
Paper ID: 258

Title: STEP: Extending Relational Query Engines for Efficient
XML Query Processing

Authors: Feng Tian, David J. DeWitt

Topic Area: Core Database Technology

Category: Research

Subject Area:
Semi-Structured data, XML (Pr imary)
Optimization and per formance

Contact Author :
Feng Tian
Depar tment of Computer Science
1210 W. Dayton
Madison, WI, 53706
USA
ftian@cs.wisc.edu

STEP1: Extending Relational Query Engines for Efficient
XML Query Processing
Feng Tian David J. DeWitt

Department of Computer Science
University of Wisconsin, Madison

Madison, WI, 53706
USA

{ ftian, dewitt} @cs.wisc.edu

1 STEP stands for STreaming Event Processing.

Abstract

One approach to building an efficient XML
query processor is to use a relational database
system to store and query XML documents.
However, XQuery contains a number of features
that are either hard to translate into SQL or for
which the resulting SQL is complex and
inefficient. In this paper, we propose an
extension to the relational database systems that
facilitates efficient XML query processing within
the existing relational database execution
framework. Our extension can evaluate complex
queries against XML documents stored in a
relational database system by processing a
sequence of XML events by extending the
relational query engine with an event sequence-
processing engine. Results from each engine can
be streamed into the other without incurring the
overhead of crossing a middleware-database
boundary.

1. Introduction

XML is the W3C standard for data representation and
data exchange over the Internet. Together with XML
Schema (or DTDs), XML can be used as a mark-up
language for semi-structured data. The W3C has
established an XML Query working group to define
standards whose goal is to permit “collections of XML
files to be accessed like databases” . The XML Query
working group has already released a query language
(XQuery [26]), data model (XQuery 1.0 and XPath 2.0
Data Model [27]) and query algebra (XQuery Formal
Semantics [28]). How to build an efficient XML query
processor is still, however, largely an open problem.

One approach is to use a relational database system to
store and query XML documents. This approach is very
attractive because relational system is a mature
technology with proven reliability and scalability after

decades of research and development in storage
management, query processing, and query optimization.
Re-engineering similar technology for XML query
processing would be extremely costly both in terms of
time and money (as the object-oriented database system
vendors discovered). Another advantage of using
relational database systems is that large amounts of
existing data are already managed by relational database
systems. Thus, using a relational DBMS offers the
possibility of integrating XML files with relational data in
one database system.

There are many active projects exploring the use of
relational database systems to support XML query
processing. A number of these are implemented as
middleware. A query written in XQuery is first translated
into SQL and then sent to a relational DBMS for
execution. The result table is restructured and tagged
according to the original XQuery. In order to exploit the
query processing power of the relational DBMS, the
middleware attempts to push most of the query processing
into the relational DBMS and makes the restructuring and
tagging part only a thin wrapper over result table from the
SQL query. This architecture is explored by, for example,
XPERANTO [4][18]. Figure 1.1 shows an overview of
middleware-based approach.

Figure 1.1: M iddleware-based architecture

Certain XQuery features are difficult to support using
this approach. First, XQuery has features that are usually
only available to a general-purpose language (e.g. local
variables, instance of operator, non-linear recursion)
which are not available in SQL. Second, some XQuery

queries are hard to translate into SQL and the resulting
SQL queries are often complex and inefficient. As a
motivating example, consider the following XQuery.

Several problems are encountered when a middleware-
based architecture is used to execute this query. First, a
long path expression is used to select $v1. When XML
documents are stored in a relational database, elements
are stored as tuples in multiple relational tables [7][19]
and steps in the path expression are translated into joins.
A long XPath expression is likely to be translated into
many joins. Second, if x and y elements can be nested
arbitrarily in document “b.xml” , the relational DBMS will
need to employ recursive query processing in order to
compute the filter operator of $v2. SQL queries on XML
document structures such as those used for computing $v1
or $v2 are complex, hard to optimize, and inefficient.
Figure 1.2 illustrates how this query would likely be
executed in a middleware-based architecture.

Figure 1.2: Query execution of the motivating example

in middleware-based approach
It is well known that regular (XPath) expressions like

$v1 or $v2 can be evaluated using a finite state machine
with only one sequential scan of the original document.
Therefore, it is reasonable to implement some sequence-
processing capability in the middleware layer instead of
using relational operators to evaluate complex path
expressions. However, evaluating $v1 and $v2 in
middleware leads to another problem -- $v1 and $v2 need
to be joined. While one could add a join operator to the
middleware layer, this is not a trivial task and ends up
duplicating functionality already provided by the
relational DBMS. Alternatively, the results of evaluating
$v1 and $v2 can be sent back to the relational DBMS for
further processing.

Figure 1.3: Execution path of the motivating query
when complex XPath evaluated in middleware

Figure 1.3 shows the execution flow for our example
query if the path expression and filter are evaluated in a
middleware layer but the relational DBMS is used to
execute the join of $v1 and $v2. This strategy incurs a
number of inefficiencies. First, query execution crosses
the middleware/relational boundary multiple times,
incurring significant overhead for binding out tuples and
returning the results of the filter and path expression
operations. Second, user-defined functions that return
tables are often second-class citizens in relational
database systems. If temporary tables are used, there will
be unnecessary I/O or blocking. Third, the middleware
layer needs to make decisions on what parts of a query are
to be issued to the relational DBMS. This decision is
usually heuristic based, often without help from the
relational optimizer. Another problem is there is no
mechanism for the middleware layer to provide hints to
the relational optimizer to help it select a good join
algorithm.

In this paper we describe STEP which addresses these
inefficiencies by adding a new class of operators termed
S-Operators to the relational DBMS engine. S-Operators
process streams of XML events using an event sequence
data model. The power of an S-Operator is that it can
evaluate a complex regular path expression with one
sequential scan of the input event stream, avoiding the use
of multiple join operators. A second new type of
operator, termed a Conver ter , is used to convert an XML
event stream into streams of relational tuples and vice
versa. Thus, S-operators and relational operators can be
composed with one another in a seamless fashion.

Figure 1.4: STEP plan for motivating XQuery

Figure 1.4 shows how our example would be executed
by STEP. As the input tables are scanned, Converters (C-
Op1 and C-Op2) are used to convert tuple streams into
event streams that are consumed by two S-operators (S-
Op1 and S-Op2) to evaluate the path expression and the
filter. The outputs of the two S-operators are then
converted back into tuple streams using two more
Converters (C-Op3 and C-Op4). The outputs of the
Converters are then joined with one another using a
standard relational join operator. Our S-Operator
implementation reads each input sequence once and
requires only a small amount of memory for its operation.
The use of S-Operators eliminates the need for complex
joins to evaluate path expression and the use of recursive
query processing for processing the filter. Compared to
the execution plan in Figure 1.2 and 1.3, the STEP plan is

For $v1 in document(“a.xml”)/a/b/c/d/e/f/g,
Let $v2 = Filter (document(“b.xml”) // (x | y | text())) /*/*
Where $v1 == $v2
Return $v1, $v2

both more efficient and more scalable. In addition, STEP
avoids the overhead of repeatedly transferring data across
middleware/database system boundary.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 describes the
event sequence data model and Section 4 describes the
implementation of our extension in the Predator [14]
relational database system. Experiments and performance
results are shown in Section 5. Section 6 concludes and
describes future work.

2. Related Work

For a number of years database researchers have realized
that the relational model is not ideal for handling
sequence data [20][21]. [9] uses a finite state machine to
process history events in order to check trigger conditions.
[22] considers sequence query processing in the temporal
database environment. The event-sequence model used
by our S-Operator was inspired by these earlier efforts.

Recently a large number of papers have been written
on processing XML queries using relational database
systems. [2][5][7][19][23] explore ways of storing XML
data in a relational database system. Our implementation
uses the approach described in [19]. [4] and [8] discuss
how to publish relational data efficiently. [12] describes
how to translate queries in XQuery into SQL, presenting
several examples of queries for which no translation is
possible.

Our work differs from these early efforts in that we
propose an entirely new paradigm for processing XML
queries that combines traditional relational operators
operating on streams of tuples with a new class of
operators operating on sequences of XML events. This
approach is simple to implement, and as we will
demonstrate below, provides far superior performance to
a pure relational approach. Our extensions are capable of
evaluating complex path expression and complex
operators like filter, relieving the relational engine from
having to execute complex, inefficient plans.

[11] considers evaluating regular XPath using finite
state machine over streaming XML data. Our
implementation of S-Operator is very similar to their
implementation of the xscan operator. Their technique is
standalone and the input stream of xscan is generated by
parsing XML files. STEP extends the standard relational
database system functionality with the ability to query
XML document structures. S-Operators operate on event

streams constructed from the results of SQL queries as
well as event streams generated by an XML parser.

3. The XML Event Sequence Model

In this section, we describe the XML event sequence
model used in STEP. The following XML file illustrates
how XML documents are stored in a relational database
and how XML events are processed by STEP. Figure 3.1
and Figure 3.2 show the example DTD and XML file.
Each tag, text data, or end tag in the XML document is
assigned a sequence number, as shown in Figure 3.2.

Figure 3.1 Example DTD

Figure 3.2 Example XM L file

STEP stores XML data in a relational database using
the techniques described in [19]. The main idea in [19] is
that whenever an element can appear only once in its
parent, the element is stored in the same table with its
parent (inlining). Elements or TEXT data that can appear
multiple times are stored in separate tables. The sequence
numbers in Figure 3.1 are stored as xmlid and endid in
order to remember an element’s position in the original
document. Another column xmlpid is used to link an
element to its parent. The relational schema and tables for

<!ELEMENT items (item*)>
<!ELEMENT item (name, color, description)>

<!ATTLIST item id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT color (#PCDATA)>
<!ELEMENT description
 (#PCDATA|bold|emph)*>
<!ELEMENT bold (#PCDATA|bold|emph)*>
<!ELEMENT emph (#PCDATA|bold|emph)*>

<?xml version=”1.0”?>
<items(1)>
<item id=” i1” (2)><name(3)>Item1(4)</name(5)>
<color(6)>red(7)</color(8)>
<description(9)><emph(10)>
<bold(11)>bold emph(12)</bold(13)>
</emph(14)> is strong(15) </description(16)>
</item(17)>
<item id=” i2” (18)>
<name(19)>Item2(20)</name(21)>
<color(22)>red(23)</color(24)><description(25)>
<emph(26)>
<emph(27)>double emph(28)</emph(29)>
</emph(30)> is stronger(31)</description(32)>
</item(33)>
</items(34)>

xmlid xmlpid endid id name name_xmlid color color_xmlid descr iption_xmlid descr iption_endid

2 1 17 “ i1” “ Item1” 3 “ red” 6 9 16
18 1 33 “ i2” “ Item2” 19 “ red” 22 25 32

Table item

xmlid xmlpid Data
12 11 “bold emph”
15 9 “ is strong”
28 27 “double emph”
31 25 “ is stronger”

Table PCDATA

xmlid xmlpid endid
 1 null 34

Table items
xmlid xmlpid endid
 11 10 13

Table bold

xmlid xmlpid endid
10 9 14
26 25 30
 27 26 29

Table emph

Figure 3.3 Sample XM L file stored in relational tables

the example in Figure 3.1 are shown in Figure 3.3

3.1 The Event Sequence M odel

An alternative view of XML data is to treat the XML as a
sequence of events. This viewpoint is taken for example,
by the XML SAX [16] parser. Instead of treating an XML
file as a tree, a SAX parser reports a sequence of events to
the invoking application. From the application’s point of
view, the sample XML document is, in fact, a sequence of
SAX events: “start_element items” , “start_element item,
with attribute id=’ i1’ ” , “start_element name” , “ text
item1” , “end_element name” etc. Our definition of events
is slightly different from that of the SAX parser which
was not designed or optimized for database processing.
For example, a SAX start element event may contain an
arbitrary number of attributes, which is hard to fit into a
pure relational model. Our definition borrows ideas from
the SAX API and the sequence data type in [20].
Formally,

Definition: An event is a triple (type, name, value),
written as ev = (t:T, n:S, v:D). The domain of event type
T = {EV_STARTELE, EV_ENDELE, EV_ATTR,
EV_TEXT, EV_ELETEXT, EV_WELLFORMED,
EV_NULL}. The event name, ev.n, is a string, which can
be null. The event value, ev.v, can be any data type
defined in the database.

Definition: An event sequence S={ev1, ev2, …} is a
mapping from positive integers to events where S(i)=evi .
A sequence is finite if there exists integer K, such that
S(n).t = EV_NULL if n > K. The minimum of such K is
called the length of a sequence.

We consider only finite event sequences in this paper.
Our definition of an event defers from that of a SAX
event in the following ways:
1. Attribute events are distinguished from start element

events, so that all events have a uniform structure.
2. An EV_ELETEXT type is used to represent a simple

XML element like <A>a. Since this case is
likely to occur frequently, it is worthwhile
compressing these three events into one.

3. We have an EV_WELLFORMED type which
facilitates the efficient handling of large chunks of
XML data (probably stored as LOBs in the relational
database). The XML data LOB could be parsed
during sequence processing when necessary.

Definition: An event sequence S is well-formed if
1. S(1).t != EV_ATTR
2. If S(i).t = EV_ATTR, then S(i-1).t = EV_ATTR or S(i-

1).t = EV_STARTELE
3. The EV_STARTELE and EV_ENDELE pairs are

perfectly matched, without interleaving.
The maximum nesting depth of EV_STARTELE and
EV_ENDELE pairs is called the depth of the sequence.

Conditions 1 and 2 state that attribute events should
immediately follow their start element events. Condition 3

states the usual requirement of matching start and end
tags. We relaxed other XML well-formed requirements
such as the existence of an unique root element.

With these notions of event and event sequence, we
can now define operators on event sequences.

Definition: An event sequence operator takes one event
sequence as input and generates another event sequence
as output.

Note that this definition of an event sequence operator
is very general. In the extreme case, any XQuery that
takes an XML file as input and produces XML as output
can be regarded as an event sequence operator. We need
to restrict our focus to operators that are easy to
implement and efficient to execute.

Definition: An event sequence operator is streaming if:
1. The operator uses a bounded amount of buffer space.
2. The operator scans the input sequence only once, and

for each event in the input sequence, the operator
requires a bounded amount of computation.

Streaming operators have the following composition
property.

Proposition 1: Let Op1, Op2 be two streaming operators,
then composition of these two operators Op=Op2°Op1 is
streaming.

Definition: An event sequence operator on a well-formed
sequence is D-streaming if
1. The operator buffer size is O(d), where d is the depth

of the well-formed input sequence.
2. The operator scans the input sequence only once and,

for each event in the input sequence, the operator
requires a bounded amount of computation.

If the depth of the input sequence is not very large, a D-
streaming operator consumes little memory and its
computation cost is linear to the input sequence length.
Similar to the streaming property which is preserved by
composition, D-streaming operators have the following
property,

Proposition 2: Let Op1, Op2 be two D-streaming
operators. If the depth of S1=Op1(S0) is O(d0), where d0 is
the depth of S0, then the composition operator
Op=Op2°Op1 is D-streaming.

Next, we introduce the S-Operator, which is
implemented by STEP.

Definition: An S-Operator is a finite state machine,
driven by events in its input sequence. Each S-Operator
has a context, which contains one state stack, and some
local variables. Upon each event, the S-Operator may
execute a bounded number of following instructions,
1. State transition; optionally push last state onto state

stack.
2. State transition to the state at the top of state stack,

and pop the state stack.

3. Simple operation on local variables, such as assigning
a value to a local variable, arithmetic operation, string
concatenation, equality test.

4. Output an event to the output sequence.

An S-Operator is D-streaming if the state stack is pushed
only on EV_STARTELE events, and popped the state stack
is popped upon the corresponding EV_ENDELE events2.
The S-Operators are very powerful in evaluating queries
against the structure of an XML document. In particular,
we have the following propositions,

Proposition 3: A regular XPath expression, consisting of
child (including wildcard) and descendent, in which each
step may contain predicates on the node’s value or
position (for example, a range operator), can be evaluated
by a D-streaming S-Operator.

Proposition 4: If each filter expression of a filter
operator, filter(X // expressions), is a regular XPath
expression as described in Proposition 3, the filter
operator can be evaluated by a D-streaming S-Operator.

The S-Operator for evaluating a regular expression

XPath is essentially a finite state machine that recognizes
the regular expression. Well-known algorithms exist to
construct such a finite state machine. For example, an S-
Operator that evaluates “a/b/c” is shown in Figure 3.43.
Arrows denote state transition. Labels on each arrow
denote events that trigger the transition. <*> is the
“default” transition on any START_ELE event. ‘+’
indicates that the destination state of the transition is
pushed onto the state stack and ‘ -’ means when the state
finishes processing the element (implemented by using a
local variable to keep count on depth of nesting), it
transits back to the state on the top of state stack and then
the state stack is popped.

Figure 3.4 S-Operator for ‘a/b/c’

The S-Operator for evaluating the filter operator is a
finite state machine that recognizes the filter expressions.

2 The context may include other stacks. An S-Operator will be D-

streaming as long as each stack follows same the push-pop protocol as
the state stack. Currently, STEP only uses the state stack.

3 In many cases, the state stack is not necessary (thus making the S-
Operator streaming), as the S-Operator is essentially a finite state
machine that recognizes the regular expression. For example, the S-
Operator in Figure 3.3 can be implemented using local variables to
remember states that initiated the transition. However, in more complex
situations, using the state stack could reduce the number of states
required by the S-Operator. We use the state stack because we believe
that the size of the stack will be small, and the S-Operator using the
stack is much simpler.

An S-Operator used to evaluate filter expressions outputs
events in the same order as the input sequence. Because
the structure information of XML data is represented by
the nesting of <start-element, end-element> pairs,
preserving the order of events in the input sequence
ensures that the structural information is preserved in the
output sequence.

3.2 Integrating Event Sequence Model with Relational
Model

The event sequence model and the S-Operator framework
provide a powerful processing mechanism for queries
against XML document structures. However, there is
mismatch between the event sequence model and the
relational model. While ordinary relational operators
process tuple streams, S-Operators process XML event
streams. We introduce a new class of operators, called
Conver ters, to bridge this mismatch. An S-to-R
Conver ter takes one stream of events as its input and
produces one or more tuple streams as its output. An R-
to-S Conver ter consumes one or more tuple streams as
input and produces one event stream as output.
Converters are used to connect relational operators and S-
Operators with one another. Details of Converters and
how they are implemented in STEP are described in the
next section.

4. STEP Implementation

We have implemented a prototype of the STEP
architecture as an extension to the Predator object-
relational database system [14]. The overall architecture
of STEP is shown in Figure 4.1. Modules outside of the
dashed polygon are off-the-shelf components from
Predator.

Figure 4.1 STEP Architecture

We first give an overview of each module, following
the execution path of a query. XML data can be stored
either in relational tables using techniques like those
described in [19], as LOBs in a relational database, or as
files. If stored in relational tables, the tables are clustered
using xmlid, which is the order of the elements in the
original XML document. After an XQuery is parsed, a
global optimizer rewrites the query into a STEP query

plan. The most important function of the global optimizer
is to divide the workload between the relational execution
engine and the S-Operator engine. If the query involves
XML data that is not stored in database tables, for
example, XML files on the Internet, STEP uses an
ordinary SAX parser to parse the XML file to produce an
event stream. If the query is posed against data stored in
relational tables, the S-Operator engine issues SQL
queries to the relational engine. The results of SQL
queries are converted to event streams using R-to-S
Converters. The S-Operator engine augments the Predator
catalog service with a virtual catalog module. When the
SQL optimizer asks for catalog information about a table,
the catalog service extracts information from the virtual
catalog as well as from the ordinary relational catalog.
The virtual catalog is used by an S-to-R Converter when
forming a tuple stream as input to ordinary relational
operators. Like the relational operators, the S-Operators
and Converters provide a Volcano-like [10] iterator
interface (GetNext tuple or GetNext event) to the
operators above them.

The finite state machine implementation of an S-
Operator is straightforward. Each state contains a list of
actions (including state transitions) that are performed
when a certain XML event is received in that state. The
S-Operator keeps a context of information like current
state, state stack etc. In the remainder of this section, the
integration of the S-Operator engine and the relational
engine is described in more detail.

4.1 R-to-S Conver ter

When the STEP engine needs to retrieve data from the
database it issues one or more SQL queries. The resulting
tuple streams are then converted to event streams using R-
to-S Converters. STEP uses two classes of R-to-S
Converters. The first class, trivial R-to-S Converter,
converts each row of the SQL result R(col1, col2, …) to a
sequence of events equivalent to one XML element <R
col1=”value1” col2=”value2” …/>. Trivial R-to-S
Converters convert query results from the relational
database to event streams that are ready for grouping (for
example, S-Operators to performing range queries) or
tagging.

The second class of R-to-S Converters reconstructs the
event sequence corresponding to the original (or part of
the original) XML document. This class of operators uses
a priority queue, implemented by a heap H. The heap H
is initialized when the R-to-S Converter is initialized
(algorithm Init in Figure 4.2). The GetNext cursor
interface is implemented as algorithm GetNext in Figure
4.2.

The algorithm in Figure 4.2 has the following property
that is similar to D-streaming:

Proposition 5: If the SQL queries used as inputs to an
R-to-S converter return tuples sorted by xmlid, then the
heap size of H is O(d), where d is depth of nesting of
original XML data.

In fact, the size of H is bounded by d+t+e, where t is
the number of scanned relational tables and e is number of
possible elements defined in the DTD.

Figure 4.2 Algor ithm of R-to-S Converter

By clustering relational tables using xmlid column, we
can support complex XPath expressions by fetching tuples
from the relational database, converting the resulting tuple
streams into event streams, evaluating the XPath
expression using an S-Operator, all in a streaming
fashion.

The R-to-S Converter can also be used to retrieve only
part of the original XML document. For example, in
order to evaluate XPath “ item//bold/text()” , we only need
to issue SQL queries that scan table Bold, PCDATA, and
xmlid, endid columns of table I tem. The algorithm
produces an event stream equivalent to the original
document with irrelevant elements such as “name” and
“color” filtered out.

4.2 S-to-R Conver ter

One important feature of STEP is that STEP can
seamlessly connect S-Operators and relational operators
with each other. Unlike the middleware-based approach,
STEP can redirect results of an S-Operator into a
relational operator by inserting S-to-R Converter before
the relational operator. The implementation of S-to-R
Converter is very similar to an S-Operator, replacing
output events by output tuples. For example, Figure 4.3

Implementation of R-to-S Converter
H: Heap, implementing a priority queue
H.add(k, V): Add an entry to H, with k as heap value
H.getFrist(): Remove top of heap, and return V
Algorithm Init(List of SQLs):
 H = { }
 For each SQL statement:
 Issue SQL to RDBMS, Open Cursor
 Fetch one row r
 If fetch succeeded, H.add(r.xmlid, r)
Algorithm GetNext():
 V = H.getFirst()
 If V is NULL, return End of Stream
 If V is an Event, return V
 If V is a row from table PCDATA
 Fetch a row r from table PCDATA
 If fetch succeeded, H.add(r.xmlid, r)
 Return Event (EV_TEXT, null, V.data)
 If V is a row from other tables
 New an EV_STARTELE event E1 for the row
 H.add(r.xmlid, E1)
 New an EV_ENDELE event E2 for the row
 H.add(r.endid, E2)
 For all attributes, inlined elements in the row
 Generate corresponding events
 Add these events to H, according to
 (xmlid, endid)
 Fetch a row r from the SQL cursor
 where V comes from
 If fetch succeeded, H.add(r.xmlid, r)
 Return GetNext()

shows an S-to-R Converter converting an Item element in
our example document to four relational streams.

Figure 4.3 An S-to-R Converter

One important difference between an S-to-R
Converter and an S-Operator is that the S-to-R Converter
may have more than one output stream. This makes an S-
to-R Converter non-streaming. For example, when a
relational operator calls GetNext on one tuple stream, let’s
assume table emph in Figure 4.3, the S-to-R Converter
may need to buffer many tuples for table bold or
PCDATA using temporary files. An S-to-R Converter has
the D-streaming property when it has only one output
stream, which is often true when the S-to-R Converter is
used to supply data stream for further relational
processing. S-to-R Converters with multi output streams
are primarily used when loading the database, which is
discussed later in this section.

The S-Operator engine in STEP calls the relational
engine through its SQL interface. Ordinary relational
operators can also consume streams generated from S-to-
R Converters, by using the virtual catalog. When a SQL
query is optimized, the relational optimizer contacts the
catalog service module for table schema and statistics.
The Catalog service module tries to find this information
from the standard relational catalog and from the virtual
catalog information supplied by the S-Operator engine.
The tuple streams generated from S-to-R Converters act
the same as tables on disk – with table scan as the only
supported access method.

4.3 XQuery rewr iter

We briefly describe the query rewrite/optimization
module of STEP in this subsection. Currently, this module
is still under development.

We first give a brief description of the algebra used by
STEP. We refer to [24] for a full description of the
algebra, including the equivalent rules and rules for
translating XQuery into the algebra. Besides ordinary
relational operators such as selection, projection and join,
the new algebra introduces several new operators. The
unnest operator expands element nodes reachable via an
XPath. The construct operator can create new nodes that
form the query result. The group operator is used to form
a collection (list or bag, depending on whether the
collection is ordered) of nodes. Although filter is defined
as a function in XQuery and can be written as
combinations of other operators, it is treated as an
operator in order to simplify the logical plan. As an

example, the logical plan for the motivating query in the
introduction is shown in figure 4.4

Figure 4.4 STEP logical plan for motivating query

After logical plan is rewritten using rules stated in [24]
(for example, selection is pushed down), it is optimized
into physical plans consisting of relational physical
operators and S-Operators. While operators like selection,
join are naturally executed by the relational engine, the
primary targets for the S-Operator engine are,
1. Unnest operators with long, complex path expression.
2. Filter operators.
3. Operations on node list, like tagging or the RANGE

operator.
In cases 1 and 2, a finite state machine constructed

from the XPath expressions is used to evaluate the unnest
or filter operator. In case 3, a trivial R-to-S Converter can
convert the relational tuple stream to an event stream to
form the input to an S-Operator for counting or tagging.

If the optimizer decides to use the S-Operator engine
to evaluate both the filter operator and the unnest operator
in the plan in Figure 4.4, it will produce the physical plan
shown in Figure 1.4 (in the Introduction).

Some logical operators can be evaluated by both
engines. In such case, a cost model will be used to select
the better plan. As an example, consider the operator
unnesting ‘a/b/c/d/e/f/g’ , with elements for each step
stored in separate relational tables. There are many
possible plans, for example,
1. Join all tables using the relational engine.
2. Produce an event stream using a Converter, then

evaluate the whole XPath using one S-Operator.
3. Mixed approach. We can evaluate part of the path

expression using an S-Operator and other parts of the
expression using relational join operators. For
example, if we know ‘b/c/d/e/f’ is selective, a good
plan probably would use an S-Operator to evaluate
‘b/c/d/e/f’ followed by two index nested loop joins to
look up ‘a’ and ‘g’ .

Techniques for estimating the cost of the relational

plan has been well studied since [15]. A cost model for S-
Operator will be used to estimate execution cost of plan 2
and part of plan 3. The I/O cost for producing the event
stream is a sequential scan of several relational tables.
The CPU cost is the cost of maintaining a priority queue
for the Converter (constant queue size) and state
transitions of the finite state machine used by S-
Operators. Another important parameter is the output size
of an S-Operator or S-to-R Converter. This parameter is
important to the relational engine when optimizing

relational operators that follow an S-to-R Converter. It is
also useful to divide the workload between the relational
and S-Operator engines. In our example, a good
estimation of output size of ‘b/c/d/e/f’ is crucial to
selecting between plan 2 and 3. We plan to exploit
estimation techniques like those developed in [1].

4.4 Loading Database and Handling Remote URL

Loading a database from an XML file is handled by an
ordinary S-to-R Converter that can be automatically
generated from the corresponding DTD. A SAX Parser is
used to produce an event stream that is converted into
several tuple streams. As discussed in Section 4.2, such an
S-to-R Converter is usually non-streaming. When used to
load the database, there is no need for buffering because
tuples are immediately inserted into corresponding tables.
Tuples in each stream are ordered by the order they
appear in original XML data, i.e., ordered by xmlid
column. This is the preferred clustering order of STEP.

An XML database system should be able of running
queries against both XML files from a remote site and
data stored in a local database. One approach to querying
XML files from a remote site is to first fetch and load the
remote files into the relational database [6][12][13]. In
this case, the system can be viewed as a cache for the
remote files. However, if a file is used only once or
infrequently, it is preferable not to load the file into the
database system. The S-Operator can handle remote XML
files gracefully without first loading the file into the
database. The step of parsing and storing the file can be
replaced by an S-to-R Converter that converts streaming
XML information to a relational tuple stream. The two
different approaches are shown in Figure 4.5.

Figure 4.5 Querying remote XM L file

In the new framework, we can eliminate the overhead
of storing the remote XML files in relational tables. In
addition, the stream of events from XML parser can first
be pipelined through some S-Operators. The S-Operators
could carry out restructuring or apply selection predicates
to simplify or reduce subsequent work by the relational
engine.

5. Exper imental Evaluation

In this section, we evaluate STEP empirically and
compare its performance with a middleware-based
approach. Since the purpose of STEP is to facilitate
existing relational database to efficiently execute XML

queries, our focus is on complex XQuery queries that are
hard to translate into SQL and queries that the resulting
SQL queries are inefficient.

5.1 Exper iment Setup

We used the XMark [25] benchmark in our experiments.
XMark models data gathered from an Internet auction
site. Figure 5.1 shows the graph representation of the
DTD. Each arrow denotes a parent-children relationship.
Dashed arrows indicate a child with the specific tag that
can appear at most once in the parent node; solid arrows
indicate those child elements that can appear multiple
times. While most parts of the DTD represent data that
has a well-defined structure (for example, each item has
an id, a name, etc.), the elements in the dotted box are
irregular in the sense that they contain TEXT data and
elements that can be nested arbitrarily. The XMark DTD
was mapped to a relational schema using techniques
described in [19]. One should notice that each element in
the dotted box is mapped into a separate table. The
underlying relational table schema is shown in Figure 5.2.

Figure 5.1 Graph representation of XM ark DTD

Figure 5.2 Relational Schema mapped from XM ark DTD

site (xmlid, xmlpid, endid, people_id, ..., rgeions_asia_id, ...
regions_europe_id, open_auctions_id, closed_auctions_id);
... ...
item (xmlid, xmlpid, endid, id, name, ..., description_id);
open_auction (xmlid, xmlpid, endid, seller, initial ...,
annotation_description_id, annotation_author);
closed_auction (xmlid, xmlpid, endid, seller, buyer, ...,
annotation_description_id, annotation_author);
par list(xmlid, xmlpid, endid);
listitem(xmlid, xmlpid, endid);
text(xmlid, xmlpid, endid);
emph(xmlid, xmlpid, endid);
bold(xmlid, xmlpid, endid);
keyword(xmlid, xmlpid, endid);
PCDATA(xmlid, xmlpid, data);

In the original XMark data, the depth of nesting for
elements in the dotted box is shallow (less than three). In
order to experiment with queries over deeply nested
irregular structure, we added some deeply nested structure
(up to 12 levels of nesting) to one percent of the text
elements. We will evaluate three queries defined in
XMark plus several additional queries4. These additional
queries focus on complex queries over the structure of
XML documents, such as the filter operators and regular
path expressions. We experiment with the original XMark
database (scale factor 1, about 110MB) up to XMark scale
factor 5 (560MB) to study the scalability of STEP with
respect to database size.

Our experiments were conducted on an 800MHz
Pentium III with 256M of memory, running Linux 2.2.
Our implementation is based on Predator[14], which uses
Shore[3] as the underlying storage management system.
Shore was configured to use 30M buffer pool. Some SQL
queries issued by middleware-based approach are very
complex and the optimizer of Predator is not able to select
a reasonable execution plan. In these cases, we manually
forced a reasonable plan.

5.2 Loading

As described in Section 4.3, loading the database from an
XML file is an ordinary STEP query (except logging is
turned off). Parsing the XML file using a SAX parser
produces a valid event stream. The event stream is sent
into an S-to-R Converter, which converts the event stream
into several tuple streams. Tuples in each tuple stream are
then inserted into the corresponding tables. We built B-
Tree indices on xmlid, xmlpid, endid columns of each
table. Table 5.1 shows the sizes of databases and indices.

XM ark Scale 1 2 3 4 5
Raw XM L 111 223 335 447 560
STEP 168 341 513 680 856
STEP-index 96 205 310 400 516

 Table 5.1 Database sizes (in MB)

5.3 Complex Group By

XMark Q2 tests the database’s ability to perform complex
group by queries.

Query Q2: Return the initial increases of all open auctions.
FOR $b IN document()/site/open_auctions/open_auction
RETURN <increase> $b/bidder[2]/increase/text() </increase>

The node position test and range operator are common
operators of XQuery. However, if naively translated into
SQL using aggregate functions and SQL group-by
clauses, the resulting SQL queries take a very long time to
finish. We forced Predator to use the plan shown in Figure
5.3 to get the second bidder element of an open_auciton.

4 We only present results from only three XMark queries because

most of XMark queries can be translated into simple SQL queries.
Results of the whole XMark benchmark and the SQL queries used are
available from http://www.cs.wisc.edu/~ftian/paper/step

The ability to generate such a “smart” SQL query is
almost certainly beyond what middleware can do. The
STEP plan scans the bidder table and uses a local variable
as a counter to select the second bidder of an
open_auction element. Figure 5.4 shows the performance
results of XMark Q2.

Relational Plan:
(1,2): Groupby xmlid to find bidder
in open_auction
(3,4): Join to find bidders that are
not first in open_auction
(5) GroupBy to find second bidders
(6,7) Retrieve query result

STEP Plan:
(1) Table Scan bidder
(2) Convert to event
stream
(3) An S-Operator to
groupby xmlpid and count
the second bidder

Figure 5.3 Plans for XM ark Q2

0

100

200

300

400

500

600

1 2 3 4 5
XMark Scale Factor

T
im

e
(s

ec
s)

STEP

Relational

Figure 5.4 Per formance results for XM ark Q2

5.4 Reconstruction

XMark Q13 tests the database’s ability to reconstruct
large, complex elements of the original document.

Query 13: List the names of items registered in Australia along
with their descriptions.
FOR $i IN document()/site/regions/australia/item
RETURN <item name=$i/name/text()> $i/description </item>

Relational Plan:
(1) select xmlid as position,
START_ELE as type from item
(2) select endid as position,
END_ELE as type from item
Scan text, emph, etc twice
PCDATA is scanned only once
because it only contains TEXT
(3, 4) Union and sort by position
(5) Add tag according to type

STEP Plan:
(1) Table scan Item, text,
etc only once
(2) Convert to event
stream
(3) Tagging

Figure 5.5 Plans for XM ark Q13

A similar problem, publishing relational data as one or
more XML documents, has also been studied recently
[8][18]. Their approach, for example, the Sorted-Outer-
Union, cannot be directly applied to this case because the
element being constructed is involved in a cycle in the
DTD. Unnesting a cycle in the DTD leads to the use of
recursive queries. One cannot employ an outer union to
combine the results of the recursive SQL queries because
the upper bound of the depth of unnesting is unknown.
However, the idea of using sort to produce result that is
ready for tagging can be adapted to handle cycles in the
DTD because the relational schema that we used contains
position information (xmlid, endid) of each XML
element. The STEP plan for reconstruction is simply an
R-to-S Converter. Both plans are shown in Figure 5.5.

0

50

100

150

200

250

1 2 3 4 5

XMark Scale Factor

T
im

e
(s

ec
s)

STEP

Relational

Figure 5.6 Per formance results for XM ark Q13

Figure 5.6 shows the performance results of XMark
Q13 for the two approaches. The STEP plan is more
efficient because:

1. STEP scans each table only once.
2. The R-to-S Converter in the STEP plan and the sort

operator in the relational plan produce the same output
sequence. The R-to-S Converter algorithm is D-Streaming
and thus is more efficient than the external sort. In fact,
we can consider the R-to-S Converter as a specialized sort
operator that takes advantage of the nesting structure of
XML documents.

5.5 Long Path Expression

XMark Q15 and Q16 test the database system’s ability to
evaluate long path expressions. Since the long paths in
Q15 and Q16 are actually the same, we only show results
of Q16 in this section. We added another query L2, which
contains wildcards in the path expression.
Query 16: Return the IDs of those auctions that have one or
more keywords in emphasis.
FOR $a IN document()/site/closed_auctions/closed_auction
WHERE NOT EMPTY
($a/annotation/description/parlist/listitem/parlist/\
 listitem/text/emph/keyword/text())
RETURN <person id=$a/seller/@person />
Query L2: Return the number of nodes at the second level below
text elements
FOR $a IN document("auction.xml")//text/*/*
RETURN COUNT($a)

In the relational plans, some steps in the path
expressions are mapped to two columns of the same table;
others are translated into joins between tables containing

parent and child elements. A wildcard in the path
expression can be evaluated using a union operator to
combine the results from all possible instantiations of the
wildcard. The STEP plan scans all the relevant tables and
merges the tuples from these scans using an R-to-S
Converter. Then the path expression is evaluated by an S-
Operator, which contains a finite state machine that
recognizes the regular expression.

There are situations when plans with multiple joins are
better than the STEP plans. For example, if the
intermediate result of one step of the long path expression
contains only a few tuples, the relational optimizer may
choose to evaluate this step first and then use an index
nested loop join to avoid scanning the other tables (which
could be very large). In other situations, if such a small
intermediate result does not exist, the relational plan that
joins many tables is usually more expensive than the
STEP plan. The cost of the STEP plan, which is mainly
the cost of table scans, can be easily estimated. An
optimizer should be able to choose the better of the two
plans. Performance results for Q16 and L2 are shown in
Figure 5.7 and 5.8.

0

100

200

300

400

500

600

1 2 3 4 5

XMark Scale Factor

T
im

e
(s

ec
s)

STEP

Relat ional

Figure 5.7 Per formance results for XM ark Q16

0
100
200
300
400
500
600
700
800

1 2 3 4 5

XMark Scale Factor

T
im

e
(s

ec
s)

STEP

Relational

Figure 5.8 Per formance results for L2

5.6 Filter Operator

XQuery provides features that let users query the structure
of an XML document. One important operator is filter.
Filter operates on an XML element, retaining some of the
sub-elements while preserving the structure of these sub-
elements.
Query F2: Return the number of nodes at the second level after
filtering “emph” and “keyword” elements.
LET $a = filter(document("auction.xml"), //(emph | keyword))
RETURN <Result>COUNT($a/* /*)</Result>

A filter operator on irregular elements like “ text” in
XMark may be translated to complex, probably recursive,
SQL queries if the middleware layer prefers to execute the
query inside the relational DBMS. Since query F2 only
counts the number of elements in certain places of the
filter result, we can execute the query without actually
explicitly computing the filter result. The relational plan
and the STEP plan for query F2 are shown in Figure 5.9.

Relational Plan:
(1-5): Produce emphs and keywords
that are nested in some other emph or
keywords. Index nested loop join is
used because the join predicates are
“ left.xmlid<right.xmlid” and
“ right.xmlid< left.endid” . Sort-Merge
on “ left.xmlid=right.xmlpid” cannot
be used because the parent/child in
the filter result may be separated by
other elements in the original
document
(6-8) Compute emph and keyword at
or deeper that third level
(9) Count result of (5)
(10) Count result of (8)
(11) (9) minus (10) (Join two tables,
each constains only one row)

STEP Plan:
(1-3) Table scan emph and
keyword. Convert tuple
streams into event stream.
(4) A finite state machine
for regular expression
“ */*” . Count the number
for results.

Figure 5.9 Plans for query F2

0

200

400

600

800

1 2 3 4 5
XMark Scale Factor

T
im

e
(s

ec
s)

STEP
Relational

Figure 5.10 Performance results for query F2

As in queries with long path expression, the STEP
plan scans the emph table once, which is more efficient
and more scalable than executing a very complex SQL
query.

5.7 S-to-R Conver ter

One advantage of the STEP approach over a
middleware-based approach is that STEP can seamlessly
connect S-Operators and relational operators with one
another. We use F2Join as an illustrating example. In
query F2Join, we need to compute a join after evaluating
the filter operators.

The STEP plan uses S-to-R Converters to connect the
outputs of S-Operators to ordinary relational operators.
Plans for F2Join are shown in Figure 5.11.

Query F2Join: Return item and open_auction that have same
number of double emphasized elements.
FOR $o IN document()//open_auction,
 $i IN document()//item
LET $oc = count(filter($o, //emph)/*/*),
 $ic = count(filter($i, //emph)/*/*)
WHERE $oc = $ic
RETURN <Result>$o/name/text(), $i/name/text()</Result>

Relational Plan:
(1-5,8) Count emph elements that
are at second level or deeper in
item elements
(6-7, 9) Count emph elements at
the third level or deeper
(10) Compute difference of (8)
and (9)
(11-20) Count emph elements at
the second level in open_auction
(21) join

STEP Plan:
(1-3) Table scan item and
emph. Convert to event stream
(4) A finite state machine
count emph element at second
level
(5) Convert to tuple stream for
join
(6-10) Generate tuple stream
for open_auction
(11) Join

Figure 5.11 Plans for query F2Join
The same sort merge join operators are used as the

final join operators of the relational plan and the STEP
plan. STEP plan is more efficient in computing the input
streams to the sort merge join operator. The results are
contained in Figure 5.12.

0

50

100

150

200

250

1 2 3 4 5
XMark Scale Factor

T
im

e(
se

cs
) STEP

Relationa
l

Figure 5.12 Performance results for query F2Join

5.8 Summary

Our experiments clearly demonstrate that STEP is a very
effective mechanism for extending a relational database
system to process complex queries on XML documents
that are stored in relational tables. For queries over
complex irregular data of XML files or queries containing
complex path expressions, STEP scans tables once instead

of using very complex relational plans. Though our
implementation stores XML data in relational database
using strategy described in [19], we believe the same
technique can be applied to other strategies like the
Attribute strategy of [7]. In fact, part of XMark DTD
(dashed box of Figure 5.1) is mapped to the same
relational schema regardless weather strategy in [19] or
[7] is used and our experiments will still be valid if the
Attribute strategy of [7] is used. Our results demonstrate
that STEP plans scale linearly with respect to the database
size. The STEP plan is also much simpler than the
corresponding relational plan, which typically contains a
complex join or sub-queries. The cost of a simpler plan is
easier to estimate, thus provides the optimizer better
opportunities to choose good execution plan while
relieving middleware programmers from having to write
“smart” SQL queries.

6. Conclusion and Future Directions

This paper describes STEP, an XML event sequence
model for processing complex queries against XML
documents that we have implemented as extension
module inside the Predator object-relational database
system. STEP combines the sequence processing ability
of S-Operators with the tuple processing ability of a
traditional relational engine. Our experiments demonstrate
that STEP can evaluate complex XPath expressions using
only table scans, which are more efficient and more
scalable than queries requiring joins of multiple tables by
the relational execution engine. STEP connects the S-
Operator engine and the relational engine with Converter
operators, enabling results from one engine to be streamed
into the other.

We are currently developing a cost model for STEP as
the first step in developing a cost-based global query
rewriter/optimizer to divide the workload between the S-
Operator engine and the relational engine. Another
important problem is to supply accurate statistics to the
relational optimizer so that relational engine can choose
good plans for queries whose inputs correspond to the
outputs of S-Operators. In additional to being able to
query XML documents stored in relational tables, STEP
can also handle XML data stored as LOBs in the database,
or XML documents stored in the file system. Our cost
model will consider important factors like the parsing cost
and network latency.

References:

[1] A. Aboulnaga, A.R. Alameldeen, J.F. Naughton:
Estimating the selectivity of xml path expressions for
internet scale applications. VLDB 2001
[2] P. Bohannon, J. Freire, P. Roy, et al. From XML
Schema to Relations: A Cost-based Approach to XML
Storage. ICDE 2002
[3] M.J. Carey, D.J. DeWitt, M.J. Franklin, et al. Shoring
up Persistent Applications. SIGMOD 1994

[4] M.J. Carey, J. Keirnan, J. Shanmugasundaram, et al.:
XPERANTO: Middleware for Publishing Object-
Relational Data as XML Documents. VLDB 2000
[5] A. Deutsch, M.F. Fernandez, D. Suciu: Storing
Semistructured Data with STORED. SIGMOD 1999
[6] L. Fegaras, R. Elmasri. Query engines for Web-
accessible XML data. VLDB 2001
[7] D. Florescu, D. Kossman: Storing and Querying XML
Data using an RDMBS. IEEE Data Engineering Bulletin
22(3), 1999
[8] M. Fernandez, A. Morishima, D. Suciu. Efficient
Evaluation of XML Middle-ware Queries. SIGMOD 2001
[9] N.H. Gehani, H.V. Jagadish, O. Shmueli. Composite
event specification in active databases: Model and
implementation. VLDB 1992
[10] G. Graefe. Volcano - An Extensible and Parallel
Query Evaluation System. TKDE 6(1), 120-135, 1994.
[11] Z.G. Ives, A.Y. Levy, D.S. Weld, Efficient
Evaluation of Regular Path Expression on Streaming
XML Data. Technical Report UW-CSE-2000-05-02,
University of Washington
[12] I. Manolescu, D. Florescu, D. Kossman: Answering
XML queries on heterogeneous data sources, VLDB
2001.
[13] J.F. Naughton, D.J. DeWitt, D. Maier, et al. The
Niagara Internet Query System. IEEE Data Engineering
Bulletin 24(2), 27-33, 2001.
[14] Predator. http://www.cs.cornell.edu/predator/.
[15] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, et
al. Access Path Selection in a Relational Database
Management System. SIGMOD 1979
[16] The SAX API. http://sax.sourceforge.net
[17] J. Shanmugasundaram, E.J. Shekita, S. N.
Subramanian, et al. Querying XML views of relational
data. VLDB 2001
[18] J. Shanmugasundaram, E.J. Shekita, R. Barr, et al.
Efficiently Publishing Relational Data as XML
Documents. VLDB 2000
[19] J. Shanmugasundaram, K. Tufte, C. Zhang, et al.
Relational Databases for Querying XML Documents:
Limitations and Opportunities. VLDB 1999
[20] P. Seshadri, M. Livny, R. Ramakrishnan, Sequence
Query Processing, SIGMOD 1994
[21] P. Seshadri, M Livny, R. Ramakrishnan, SEQ: A
Model for Sequence Databases, ICDE 1995.
[22] M.D. Soo, Bibliography on Temporal Databases,
ACM SIGMOD Record 20(1) 14—23, 1991
[23] I. Tatarinov, S. Viglas, J. Shanmugasundaram,
Storing and Querying Ordered XML Using a Relational
Database System, SIGMOD 2002.
[24] S. Viglas, L. Galanis, D.J. DeWitt, et al. Putting
XML Query Algebra into Context. Submitted for
publication
[25] http://www.xml-benchmark.com/
[26] http://www.w3c.org/TR/xquery.
[27] http://www.w3c.org/TR/query-datamodel
[28] http://www.w3c.org/TR/query-semantics

