
Title: Rate-Based Query Optimization for
Streaming Information Sources

Authors: Efstratios Viglas, Jeffrey F. Naughton
Paper Number: 233

Area: Core Database Technology
Category: Research

Relevant Topics: Optimization and Performance
Contact Author: Efstratios Viglas

Department of Computer Sciences
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, WI 53706
e-mail : stratis@cs.wisc.edu
phone: (608) 262 2252

Rate-Based Query Optimization for Streaming Information Sources

Efstratios Viglas Jeffrey F. Naughton

Department of Computer Sciences
University of Wisconsin-Madison,

1210 W. Dayton Street, Madison, WI 53706
E-mail: {stratis, naughton}@cs.wisc.edu

Abstract

Query optimizers typically attempt to minimize response time. While this approach has been

and continues to be very successful in traditional environments, in the presence of information

sources of differing rates and non-blocking query execution something else is needed. In this

paper, we propose a framework for rate-based optimization, in which the goal is to choose a

plan that maximizes the rate at which answers are produced over a specified time interval. We

demonstrate that different plans can have substantially different behavior with respect to the

rate at which they produce tuples as a function of time. For example, it is possible that one plan

is the fastest to produce the first 100 tuples, while another plan produces the most output tuples

in the first 10 seconds, while yet another plan is the fastest to run to completion. We develop a

rate-based cost model and study this new model in the context of variable rate input streams.

We validate this model for the Niagara system. Our results show that optimizing using this

cost model and using a greedy top-down search strategy can yield better decision than existing

optimization techniques in this environment.

1 Introduction

Query optimization is an extensively investigated part of query execution. Cost models, optimiza-

tion and plan generation strategies have been in the focus of the research community for more than

twenty years, and each commercial database product has its own approach to tackle the problem.

Most optimizers try to find the plan that minimizes total query execution time. There has been

some work on variants such as minimizing the time until the first tuple has been produced (e.g.,

1

[10]), or minimizing some combination of resource utilization and response time (e.g., [13]), or opti-

mizing for resource allocation in parallel systems [4, 7]. However, we are not aware of any optimizer

that explicitly focuses on optimizing the rate at which answers are produced as a function of time.

A couple of trends are combining to render these existing optimization objectives insufficient.

First, with the advent of the Internet, there is far greater interest in evaluating queries for which

information sources can be remote, and which deliver information at different rates. Second, re-

searchers have begun focusing on query evaluation techniques that are non-blocking and/or adap-

tive. The purpose of this paper is to re-address query optimization in the context of network-

resident, differing rate information sources by optimizing for output production rate, based on

estimates of the rates for streams appearing in a query, as well as on classic selectivity statistics.

When one is dealing with network-resident data, some basic assumptions about query execution

have to be revisited:

• Execution often depends upon the input rates, and different sources will have different rates.

Everyone who has ever downloaded information from the Internet knows that different sites

transmit at different rates.

• Some evaluation algorithms are no longer pertinent. For instance, to evaluate a join using the

classic implementation of sort-merge join, one has to have both inputs completely present at

the beginning of execution. If the input sources are streaming, no answers can be produced

before this point.

• When posing queries over the Internet, one is interested in a new set of properties regarding

the time the result set appears. In traditional database systems, a user might be interested

in seeing the first or the last result as soon as possible. For non-blocking evaluation plans

over network resident data, a user might want to optimize for the first 100 results, or the first

1000; or, perhaps, to optimize the number of results that are produced in the first 5 seconds.

The focus of this paper is the introduction of rates into the optimizer cost model. We extract

specific formulas to calculate output rates for various operators that appear in execution plans as

a function of the input rates. We present a case for why it is better to use symmetric operators in

query execution for streaming data by extracting cost formulas for common evaluation algorithms.

We show what optimization opportunities arise and how, given the new cost model, we can perform

2

more detailed query optimization for specific time points in the query execution process. We validate

this new framework through experiments with the Niagara system.

1.1 Motivation

In the context of the Niagara Project [3, 8, 12] we have implemented an Internet Query Engine

over network-resident, streaming, XML information sources. We experimented with various ways

of organizing plans involving multiple join operations, and measured their performance by keeping

track of the exact time at which each individual output appeared. Each plan employed symmetric

algorithms to evaluate the various join predicates. We generated deep as well as bushy plans, and

upon examination of the results, an interesting pattern arose. Figure 1 depicts the performance

of three different execution plans, for the same three-way join query, for the first eight seconds of

query execution.

Clearly, the plans generate their results at different rates. Furthermore, the deep plan gives the

most results over the first 6 seconds; bushy plan 1 is best from 6 to 8 seconds; and bushy plan 2 is

somewhere in between most of the time. We tried to identify which factor was the one that made

one plan faster than an other and how we could take advantage of that factor when implementing

an optimizer. This paper reports on the results of this study.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000

O
ut

pu
t s

iz
e

(
#o

bj
ec

ts
)

Time (msecs)

Left-deep plan
Bushy plan No. 1
Bushy plan No. 2

Figure 1: Comparison of three different execution plans for network-resident, streaming information
sources

3

1.2 Our contribution

The starting point of this work is investigating the optimization and query execution process un-

der different assumptions than those current database systems employ: information sources with

different delivery rates, and optimization for rate of final output. The contribution regarding these

aspects is three-fold:

• We first identify the problems and drawbacks of the current optimization process when applied

to our problem domain. These mainly stem from the fact that standard query optimization

techniques do not consider the rates of their input sources. We make a first step toward

eliminating these problems by assigning a rate to each stream, thus adding another parameter

for consideration by the optimization process. We show by using specific formalisms and

metrics how this parameter influences query execution.

• We extract expressions for each operator used in non-blocking query plans. These expressions

incorporate the new rate parameter. We combine all these expressions into a new cost model

and provide a case study which proves that the new cost model can provide a better decision

basis for the optimization process.

• We propose a unified framework to optimize for specific points of time during query execution.

As far as the last point is concerned, Section 5 shows that optimizing for rate in addition

to resource utilization may require that the optimization process considers bushy plans as well.

Considering bushy plans explodes the search space substantially. However, as we show in Sec-

tion 3.4, when dealing with streaming information sources we are better off employing symmetric,

non-blocking execution operators. Symmetric operators do not distinguish between outer and inner

sources (i.e., they treat A ./ B and B ./ A as equivalent expressions with regards to cost) so it might

be possible to take advantage of the trade-off: consider bushy plans with symmetric operators, at

the expense of not considering plans not employing symmetric, non-blocking operators.

The rest of the paper is organized as follows: Section 2 presents the related work in this area.

Section 3 deals with the estimation of output rates for the most important operators appearing

in a query execution plan, while section 4 presents the general framework for rate-based query

optimization which is based on the premises of output rate optimization, as well as estimates of

plan performance. Section 5 presents a case study concerning different plans and what the new

4

cost model predicts about the rate at which they produce results. Finally, Section 6 summarizes

our conclusions of this work and identifies future research directions.

2 Related Work

The seminal paper on cost-based plan optimization was [11]. Other optimization models, especially

in the areas of parallel query optimization are not cost-based but deal with resource scheduling and

allocation [4, 7]. The Britton-Lee optimizer could optimize for the first result tuple [10], while in

Mariposa the optimization criterion was a combination of execution time and resource utilization.

Modeling streaming behavior through input rates, and modeling network traffic as Poisson random

processes, has appeared in many contexts, including [2], although to our knowledge it has not been

applied in the context of query optimization.

A lot of work has been carried out in the areas of non-blocking algorithms [5, 14, 16], which

aim at producing plans that do not block their execution because of slow input streams. These

algorithms are symmetric in the sense that they do not assign different roles to the participating

inputs (i.e. there is no distinction between outer and inner streams). Our framework employs such

algorithms. In the same context, methodologies aiming at identifying blocked parts of an execution

plan and isolating them [15] can benefit from our framework of rate optimization by dealing with

and/or switching to plans for which the predicted output rate is maximized, in addition to their

rescheduling and synthesis framework.

Our work fits also into the re-optimization frameworks of [6, 9]. All of these frameworks focus

on identifying performance bottlenecks of an already executing plan and ways to overcome them.

Our work provides insight into why these bottlenecks may appear when dealing with network-

resident, streaming data, and our cost models could be used to make decisions at run time when

re-optimizing.

Finally, the adaptive query execution framework of [1] can be used in the context of our work.

The authors try to find specific points in their query execution strategy at which they should switch

plans. These points are detected by continuously monitoring the execution plan’s performance. Our

framework, by modeling output rates as a function of time, can provide estimates of when such

time-points of sub-optimal performance will appear, and can predict which plan should be used at

each point of the execution.

5

3 Estimation of Output Rates

We are interested in estimating the output rates of various operators as a function of the rates

of their input. We will concentrate on the most important and basic operations, which are used

in all of relational, object-relational, object-oriented and semi-structured database systems. This

class of operators corresponds to a general class of queries, namely conjunctive queries consisting

of selections, projections and joins. The challenging operators for rate estimation are filtering

operators (selections and joins) since these are the ones that selectively qualify their inputs.

Throughout this section we will make a number of simplifying assumptions. Our experimental

evaluation suggests that while these assumptions may reduce the absolute accuracy of our estimates,

the estimates so derived are good enough to be useful for rate-based query optimization. However,

it is certainly possible (indeed, likely) that future work will discover better approximations that

can be used in our framework to further increase its accuracy.

All of our subsequent computations build on one simple observation: the rate of a stream

is defined to be the number of data objects transmitted divided by the time needed to make

this transmission. For clarity of exposition we will concentrate on the transmissions made within

approximately one time unit. The general formula is as follows:

Output rate =
Number of outputs transmitted

Time needed to make the transmission
(Equation 1)

In what follows, we will use the cost variables of Table 1 to model an operation, refining them

as we present the cost model. Whenever we need to refer to an input rate, we will refer to it by

using the symbol ri, while ro refers to an output rate. In the case of joins, which need two inputs,

we will refer to them by rl for the left-hand side input and rr for the right-hand side one.

Cost variable Meaning

Cπ Cost of projecting specific parts of an input object

Cσ Cost of performing a selection on an input object

CL./ Cost of handling an input coming from the left-hand side of a join

C./R Cost of handling an input coming from the right-hand side of a join

T Cost of making a single transmission

Table 1: Cost variables for estimation of output rates

6

3.1 Projections

Given that each input has a handling cost, there are two cases which we have to account for:

1. The cost of performing one projection is less than the inter-arrival time for input objects

(Cπ < 1/ri).

2. The cost of performing one projection is greater then the inter-arrival time for input objects

(Cπ > 1/ri).

1/r 2/r 3/r 10

1/r+c 1+c2/r+c 3/r+c

1/r+c
1/r+2c

1/r+rc

c > 1/r

c < 1/r

time

1/r

...

1/r ...

...
c c

Figure 2: Relation between cost and inter-arrival rate. This applies to all cases, so c could be either
the cost of a projection or a selection. Variable r models an input rate.

In this discussion, we incorporate the transmission cost T into the handling cost. If we want

to distinguish between them, we can calculate the cost of handling an individual input as Cπ + T .

Figure 2 shows the consequences of each case. In the first case, the inter-transmission interval

is equal to the inter-arrival interval, with the only difference being that the first output element

appears after Cπ time units, so ro = ri. In the second scenario, the situation is more complicated

but we can figure out the inter-transmission interval from Figure 2 by observing that this interval

has to be equal to the cost of handling one input. So, the transmission rate is the inverse of that,

or ro = 1
Cπ

. We can safely assume, however, that the cost of making a projection is low, so for

small values of Cπ, ro = ri.

3.2 Selections

Selections need to incorporate into the calculation the selectivity of the predicate under evaluation.

Given the input rate, the number of input objects will be ri. Assuming uniform distributions, the

7

number of objects appearing in the output will be σ · ri where σ is the predicate selectivity. The

way to calculate the output rate is analogous to the calculation of the projection output rate with

the only difference that we are using Cσ instead of Cπ. The output rate will then be ro = σ · ri if

Cσ < 1/ri and ro = σ
Cσ

if Cσ > 1/ri. Again, it is safe to assume that Cσ < 1/ri, so ro = σ · ri.

3.3 Joins and Cartesian Products

Joins are more complex operations than projections and selections, in the sense that they operate

over two distinct input sources. Before proceeding in our derivation, we must first be clear about

what it is that we are trying to derive. Our model seeks to answer the following question: at any

point t in the query execution, some left inputs and some right inputs may be arriving into the

join. If rl is the left input rate, and rr is the right input rate, what is the output rate that will be

observed for results generated by the arrival of these input tuples? Note that this rate may not in

general be the observed rate at time t. In particular, if the system spends time processing these

arrivals, the output tuples corresponding to these arrivals may not appear until some point in the

future. The rate our model predicts will be the rate at that point in the future.

Asking “which tuples arrived at an arbitrary instant t” does not make much sense, since time is

continuous. So we instead ask about discrete time intervals, and then generalize from these discrete

approximations to approximate the continuous case.

First, we need to compute the number of answer tuples that will be generated by the arrivals

in some specified time interval. We will show that the number of result objects generated by the

arrivals in one time unit, given we begin at time t, will be σrlrrt
2. The logic behind this formula

is the following: Assuming input rates rl and rr for the two input streams, at time t the number

of elements read by the left stream will be rlt while for the right stream rrt. How many result

tuples will be generated from these inputs? If we assume that we started at time zero, the number

of result objects from these inputs will be σrlrr. (This is just the number of tuples seen from the

inputs times the selectivity of the join.)

Now consider the second time unit. At the end of this second time unit, the contribution

from the left stream to the output will be σrl2rr (the selectivity times the number of objects read

from the left stream in the time unit from t to 2t times the total number of objects read from

the right stream from time zero to 2t), while for the right stream it will be σrr2rl. Thus the

8

total number of output elements1 generated by arrivals during the second time unit will then be

2σ2rlrr − σrlrr (we need the deduction to account for duplicates). The total number of outputs

produced by arrivals during the first two time units will then be the sum σrlrr + 3σrlrr. Using the

same logic, the total number of outputs generated by arrivals during the first three time units will

be σrlrr +3σrlrr +5σrlrr. We can take these inductive steps to compute the total output elements

for any time t.

We emphasize that we are talking about the elements generated due to arrivals during a time

interval, not about the elements generated during the time interval. In particular, again, if the

elements take longer to process than the inter-arrival rate, the outputs will be delayed, perhaps

substantially, by outputs corresponding to tuples that arrived during previous time intervals.

Moving on to continuous time, we integrate these quantities over time. We need to solve the

integral ro = σrlrr

∫
(2t − 1)dt. Solving the integral for time produces the total number of output

objects produced by a join operation for the input that arrives at any time t, which is σr lrrt(t−1).

Next, to calculate the rate that will be observed for these output objects, we need to compute

how long it will take for them to be generated. Over a time interval t the join operator will have

received rlt inputs from the left stream and rrt objects from the right stream. The time to handle

each of the left inputs is by definition CL./ while for each of the right inputs the cost is C./R (see also

Table 1). Then the time to process these input tuples will be rltCL./+rrtC./R = t·(rlCL./+rrC./R).

Substituting the above results into Equation 1 yields:

ro =
σrlrrt(t− 1)

t · (rlCL./ + rrC./R)
=

σrlrr(t− 1)

rlCL./ + rrC./R

≈ σrlrrt

rlCL./ + rrC./R

(Equation 2)

Finally, we note that we made the implicit assumption above that the time to process the tuples

arriving during time t, which is t · (rlCL./ + rrC./R), is greater than t, which means that (rlCL./ +

rrC./R) > 1. If this is not the case, the denominator needs to be replaced by 1, since output tuples

corresponding to a given input cannot be produced before the input itself arrives! The above holds

for Cartesian products as well, with the only modification being that σ = 1.

From Equation 2 it is clear that the output rate of a join operation is time-dependent. The

time dependence is actually more subtle than that formula indicates, because for some join operator

implementations the constants CL./ and C./R also depend on time (e.g., if the cost of handling an

1In what follows, we will use the terms output object, output and output element interchangeably to avoid repetition.

9

input depends upon the number previous inputs handled.)

Since the rate is a function of time there are optimization opportunities having to do with

either maximizing the total output rate, and hence the time needed to produce the last result

of the operation, or optimizing for specific time points of the operation. We will present such a

framework in Section 4.

3.4 Cost Models for Specific Operator Implementations

The purpose of this section is to extract specific cost expressions for different join methods as a

function of their input rates. The cost can be separated into two parts, namely the cost of handling

an input from the left stream and the cost of handling a right stream input. We consider only

non-blocking join algorithms, specifically the non-blocking nested loops and the symmetric hash

join. The cost expressions we will extract, will be dependent on the number of input elements read

up to the time point under consideration. The subsequent analysis assumes a join between streams

R and S, with input rates rR and rS respectively. It also assumes the cost of each algorithm is

further dependent on four cost variables, which Table 2 summarizes.

Cost Variable Meaning

move Cost of moving an input object from the input buffers into
main memory for processing

comp Cost of performing an in-memory comparison between two
different objects

hash Cost of hashing an object into a hash table

probe Cost of probing a hash table in a lookup operation and pro-
ducing the output

Table 2: Notation for cost formulas

3.4.1 Nested Loops Join

The nested-loops join algorithm traditionally needs all of the inner input present to execute properly.

The outer may be streaming, since late arrivals can be thought of as additional executions of the

inner loop. If the inner stream is not bound at execution beginning, however, the algorithm has to

be modified. A straight-forward non-blocking extension would be to insert all newly arrived inputs

from the inner stream into a set, and whenever an inner loop ends, a second inner loop is executed

10

for all late arrivals. This fits into Niagara’s partial results architecture [12].

The algorithm needs to loop over all inputs of the outer stream moving them into memory, and

for each input compare it against all inputs of the inner stream. The cost for handling one left input

arrival is then: CL./ = move+|S|t ·comp = move+rSt·comp. For right input arrivals, a loop over all

the left inputs has to be initiated. The cost is then: C./R = move+ |R|t · comp = move+ rRt · comp.

3.4.2 Symmetric Hash Join

Symmetric hash join is by definition non-blocking. It keeps two hash tables in memory and for each

arrival it hashes it into the corresponding stream’s hash table, while at the same time using it to

probe the other stream’s hash table. The cost is then the same for both streams of the operation

and is equal to CL./ = C./R = move+hash+probe: first move the input element into main memory,

then hash it into the appropriate hash table and finally use it to probe the other stream’s hash

table.

Table 3 summarizes the arrival cost formulas for the algorithms we have considered. Non-

blocking nested loops has a time-dependent aspect to its cost, so, as time progresses, the cost

increases. Symmetric hash join, on the other hand, has a constant cost to handle its inputs. In

what follows and for the purposes of this study we will only concentrate on symmetric algorithms

since they are the ones that lead to the least complex formulas.

Algorithm Left arrival cost (CL./) Right arrival cost (C./R)

Nested loops move + rSt · comp move + rRt · comp

Symmetric hash join move + hash + probe move + hash + probe

Table 3: Cost formulas for the different join algorithms

4 Using Estimates to Optimize Queries

In this section we first describe the general problem that arises when considering using our rate

estimates to optimize queries. Next, we discuss two simple heuristics as examples of how the general

problem might be simplified in practice.

11

4.1 General Framework for Rate-Based Optimization

Section 3 shows how to compute the output rate of an operator as a function of the rates of its

inputs. In the case of join operators, the output rate is time-dependent. When asked to evaluate

a plan, we can combine its various operations to come up with a function of time that models its

output rate. Given the output rate of a plan r(t) then the number of results the plan will produce

at any point in time tO is given by the integral of the rate over time:

Outputs =

∫ t0

0
r(t)dt (Equation 3)

The integral of Equation 3 provides the general framework for rate-based optimization. The

problem then becomes: given a collections of plans Pi and their output rate rPi
(t) as a function of

time, how do we decide which plan to employ? There are two important optimization opportunities.

Optimize for a specific time point in the execution process. The integral of Equation 3 can

be treated as an equation. Given a collection of plans and a time point t0, by solving the

integral we can estimate how many output elements the plan will have produced by that

time. We can then pick the plan with the highest number of output elements produced. The

question we are asking is “which plan will produce the most results by time t0?”

Optimize for output production size. In this case we reverse the procedure. Given an output

size N we want to identify the plan which will reach the specified number of results at the

least time. We then pick the plan with the minimum such time. In this situation we are

asking: “which plan is the first one to reach N results?” Notice that N can either be the

total number of results, or the first result. The framework incorporates both of these notions.

The optimization opportunities we listed entail computing the solution to an integral, which

is inefficient for practical optimization purposes. Optimizers have to manipulate a huge search

space when enumerating possible plans, but none of the optimizers evaluate the whole search

space. Instead, they employ heuristics that will limit the search space into the most promising

enumerations. It is logical that we should follow the same tactic in trying to approximate the

integral of Equation 3. Identifying ways to efficiently approximate the integral provides interesting

research directions. In the next section we will propose two different kinds of approximation

heuristics: local rate maximization and local time minimization.

12

4.2 Examples of Heuristics

Devising efficiently applicable heuristics that generate good plans is a rich area for future research.

In this section we give two examples. Our intent is to illustrate the kinds of heuristics are possible

(rather than to claim that these heuristics will perform well in practice.) Both of the heuristics we

present aim at locally optimizing the plan under the premises that better local performance entails

better overall performance of the execution plan. We will concentrate on identifying plans with

maximum rate over time, and plans that reach a specified number of results as soon as possible.

For the first case, we identify a performance estimate for each join operation of the plan and we

combine such estimates to come up with an overall performance estimate. In the second case, we

use the same performance estimate to locally minimize the time needed to produce the estimated

number of results required at each join for a total number of results to be reached. Both of these

heuristics can be used as performance metrics for existing optimizers.

4.2.1 Local Rate Maximization

A local rate maximization framework builds on a simple heuristic: the plan with the maximum

overall rate is the one that will have the maximum constituent rates. What we propose to do in a

local rate maximization framework, is to organize the plan in such a way that our rate estimates

for each point of the plan are maximized. For join operations involving two primary sources for the

query (i.e., joins that none of their inputs is the output of another join) we can determine the slope

of the rate function, according to Equation 2: it is σrlrr

rlCL./+rrC./R
. We then use this as an estimate

of how fast the join is and treat it as an input rate for subsequent join operations. This process will

yield an estimate for each plan we consider. We choose the plan that has the maximum such overall

estimate. Figure 3 shows how we calculate the estimate for a plan, by using only the primary rates

and how we combine the rates to generate and overall heuristic estimate of the plan’s performance.

It is easy to incorporate this performance estimate in any optimizer. For instance, a dynamic

programming optimizer dealing with streaming sources, instead of calculating the traditional cost

for a join operation, it uses the ratio σrlrr

rlCL./+rrC./R
as a performance indicator, proceeding as in

Figure 3. Notice, that the estimate provides room to incorporate any other CPU and I/O metric

by inserting it into the calculation through CL./ and C./R.

As an example, suppose we are faced with three possible plans (A ./ B) ./ C, (A ./ C) ./ B

and (B ./ C) ./ A, for which there are join predicates between A and B with selectivity σAB and

13

Rab = h(Ra, Rb)

Reab = h(Re, Rab)

Rabcde = h(Rcd, Reab)

, C, Rc D, Rd

E, Re

A, Ra B, Rb

Rcd = h(Rc, Rd)

Figure 3: Local rate maximization process

B and C with selectivity σBC . Figure 4 depicts the plans, while Table 4 shows the output rate as

a function of time2 and our estimate of the rate and hence the plan’s performance. Our estimates

closely approximate the performance of each plan, rate-wise. For any given time point, the factor

which will differentiate one plan from an other is our estimate. In this case we will choose the plan

that has the maximum value of our estimate. Choosing the plan with the highest value for the

estimate entails choosing the plan with the highest output rate.

BC

AB

C

σ

σ

A B

1

ABBC

B

σ σ

CA

AB

BC

A

σ

σ

B C

Figure 4: Three different execution plans for A ./ B ./ C. Each join operation is annotated with
the estimated selectivity.

4.2.2 Local Time Minimization

The local rate maximization heuristic identified an estimate of how fast a join operation produces

results in general. We can use this estimate as a further estimation of how fast a join operation

can produce a specific number of results, when we wish to identify the plan that will produce that

number of results as soon as possible. To devise this estimate we are based on a simple observation.

2For simplicity of the table’s formulas, we assume that CL./ = C./R = c.

14

Plan Output rate as a function of time Performance estimate

(A ./ B) ./ C σABσBCrArBrCt2

c(σABrArBt+rCc(rA+rB))
σABσBCrArBrC

c(σABrArB+rCc(rA+rB))

(A ./ C) ./ B σABσBCrArBrCt2

c(σABσBCrArC t+rBc(rA+rC))
σABσBCrArBrC

c(σABσBCrArC+rBc(rA+rC))

(B ./ C) ./ A σABσBCrArBrCt2

c(σBCrBrC t+rAc(rB+rC))
σABσBCrArBrC

c(σBCrBrC+rAc(rB+rC))

Table 4: Output rates and rate-based estimates of plan performance for different execution plans

The formula which connects output rate r, time t and number of outputs produced n is n = rt. If

we have an estimate of the results we need to produce and an estimate of the rate at which we can

produce them, then an estimate of how soon we can generate them is the number of results divided

by time, or in the previous formula, n
r

We can incorporate this strategy into a more general optimization framework. Suppose we are

again facing the operation A ./ B ./ C, as was the case in Figure 4. We wish to optimize for the

time needed to reach 25% of the total output. We can tackle the problem by decomposing it into

a number of equivalent sub-problems. To do so, we need to push-down the number of elements

each input to the final join should produce for the desired number of outputs to be produced.

The way to do so is simple. We know that the number of overall outputs we optimize for is

equal to 0.25 · σAB · σBC |A||B||C|. Taking the join sequence A ./ (B ./ C) as an example, in

order to reach our goal we approximately need to read
√

0.25 · σAB · σBC |A| inputs from A and
√

0.25 · σAB · σBC |B||C| from B ./ C. Using this divide-and-conquer strategy we can take care

of arbitrarily complex join strategies. Figure 5 shows how we distribute the estimated number of

required results between the various join operators of the execution plan. We finally transform

the problem into a minimization/maximization one: the plan which will reach the desired number

of outputs the fastest, is the one for which the latest time its constituents joins will reach their

respective number of outputs is the smallest. The way we use the performance estimate is the

following: We want an indication of how much time each sub-problem needs to be completed. An

estimate of this time is the predicted number of outputs for the sub-problem, divided by the rate

estimate.

We can provide the solution in a more formal fashion: Assume we have a recursive definition

of possible join execution trees. This definition consists of a set of join strategies, with each

join strategy annotated with the desired number of outputs to be reached as fast as possible,

15

, C, Rc D, Rd

E, Re

A, Ra B, Rb

Naeb

Nab

Nabcde

Ncd

NdNc

Ne

Na Nb

Figure 5: Required output size distribution for local time minimization

the value of its metric, and the fastest time for this number to be reached. For instance, given

join strategy A ./ (B ./ B), the information about it is encapsulated into {(A,nA, rA, tA), (B ./

B, nB./B , rB./U , tB./U)}. The notation here is that for each point of interest P (which can be a

source stream, or the output of a join), we encapsulate it in the structure (P, nP , rP , tP) for which

nP is the number of results we wish to reach, rP is the value of our rate estimate and tP is the

estimation of time we need to reach that number of results. B ./ C can be further decomposed into

{(B,nB , rB , tB), (C, nC , rC , tC)}. Notice, that it is up to us to decide how far down the execution

plan we wish to descend. For instance, we may not want to descend down to stream level, but

rather stop at the joins of pairs of streams (i.e., not decompose B ./ C in B and C since we have

an estimate for the rate of the join operation). The notation here is that for an input B, the fastest

time to generate the desired number of nB outputs is tB. We can encapsulate such a notation by

using logical rules as:

Info ← (Stream, nS , rS , tS)

Tree ← {Info} | ({Tree} ∪ Info)

Stream ← S | Tree

The input to our decision algorithm is a set of such structures. The solution to the problem then,

involves three steps: (i) For each strategy in the set, find the maximum time needed to complete it,

recursively going into the Tree structures (ii) Find the strategy with the minimum such time (iii)

Choose the join strategy that corresponds to the minimum time. Algorithm 1 presents a simple

program to perform the calculation over these structures, in which min returns the best execution

tree while max returns the maximum execution time within a single tree.

16

Algorithm 1 A simple decision algorithm to optimize for time needed to reach a specific part of
the output

max (∅, 0).
max (Info ∪ Tree, M) ← Info = (S, nS, rS , tS),

max(Tree, Mt),
tS = nS/mS ,
(Mt > tS ? M = Mt : M = tS).

min (∅, ⊥, ∞).
min (Tree ∪ Forest, BestTree, Cb) ← max(Tree, Ct),

min(Forest, BestInForest, Cf),
(Ct > Cf ? BestTree = Tree, Cb = Ct : BestTree = BestInForest, Cb = Cf)

5 Validation of the cost model

In this section we provide experimental results to prove the validity of the cost model we have

proposed. We focus our attention on a specific equi-join query which we will use throughout the

experimental section. This query involves five streaming sources, each with its own rate. We

organized the plan for that query in three different ways and evaluated each one against our

analytical framework, and against the metrics of plan performance we have devised.

5.1 Experimental Setup

The dataset we used was a synthetically generated XML dataset which represented a database

of student information across various departments. Each department denoted a streaming input

source to the query and it consisted of a number of graduate and undergraduate students. Figure 6

depicts the graph structure of each department file. Each file contains information about one

department and each department contains a list of students. The purpose of the query was to find

undergraduate students who were enrolled in all departments participating in the query. Assigning

names A, B, C, D, and E for the department, what we wanted was to compute the outcome

of the query A.Undergraduate-Student = B.Undergraduate-Student = C.Undergraduate-Student =

D.Undergraduate-Student = E.Undergraduate-Student. This setup allowed us to shape the plan in

any way we wanted by choosing the appropriate equi-join predicates. Table 5 presents the rate and

the size of each input stream. The cardinality of each student’s appearance in each department

was fixed to a percentage of the total number of students appearing in the file, so each equi-join

predicate had the same estimated selectivity. For our experiments, we kept this selectivity at 15%.

All experiments were performed using the current version of the Niagara Query Engine [3, 8, 12]

17

department

student

name

lastnamefirstname

phone e-mail

address

city state zip

office url gpa

Figure 6: The XML schema used in our experiments

developed at the University of Wisconsin-Madison. The hardware setup involved a Pentium-III

processor operating on 800 MHz with 256 MB of physical memory. The data were read from flat

XML files, and the parsing startup time was subtracted from the results we report. We simulated

network traffic by inserting random delays between element reads. The arrivals were modeled as a

Poisson process, as is often the case for network traffic [2], with a fixed rate, equal to the stream’s

rate. This meant that the delays followed an exponential distribution with a mean equal to the

inverse of the stream’s rate. Throughout the experimentation we employed symmetric hash join as

the evaluation algorithm.

Stream A B C D E

Rate (ob
sec

) 20 30 10 10 100

Size (# objects) 30 40 30 20 90

Table 5: Stream information for our experiments

We organized the query in three different plans, as Figure 7 presents. One of the plans is

a left-deep plan, the other two are bushy plans. We have annotated each join operator of the

plans with the join predicate it evaluates, while a thicker line represents a faster stream. All plans

employ symmetric hash join as the evaluation algorithm. In what follows, we will refer to the plan

of Figure 7(a) as Deep Plan, to the one of Figure 7(b) as Bushy Plan #1, while to the plan of

Figure 7(c) as Bushy Plan #2.

18

A B

D

E

C

E-D

B-E

C-D

A-B

(a) Deep Plan

A B

E

C D

C-D A-B

B-E

D-E

(b) Bushy Plan #1

A C DB

A-B C-D

D-E

B-C

E

(c) Bushy Plan #2

Figure 7: The three plans of our experimentation. Each plan is annotated with the join predicates
it computes. A thicker line denotes a faster stream.

5.2 The Analytical Framework

Given the input rates of Table 5 we used the analytical framework of Section 3.3 to graph the

expected performance of the plans. We defined the function R(σ, r1, r2, t) = σr1r2t
r1+r2

to model the

output rate of a join operation and used this function to compose the overall output rate of each

execution plan3 We then plotted the output rate as a function of time. Notice, that since we are

only concentrating on symmetric algorithms, we do not treat the denominator as a function of time

(as would have been the case if we were using a non-symmetric operator like nested-loops join).

Figure 8 shows our prediction. At this point we are only interested in the shape of the curve and

not the actual output size and time values. That is because we are only interested in verifying

whether the plans exhibit the same behavior as the one we predict.

Looking at Figure 8 when we execute the three plans we expect Bushy Plan #2 to be the

best for the initial stages of query execution, with Deep Plan being second in terms of performance.

Both of these plans should have comparable performance throughout query execution. In the initial

stages, Deep Plan is better than Bushy Plan #1 as well. As time progresses however, the situation

should change. The second bushy plan should start performing better, until it bypasses both plans

in the process.

3For instance, for the plan of Figure 7(a), the corresponding composition is Rt =
R(σCD, R(σED, R(σBE , r(σAB, rA, rB, t), rE , t), rD, t), rE , t).

19

O
ut

pu
t r

at
e

Time

Deep plan
Bushy plan #1
Bushy plan #2

Figure 8: Analytical modeling of the plans depicted in Figure 7

5.3 Experimental Validation of the Analytical Framework

The next step after having the analytical model, is to execute the plans on our test-bed. Figure 9

presents the results. The plans exhibit the behavior we predict. The only difference between the

two curves is that the “spread” between the different plans, is not as wide as the analytical model

predicts. This could be, however, due to the fact that we are not using large streams as our input.

The analytical model predicts that the performance between the plans will widen further as time

progresses. Since we have finite inputs, we cannot validate this assumption.

0

5000

10000

15000

20000

25000

30000

35000

2 3 4 5 6 7 8 9

O
ut

pu
t s

iz
e

(#
 o

bj
ec

ts
)

Time

Deep plan
Bushy plan #1
Bushy plan #2

Figure 9: Execution of Figure 7’s plans on the Niagara Query Engine

We can, however, validate the fact that as the model predicts, in the initial stages of query

execution, Bushy Plan #1 dominates, while for the same initial stages Deep Plan is better than

Bushy Plan #2. Eventually, Bushy Plan #2 outperforms both other plans again in accordance to

20

the analytical model. So we can draw the conclusion that, at least for the query we experiment

with, our model closely approximates the plans’ behavior.

5.4 Heuristics Validation

The purpose of this section is to validate the heuristics we proposed in Section 4.2. If our heuristics

are valid, they should predict that Bushy Plan #2 is the one with the higher performance among

the three candidate plans. To verify this, we have to revisit Equation 2 which says that the output

rate of a join operation is σrlrrt
rlCL./+rrC./R

. For the purposes of this study we are only concerned with

symmetric algorithms, so we can assume that CL./ = C./R = c for some constant c (in the case

of symmetric hash join, this constant is equal to move + hash + probe). We assume this estimates

how fast a plan is. In Section 4.2.1 we presented a framework of measuring the performance of

plans based on the estimate, by treating it as an actual rate for subsequent joins. Based on this

observation, Table 6 presents the estimate’s value for the join operations of the three plans we are

considering 4. The notation we used for the operations is the same as the one in Figure 7.

Deep Plan Bushy Plan #1 Bushy Plan #2

A−B 1.8
c

A−B 1.8
c

A−B 1.8
c

B −E 1.35
5c2+0.09c

C −D 0.75
c

C −D 0.75
c

E −D 2.025
1000c3+0.9c2+1.35c

B −E 27
100c2+1.8c

B − C 0.2025
2.55c2

C −D 3.0375
500c4+9c3+13.5c2+0.5c

D −E 3.0375
75c3+28.35c2

D −E 3.0375
255c2+0.2025

Table 6: Performance estimates for the plans of Figure 7

The question now becomes what the value for c is. The only knowledge we have is that in order

to use the formulas we used, the inequality c(rl + rr) > 1 must hold (see Section 3.3) where rl and

rr are the rates of the left and right input streams to a join operation. We can apply this formula

to all joins using primary sources as inputs (i.e., one of A, B, C, D or E). Looking at the plans,

there are only two cases5 : c(rA + rB) > 1 ⇒ c > 1/50 and c(rD + rE) > 1 ⇒ c > 1/20. What

we can have from both of these is that c > 1/20. Putting 1/20 into the formulas (or, in fact, any

4Due to space limitations we do not show the calculation.
5For the interested reader, using the metric as a rate estimate on the rest of the join operations, yields in all cases

that c must be greater than some negative number, which obviously holds.

21

number between 1/20 and 3) yields that the denominator of what we predicted would be the fastest

plan is the smallest, so our prediction is indeed correct. But what is the meaning of the value we

chose for c? Going back to Section 3.1 we saw that it can be treated as an estimate of how fast our

system can produce results: in data networks terminology, we can regard it as the system’s mean

service time [2]. The value we gave it means that given our we should be capable of handling at

least 20 inputs per unit time, something that is not an invalid assumption.

5.5 Comparison Between the Classic Cost Model and the Proposed One

The purpose of this section is to present the superiority of the proposed cost model to the classic

one [11], that did not have any notion of rates. To calculate the cost of the operation according to the

old cost model, we will use the cost formulas we extracted in Section 3.4. Notice that we are using

symmetric hash join as the evaluation algorithm. When we are dealing with primary sources as

inputs the cost of the algorithm for A ./ B will be |A|(move+hash+probe)+|B|(move+hash+probe),

where again the notation is that |A| denotes the number of elements in stream A. We call the sum

move + hash + probe as mhp. If we are not dealing with primary sources as inputs, we can deduct

the cost of moving an element to the main memory. So the cost for A ./ B if both A and B have

already been read becomes |A|(hash + probe) + |B|(hash + probe). We call the sum hash + probe as

hp. The output size of a join is the selectivity of the predicate, times the product of the input sizes.

So, the output of A ./ B is σ|A||B|. Since all predicates have the same selectivity, we will name

this σ across the subsequent calculations. Having all these in mind we can proceed to calculate the

cost of each plan according to the classic cost model. Table 7 presents the results.

Plan Expression

Deep Plan |A|mhp + |B|mhp+ σ|A||B|hp + |E|mhp+
σ2|A||B||E|hp + |D|mhp+ σ3|A||B||E||D|hp + |C|mhp

Bushy Plan #1 |A|mhp + |B|mhp+ |C|mhp + |D|mhp+
σ|A||B|hp + |E|mhp+ σ|C||D|hp + σ2|A||B||E|hp

Bushy Plan #2 |A|mhp + |B|mhp+ |C|mhp + |D|mhp+
σ|A||B|hp + σ|C||D|hp+ σ3|A||B||C||D|hp + |E|mhp

Table 7: Evaluation of the plans of Figure 7 according to the classic cost model

Looking at the cost expressions of Table 7 one sees that the determining factors are σ2|A||B||E|+
σ3|A||B||E||D| for Deep Plan, σ|C||D|+σ2|A||B||E| for Bushy Plan #1 and σ|C||D|+σ3|A||B||C||D|

22

for Bushy Plan #2, as the rest of the constituents are factored out. Putting numbers into the for-

mulas yields that the cost of Deep Plan is 9720 hash and probe operations while the cost of the two

bushy plans is 2520 operations for both. What we see here is that the classic cost model without

taking into account the streaming rates of the inputs cannot distinguish between the two bushy

plans. Our model however can distinguish between the two, knowing that as time progresses Bushy

Plan #1 will outperform Bushy Plan #2. We are not claiming that our cost model is better than

the classic model. We are claiming though that it makes sense to employ the new cost model since

it can provide better decisions when faced with streaming sources.

6 Conclusions and Future Work

The contribution of this paper is a new cost model concerning streaming data. We looked into the

nature of streaming behavior for network-resident inputs, identifying all those factors that transform

the problem into a new research topic. We identified how streaming inputs can be incorporated

into a new cost model and how this model can be used to produce faster execution plans. We

identified metrics of plan performance and we showed how this metrics can be used to estimate the

rate at which an execution plan with stream sources as inputs generates results. We validated our

model with experiments run in our environment, using the current version of the Niagara Query

Engine. The results prove the validity of this cost model.

The future work we plan to undertake focuses on further exploring the effects of streaming data

on plan execution strategies. There are a few possible directions in this area, with the first one being

to try and introduce data distributions into the cost model. The model so far assumes uniformity

for the data values. It is our intuition, that if data are not uniformly distributed, selectivity is itself

a function of time. This can be incorporated into the cost model.

Identifying good heuristics of approximating the integral of Equation 3 is a second possible

research topic. We already identified some heuristics in Section 4.2 but coming up and further

evaluating heuristics that let us approximate the values of the integral and provide ways to efficiently

evaluate plans is of much interest.

Dynamic re-optimization is another possible direction. Since the output rate is time dependent,

we can devise an optimizer that does not generate only one possible plan, but rather a family of

plans and specific time points in the execution time period in which the plans should change. Such

a strategy means always operating at the highest possible rate. For instance in Figure 8’s graph,

23

there are estimated times for which a deep plan produces a higher output rate than that of a bushy

plan. A “clever” optimization would be to employ the deep plan for as long as it is predicted to be

faster, switching to the bushy plan at the estimated intersection time point.

Lastly, since dynamic programming algorithms generally generate deep plans, we can devise an

algorithm in the style of dynamic programming that, although not exhaustive of the search space,

it can generate bushy plans if the new model predicts they have better performance.

References

[1] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. In
Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors, Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas,
Texas, USA, volume 29, pages 261–272. ACM, 2000.

[2] Dimitri Bertsekas and Robert Gallager. Data Networks. Prentice Hall, 2 edition, 1991.

[3] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagara-CQ: A Scalable Con-
tinuous Query System for Internet Databases. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, Dallas, Texas, May 2000, pages 379–390,
2000.

[4] Minos N. Garofalakis and Yannis E. Ioannidis. Parallel query scheduling and optimization
with time- and space-shared resources. In Matthias Jarke, Michael J. Carey, Klaus R. Dittrich,
Frederick H. Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfeld, editors, VLDB’97,
Proceedings of 23rd International Conference on Very Large Data Bases, August 25-29, 1997,
Athens, Greece, pages 296–305. Morgan Kaufmann, 1997.

[5] W. Hong and M. Stonebraker. Optimization of Parallel Query Execution Plans in XPRS.
Distributed and Parallel Databases, 1(1):9–32, 1993.

[6] Navin Kabra and David J. DeWitt. Efficient Mid-Query Re-Optimization of Sub-Optimal
Query Execution Plans. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD 1998,
Proceedings ACM SIGMOD International Conference on Management of Data, June 2-4, 1998,
Seattle, Washington, USA, pages 106–117. ACM Press, 1998.

[7] Chiang Lee, Chih-Horng Ke, J.-B. Chang, and Yaw-Huei Chen. Minimization of resource con-
sumption for multidatabase query optimization. In Proceedings of the 3rd IFCIS International
Conference on Cooperative Information Systems, New York City, New York, USA, August
20-22, 1998, Sponsored by IFCIS, The Intn’l Foundation on Cooperative Information Systems,
pages 241–250. IEEE-CS Press, 1998.

[8] Jeffrey Naughton, David DeWitt, and David Maier et. al. The Niagara Internet Query System.
Submitted for Publication.

24

[9] Kenneth W. Ng, Zhenghao Wang, Richard R. Muntz, and Silvia Nittel. Dynamic Query Re-
Optimization. In Proceedings of the 11th International Conference on Scientific and Statistical
Database Management, pages 264–273, 1999.

[10] G. Schumacher. GEI’s Experience with Britton-Lee’s IDM. In IWDM, pages 233–241, 1983.

[11] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and
Thomas G. Price. Access Path Selection in a Relational Database Management System. In
Philip A. Bernstein, editor, Proceedings of the 1979 ACM SIGMOD International Conference
on Management of Data, Boston, Massachusetts, May 30 - June 1, pages 23–34. ACM, 1979.

[12] Jayavel Shanmugasundaram, Kristin Tufte, David J. DeWitt, Jeffrey F. Naughton, and David
Maier. Architecting a Network Query Engine for Producing Partial Results. In WebDB 2000,
Dallas, TX, May 2000.

[13] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff Sidell, Carl
Staelin, and Andrew Yu. Mariposa: A Wide-Area Distributed Database System. VLDB
Journal, 5(1):48–63, 1996.

[14] Tolga Urhan and Michael J. Franklin. XJoin: A Reactively-Scheduled Pipelined Join Operator.
IEEE Data Engineering Bulletin, 23(2):27–33, June 2000.

[15] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost Based Query Scrambling for
Initial Delays. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD 1998, Proceedings
ACM SIGMOD International Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 130–141. ACM Press, 1998.

[16] A. N. Wilschut and P. M. G. Apers. Pipelining in Query Execution. In Conference on Datbases,
Parallel Architectures and their Applications, Miami, 1991.

25

