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ABSTRACT 
The growth of the Internet has made it possible to query data in 
all corners of the globe. This trend is being abetted by the 
emergence of standards for data representation, such as XML. In 
face of this exciting opportunity, however, there are several 
changes that need to be made to existing query engines to make 
them applicable for the task of querying the Internet. One of the 
challenges is providing partial results of query computation, 
based on the initial part of the input, because it may be 
undesirable to wait for all of the input.  This is due to (a) limited 
data transfer bandwidth (b) temporary unavailability of sites and 
(c) intrinsically long-running queries (e.g., continual queries or 
triggers). A major issue in providing partial results is dealing 
with blocking operators, such as max, average, negation and nest. 
While previous work on producing partial results has looked at a 
limited set of blocking operators, emerging hierarchical 
standards such as XML, which are heavily nested, and 
sophisticated queries require more general solutions to the 
problem. In this paper, we define the semantics of partial results 
and outline mechanisms for ensuring these semantics for queries 
with arbitrary blocking operators. Re-architecting a query engine 
to produce partial results requires modifications to the runtime 
operators. We explore implementation alternatives and 
quantitatively compare their performance using our prototype 
system.  
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1. INTRODUCTION 
With the rapid and continued growth of the Internet and the 
emergence of standards for data representation such as XML [1], 
exciting opportunities for querying data on the Internet arise. For 
example, one might issue queries through web browsers rather 
than relying on semantically impoverished key word searches. An 
important and challenging research issue is to architect query 
engines to perform this task. Some of the main issues in 
designing such query engines are to effectively address (a) the 
low network bandwidth that causes delays in accessing the 
widely distributed data, (b) the temporary unavailability of sites 
and (c) long running triggers/continual queries that monitor the 
World Wide Web. An elegant solution to these problems is to 
provide partial results to users. Thus, users can see incomplete 

results of queries as they are executed over slow, unreliable sites 
or when the queries are long running (or never terminate! [2]).  

The main challenge in producing partial results lies in 
dealing with blocking operators, such as average, sum, nest and 
negation since these operators need to see all of their input 
before they produce the correct output. Previous solutions to the 
problem of producing partial results present solutions for specific 
aggregate operators [3][7] and thus do not extend to new 
blocking operators such as nest and negation that are becoming 
increasingly important for network query engines. Further, the 
previous solutions do not allow blocking operators to appear 
deep in a user query. Thus, for example, a query that requests an 
XML document where books are nested under author, and 
authors are nested under state, and states are further nested 
under country, cannot be handled by previous techniques (nest is 
blocking and appears deep in the query tree). Neither can they 
handle a query that constantly monitors the average price of 
BMW cars posted in the Internet except those that appear on 
salvage lists (average and except are blocking). 

The Niagara Internet Query System [6] contains a general 
framework for producing partial results for queries involving 
blocking operators. The framework allows blocking and non-
blocking operators to be arbitrarily intermixed in the query tree, 
i.e., non-blocking operators can operate on the results of blocking 
operators and vice-versa. However, the framework imposes 
certain key requirements on the implementations of both 
blocking and non-blocking operators. In this paper, we identify 
alternative algorithms and implementations satisfying the key 
requirements and evaluate their performance using the Niagara 
system. This paper complements the architectural overview in [6] 
and justifies the implementation decision made therein. 

The rest of the paper is organized as follows. In Section 2, 
we formally define partial results and list the properties operator 
implementations need to satisfy in order to produce partial 
results. In Section 3, we identify alternative operator 
implementation techniques and discuss the issue of accuracy of 
partial results. The performance results are contained in Section 
4 and Section 5 concludes the paper. 

2. DESIRED OPERATOR PROPERTIES 
FOR PRODUCING PARTIAL RESULTS 
In the previous section, we illustrated the need for partial results 
involving arbitrary blocking operators. We now identify some 



key properties of operator implementations, not supported by 
traditional query engine architectures, which are crucial for 
producing partial results. We start by defining the term “partial 
result.”  

Definition: Let Q be a query with n inputs and let Q(I1, …, In) 
represent the result of query Q on  inputs    I1, …, In. A partial 
result of the query Q on inputs I1,…,In is Q(PI1, …, PIn), where 
for 1 <= j <= n, PIj ⊆ Ij. 

Intuitively, a partial result of a query on a set of inputs is the 
result of the query on a (possibly) different set of inputs such that 
each input in the new set is a sub-set of the corresponding input 
in the old set.  

We now turn to the notions of “non-blocking” and 
“blocking” operators. Intuitively, a “non-blocking” operator is 
one that produces the same output for a given input, regardless of 
whether there are further inputs; i.e., it does not block waiting to 
see all of its inputs. Thus, select, project, join, intersect and 
distinct (duplicate elimination) are non-blocking operators. 
Operators that are not non-blocking are “blocking” i.e., the 
output for a given input depends on further inputs. Thus sort, 
nest, average and outer-join operators are blocking. Some 
operators such as “except” are blocking on a sub-set of their 
inputs. Consider the example A.a except B. The “except” 
operator will block until all of B is received, at which point it 
becomes a non-blocking operator. 

The properties listed below summarize the key requirements 
that blocking and non-blocking operators must satisfy to produce 
partial results. Traditional operator implementations are not 
suitable for partial result production because they do not have all 
of these characteristics. (See [6] for more details.) 

1) Flexible Input Property: Operators should not stall 
waiting for input from a particular input stream if there is 
some input available on another input stream. This is 
necessary in order to be able to provide partial results 
without stalling on a slow input stream. 

2) Maximal Output Property: Operators should produce 
results as soon as possible. That is, the operator should 
output as much of the result as it can without potentially 
giving a wrong answer. Note that this property is desirable 
even for blocking operators. For example, the outer-join 
operator can produce (the joining) results before the end of 
its inputs. 

3) Non-Monotonic Input-Output Property: Each operator 
has to deal with input streams (and produce output streams) 
that are not monotonically increasing. This is a direct result 
of requiring blocking operators such as nest, except and 
average, to produce partial results.  

4) Anytime Property: At any time, blocking operators should 
be able to output the “current” result, based on the data seen 
so far on its input stream(s). This enables the system to 
provide a partial result whenever the user requests one. 
Note that the Maximal Output property implies the Anytime 
property for non-blocking operators. 

The design of operator implementations satisfying the 
properties above is crucial in designing a flexible system capable 
of producing partial results. We turn to this issue next. 

3. OPERATOR IMPLEMENTATION 
ALTERNATIVES 
We now explore two alternatives (Re-evaluation and 
Differential) for modifying existing operator implementations so 
that they satisfy the desired properties for producing partial 
results. The Re-evaluation approach retains the structure of 
existing operator implementations but requires the re-execution 
of all parts of the query above the blocking operators. The 
Differential alternative processes changes as part of the operator 
implementation, similar to the technique used in the CQ project 
[5], and avoids re-execution. There is a trade off between the 
complexity of the operators and their efficiency: Re-evaluation 
implementations are easier to add to existing query engines 
while Differential implementations are more complex and 
require tuple structure changes, but are likely to be more 
efficient.  

The Re-evaluation and Differential approaches are similar 
in that they both use non-blocking, flexible input, maximal 
output implementations for operators wherever possible. For 
example, joins are implemented using symmetric hash join [9] 
and symmetric nested loops join algorithms (or their variants 
[4][8]). The algorithms in this section extend such flexible input, 
maximal output, non-blocking operator implementations to 
satisfy the non-monotonic input/output property and further, 
identify blocking operator implementations satisfying all four 
desirable properties. 

3.1 Re-evaluation Algorithm 
As mentioned before, we must determine what form partial 
results produced by blocking operators take and how updates to 
those results are communicated. The Re-evaluation Algorithm 
handles this in a straightforward manner by having blocking 
operators simply transmit their current result set when a partial 
result request is received. If there are multiple partial result 
requests, the same results will be transmitted multiple times. 
Note that all operators above the blocking operator must re-
evaluate the query each time a partial result request is issued; 
hence the name Re-evaluation Algorithm.  

Consider the operator tree in Figure 1 which shows a nest 
operator reading (author, book) pairs from an XML file on disk 
(or any non-blocking operator), nesting the pairs on author and 
sending its output to a join operator. The nest is blocking; the 

Figure 1: Operator Tree Example 
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join is non-blocking. Upon receipt of a partial result request, the 
nest operator transmits all (author, <set of books>) groups it has 
created so far to the join. At this point, the join must ignore all 
input it has previously received from nest, and process the new 
partial result as if it had never received any input from nest 
before. Below we describe the re-evaluation implementations of 
join and nest. Descriptions of other operator implementations are 
omitted in the interest of space. 

Re-evaluation Join: Re-evaluation Join functions identically to a 
symmetric hash join except that when Re-evaluation Join is 
notified that a new partial result set is beginning on a particular 
input stream, it clears the hash table associated with that input. 
In addition, special techniques are used to deal with the case 
when an input contains a mixture of tuples that are “final” – 
produced by a non-blocking operator and will never be repeated 
and tuples that are “partial” – produced by a blocking operator 
(as part of a partial result set) and will be retransmitted at the 
start of the next partial result. This can occur if the input comes 
from a union operator, which unions the output of a blocking and 
non-blocking operator. 

Re-evaluation Nest: Similar to a traditional hash-based nest, Re-
evaluation Nest creates a hash table entry for each distinct value 
of the grouping attribute (author in our example). When a start 
partial result notification is received, Re-evaluation Nest acts 
lazily and does not delete the hash table. Instead, Re-evaluation 
Nest simply increments a partial result counter. Upon insert into 
the hash table, each book tuple is labeled with the current 
counter value. When an entry is retrieved during nest processing, 
all books having counter value less than the counter value of the 
operator are ignored and deleted. We utilize this lazy 
implementation because when the input consists of a mixture of 
partial and final tuples, they will be combined in the <set of 
book> entries in the hash table. Deleting all obsolete book tuples 
in an eager fashion would require retrieving and updating most 
of the hash table entries which is too expensive. 

3.2 Differential Algorithm 
The Re-evaluation algorithm is relatively easy to implement, but 
may have high overhead as it causes upstream operators to 
reprocess results many times. The Differential approach 
addresses this problem by having operators process the changes 
between the sets of partial results, instead of reprocessing all 
results. Differential versions of traditional select, project and join 
are illustrated and formalized in [5] in the context of continual 
queries. Our system, however, handles changes as the query is 
being executed as opposed to [5], which proposes a model for 
periodic re-execution of queries. This gives rise to new 
techniques for handling changes as the operator is in progress.  

In Figure 1, in order for the join to process differences 
between sets of partial results, the nest operator must produce 
the “difference” and the join must be able to process that 
“difference.” We accomplish this by having all operators produce 
and consume tuples that consist of the old tuple value and the 
new tuple value, as in [5]. Since the partial results produced by 
blocking operators consist of differences from previously 
propagated results, each tuple produced by a blocking operator is 

an insert, delete or update. In the interest of space, we describe 
only the differential join and nest algorithms below.  

Differential Join: Differential Join is based on symmetric hash 
join. A Differential Join with inputs A and B works as follows. 
Upon receipt of an insert of a tuple τ into relation B, τ is joined 
with all tuples in A’s hash table and the joined tuples are 
propagated as inserts to the next operator in the tree. Finally τ is 
inserted into B’s hash table for joining with all tuples of A 
received in the future. Upon receipt of a delete of a tuple τ from 
relation B, τ is joined with all tuples in A’s hash table and the 
joined tuples are propagated as deletes to the next operator in the 
tree. Updates are processed as deletes followed by inserts. 

Differential Nest: Differential Nest is similar to hash-based nest. 
Inserts are treated just as tuples are in a traditional nest operator. 
For deletes, Differential Nest probes the hash table to find the 
affected entry and removes the deleted tuple from that entry. For 
updates, if the grouping value is unchanged, the appropriate 
entry is pulled from the hash table and updated, otherwise, the 
update is processed as a delete and insert. Changes are 
propagated upon receipt of a partial result request. Only the 
groups that have changed since the last partial request are 
propagated on receipt of a new partial request. 

3.3 Accuracy of Partial Results 
In the above sections, we have concentrated on operator 
implementations that produce partial results. An important 
concern is the accuracy of these results. We believe that our 
framework is general enough to accommodate various techniques 
for computing the accuracy of partial results, such as those 
proposed for certain numerical aggregate operators [3][7]. These 
techniques can be incorporated into our framework if the desired 
statistics are passed along with each tuple produced by an 
operator. In addition, unlike [3][7], our framework allows 
blocking operators (such as aggregates) to appear anywhere in 
the query tree. It is also important to address accuracy of partial 
results for non-numeric blocking operators such as nest and 
except. This is more difficult because notions such as “average” 
and “confidence intervals” are not well defined in these domains. 
It is, however, possible to provide the user with statistics such as 
the percentage of XML files (received and) processed and/or the 
geographical locations of the processed files. The user may well 
be able to use this information to understand the partial result. 

4. PERFORMANCE EVALUATION 
In the previous section, we outlined the Re-evaluation and 
Differential implementation alternatives for operators. In this 
section, we quantitatively compare the performance of the two 
approaches. We begin by describing the experimental set up in 
Section 4.1. Section 4.2 describes the performance results. 

4.1 Experimental Setup 
Our system is written in Java and experiments were run using 
JDK 1.2 with 225MB of memory on a Sun Sparc with 256MB of 
memory. Our system assumes that the XML data being processed 
is resident in main memory. Though we expect this to be 
acceptable for many cases given current large main memory 



sizes, we also plan to explore more flexible implementations that 
handle spillovers to disk as part of future work. 

To evaluate the performance of the Re-evaluation and 
Differential approaches, we used two queries that allowed us to 
study the overhead of partial result production and identify the 
strengths and weaknesses of each approach. The first query (Q1) 
contains a join over two blocking operators. The input is two 
XML documents, one containing flat (author, book) pairs and the 
other containing flat (author, article) pairs. It produces, for each 
author, a list of articles and a list of books written by that author. 
Q1 is executed by nesting the (author, book) and (author, article) 
streams on author and (outer) joining these streams on author to 
produce the result. Finally, a construct operator is used to add 
tags. Data was generated so that the number of books (articles) of 
an author follows a Zipfian distribution.  

The second query (Q2) is similar to Q1 except that the 
inputs are (author, book-price) and (author, article-price) pairs 
and the blocking (aggregate) operators are average, in contrast to 
nest in Q1. Q2 produces the average prices of books and articles 
written by an author. A significant difference between Q1 and 
Q2 is that the aggregate in Q2 (average) returns a small, constant 
size result compared to the potentially large variable size result 
of the aggregate (nest) in Q1. The number of book (article) prices 
per author follows a Zipfian distribution.  

The parameters varied in the experiments along with their 
default values are shown above. Note that “Number of Tuples” 
refers to the number of ((author, book) or (author, article) pairs) 
for Q1, ((author, book-price) or (author, article-price) pairs) for 
Q2, in the base XML data files. In addition, we explore the case 

where the input is ordered on the author attribute because it 
corresponds to some real world scenarios where, for example, 
each XML file contains information about an author and also 
because it illustrates the working of the differential algorithm. 

4.2 Performance Results 
Figure 2 shows a breakdown of the execution time for Q1 using 
the default parameters. For reference, the graph shows a point for 
the query evaluation time in the absence of any partial result 
calculation (No Partial). There were 10 partial result requests, 
each returning about 9% of the data, and a final request to get the 
last 9% of the data. The data points show the cumulative time 
after the completion of each partial result. The overhead of 
parsing, optimization, etc. is contained in the time for the first 
partial result. 

For the first 45% of the input, the Differential and Re-
evaluation algorithms perform similarly. After that point, the 
differential algorithm is better. In fact, for the complete query, 
the Differential algorithm reduces the overhead of partial result 
calculation by over 50%. An interesting observation, from the 
above graph and from results obtained by varying the total 
number of partial results (not shown), is that if a user issues only 
a limited number of partial result requests, the Re-evaluation 
algorithm may be adequate. This is because the extra overhead of 
the differential algorithm more than offsets the reduction in 
retransmission. 

The difference between Differential (ordered) and No 
Partial is exactly the overhead of the Differential tuple 
processing. The 25% difference in total execution time between 
the ordered and unordered versions of Differential is the 
overhead caused by tuple retransmission and reprocessing 
(Differential reduces retransmission, it does not eliminate it). 
Finally, though the behavior of Re-evaluation and No Partial is 
insensitive to order we notice improvement on ordered input. 
This may be due to processor cache effects. 

Figure 3 shows the effect of skew on the different 
algorithms for Q1. Skew has the effect of changing the size of the 

Default Parameters 
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Mean of Zipfian Distribution: 10 
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groups. The interesting case is the unsorted Differential graph 
where we see a decrease in execution time followed by an 
increase. The cost of the Differential algorithm is directly related 
to the number of tuples that have to be retransmitted. At a skew 
of 0, there are 1000 groups each with approximately 10 elements. 
If a group has changed since the last partial result request, the 
whole group must be retransmitted and reprocessed by the join 
operator. With a group size of 10 and 10 partial result requests, 
most groups will change between partial result sets limiting the 
ability of Differential to reduce retransmission. As skew 
increases, we see the presence of many very small (2-5 element) 
groups and a few medium size groups. Very small groups are 
good for the performance of the Differential algorithm because a 
group can not be transmitted more times than it has elements. As 
the skew increases further, the presence of a few very large 
groups begins to hurt performance. When the skew is 2, there is 
one group of size approximately 6000. This group changes with 
almost every partial result request and therefore many elements 
in this group must be retransmitted many times. 

In contrast to Q1, increasing skew for query Q2 (Figure 4) 
does not adversely affect the performance of the Differential 
algorithm. This is because at high skews, the partial result for 
each group is still small for Q2, unlike the large nested values for 
Q1, and hence has a very low retransmission overhead. This 
suggests that finer granularity implementations for large partial 
results, whereby changes to groups rather than entire groups are 
retransmitted, can make the Differential algorithm more 
effective. 

Figure 5 shows the affect of changing the mean number of 
tuples per group (mean of the Zipfian distribution) for Q1. As the 
mean number of tuples increases, the number of groups 
decreases since the number of tuples is fixed. The decrease in the 
number of groups helps the Re-evaluation algorithm because it 
reduces the size of the join. The Differential algorithm also sees 
this advantageous affect, but as the mean group size increases, 
the Differential algorithm suffers because it does more 
retransmission as discussed before. Note that when there is only 
one group, Differential is identical to Re-evaluation and when all 
groups have size 1, Differential is identical to the case when no 
partial result requests are issued.  

The results on varying the number of tuples were not very 
surprising – the performance of both algorithms scales linearly 
with the number of tuples. We also ran experiments with 
simulated network delays. In these experiments, we inserted an 
exponential delay after every 100 input tuples during query 
execution. The results of these experiments (not shown) showed 
that with increasing delay, the overhead of partial results 
production reduces. This is because the partial result 
computation time is overlapped with the time spent waiting for 
data over the slow network. 

5. CONCLUSION AND FUTURE WORK 
Querying the web is creating new challenges in the design and 
implementation of query engines. A core requirement is the 
ability to produce partial results that allows users to see results 
as quickly as possible in spite of low bandwidth, unreliable 
communication mediums and long running queries. In this paper, 
we have identified extensions to the traditional query engine 
architecture to make this possible and explored the effectiveness 
of alternative implementation strategies (Re-evaluation and 
Differential). Our quantitative evaluation shows that the 
Differential algorithm is successful in reducing partial result 
production overhead for a wide variety of cases, but also 
indicates that there are important cases where the Re-evaluation 
approach works better. In particular, for the cases where the user 
kills the query after just two or three early partial results, the 
overhead of the differential approach more than offsets the gain 
in performance. Another interesting conclusion from the 
experiments is that the size of the results of blocking operators 
has a significant bearing on the performance of the Differential 
Algorithm – Differential performs better for “small” aggregate 
results because the cost of retransmission is less. 

There are many possible directions for future research. The 
good performance of the Differential approach suggests that 
handling changes at granularities finer than tuples is likely to 
lead to further improvements. Studying this in the context of 
heavily nested XML structures would be very useful for 
efficiently monitoring data over the Internet. Another interesting 
challenge lies in providing accuracy bounds for general blocking 
operators.  

0

5

10

15

20

0 0.5 1 1.5 2

Skew

T
im

e 
(s

ec
on

ds
)

0
5

10
15
20
25
30
35
40

5 10 25 50 100

 Mean Number of Tuples Per Group

T
im

e 
(s

ec
on

ds
)

Figure 5: Q1 – Changing Mean No. of Tuples Figure 4: Effects of Skew on Q2 



6. ACKNOWLEDGEMENTS 
Funding for this work was provided by DARPA through 
NAVY/SPAWAR Contract No. N66001-99-1-8908 and by NSF 
through NSF award CDA-9623632. 

7. REFERENCES 
[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, 

“Extensible Markup Language (XML) 1.0”, 
http://www.w3.org/TR/REC-xml. 

[2] J. Chen, et. al., “NIAGARACQ: Continuous Queries,” 
Proceedings of the 2000 ACM SIGMOD Conference, 
Dallas, TX, May 2000 (to appear). 

[3] J. M. Hellerstein, P. J. Haas, H. Wang, “Online 
Aggregation”, Proceedings of the 1997 ACM 
SIGMOD Conference, Tuscon, AZ, May 1997. 

[4] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, D. S. 
Weld, “An Adaptive Query Execution System for Data 
Integration”, Proceedings of the 1999 ACM-SIGMOD 
Conference, Philadelphia, PA, June 1999. 

[5] L. Liu, C. Pu, R. Barga, T. Zhou, “Differential 
Evaluation of Continual Queries”, Proceedings of the 
International Conference on Distributed Computing 
Systems, 1996. 

[6] J. Naughton, et. al., “The Niagara Internet Query 
System”, submitted for publication. 

[7] K. Tan, C. H. Goh, B. C. Ooi, “Online Feedback for 
Nested Aggregate Queries with Multi-Threading”, 
Proceedings of the 1999 VLDB Conference, 
Edinburgh, Scotland, September 1999. 

[8] T. Urhan, M. J. Franklin, “XJoin: Getting Fast 
Answers from Slow and Bursty Networks”, University 
of Maryland Technical Report, UMIACS-TR-99-13, 
1999. 

[9] A. N. Wilschut, P. M. G. Apers, “Data Flow Query 
Execution in a Parallel Main Memory Environment”, 
International Conference on Parallel and Distributed 
Information Systems, 1991. 

 


