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1 STEP stands for STreaming Event Processing. 

Abstract 

One approach to building an efficient XML 
query processor is to use a relational database 
system to store and query XML documents. 
However, XQuery contains a number of features 
that are either hard to translate into SQL or for 
which the resulting SQL is complex and 
inefficient. In this paper, we propose an 
extension to the relational database systems that 
facilitates efficient XML query processing within 
the existing relational database execution 
framework. Our extension can evaluate complex 
queries against XML documents stored in a 
relational database system by processing a 
sequence of XML events by extending the 
relational query engine with an event sequence-
processing engine. Results from each engine can 
be streamed into the other without incurring the 
overhead of crossing a middleware-database 
boundary.  

1. Introduction 

XML is the W3C standard for data representation and 
data exchange over the Internet.  Together with XML 
Schema (or DTDs), XML can be used as a mark-up 
language for semi-structured data. The W3C has 
established an XML Query working group to define 
standards whose goal is to permit “collections of XML 
files to be accessed like databases” .  The XML Query 
working group has already released a query language 
(XQuery [26]), data model (XQuery 1.0 and XPath 2.0 
Data Model [27]) and query algebra (XQuery Formal 
Semantics [28]).  How to build an efficient XML query 
processor is still, however, largely an open problem. 

One approach is to use a relational database system to 
store and query XML documents. This approach is very 
attractive because relational system is a mature 
technology with proven reliability and scalability after 

decades of research and development in storage 
management, query processing, and query optimization. 
Re-engineering similar technology for XML query 
processing would be extremely costly both in terms of 
time and money (as the object-oriented database system 
vendors discovered). Another advantage of using 
relational database systems is that large amounts of 
existing data are already managed by relational database 
systems.  Thus, using a relational DBMS offers the 
possibility of integrating XML files with relational data in 
one database system. 

There are many active projects exploring the use of 
relational database systems to support XML query 
processing. A number of these are implemented as 
middleware. A query written in XQuery is first translated 
into SQL and then sent to a relational DBMS for 
execution. The result table is restructured and tagged 
according to the original XQuery. In order to exploit the 
query processing power of the relational DBMS, the 
middleware attempts to push most of the query processing 
into the relational DBMS and makes the restructuring and 
tagging part only a thin wrapper over result table from the 
SQL query. This architecture is explored by, for example, 
XPERANTO [4][18]. Figure 1.1 shows an overview of 
middleware-based approach.  

 

Figure 1.1:  M iddleware-based architecture 

Certain XQuery features are difficult to support using 
this approach.  First, XQuery has features that are usually 
only available to a general-purpose language (e.g. local 
variables, instance of operator, non-linear recursion) 
which are not available in SQL.   Second, some XQuery 



queries are hard to translate into SQL and the resulting 
SQL queries are often complex and inefficient.  As a 
motivating example, consider the following XQuery.  

Several problems are encountered when a middleware-
based architecture is used to execute this query.  First, a 
long path expression is used to select $v1. When XML 
documents are stored in a relational database, elements 
are stored as tuples in multiple relational tables [7][19] 
and steps in the path expression are translated into joins.  
A long XPath expression is likely to be translated into 
many joins. Second, if x and y elements can be nested 
arbitrarily in document “b.xml” , the relational DBMS will 
need to employ recursive query processing in order to 
compute the filter operator of $v2. SQL queries on XML 
document structures such as those used for computing $v1 
or $v2 are complex, hard to optimize, and inefficient.  
Figure 1.2 illustrates how this query would likely be 
executed in a middleware-based architecture. 

 
Figure 1.2:  Query execution of the motivating example 

in middleware-based approach 
It is well known that regular (XPath) expressions like 

$v1 or $v2 can be evaluated using a finite state machine 
with only one sequential scan of the original document. 
Therefore, it is reasonable to implement some sequence-
processing capability in the middleware layer instead of 
using relational operators to evaluate complex path 
expressions. However, evaluating $v1 and $v2 in 
middleware leads to another problem -- $v1 and $v2 need 
to be joined.  While one could add a join operator to the 
middleware layer, this is not a trivial task and ends up 
duplicating functionality already provided by the 
relational DBMS.  Alternatively, the results of evaluating 
$v1 and $v2 can be sent back to the relational DBMS for 
further processing. 

 

Figure 1.3:  Execution path of the motivating query 
when complex XPath evaluated in middleware  

Figure 1.3 shows the execution flow for our example 
query if the path expression and filter are evaluated in a 
middleware layer but the relational DBMS is used to 
execute the join of $v1 and $v2.  This strategy incurs a 
number of inefficiencies.  First, query execution crosses 
the middleware/relational boundary multiple times, 
incurring significant overhead for binding out tuples and 
returning the results of the filter and path expression 
operations. Second, user-defined functions that return 
tables are often second-class citizens in relational 
database systems.  If temporary tables are used, there will 
be unnecessary I/O or blocking.  Third, the middleware 
layer needs to make decisions on what parts of a query are 
to be issued to the relational DBMS.  This decision is 
usually heuristic based, often without help from the 
relational optimizer. Another problem is there is no 
mechanism for the middleware layer to provide hints to 
the relational optimizer to help it select a good join 
algorithm.  

In this paper we describe STEP which addresses these 
inefficiencies by adding a new class of operators termed 
S-Operators to the relational DBMS engine. S-Operators 
process streams of XML events using an event sequence 
data model.  The power of an S-Operator is that it can 
evaluate a complex regular path expression with one 
sequential scan of the input event stream, avoiding the use 
of multiple join operators.  A second new type of 
operator, termed a Conver ter , is used to convert an XML 
event stream into streams of relational tuples and vice 
versa.  Thus, S-operators and relational operators can be 
composed with one another in a seamless fashion. 

 

Figure 1.4:  STEP plan for  motivating XQuery 

Figure 1.4 shows how our example would be executed 
by STEP.  As the input tables are scanned, Converters (C-
Op1 and C-Op2) are used to convert tuple streams into 
event streams that are consumed by two S-operators (S-
Op1 and S-Op2) to evaluate the path expression and the 
filter. The outputs of the two S-operators are then 
converted back into tuple streams using two more 
Converters (C-Op3 and C-Op4). The outputs of the 
Converters are then joined with one another using a 
standard relational join operator.  Our S-Operator 
implementation reads each input sequence once and 
requires only a small amount of memory for its operation.  
The use of S-Operators eliminates the need for complex 
joins to evaluate path expression and the use of recursive 
query processing for processing the filter.  Compared to 
the execution plan in Figure 1.2 and 1.3, the STEP plan is 

For  $v1 in document(“a.xml”)/a/b/c/d/e/f/g, 
Let $v2 = Filter (document(“b.xml”) // (x | y | text()) ) /*/*  
Where $v1 == $v2 
Return $v1, $v2 



both more efficient and more scalable. In addition, STEP 
avoids the overhead of repeatedly transferring data across 
middleware/database system boundary. 

The remainder of this paper is organized as follows. 
Section 2 reviews related work.  Section 3 describes the 
event sequence data model and Section 4 describes the 
implementation of our extension in the Predator [14] 
relational database system. Experiments and performance 
results are shown in Section 5.  Section 6 concludes and 
describes future work. 

2. Related Work 

For a number of years database researchers have realized 
that the relational model is not ideal for handling 
sequence data [20][21].  [9] uses a finite state machine to 
process history events in order to check trigger conditions. 
[22] considers sequence query processing in the temporal 
database environment.  The event-sequence model used 
by our S-Operator was inspired by these earlier efforts. 

Recently a large number of papers have been written 
on processing XML queries using relational database 
systems. [2][5][7][19][23] explore ways of storing XML 
data in a relational database system.  Our implementation 
uses the approach described in [19]. [4] and [8] discuss 
how to publish relational data efficiently. [12] describes 
how to translate queries in XQuery into SQL, presenting 
several examples of queries for which no translation is 
possible.  

Our work differs from these early efforts in that we 
propose an entirely new paradigm for processing XML 
queries that combines traditional relational operators 
operating on streams of tuples with a new class of 
operators operating on sequences of XML events.   This 
approach is simple to implement, and as we will 
demonstrate below, provides far superior performance to 
a pure relational approach.  Our extensions are capable of 
evaluating complex path expression and complex 
operators like filter, relieving the relational engine from 
having to execute complex, inefficient plans.  

[11] considers evaluating regular XPath using finite 
state machine over streaming XML data. Our 
implementation of S-Operator is very similar to their 
implementation of the xscan operator.  Their technique is 
standalone and the input stream of xscan is generated by 
parsing XML files.  STEP extends the standard relational 
database system functionality with the ability to query 
XML document structures. S-Operators operate on event 

streams constructed from the results of SQL queries as 
well as event streams generated by an XML parser.   

3. The XML Event Sequence Model  

In this section, we describe the XML event sequence 
model used in STEP.  The following XML file illustrates 
how XML documents are stored in a relational database 
and how XML events are processed by STEP.  Figure 3.1 
and Figure 3.2 show the example DTD and XML file. 
Each tag, text data, or end tag in the XML document is 
assigned a sequence number, as shown in Figure 3.2.  

 

Figure 3.1 Example DTD 

 

Figure 3.2 Example XM L file 

STEP stores XML data in a relational database using 
the techniques described in [19].  The main idea in [19] is 
that whenever an element can appear only once in its 
parent, the element is stored in the same table with its 
parent (inlining).  Elements or TEXT data that can appear 
multiple times are stored in separate tables. The sequence 
numbers in Figure 3.1 are stored as xmlid and endid in 
order to remember an element’s position in the original 
document. Another column xmlpid is used to link an 
element to its parent. The relational schema and tables for 

<!ELEMENT items (item*)> 
<!ELEMENT item (name, color, description)> 

<!ATTLIST item id ID #REQUIRED> 
<!ELEMENT name (#PCDATA)> 
<!ELEMENT color (#PCDATA)> 
<!ELEMENT description  
                    (#PCDATA|bold|emph)*> 
<!ELEMENT bold (#PCDATA|bold|emph)*> 
<!ELEMENT emph (#PCDATA|bold|emph)*> 

<?xml version=”1.0”?> 
<items(1)> 
<item id=” i1” (2)><name(3)>Item1(4)</name(5)> 
<color(6)>red(7)</color(8)> 
<description(9)><emph(10)> 
<bold(11)>bold emph(12)</bold(13)> 
</emph(14)> is strong(15) </description(16)> 
</item(17)> 
<item id=” i2” (18)> 
<name(19)>Item2(20)</name(21)> 
<color(22)>red(23)</color(24)><description(25)> 
<emph(26)> 
<emph(27)>double emph(28)</emph(29)> 
</emph(30)> is stronger(31)</description(32)> 
</item(33)> 
</items(34)> 

xmlid xmlpid endid id name name_xmlid color  color_xmlid descr iption_xmlid descr iption_endid 

2 1 17 “ i1”  “ Item1”  3 “ red”  6 9 16 
18 1 33 “ i2”  “ Item2”  19 “ red”  22 25 32 

Table item 

xmlid xmlpid Data 
12 11 “bold emph”  
15 9 “ is strong”  
28 27 “double emph”  
31 25 “ is stronger”  

Table PCDATA 

xmlid xmlpid endid 
 1 null 34 

Table items 
xmlid xmlpid endid 
   11 10 13 

Table bold 

xmlid xmlpid endid 
10 9 14 
26 25 30 
 27 26 29 

Table emph 

Figure 3.3 Sample XM L file stored in relational tables 



the example in Figure 3.1 are shown in Figure 3.3  

3.1 The Event Sequence M odel 

An alternative view of XML data is to treat the XML as a 
sequence of events.  This viewpoint is taken for example, 
by the XML SAX [16] parser. Instead of treating an XML 
file as a tree, a SAX parser reports a sequence of events to 
the invoking application.  From the application’s point of 
view, the sample XML document is, in fact, a sequence of 
SAX events: “start_element items” , “start_element item, 
with attribute id=’ i1’ ” , “start_element name” , “ text 
item1” , “end_element name”  etc. Our definition of events 
is slightly different from that of the SAX parser which 
was not designed or optimized for database processing.  
For example, a SAX start element event may contain an 
arbitrary number of attributes, which is hard to fit into a 
pure relational model.  Our definition borrows ideas from 
the SAX API and the sequence data type in [20].  
Formally, 

Definition: An event is a triple (type, name, value), 
written as ev = (t:T, n:S, v:D).  The domain of event type 
T = {EV_STARTELE, EV_ENDELE, EV_ATTR, 
EV_TEXT, EV_ELETEXT, EV_WELLFORMED, 
EV_NULL}. The event name, ev.n, is a string, which can 
be null.  The event value, ev.v, can be any data type 
defined in the database.  

Definition: An event sequence S={ev1, ev2, …} is a 
mapping from positive integers to events where S(i)=evi .  
A sequence is finite if there exists integer K, such that 
S(n).t = EV_NULL if n > K.  The minimum of such K is 
called the length of a sequence. 

We consider only finite event sequences in this paper.  
Our definition of an event defers from that of a SAX 
event in the following ways: 
1. Attribute events are distinguished from start element 

events, so that all events have a uniform structure. 
2. An EV_ELETEXT type is used to represent a simple 

XML element like <A>a</A>.  Since this case is 
likely to occur frequently, it is worthwhile 
compressing these three events into one. 

3. We have an EV_WELLFORMED type which 
facilitates the efficient handling of large chunks of 
XML data (probably stored as LOBs in the relational 
database).  The XML data LOB could be parsed 
during sequence processing when necessary.   

Definition: An event sequence S is well-formed if 
1. S(1).t != EV_ATTR 
2. If S(i).t = EV_ATTR, then S(i-1).t = EV_ATTR or S(i-

1).t = EV_STARTELE 
3. The EV_STARTELE and EV_ENDELE pairs are 

perfectly matched, without interleaving. 
The maximum nesting depth of EV_STARTELE and 
EV_ENDELE pairs is called the depth of the sequence. 

Conditions 1 and 2 state that attribute events should 
immediately follow their start element events. Condition 3 

states the usual requirement of matching start and end 
tags. We relaxed other XML well-formed requirements 
such as the existence of an unique root element. 

With these notions of event and event sequence, we 
can now define operators on event sequences. 

Definition: An event sequence operator  takes one event 
sequence as input and generates another event sequence 
as output. 

Note that this definition of an event sequence operator 
is very general.  In the extreme case, any XQuery that 
takes an XML file as input and produces XML as output 
can be regarded as an event sequence operator.  We need 
to restrict our focus to operators that are easy to 
implement and efficient to execute. 

Definition:  An event sequence operator is streaming if: 
1. The operator uses a bounded amount of buffer space.  
2. The operator scans the input sequence only once, and 

for each event in the input sequence, the operator 
requires a bounded amount of computation. 

 
Streaming operators have the following composition 
property. 

Proposition 1:  Let Op1, Op2 be two streaming operators, 
then composition of these two operators Op=Op2°Op1 is 
streaming.  

Definition:  An event sequence operator on a well-formed 
sequence is D-streaming if  
1. The operator buffer size is O(d), where d is the depth 

of the well-formed input sequence. 
2. The operator scans the input sequence only once and, 

for each event in the input sequence, the operator 
requires a bounded amount of computation.   

 
If the depth of the input sequence is not very large, a D-
streaming operator consumes little memory and its 
computation cost is linear to the input sequence length. 
Similar to the streaming property which is preserved by 
composition, D-streaming operators have the following 
property, 

Proposition 2: Let Op1, Op2 be two D-streaming 
operators. If the depth of S1=Op1(S0) is O(d0), where d0 is 
the depth of S0, then the composition operator 
Op=Op2°Op1 is D-streaming.  

Next, we introduce the S-Operator, which is 
implemented by STEP. 

Definition: An S-Operator  is a finite state machine, 
driven by events in its input sequence.  Each S-Operator 
has a context, which contains one state stack, and some 
local variables. Upon each event, the S-Operator may 
execute a bounded number of following instructions, 
1. State transition; optionally push last state onto state 

stack. 
2. State transition to the state at the top of state stack, 

and pop the state stack. 



3. Simple operation on local variables, such as assigning 
a value to a local variable, arithmetic operation, string 
concatenation, equality test. 

4. Output an event to the output sequence. 
 
An S-Operator is D-streaming if the state stack is pushed 
only on EV_STARTELE events, and popped the state stack 
is popped upon the corresponding EV_ENDELE events2.  
The S-Operators are very powerful in evaluating queries 
against the structure of an XML document.  In particular, 
we have the following propositions, 

Proposition 3: A regular XPath expression, consisting of 
child (including wildcard) and descendent, in which each 
step may contain predicates on the node’s value or 
position (for example, a range operator), can be evaluated 
by a D-streaming S-Operator. 

Proposition 4: If each filter expression of a filter 
operator, filter(X // expressions), is a regular XPath 
expression as described in Proposition 3, the filter 
operator can be evaluated by a D-streaming S-Operator. 

 
The S-Operator for evaluating a regular expression 

XPath is essentially a finite state machine that recognizes 
the regular expression.  Well-known algorithms exist to 
construct such a finite state machine.  For example, an S-
Operator that evaluates “a/b/c”  is shown in Figure 3.43. 
Arrows denote state transition.  Labels on each arrow 
denote events that trigger the transition.  <*> is the 
“default”  transition on any START_ELE event. ‘+’  
indicates that the destination state of the transition is 
pushed onto the state stack and ‘ -’  means when the state 
finishes processing the element (implemented by using a 
local variable to keep count on depth of nesting), it 
transits back to the state on the top of state stack and then 
the state stack is popped. 

 

Figure 3.4 S-Operator  for  ‘a/b/c’  

The S-Operator for evaluating the filter operator is a 
finite state machine that recognizes the filter expressions.  

                                                           
2 The context may include other stacks. An S-Operator will be D-

streaming as long as each stack follows same the push-pop protocol as 
the state stack.   Currently, STEP only uses the state stack. 

3 In many cases, the state stack is not necessary (thus making the S-
Operator streaming), as the S-Operator is essentially a finite state 
machine that recognizes the regular expression.  For example, the S-
Operator in Figure 3.3 can be implemented using local variables to 
remember states that initiated the transition. However, in more complex 
situations, using the state stack could reduce the number of states 
required by the S-Operator.  We use the state stack because we believe 
that the size of the stack will be small, and the S-Operator using the 
stack is much simpler.  

An S-Operator used to evaluate filter expressions outputs 
events in the same order as the input sequence.  Because 
the structure information of XML data is represented by 
the nesting of <start-element, end-element> pairs, 
preserving the order of events in the input sequence 
ensures that the structural information is preserved in the 
output sequence.  

3.2 Integrating Event Sequence Model with Relational 
Model 

The event sequence model and the S-Operator framework 
provide a powerful processing mechanism for queries 
against XML document structures.  However, there is 
mismatch between the event sequence model and the 
relational model. While ordinary relational operators 
process tuple streams, S-Operators process XML event 
streams. We introduce a new class of operators, called 
Conver ters, to bridge this mismatch.  An S-to-R 
Conver ter  takes one stream of events as its input and 
produces one or more tuple streams as its output.  An R-
to-S Conver ter  consumes one or more tuple streams as 
input and produces one event stream as output.  
Converters are used to connect relational operators and S-
Operators with one another.  Details of Converters and 
how they are implemented in STEP are described in the 
next section.   

4. STEP Implementation 

We have implemented a prototype of the STEP 
architecture as an extension to the Predator object-
relational database system [14]. The overall architecture 
of STEP is shown in Figure 4.1. Modules outside of the 
dashed polygon are off-the-shelf components from 
Predator.    

 

Figure 4.1 STEP Architecture 

We first give an overview of each module, following 
the execution path of a query. XML data can be stored 
either in relational tables using techniques like those 
described in [19], as LOBs in a relational database, or as 
files. If stored in relational tables, the tables are clustered 
using xmlid, which is the order of the elements in the 
original XML document. After an XQuery is parsed, a 
global optimizer rewrites the query into a STEP query 



plan. The most important function of the global optimizer 
is to divide the workload between the relational execution 
engine and the S-Operator engine. If the query involves 
XML data that is not stored in database tables, for 
example, XML files on the Internet, STEP uses an 
ordinary SAX parser to parse the XML file to produce an 
event stream. If the query is posed against data stored in 
relational tables, the S-Operator engine issues SQL 
queries to the relational engine. The results of SQL 
queries are converted to event streams using R-to-S 
Converters. The S-Operator engine augments the Predator 
catalog service with a virtual catalog module.  When the 
SQL optimizer asks for catalog information about a table, 
the catalog service extracts information from the virtual 
catalog as well as from the ordinary relational catalog.  
The virtual catalog is used by an S-to-R Converter when 
forming a tuple stream as input to ordinary relational 
operators. Like the relational operators, the S-Operators 
and Converters provide a Volcano-like [10] iterator 
interface (GetNext tuple or GetNext event) to the 
operators above them. 

The finite state machine implementation of an S-
Operator is straightforward.  Each state contains a list of 
actions (including state transitions) that are performed 
when a certain XML event is received in that state.  The 
S-Operator keeps a context of information like current 
state, state stack etc.  In the remainder of this section, the 
integration of the S-Operator engine and the relational 
engine is described in more detail. 

4.1 R-to-S Conver ter  

When the STEP engine needs to retrieve data from the 
database it issues one or more SQL queries. The resulting 
tuple streams are then converted to event streams using R-
to-S Converters.  STEP uses two classes of R-to-S 
Converters.  The first class, trivial R-to-S Converter, 
converts each row of the SQL result R(col1, col2, …) to a 
sequence of events equivalent to one XML element <R 
col1=”value1”  col2=”value2”  …/>. Trivial R-to-S 
Converters convert query results from the relational 
database to event streams that are ready for grouping (for 
example, S-Operators to performing range queries) or 
tagging.  

The second class of R-to-S Converters reconstructs the 
event sequence corresponding to the original (or part of 
the original) XML document. This class of operators uses 
a priority queue, implemented by a heap H.  The heap H 
is initialized when the R-to-S Converter is initialized 
(algorithm Init in Figure 4.2). The GetNext cursor 
interface is implemented as algorithm GetNext in Figure 
4.2.   

The algorithm in Figure 4.2 has the following property 
that is similar to D-streaming: 

Proposition 5: If the SQL queries used as inputs to an 
R-to-S converter return tuples sorted by xmlid, then the 
heap size of H is O(d), where d is depth of nesting of 
original XML data.  

In fact, the size of H is bounded by d+t+e, where t is 
the number of scanned relational tables and e is number of 
possible elements defined in the DTD. 

 

 

Figure 4.2 Algor ithm of R-to-S Converter  

By clustering relational tables using xmlid column, we 
can support complex XPath expressions by fetching tuples 
from the relational database, converting the resulting tuple 
streams into event streams, evaluating the XPath 
expression using an S-Operator, all in a streaming 
fashion.  

The R-to-S Converter can also be used to retrieve only 
part of the original XML document.  For example, in 
order to evaluate XPath “ item//bold/text()” , we only need 
to issue SQL queries that scan table Bold, PCDATA, and 
xmlid, endid columns of table I tem. The algorithm 
produces an event stream equivalent to the original 
document with irrelevant elements such as “name”  and 
“color”  filtered out.   

4.2 S-to-R Conver ter  

One important feature of STEP is that STEP can 
seamlessly connect S-Operators and relational operators 
with each other. Unlike the middleware-based approach, 
STEP can redirect results of an S-Operator into a 
relational operator by inserting S-to-R Converter before 
the relational operator.  The implementation of S-to-R 
Converter is very similar to an S-Operator, replacing 
output events by output tuples.  For example, Figure 4.3 

Implementation of R-to-S Converter 
H: Heap, implementing a priority queue 
H.add(k, V): Add an entry to H, with k as heap value 
H.getFrist(): Remove top of heap, and return V 
Algorithm Init(List of SQLs): 
     H = { }  
     For each SQL statement: 
            Issue SQL to RDBMS, Open Cursor 
            Fetch one row r 
            If fetch succeeded, H.add(r.xmlid, r) 
Algorithm GetNext(): 
      V = H.getFirst() 
      If V is NULL, return End of Stream 
            If V is an Event, return V 
            If V is a row from table PCDATA 
                   Fetch a row r from table PCDATA 
                   If fetch succeeded, H.add(r.xmlid, r) 
                   Return Event (EV_TEXT, null, V.data) 
            If V is a row from other tables 
                   New an EV_STARTELE event E1 for the row 
                   H.add(r.xmlid, E1) 
                   New an EV_ENDELE event E2 for the row 
                   H.add(r.endid, E2) 
                   For all attributes, inlined elements in the row 
                          Generate corresponding events 
                          Add these events to H, according to  
                                              (xmlid, endid)  
                          Fetch a row r from the SQL cursor  
                                              where V comes from 
                          If fetch succeeded, H.add(r.xmlid, r) 
                          Return GetNext() 
 



shows an S-to-R Converter converting an Item element in 
our example document to four relational streams. 

 
Figure 4.3 An S-to-R Converter  

One important difference between an S-to-R 
Converter and an S-Operator is that the S-to-R Converter 
may have more than one output stream.  This makes an S-
to-R Converter non-streaming.  For example, when a 
relational operator calls GetNext on one tuple stream, let’s 
assume table emph in Figure 4.3, the S-to-R Converter 
may need to buffer many tuples for table bold or 
PCDATA using temporary files. An S-to-R Converter has 
the D-streaming property when it has only one output 
stream, which is often true when the S-to-R Converter is 
used to supply data stream for further relational 
processing. S-to-R Converters with multi output streams 
are primarily used when loading the database, which is 
discussed later in this section. 

The S-Operator engine in STEP calls the relational 
engine through its SQL interface. Ordinary relational 
operators can also consume streams generated from S-to-
R Converters, by using the virtual catalog.  When a SQL 
query is optimized, the relational optimizer contacts the 
catalog service module for table schema and statistics.  
The Catalog service module tries to find this information 
from the standard relational catalog and from the virtual 
catalog information supplied by the S-Operator engine. 
The tuple streams generated from S-to-R Converters act 
the same as tables on disk – with table scan as the only 
supported access method.   

4.3 XQuery rewr iter  

We briefly describe the query rewrite/optimization 
module of STEP in this subsection. Currently, this module 
is still under development. 

We first give a brief description of the algebra used by 
STEP. We refer to [24] for a full description of the 
algebra, including the equivalent rules and rules for 
translating XQuery into the algebra. Besides ordinary 
relational operators such as selection, projection and join, 
the new algebra introduces several new operators. The 
unnest operator expands element nodes reachable via an 
XPath. The construct operator can create new nodes that 
form the query result. The group operator is used to form 
a collection (list or bag, depending on whether the 
collection is ordered) of nodes. Although filter is defined 
as a function in XQuery and can be written as 
combinations of other operators, it is treated as an 
operator in order to simplify the logical plan. As an 

example, the logical plan for the motivating query in the 
introduction is shown in figure 4.4     

 

Figure 4.4 STEP logical plan for  motivating query 

After logical plan is rewritten using rules stated in [24] 
(for example, selection is pushed down), it is optimized 
into physical plans consisting of relational physical 
operators and S-Operators. While operators like selection, 
join are naturally executed by the relational engine, the 
primary targets for the S-Operator engine are, 
1. Unnest operators with long, complex path expression.  
2. Filter operators. 
3. Operations on node list, like tagging or the RANGE 

operator.  
In cases 1 and 2, a finite state machine constructed 

from the XPath expressions is used to evaluate the unnest 
or filter operator. In case 3, a trivial R-to-S Converter can 
convert the relational tuple stream to an event stream to 
form the input to an S-Operator for counting or tagging.   

If the optimizer decides to use the S-Operator engine 
to evaluate both the filter operator and the unnest operator 
in the plan in Figure 4.4, it will produce the physical plan 
shown in Figure 1.4 (in the Introduction).  

Some logical operators can be evaluated by both 
engines. In such case, a cost model will be used to select 
the better plan. As an example, consider the operator 
unnesting ‘a/b/c/d/e/f/g’ , with elements for each step 
stored in separate relational tables. There are many 
possible plans, for example,  
1. Join all tables using the relational engine. 
2. Produce an event stream using a Converter, then 

evaluate the whole XPath using one S-Operator. 
3. Mixed approach.  We can evaluate part of the path 

expression using an S-Operator and other parts of the 
expression using relational join operators.  For 
example, if we know ‘b/c/d/e/f’  is selective, a good 
plan probably would use an S-Operator to evaluate 
‘b/c/d/e/f’  followed by two index nested loop joins to 
look up ‘a’  and ‘g’ . 

 
Techniques for estimating the cost of the relational 

plan has been well studied since [15]. A cost model for S-
Operator will be used to estimate execution cost of plan 2 
and part of plan 3. The I/O cost for producing the event 
stream is a sequential scan of several relational tables. 
The CPU cost is the cost of maintaining a priority queue 
for the Converter (constant queue size) and state 
transitions of the finite state machine used by S-
Operators. Another important parameter is the output size 
of an S-Operator or S-to-R Converter. This parameter is 
important to the relational engine when optimizing 



relational operators that follow an S-to-R Converter. It is 
also useful to divide the workload between the relational 
and S-Operator engines.  In our example, a good 
estimation of output size of ‘b/c/d/e/f’  is crucial to 
selecting between plan 2 and 3. We plan to exploit 
estimation techniques like those developed in [1]. 

4.4 Loading Database and Handling Remote URL 

Loading a database from an XML file is handled by an 
ordinary S-to-R Converter that can be automatically 
generated from the corresponding DTD. A SAX Parser is 
used to produce an event stream that is converted into 
several tuple streams. As discussed in Section 4.2, such an 
S-to-R Converter is usually non-streaming. When used to 
load the database, there is no need for buffering because 
tuples are immediately inserted into corresponding tables. 
Tuples in each stream are ordered by the order they 
appear in original XML data, i.e., ordered by xmlid 
column.  This is the preferred clustering order of STEP.   

An XML database system should be able of running 
queries against both XML files from a remote site and 
data stored in a local database. One approach to querying 
XML files from a remote site is to first fetch and load the 
remote files into the relational database [6][12][13]. In 
this case, the system can be viewed as a cache for the 
remote files. However, if a file is used only once or 
infrequently, it is preferable not to load the file into the 
database system. The S-Operator can handle remote XML 
files gracefully without first loading the file into the 
database. The step of parsing and storing the file can be 
replaced by an S-to-R Converter that converts streaming 
XML information to a relational tuple stream. The two 
different approaches are shown in Figure 4.5.   

 

Figure 4.5 Querying remote XM L file 

In the new framework, we can eliminate the overhead 
of storing the remote XML files in relational tables. In 
addition, the stream of events from XML parser can first 
be pipelined through some S-Operators.  The S-Operators 
could carry out restructuring or apply selection predicates 
to simplify or reduce subsequent work by the relational 
engine.  

5. Exper imental Evaluation 

In this section, we evaluate STEP empirically and 
compare its performance with a middleware-based 
approach. Since the purpose of STEP is to facilitate 
existing relational database to efficiently execute XML 

queries, our focus is on complex XQuery queries that are 
hard to translate into SQL and queries that the resulting 
SQL queries are inefficient.  

5.1 Exper iment Setup 

We used the XMark [25] benchmark in our experiments. 
XMark models data gathered from an Internet auction 
site.  Figure 5.1 shows the graph representation of the 
DTD.  Each arrow denotes a parent-children relationship. 
Dashed arrows indicate a child with the specific tag that 
can appear at most once in the parent node; solid arrows 
indicate those child elements that can appear multiple 
times. While most parts of the DTD represent data that 
has a well-defined structure (for example, each item has 
an id, a name, etc.), the elements in the dotted box are 
irregular in the sense that they contain TEXT data and 
elements that can be nested arbitrarily. The XMark DTD 
was mapped to a relational schema using techniques 
described in [19]. One should notice that each element in 
the dotted box is mapped into a separate table. The 
underlying relational table schema is shown in Figure 5.2. 

 

Figure 5.1 Graph representation of XM ark DTD 

 

Figure 5.2 Relational Schema mapped from XM ark DTD 

site (xmlid, xmlpid, endid, people_id, ..., rgeions_asia_id, ... 
regions_europe_id, open_auctions_id, closed_auctions_id); 
... ... 
item (xmlid, xmlpid, endid, id, name, ..., description_id); 
open_auction (xmlid, xmlpid, endid, seller, initial ..., 
annotation_description_id, annotation_author); 
closed_auction (xmlid, xmlpid, endid, seller, buyer, ..., 
annotation_description_id, annotation_author); 
par list(xmlid, xmlpid, endid); 
listitem(xmlid, xmlpid, endid); 
text(xmlid, xmlpid, endid); 
emph(xmlid, xmlpid, endid); 
bold(xmlid, xmlpid, endid); 
keyword(xmlid, xmlpid, endid); 
PCDATA(xmlid, xmlpid, data); 



In the original XMark data, the depth of nesting for 
elements in the dotted box is shallow (less than three). In 
order to experiment with queries over deeply nested 
irregular structure, we added some deeply nested structure 
(up to 12 levels of nesting) to one percent of the text 
elements. We will evaluate three queries defined in 
XMark plus several additional queries4. These additional 
queries focus on complex queries over the structure of 
XML documents, such as the filter operators and regular 
path expressions. We experiment with the original XMark 
database (scale factor 1, about 110MB) up to XMark scale 
factor 5 (560MB) to study the scalability of STEP with 
respect to database size. 

Our experiments were conducted on an 800MHz 
Pentium III with 256M of memory, running Linux 2.2. 
Our implementation is based on Predator[14], which uses 
Shore[3] as the underlying storage management system.  
Shore was configured to use 30M buffer pool.  Some SQL 
queries issued by middleware-based approach are very 
complex and the optimizer of Predator is not able to select 
a reasonable execution plan. In these cases, we manually 
forced a reasonable plan.  

5.2 Loading 

As described in Section 4.3, loading the database from an 
XML file is an ordinary STEP query (except logging is 
turned off). Parsing the XML file using a SAX parser 
produces a valid event stream.  The event stream is sent 
into an S-to-R Converter, which converts the event stream 
into several tuple streams.  Tuples in each tuple stream are 
then inserted into the corresponding tables. We built B-
Tree indices on xmlid, xmlpid, endid columns of each 
table.  Table 5.1 shows the sizes of databases and indices. 

XM ark Scale 1 2 3 4 5 
Raw XM L 111 223 335 447 560 
STEP 168 341 513 680 856 
STEP-index 96 205 310 400 516 

  Table 5.1 Database sizes (in MB) 

5.3 Complex Group By  

XMark Q2 tests the database’s ability to perform complex 
group by queries.   

Query Q2: Return the initial increases of all open auctions. 
FOR $b IN document()/site/open_auctions/open_auction  
RETURN <increase> $b/bidder[2]/increase/text() </increase> 

The node position test and range operator are common 
operators of XQuery.  However, if naively translated into 
SQL using aggregate functions and SQL group-by 
clauses, the resulting SQL queries take a very long time to 
finish. We forced Predator to use the plan shown in Figure 
5.3 to get the second bidder element of an open_auciton. 

                                                           
4 We only present results from only three XMark queries because 

most of XMark queries can be translated into simple SQL queries.  
Results of the whole XMark benchmark and the SQL queries used are 
available from http://www.cs.wisc.edu/~ftian/paper/step 

The ability to generate such a “smart”  SQL query is 
almost certainly beyond what middleware can do.  The 
STEP plan scans the bidder table and uses a local variable 
as a counter to select the second bidder of an 
open_auction element.  Figure 5.4 shows the performance 
results of XMark Q2. 

        
Relational Plan: 
(1,2): Groupby xmlid to find bidder 
in open_auction 
(3,4): Join to find bidders that are 
not first in open_auction 
(5) GroupBy to find second bidders 
(6,7) Retrieve query result 

STEP Plan: 
(1) Table Scan bidder  
(2) Convert to event 
stream 
(3) An S-Operator to 
groupby xmlpid and count 
the second bidder 

Figure 5.3 Plans for  XM ark Q2 
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Figure 5.4 Per formance results for  XM ark Q2 

5.4 Reconstruction 

XMark Q13 tests the database’s ability to reconstruct 
large, complex elements of the original document. 

Query 13: List the names of items registered in Australia along 
with their descriptions. 
FOR $i IN document()/site/regions/australia/item  
RETURN <item name=$i/name/text()> $i/description </item> 

 
Relational Plan: 
(1) select xmlid as position, 
START_ELE as type from item 
(2) select endid as position, 
END_ELE as type from item 
Scan text, emph, etc twice 
PCDATA is scanned only once 
because it only contains TEXT 
(3, 4) Union and sort by position 
(5) Add tag according to type 

STEP Plan: 
(1) Table scan Item, text, 
etc only once 
(2) Convert to event 
stream 
(3) Tagging 
 

Figure 5.5 Plans for  XM ark Q13 



A similar problem, publishing relational data as one or 
more XML documents, has also been studied recently 
[8][18]. Their approach, for example, the Sorted-Outer-
Union, cannot be directly applied to this case because the 
element being constructed is involved in a cycle in the 
DTD. Unnesting a cycle in the DTD leads to the use of 
recursive queries. One cannot employ an outer union to 
combine the results of the recursive SQL queries because 
the upper bound of the depth of unnesting is unknown.  
However, the idea of using sort to produce result that is 
ready for tagging can be adapted to handle cycles in the 
DTD because the relational schema that we used contains 
position information (xmlid, endid) of each XML 
element.  The STEP plan for reconstruction is simply an 
R-to-S Converter.  Both plans are shown in Figure 5.5. 
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Figure 5.6 Per formance results for  XM ark Q13 

Figure 5.6 shows the performance results of XMark 
Q13 for the two approaches.  The STEP plan is more 
efficient because:  

1. STEP scans each table only once. 
2. The R-to-S Converter in the STEP plan and the sort 

operator in the relational plan produce the same output 
sequence. The R-to-S Converter algorithm is D-Streaming 
and thus is more efficient than the external sort. In fact, 
we can consider the R-to-S Converter as a specialized sort 
operator that takes advantage of the nesting structure of 
XML documents. 

5.5 Long Path Expression 

XMark Q15 and Q16 test the database system’s ability to 
evaluate long path expressions.  Since the long paths in 
Q15 and Q16 are actually the same, we only show results 
of Q16 in this section. We added another query L2, which 
contains wildcards in the path expression.   
Query 16: Return the IDs of those auctions that have one or 
more keywords in emphasis.  
FOR $a IN document()/site/closed_auctions/closed_auction  
WHERE NOT EMPTY 
($a/annotation/description/parlist/listitem/parlist/\  
                     listitem/text/emph/keyword/text())  
RETURN <person id=$a/seller/@person />  
Query L2: Return the number of nodes at the second level below 
text elements  
FOR $a IN document("auction.xml")//text/*/*  
RETURN COUNT($a) 

In the relational plans, some steps in the path 
expressions are mapped to two columns of the same table; 
others are translated into joins between tables containing 

parent and child elements. A wildcard in the path 
expression can be evaluated using a union operator to 
combine the results from all possible instantiations of the 
wildcard. The STEP plan scans all the relevant tables and 
merges the tuples from these scans using an R-to-S 
Converter.  Then the path expression is evaluated by an S-
Operator, which contains a finite state machine that 
recognizes the regular expression.  

There are situations when plans with multiple joins are 
better than the STEP plans. For example, if the 
intermediate result of one step of the long path expression 
contains only a few tuples, the relational optimizer may 
choose to evaluate this step first and then use an index 
nested loop join to avoid scanning the other tables (which 
could be very large).  In other situations, if such a small 
intermediate result does not exist, the relational plan that 
joins many tables is usually more expensive than the 
STEP plan. The cost of the STEP plan, which is mainly 
the cost of table scans, can be easily estimated. An 
optimizer should be able to choose the better of the two 
plans. Performance results for Q16 and L2 are shown in 
Figure 5.7 and 5.8.   
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Figure 5.7 Per formance results for  XM ark Q16 
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Figure 5.8 Per formance results for  L2 

5.6 Filter  Operator  

XQuery provides features that let users query the structure 
of an XML document. One important operator is filter. 
Filter operates on an XML element, retaining some of the 
sub-elements while preserving the structure of these sub-
elements.   
Query F2: Return the number of nodes at the second level after 
filtering “emph”  and “keyword”  elements. 
LET $a = filter(document("auction.xml"), //(emph | keyword) ) 
RETURN <Result>COUNT($a/* /*)</Result> 



A filter operator on irregular elements like “ text”  in 
XMark may be translated to complex, probably recursive, 
SQL queries if the middleware layer prefers to execute the 
query inside the relational DBMS.  Since query F2 only 
counts the number of elements in certain places of the 
filter result, we can execute the query without actually 
explicitly computing the filter result.  The relational plan 
and the STEP plan for query F2 are shown in Figure 5.9. 

 
Relational Plan: 
(1-5): Produce emphs and keywords 
that are nested in some other emph or 
keywords.  Index nested loop join is 
used because the join predicates are 
“ left.xmlid<right.xmlid”  and 
“ right.xmlid< left.endid” . Sort-Merge 
on “ left.xmlid=right.xmlpid”  cannot 
be used because the parent/child in 
the filter result may be separated by 
other elements in the original 
document 
(6-8) Compute emph and keyword at 
or deeper that third level 
(9) Count result of (5) 
(10) Count result of (8) 
(11) (9) minus (10) (Join two tables, 
each constains only one row) 

STEP Plan: 
(1-3) Table scan emph and 
keyword. Convert tuple 
streams into event stream. 
(4) A finite state machine 
for regular expression 
“ */*” . Count the number 
for results. 

Figure 5.9 Plans for  query F2 
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Figure 5.10 Performance results for  query F2 

As in queries with long path expression, the STEP 
plan scans the emph table once, which is more efficient 
and more scalable than executing a very complex SQL 
query.  

5.7 S-to-R Conver ter  

One advantage of the STEP approach over a 
middleware-based approach is that STEP can seamlessly 
connect S-Operators and relational operators with one 
another. We use F2Join as an illustrating example. In 
query F2Join, we need to compute a join after evaluating 
the filter operators.   

The STEP plan uses S-to-R Converters to connect the 
outputs of S-Operators to ordinary relational operators.  
Plans for F2Join are shown in Figure 5.11.  

 
Query F2Join: Return item and open_auction that have same 
number of double emphasized elements. 
FOR $o IN document()//open_auction,  
        $i IN document()//item 
LET $oc = count(filter($o, //emph)/*/*),  
         $ic = count(filter($i, //emph)/*/*) 
WHERE $oc = $ic   
RETURN <Result>$o/name/text(), $i/name/text()</Result> 

 
Relational Plan: 
(1-5,8) Count emph elements that 
are at second level or deeper in 
item elements 
(6-7, 9) Count emph elements at 
the third level or deeper 
(10) Compute difference of (8) 
and (9) 
(11-20) Count emph elements at 
the second level in open_auction 
(21) join 

STEP Plan: 
(1-3) Table scan item and 
emph. Convert to event stream 
(4) A finite state machine 
count emph element at second 
level 
(5) Convert to tuple stream for 
join 
(6-10) Generate tuple stream 
for open_auction 
(11) Join 

Figure 5.11 Plans for  query F2Join 
The same sort merge join operators are used as the 

final join operators of the relational plan and the STEP 
plan.  STEP plan is more efficient in computing the input 
streams to the sort merge join operator. The results are 
contained in Figure 5.12. 
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Figure 5.12 Performance results for  query F2Join 

5.8 Summary 

Our experiments clearly demonstrate that STEP is a very 
effective mechanism for extending a relational database 
system to process complex queries on XML documents 
that are stored in relational tables. For queries over 
complex irregular data of XML files or queries containing 
complex path expressions, STEP scans tables once instead 



of using very complex relational plans. Though our 
implementation stores XML data in relational database 
using strategy described in [19], we believe the same 
technique can be applied to other strategies like the 
Attribute strategy of [7]. In fact, part of XMark DTD 
(dashed box of Figure 5.1) is mapped to the same 
relational schema regardless weather strategy in [19] or 
[7] is used and our experiments will still be valid if the 
Attribute strategy of [7] is used. Our results demonstrate 
that STEP plans scale linearly with respect to the database 
size. The STEP plan is also much simpler than the 
corresponding relational plan, which typically contains a 
complex join or sub-queries.  The cost of a simpler plan is 
easier to estimate, thus provides the optimizer better 
opportunities to choose good execution plan while 
relieving middleware programmers from having to write 
“smart”  SQL queries.  

6. Conclusion and Future Directions 

This paper describes STEP, an XML event sequence 
model for processing complex queries against XML 
documents that we have implemented as extension 
module inside the Predator object-relational database 
system. STEP combines the sequence processing ability 
of S-Operators with the tuple processing ability of a 
traditional relational engine. Our experiments demonstrate 
that STEP can evaluate complex XPath expressions using 
only table scans, which are more efficient and more 
scalable than queries requiring joins of multiple tables by 
the relational execution engine. STEP connects the S-
Operator engine and the relational engine with Converter 
operators, enabling results from one engine to be streamed 
into the other. 

We are currently developing a cost model for STEP as 
the first step in developing a cost-based global query 
rewriter/optimizer to divide the workload between the S-
Operator engine and the relational engine. Another 
important problem is to supply accurate statistics to the 
relational optimizer so that relational engine can choose 
good plans for queries whose inputs correspond to the 
outputs of S-Operators. In additional to being able to 
query XML documents stored in relational tables, STEP 
can also handle XML data stored as LOBs in the database, 
or XML documents stored in the file system. Our cost 
model will consider important factors like the parsing cost 
and network latency.   
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