
Architecting a Network Query Engine
for Producing Partial Results

Jayavel Shanmugasundaram1,2 Kristin Tufte3 David DeWitt1

Jeffrey Naughton1 David Maier3

jai@cs.wisc.edu, tufte@cse.ogi.edu, dewitt@cs.wisc.edu, naughton@cs.wisc.edu, maier@cse.ogi.edu
1
Department of Computer Sciences

University of Wisconsin
Madison, WI 53706

2
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

3Department of Computer Science
Oregon Graduate Institute

Portland, OR 97291

ABSTRACT
The growth of the Internet has made it possible to query data in
all corners of the globe. This trend is being abetted by the
emergence of standards for data representation, such as XML. In
face of this exciting opportunity, however, there are several
changes that need to be made to existing query engines to make
them applicable for the task of querying the Internet. One of the
challenges is providing partial results of query computation,
based on the initial part of the input, because it may be
undesirable to wait for all of the input. This is due to (a) limited
data transfer bandwidth (b) temporary unavailability of sites and
(c) intrinsically long-running queries (e.g., continual queries or
triggers). A major issue in providing partial results is dealing
with blocking operators, such as max, average, negation and nest.
While previous work on producing partial results has looked at a
limited set of blocking operators, emerging hierarchical
standards such as XML, which are heavily nested, and
sophisticated queries require more general solutions to the
problem. In this paper, we define the semantics of partial results
and outline mechanisms for ensuring these semantics for queries
with arbitrary blocking operators. Re-architecting a query engine
to produce partial results requires modifications to the runtime
operators. We explore implementation alternatives and
quantitatively compare their performance using our prototype
system.

Keywords
Partial results, blocking operators, query processing, XML,
Internet.

1. INTRODUCTION
With the rapid and continued growth of the Internet and the
emergence of standards for data representation such as XML [1],
exciting opportunities for querying data on the Internet arise. For
example, one might issue queries through web browsers rather
than relying on semantically impoverished key word searches. An
important and challenging research issue is to architect query
engines to perform this task. Some of the main issues in
designing such query engines are to effectively address (a) the
low network bandwidth that causes delays in accessing the
widely distributed data, (b) the temporary unavailability of sites
and (c) long running triggers/continual queries that monitor the
World Wide Web. An elegant solution to these problems is to
provide partial results to users. Thus, users can see incomplete

results of queries as they are executed over slow, unreliable sites
or when the queries are long running (or never terminate! [2]).

The main challenge in producing partial results lies in
dealing with blocking operators, such as average, sum, nest and
negation since these operators need to see all of their input
before they produce the correct output. Previous solutions to the
problem of producing partial results present solutions for specific
aggregate operators [3][7] and thus do not extend to new
blocking operators such as nest and negation that are becoming
increasingly important for network query engines. Further, the
previous solutions do not allow blocking operators to appear
deep in a user query. Thus, for example, a query that requests an
XML document where books are nested under author, and
authors are nested under state, and states are further nested
under country, cannot be handled by previous techniques (nest is
blocking and appears deep in the query tree). Neither can they
handle a query that constantly monitors the average price of
BMW cars posted in the Internet except those that appear on
salvage lists (average and except are blocking).

The Niagara Internet Query System [6] contains a general
framework for producing partial results for queries involving
blocking operators. The framework allows blocking and non-
blocking operators to be arbitrarily intermixed in the query tree,
i.e., non-blocking operators can operate on the results of blocking
operators and vice-versa. However, the framework imposes
certain key requirements on the implementations of both
blocking and non-blocking operators. In this paper, we identify
alternative algorithms and implementations satisfying the key
requirements and evaluate their performance using the Niagara
system. This paper complements the architectural overview in [6]
and justifies the implementation decision made therein.

The rest of the paper is organized as follows. In Section 2,
we formally define partial results and list the properties operator
implementations need to satisfy in order to produce partial
results. In Section 3, we identify alternative operator
implementation techniques and discuss the issue of accuracy of
partial results. The performance results are contained in Section
4 and Section 5 concludes the paper.

2. DESIRED OPERATOR PROPERTIES
FOR PRODUCING PARTIAL RESULTS
In the previous section, we illustrated the need for partial results
involving arbitrary blocking operators. We now identify some

key properties of operator implementations, not supported by
traditional query engine architectures, which are crucial for
producing partial results. We start by defining the term “partial
result.”

Definition: Let Q be a query with n inputs and let Q(I1, …, In)
represent the result of query Q on inputs I1, …, In. A partial
result of the query Q on inputs I1,…,In is Q(PI1, …, PIn), where
for 1 <= j <= n, PIj ⊆ Ij.

Intuitively, a partial result of a query on a set of inputs is the
result of the query on a (possibly) different set of inputs such that
each input in the new set is a sub-set of the corresponding input
in the old set.

We now turn to the notions of “non-blocking” and
“blocking” operators. Intuitively, a “non-blocking” operator is
one that produces the same output for a given input, regardless of
whether there are further inputs; i.e., it does not block waiting to
see all of its inputs. Thus, select, project, join, intersect and
distinct (duplicate elimination) are non-blocking operators.
Operators that are not non-blocking are “blocking” i.e., the
output for a given input depends on further inputs. Thus sort,
nest, average and outer-join operators are blocking. Some
operators such as “except” are blocking on a sub-set of their
inputs. Consider the example A.a except B. The “except”
operator will block until all of B is received, at which point it
becomes a non-blocking operator.

The properties listed below summarize the key requirements
that blocking and non-blocking operators must satisfy to produce
partial results. Traditional operator implementations are not
suitable for partial result production because they do not have all
of these characteristics. (See [6] for more details.)

1) Flexible Input Property: Operators should not stall
waiting for input from a particular input stream if there is
some input available on another input stream. This is
necessary in order to be able to provide partial results
without stalling on a slow input stream.

2) Maximal Output Property: Operators should produce
results as soon as possible. That is, the operator should
output as much of the result as it can without potentially
giving a wrong answer. Note that this property is desirable
even for blocking operators. For example, the outer-join
operator can produce (the joining) results before the end of
its inputs.

3) Non-Monotonic Input-Output Property: Each operator
has to deal with input streams (and produce output streams)
that are not monotonically increasing. This is a direct result
of requiring blocking operators such as nest, except and
average, to produce partial results.

4) Anytime Property: At any time, blocking operators should
be able to output the “current” result, based on the data seen
so far on its input stream(s). This enables the system to
provide a partial result whenever the user requests one.
Note that the Maximal Output property implies the Anytime
property for non-blocking operators.

The design of operator implementations satisfying the
properties above is crucial in designing a flexible system capable
of producing partial results. We turn to this issue next.

3. OPERATOR IMPLEMENTATION
ALTERNATIVES
We now explore two alternatives (Re-evaluation and
Differential) for modifying existing operator implementations so
that they satisfy the desired properties for producing partial
results. The Re-evaluation approach retains the structure of
existing operator implementations but requires the re-execution
of all parts of the query above the blocking operators. The
Differential alternative processes changes as part of the operator
implementation, similar to the technique used in the CQ project
[5], and avoids re-execution. There is a trade off between the
complexity of the operators and their efficiency: Re-evaluation
implementations are easier to add to existing query engines
while Differential implementations are more complex and
require tuple structure changes, but are likely to be more
efficient.

The Re-evaluation and Differential approaches are similar
in that they both use non-blocking, flexible input, maximal
output implementations for operators wherever possible. For
example, joins are implemented using symmetric hash join [9]
and symmetric nested loops join algorithms (or their variants
[4][8]). The algorithms in this section extend such flexible input,
maximal output, non-blocking operator implementations to
satisfy the non-monotonic input/output property and further,
identify blocking operator implementations satisfying all four
desirable properties.

3.1 Re-evaluation Algorithm
As mentioned before, we must determine what form partial
results produced by blocking operators take and how updates to
those results are communicated. The Re-evaluation Algorithm
handles this in a straightforward manner by having blocking
operators simply transmit their current result set when a partial
result request is received. If there are multiple partial result
requests, the same results will be transmitted multiple times.
Note that all operators above the blocking operator must re-
evaluate the query each time a partial result request is issued;
hence the name Re-evaluation Algorithm.

Consider the operator tree in Figure 1 which shows a nest
operator reading (author, book) pairs from an XML file on disk
(or any non-blocking operator), nesting the pairs on author and
sending its output to a join operator. The nest is blocking; the

Figure 1: Operator Tree Example

 JOIN
on author

(author, address)

 N EST
on author

(author , book)

join is non-blocking. Upon receipt of a partial result request, the
nest operator transmits all (author, <set of books>) groups it has
created so far to the join. At this point, the join must ignore all
input it has previously received from nest, and process the new
partial result as if it had never received any input from nest
before. Below we describe the re-evaluation implementations of
join and nest. Descriptions of other operator implementations are
omitted in the interest of space.

Re-evaluation Join: Re-evaluation Join functions identically to a
symmetric hash join except that when Re-evaluation Join is
notified that a new partial result set is beginning on a particular
input stream, it clears the hash table associated with that input.
In addition, special techniques are used to deal with the case
when an input contains a mixture of tuples that are “final” –
produced by a non-blocking operator and will never be repeated
and tuples that are “partial” – produced by a blocking operator
(as part of a partial result set) and will be retransmitted at the
start of the next partial result. This can occur if the input comes
from a union operator, which unions the output of a blocking and
non-blocking operator.

Re-evaluation Nest: Similar to a traditional hash-based nest, Re-
evaluation Nest creates a hash table entry for each distinct value
of the grouping attribute (author in our example). When a start
partial result notification is received, Re-evaluation Nest acts
lazily and does not delete the hash table. Instead, Re-evaluation
Nest simply increments a partial result counter. Upon insert into
the hash table, each book tuple is labeled with the current
counter value. When an entry is retrieved during nest processing,
all books having counter value less than the counter value of the
operator are ignored and deleted. We utilize this lazy
implementation because when the input consists of a mixture of
partial and final tuples, they will be combined in the <set of
book> entries in the hash table. Deleting all obsolete book tuples
in an eager fashion would require retrieving and updating most
of the hash table entries which is too expensive.

3.2 Differential Algorithm
The Re-evaluation algorithm is relatively easy to implement, but
may have high overhead as it causes upstream operators to
reprocess results many times. The Differential approach
addresses this problem by having operators process the changes
between the sets of partial results, instead of reprocessing all
results. Differential versions of traditional select, project and join
are illustrated and formalized in [5] in the context of continual
queries. Our system, however, handles changes as the query is
being executed as opposed to [5], which proposes a model for
periodic re-execution of queries. This gives rise to new
techniques for handling changes as the operator is in progress.

In Figure 1, in order for the join to process differences
between sets of partial results, the nest operator must produce
the “difference” and the join must be able to process that
“difference.” We accomplish this by having all operators produce
and consume tuples that consist of the old tuple value and the
new tuple value, as in [5]. Since the partial results produced by
blocking operators consist of differences from previously
propagated results, each tuple produced by a blocking operator is

an insert, delete or update. In the interest of space, we describe
only the differential join and nest algorithms below.

Differential Join: Differential Join is based on symmetric hash
join. A Differential Join with inputs A and B works as follows.
Upon receipt of an insert of a tuple τ into relation B, τ is joined
with all tuples in A’s hash table and the joined tuples are
propagated as inserts to the next operator in the tree. Finally τ is
inserted into B’s hash table for joining with all tuples of A
received in the future. Upon receipt of a delete of a tuple τ from
relation B, τ is joined with all tuples in A’s hash table and the
joined tuples are propagated as deletes to the next operator in the
tree. Updates are processed as deletes followed by inserts.

Differential Nest: Differential Nest is similar to hash-based nest.
Inserts are treated just as tuples are in a traditional nest operator.
For deletes, Differential Nest probes the hash table to find the
affected entry and removes the deleted tuple from that entry. For
updates, if the grouping value is unchanged, the appropriate
entry is pulled from the hash table and updated, otherwise, the
update is processed as a delete and insert. Changes are
propagated upon receipt of a partial result request. Only the
groups that have changed since the last partial request are
propagated on receipt of a new partial request.

3.3 Accuracy of Partial Results
In the above sections, we have concentrated on operator
implementations that produce partial results. An important
concern is the accuracy of these results. We believe that our
framework is general enough to accommodate various techniques
for computing the accuracy of partial results, such as those
proposed for certain numerical aggregate operators [3][7]. These
techniques can be incorporated into our framework if the desired
statistics are passed along with each tuple produced by an
operator. In addition, unlike [3][7], our framework allows
blocking operators (such as aggregates) to appear anywhere in
the query tree. It is also important to address accuracy of partial
results for non-numeric blocking operators such as nest and
except. This is more difficult because notions such as “average”
and “confidence intervals” are not well defined in these domains.
It is, however, possible to provide the user with statistics such as
the percentage of XML files (received and) processed and/or the
geographical locations of the processed files. The user may well
be able to use this information to understand the partial result.

4. PERFORMANCE EVALUATION
In the previous section, we outlined the Re-evaluation and
Differential implementation alternatives for operators. In this
section, we quantitatively compare the performance of the two
approaches. We begin by describing the experimental set up in
Section 4.1. Section 4.2 describes the performance results.

4.1 Experimental Setup
Our system is written in Java and experiments were run using
JDK 1.2 with 225MB of memory on a Sun Sparc with 256MB of
memory. Our system assumes that the XML data being processed
is resident in main memory. Though we expect this to be
acceptable for many cases given current large main memory

sizes, we also plan to explore more flexible implementations that
handle spillovers to disk as part of future work.

To evaluate the performance of the Re-evaluation and
Differential approaches, we used two queries that allowed us to
study the overhead of partial result production and identify the
strengths and weaknesses of each approach. The first query (Q1)
contains a join over two blocking operators. The input is two
XML documents, one containing flat (author, book) pairs and the
other containing flat (author, article) pairs. It produces, for each
author, a list of articles and a list of books written by that author.
Q1 is executed by nesting the (author, book) and (author, article)
streams on author and (outer) joining these streams on author to
produce the result. Finally, a construct operator is used to add
tags. Data was generated so that the number of books (articles) of
an author follows a Zipfian distribution.

The second query (Q2) is similar to Q1 except that the
inputs are (author, book-price) and (author, article-price) pairs
and the blocking (aggregate) operators are average, in contrast to
nest in Q1. Q2 produces the average prices of books and articles
written by an author. A significant difference between Q1 and
Q2 is that the aggregate in Q2 (average) returns a small, constant
size result compared to the potentially large variable size result
of the aggregate (nest) in Q1. The number of book (article) prices
per author follows a Zipfian distribution.

The parameters varied in the experiments along with their
default values are shown above. Note that “Number of Tuples”
refers to the number of ((author, book) or (author, article) pairs)
for Q1, ((author, book-price) or (author, article-price) pairs) for
Q2, in the base XML data files. In addition, we explore the case

where the input is ordered on the author attribute because it
corresponds to some real world scenarios where, for example,
each XML file contains information about an author and also
because it illustrates the working of the differential algorithm.

4.2 Performance Results
Figure 2 shows a breakdown of the execution time for Q1 using
the default parameters. For reference, the graph shows a point for
the query evaluation time in the absence of any partial result
calculation (No Partial). There were 10 partial result requests,
each returning about 9% of the data, and a final request to get the
last 9% of the data. The data points show the cumulative time
after the completion of each partial result. The overhead of
parsing, optimization, etc. is contained in the time for the first
partial result.

For the first 45% of the input, the Differential and Re-
evaluation algorithms perform similarly. After that point, the
differential algorithm is better. In fact, for the complete query,
the Differential algorithm reduces the overhead of partial result
calculation by over 50%. An interesting observation, from the
above graph and from results obtained by varying the total
number of partial results (not shown), is that if a user issues only
a limited number of partial result requests, the Re-evaluation
algorithm may be adequate. This is because the extra overhead of
the differential algorithm more than offsets the reduction in
retransmission.

The difference between Differential (ordered) and No
Partial is exactly the overhead of the Differential tuple
processing. The 25% difference in total execution time between
the ordered and unordered versions of Differential is the
overhead caused by tuple retransmission and reprocessing
(Differential reduces retransmission, it does not eliminate it).
Finally, though the behavior of Re-evaluation and No Partial is
insensitive to order we notice improvement on ordered input.
This may be due to processor cache effects.

Figure 3 shows the effect of skew on the different
algorithms for Q1. Skew has the effect of changing the size of the

Default Parameters

Skew of Zipfian Distribution: 1

Mean of Zipfian Distribution: 10

Number of partial result requests: 10

Number of Tuples: 10000

0

5

10

15

20

25

30

35

9% 27
%

45
%

64
%

82
%

10
0%

Percentage of Input Seen

T
im

e
(s

ec
on

ds
)

0
5

10
15

20
25
30
35
40

0 0.5 1 1.5 2

Skew

T
im

e
(s

ec
on

ds
)

No Partial (unordered) No Partial (ordered) Reevaluation (unordered)

Reevaluation (ordered) Differential (unordered) Differential (ordered)

Figure 2: Breakdown of Execution Time for Q1 Figure 3: Effects of Skew on Q1

groups. The interesting case is the unsorted Differential graph
where we see a decrease in execution time followed by an
increase. The cost of the Differential algorithm is directly related
to the number of tuples that have to be retransmitted. At a skew
of 0, there are 1000 groups each with approximately 10 elements.
If a group has changed since the last partial result request, the
whole group must be retransmitted and reprocessed by the join
operator. With a group size of 10 and 10 partial result requests,
most groups will change between partial result sets limiting the
ability of Differential to reduce retransmission. As skew
increases, we see the presence of many very small (2-5 element)
groups and a few medium size groups. Very small groups are
good for the performance of the Differential algorithm because a
group can not be transmitted more times than it has elements. As
the skew increases further, the presence of a few very large
groups begins to hurt performance. When the skew is 2, there is
one group of size approximately 6000. This group changes with
almost every partial result request and therefore many elements
in this group must be retransmitted many times.

In contrast to Q1, increasing skew for query Q2 (Figure 4)
does not adversely affect the performance of the Differential
algorithm. This is because at high skews, the partial result for
each group is still small for Q2, unlike the large nested values for
Q1, and hence has a very low retransmission overhead. This
suggests that finer granularity implementations for large partial
results, whereby changes to groups rather than entire groups are
retransmitted, can make the Differential algorithm more
effective.

Figure 5 shows the affect of changing the mean number of
tuples per group (mean of the Zipfian distribution) for Q1. As the
mean number of tuples increases, the number of groups
decreases since the number of tuples is fixed. The decrease in the
number of groups helps the Re-evaluation algorithm because it
reduces the size of the join. The Differential algorithm also sees
this advantageous affect, but as the mean group size increases,
the Differential algorithm suffers because it does more
retransmission as discussed before. Note that when there is only
one group, Differential is identical to Re-evaluation and when all
groups have size 1, Differential is identical to the case when no
partial result requests are issued.

The results on varying the number of tuples were not very
surprising – the performance of both algorithms scales linearly
with the number of tuples. We also ran experiments with
simulated network delays. In these experiments, we inserted an
exponential delay after every 100 input tuples during query
execution. The results of these experiments (not shown) showed
that with increasing delay, the overhead of partial results
production reduces. This is because the partial result
computation time is overlapped with the time spent waiting for
data over the slow network.

5. CONCLUSION AND FUTURE WORK
Querying the web is creating new challenges in the design and
implementation of query engines. A core requirement is the
ability to produce partial results that allows users to see results
as quickly as possible in spite of low bandwidth, unreliable
communication mediums and long running queries. In this paper,
we have identified extensions to the traditional query engine
architecture to make this possible and explored the effectiveness
of alternative implementation strategies (Re-evaluation and
Differential). Our quantitative evaluation shows that the
Differential algorithm is successful in reducing partial result
production overhead for a wide variety of cases, but also
indicates that there are important cases where the Re-evaluation
approach works better. In particular, for the cases where the user
kills the query after just two or three early partial results, the
overhead of the differential approach more than offsets the gain
in performance. Another interesting conclusion from the
experiments is that the size of the results of blocking operators
has a significant bearing on the performance of the Differential
Algorithm – Differential performs better for “small” aggregate
results because the cost of retransmission is less.

There are many possible directions for future research. The
good performance of the Differential approach suggests that
handling changes at granularities finer than tuples is likely to
lead to further improvements. Studying this in the context of
heavily nested XML structures would be very useful for
efficiently monitoring data over the Internet. Another interesting
challenge lies in providing accuracy bounds for general blocking
operators.

0

5

10

15

20

0 0.5 1 1.5 2

Skew

T
im

e
(s

ec
on

ds
)

0
5

10
15
20
25
30
35
40

5 10 25 50 100

 Mean Number of Tuples Per Group

T
im

e
(s

ec
on

ds
)

Figure 5: Q1 – Changing Mean No. of Tuples Figure 4: Effects of Skew on Q2

6. ACKNOWLEDGEMENTS
Funding for this work was provided by DARPA through
NAVY/SPAWAR Contract No. N66001-99-1-8908 and by NSF
through NSF award CDA-9623632.

7. REFERENCES
[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen,

“Extensible Markup Language (XML) 1.0”,
http://www.w3.org/TR/REC-xml.

[2] J. Chen, et. al., “NIAGARACQ: Continuous Queries,”
Proceedings of the 2000 ACM SIGMOD Conference,
Dallas, TX, May 2000 (to appear).

[3] J. M. Hellerstein, P. J. Haas, H. Wang, “Online
Aggregation”, Proceedings of the 1997 ACM
SIGMOD Conference, Tuscon, AZ, May 1997.

[4] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, D. S.
Weld, “An Adaptive Query Execution System for Data
Integration”, Proceedings of the 1999 ACM-SIGMOD
Conference, Philadelphia, PA, June 1999.

[5] L. Liu, C. Pu, R. Barga, T. Zhou, “Differential
Evaluation of Continual Queries”, Proceedings of the
International Conference on Distributed Computing
Systems, 1996.

[6] J. Naughton, et. al., “The Niagara Internet Query
System”, submitted for publication.

[7] K. Tan, C. H. Goh, B. C. Ooi, “Online Feedback for
Nested Aggregate Queries with Multi-Threading”,
Proceedings of the 1999 VLDB Conference,
Edinburgh, Scotland, September 1999.

[8] T. Urhan, M. J. Franklin, “XJoin: Getting Fast
Answers from Slow and Bursty Networks”, University
of Maryland Technical Report, UMIACS-TR-99-13,
1999.

[9] A. N. Wilschut, P. M. G. Apers, “Data Flow Query
Execution in a Parallel Main Memory Environment”,
International Conference on Parallel and Distributed
Information Systems, 1991.

