the selectivity
every query, we estimate its selectivity using the on-lineestimates provided by on-line annotated path tables. We
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address the issue of hovv_ fast the tables_ “learn” thg struc- The figures show that giving on-line annotated path ta-
ture of the data by observing XPath queries and their resulfies more memory results in an increase in estimation ac-
SIZES. o curacy. However, the figures also show that estimation ac-
To study convergence, we group the queries in our workeracy does not increase significantly when increasing the
loads into batches of 100 queries each, and we compute thgajlable memory beyond 700 bytes. The information cap-
average absolute error for each batch. Figures 7-9 showred by on-line annotated path tables does not require a lot
these errors for all three da_ta sets and'the four d|ﬁ§_ren6f memory to represent, so the memory required for max-
query workloads corresponding to four different condition;p,m accuracy will typically be in the range of hundreds
probabilities. The figures show that on—I_ine annotated pathys bytes. Such a small memory requirement is important
tables have good convergence properties for all data sefsye have to build statistics for thousands of hidden Web
and workloads. data sources, as we expect the case will be if we want to
6.3 Memory Requirement and Summarization query the entire Internet.
In this section, we investigate the effect of the amount of ~As for using star path expressions for summarization,
available memory on the accuracy of on-line annotated patthe picture is not as clear. On the one hand, star path ex-
tables. We also study the effectiveness of star paths in tableressions allow us to retain some of the information con-
summarization. tained in entries deleted from the path table, although at a
Figures 10-12 show the average estimation errors usingoarser granularity. These star path expressions may, there-
on-line annotated path tables for the three data sets and difore, lead to increased estimation accuracy. This is the case
ferent memory allocations. The figures show the errors fofor the SWISS-PROT data set (Figure 10).
workloads withp = 25% and two methods of table summa-  On the other hand, the information contained in the star
rization: using star path expressions, antlusing star path  path expressions may have come from deleted path table
expressions (i.e., discarding the table entries with lgw entries with widely varyings; values. In this case, the
values and losing the information they contain). The errorsstar path expressions can be an inaccurate representation
shown are for the last 800 queries in each query workloa®f the deleted path table entries and may actually lead to
(the validation queries). The-axis in each of these figures adecreasén estimation accuracy. This is the case for the
shows the target thresholt, The trigger threshold,, is  DBLP and synthetic data sets (Figures 11 and 12).
always set t@t;. Fortunately, the difference in estimation accuracy be-
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tween using and not using star path expressions is alwaydfferent values of the parameteron the SWISS-PROT
small. Thus, the decision of whether or not to use thesélata set. As expected, increasimdeads to an increase in
path expressions will have a minimal effect. We chooseestimation accuracy, because it allows the on-line annotated
to be aggressive about retaining information about entriefath table to grow more and collect more information be-

deleted from the on-line annotated path table during sumtore triggering summarization, and because it reduces the
marization, So we use star path expressions. number of table summarizations. However, the error is flat

6.4 Effect of Conditions in the XPath Queries for all values ofa. On-line annotated path tables are not

. . sensitive to this parameter.
On-line annotated path tables rely on the assumption that P

conditions have a uniform effect on selectivity. In this sec-6-6  Comparison to Static XML Statistics
tion, we investigate the effect of this simplifying assump- In this section, we compare the on-line XML statistics we
tion on estimation accuracy. propose in this paper to the static XML statistics that we
Figure 13 shows the average selectivity estimation erroProposed in [AANO1]. In that paper, we identified two
for the validation queries in workloads with different values types of static XML statistics as winners among several
of the condition probability parameter, on the SWISS- techniques:path trees with global-* summarizatipand
PROT data set. As increases, the number of conditions Markov tables withm = 2 and suffix-* summarization
in the query path expressions in the workload increasedsee [AANO1] for details).
so the assumption that conditions have a uniform effect on We compare the on-line annotated path tables that we
selectivity holds less and less. This leads to an increase iBropose in this paper to these two kinds of static XML
selectivity estimation error with increasing even as the statistics. Since the static XML statistics can only handle
average result size of the queries in the workload decreas&@vigations based on the structure of the XML data and
with increasingp. However, the error remains adequately cannothandle conditions in the query path expressions, we
low. At its maximum p = 50%), the estimation error is ©nly compare them to on-line statistics for workloads with

around 20% of the average result size. no conditiongp = 0%). N o
o Figures 15-17 show the selectivity estimation errors for
6.5 Sensitivity to the Parameter workloads with no conditions using path trees and Markov

In this paper, we set the trigger threshailg,using the for-  tables as well as on-line annotated path tables. The errors
mulat, = aty. Figure 14 shows the estimation error for are shown for the last 800 queries in the workloads (the
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Figure 16: Comparison to static statistics (DBLP)  stores the XPath query path expressions that were issued
to this data source in a more generalized form known as
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Figure 17: Comparison to static statistics (synthetic) address the issue of XML statistics for the hidden Web.
Our goal in this work was to take a first step toward tech-
validation queries) for all three data sets and differentmemniques that solve the daunting problem of gathering and
ory allocations. For static statistics, the memory allocationgising statistics for queries over the hidden web. As such a
shown on ther-axis are the total number of bytes given to first step, our work opens a wide range of interesting possi-
the statistics. For on-line statistics, the memory allocationilities for future work.

shown are the target threshold, The figures show that In this paper, we assume that queries to a hidden Web
on-line XML statistics are comparable in performance todata source are XPath selections from a virtual XML doc-
static XML statistics, and sometimes even better. ument representing the data at this source. This model of

On-line annotated path tables are built based only orguerying hidden Web data sources is easy to incorporate
observing user queries and their result sizes. This is muctto XML query processors, and it is general and expres-
more limited information than is available for static XML sive enough to handle current hidden Web interfaces. How-
statistics, which are built by reading the entire XML data ever, it would be interesting to investigate other models for
set and processing it as needed. We expect the static stat@gderying hidden Web data sources, and to determine the
tics built using full information to be more accurate than impact of these models on query optimization and process-
the on-line statistics built using limited information. This is ing and on statistics gathering.
what we see in Figure 15 and in small memory allocations In this paper, we assume that a condition on a tag in
in Figure 16. However, the good news from these figurean XPath query has the same effect on selectivity as any
is that the on-line statistics are comparable in accuracy tother condition on this tag. Developing more elaborate
the static statistics. Thus, even thoughaa@notuse static  techniques for handling XPath conditions is a possible area
XML statistics for hidden Web data sources because we déor future work.
not have access to the data, this experiment shows that on- Also, we do not try to infer any information about the
line XML statistics, the only alternative weanuse, are not  structure of the XML tree from the results of the XPath
much less accurate. queries. We only use selectivity information at the gran-

The surprising result that we see in Figure 16, and moreilarity of whole path expressionsA possible area for fu-
strikingly in Figure 17, is that on-line XML statistics can be ture work is inferring information about the structure of the
more accuratehan static XML statistics. This is because XML tree based on the queries in the workload and their
on-line XML statistics aravorkload aware On-line XML  results. This may involve using heuristics, and it may also
statistics try to retain information about paths in the datanvolve examining the results of the user queries in detail,
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A Synthetic Data Set Used in Experiments

In our experiments, we use a synthetic data set generated
using the XML data generator described in [ANZOQ1]. The
tree representing the structure of this data set has 8 levels,
with a total of 8643 nodes. The average fan outs of the 7
internal levels of this tree, from the root down, are 8, 5.2,
4.1, 4.6, 2.4, 2.5, and 2.5. The tree has 2161 nodes with
repeated tag names.

The nodes of the tree have a Zipfian frequency distribu-
tion with parametee = 1 [Zipf49]. The Zipfian frequen-
cies are assigned to the tree node$iigadth first order
with the root being assigned the lowest frequency and the
rightmost leaf being assigned the highest frequency. The
total frequency of all tree nodes, which is the total number
of XML elements generated, is 1,000,000.

The spread of the number of child XML elements gener-
ated within a parent element is 75% around the mean num-
ber of such child XML elements.

The XML elements contain text words that follow a Zip-
fian distribution with parameter= 1. We generate 10,000
distinct text words, and 1,000,000 total text words. All leaf
XML elements have text words, and 25% of the internal
XML elements have text words.



