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ABSTRACT
Continuous queries are persistent queries that allow users to
receive new results when they become available. While
continuous query systems can transform a passive web into an
active environment, they need to be able to support millions of
queries due to the scale of the Internet. No existing systems have
achieved this level of scalability. NiagaraCQ addresses this
problem by grouping continuous queries based on the
observation that many web queries share similar structures.
Grouped queries can share the common computation, tend to fit
in memory and can reduce the I/O cost significantly.
Furthermore, grouping on selection predicates can eliminate a
large number of unnecessary query invocations. Our grouping
technique is distinguished from previous group optimization
approaches in the following ways.  First, we use an incremental
group optimization strategy with dynamic re-grouping. New
queries are added to existing query groups, without having to
regroup already installed queries. Second, we use a query-split
scheme that requires minimal changes to a general-purpose
query engine. Third, NiagaraCQ groups both change-based and
timer-based queries in a uniform way. To insure that NiagaraCQ
is scalable, we have also employed other techniques including
incremental evaluation of continuous queries, use of both pull
and push models for detecting heterogeneous data source
changes, and memory caching. This paper presents the design of
NiagaraCQ system and gives some experimental results on the
system’s performance and scalability.

1. INTRODUCTION
Continuous queries [TGNO92][LPT99][LPBZ96] allow users to
obtain new results from a database without having to issue the
same query repeatedly. Continuous queries are especially useful
in an environment like the Internet comprised of large amounts
of frequently changing information. For example, users might
want to issue continuous queries of the form:

In order to handle a large number of users with diverse interests,
a continuous query system must be capable of supporting a large
number of triggers expressed as complex queries against web-
resident data sets.

The goal of the Niagara project is to develop a distributed
database system for querying distributed XML data sets using a
query language like XML-QL [DFF+98].   As part of this effort,
our goal is to allow a very large number of users to be able to
register continuous queries in a high-level query language such
as XML-QL.  We hypothesize that many queries will tend to be
similar to one another and hope to be able to handle millions of
continuous queries by grouping similar queries together. Group
optimization has the following benefits. First, grouped queries
can share computation. Second, the common execution plans of
grouped queries can reside in memory, significantly saving on
I/O costs compared to executing each query separately. Third,
grouping makes it possible to test the “firing” conditions of
many continuous queries together, avoiding unnecessary
invocations.

Previous group optimization efforts [CM86] [RC88] [Sel86]
have focused on finding an optimal plan for a small number of
similar queries. This approach is not applicable to a continuous
query system for the following reasons. First, it is
computationally too expensive to handle a large number of
queries. Second, it was not designed for an environment like the
web, in which continuous queries are dynamically added and
removed. Our approach uses a novel incremental group
optimization approach in which queries are grouped according
to their signatures.  When a new query arrives, the existing
groups are considered as possible optimization choices instead
of re-grouping all the queries in the system. The new query is
merged into existing groups whose signatures match that of the
query.

Our incremental group optimization scheme employs a query-
split scheme.  After the signature of a new query is matched, the
sub-plan corresponding to the signature is replaced with a scan
of the output file produced by the matching group.  This
optimization process then continues with the remainder of the
query tree in a bottom-up fashion until the entire query has been
analyzed.  In the case that no group “matches” a signature of the
new query, a new query group for this signature is created in the

Notify me whenever the price of Dell or Micron stock
drops by more than 5% and the price of Intel stock remains
unchanged over next three month.



system. Thus, each continuous query is split into several smaller
queries such that inputs of each of these queries are monitored
using the same techniques that are used for the inputs of user-
defined continuous queries. The main advantage of this
approach is that it can be implemented using a general query
engine with only minor modifications. Another advantage is that
the approach is easy to implement and, as we will demonstrate
in Section 4, very scalable.

Since queries are continuously being added and removed from
groups, over time the quality of the group can deteriorate,
leading to a reduction in the overall performance of the system.
In this case, one or more groups may require “dynamic re-
grouping” to re-establish their effectiveness.

Continuous queries can be classified into two categories
depending on the criteria used to trigger their execution.
Change-based continuous queries are fired as soon as new
relevant data becomes available. Timer-based continuous
queries are executed only at time intervals specified by the
submitting user. In our previous example, day traders would
probably want to know the desired price information
immediately, while longer-term investors may be satisfied being
notified every hour. Although change-based continuous queries
obviously provide better response time, they waste system
resources when instantaneous answers are not really required.
Since timer-based continuous queries can be supported more
efficiently, query systems that support timer-based continuous
queries should be much more scalable. However, since users can
specify various overlapping time intervals for their continuous
queries, grouping timer-based queries is much more difficult
than grouping purely change-based queries. Our approach
handles both types of queries uniformly.

NiagaraCQ is the continuous query sub-system of the Niagara
project, which is a net data management system being developed
at University of Wisconsin and Oregon Graduate Institute.
NiagaraCQ supports scalable continuous query processing over
multiple, distributed XML files by deploying the incremental
group optimization ideas introduced above. A number of other
techniques are used to make NiagaraCQ scalable and efficient.
1) NiagaraCQ supports the incremental evaluation of continuous
queries by considering only the changed portion of each updated
XML file and not the entire file. Since frequently only a small
portion of each file gets updated, this strategy can save
significant amounts of computation. Another advantage of
incremental evaluation is that repetitive evaluation is avoided
and only new results are returned to users. 2) NiagaraCQ can
monitor and detect data source changes using both push and poll
models on heterogeneous sources.  3) Due to the scale of the
system, all the information of the continuous queries and
temporary results cannot be held in memory. A caching
mechanism is used to obtain good performance with limited
amounts of memory.

The rest of the paper is organized as follows. In Section 2 the
NiagaraCQ command language is briefly described. Our new
group optimization approach is presented in Section 3 and its
implementation is described in Section 4.  Section 5 examines
the performance of the incremental continuous query
optimization scheme.   Related work is described in Section 6.
We conclude our paper in Section 7.

2. NIAGARACQ COMMAND LANGUAGE
NiagaraCQ defines a simple command language for creating and
dropping continuous queries.  The command to create a
continuous query has the following form:

To delete a continuous query, the following command is used:

Users can write continuous queries in NiagaraCQ by combining
an ordinary XML-QL query with additional time information.
The query will become effective at the start_time. The
Time_interval indicates how often the query is to be executed. A
query is timer-based if its time_interval is not zero; otherwise, it
is change-based. Continuous queries will be deleted from the
system automatically after their expiration_time. If not provided,
default values for the time are used. (These values can be set by
the database administrator.)  Action is performed upon the
XML-QL query results. For example, it could be ``MailTo
dewitt@cs.wisc.edu'' or a complex stored procedure to further
processing the results of the query. Users can delete installed
queries explicitly using the delete command.

3. OUR INCREMENTAL GROUP
OPTIMIZATION APPROACH
In Section 3.1, we present a novel incremental group
optimization strategy that scales to a large number of queries.
This strategy can be applied to a wide range of group
optimization methods. A specific group optimization method
based on this approach is described in Section 3.2. Section 3.3
introduces our query-split scheme that requires minimal changes
to a general-purpose query engine. Section 3.4 and 3.5 apply our
group optimization method to selection and join operators.  We
discuss how our system supports timer-based queries in Section
3.6.  Section 3.7 contains a brief discussion of the caching
mechanisms in NiagaraCQ to make the system more scalable.

3.1 General Strategy of Incremental Group
Optimization
Previous group optimization strategies [CM86] [RC88] [Sel86]
focused on finding an optimal global plan for a small number of
queries. These techniques are useful in a query environment
where a small number of similar queries either enter the system
within a short time interval or are given in advance. A naive
approach for grouping continuous queries would be to apply
these methods directly by reoptimizing all queries whenever a
new query is added.  We contend that such an approach is not
acceptable for large dynamic environments because of the
associated performance overhead.

We propose an incremental group optimization strategy for
continuous queries in this paper. Groups are created for existing
queries according to their signatures, which represent similar
structures among the queries. Groups allow the common parts of

CREATE CQ_name
XML-QL query
DO action
{START start_time} {EVERY time_interval} {EXPIRE
expiration_time}

Delete CQ_name



two or more queries to be shared. Each individual query in a
query group shares the results from the execution of the group
plan. When a new query is submitted, the group optimizer
considers existing groups as potential optimization choices. The
new query is merged into those existing groups that match its
signatures. Existing queries are not, however, re-grouped in our
approach. While this strategy is likely to result in sub-optimal
groups, it reduces the cost of group optimization significantly.
More importantly it is very scalable in a dynamic environment.
Since continuous queries are frequently added and removed, it is
possible that current groups may become inefficient. “Dynamic
re-grouping” would be helpful to re-group part or all of the
queries either periodically or when the system performance
degrades below some threshold. This is left as future work.

3.2 Incremental Group Optimization using
Expression Signature
Based on our incremental grouping strategy, we designed a
scalable group optimization method using expression signatures.
Expression signatures [HCH+99] represent the same syntax
structure, but possibly different constant values, in different
queries. It is a specific implementation of the signature concept.

3.2.1 Expression Signature
For purposes of illustration, we use XML-QL queries on a
database of stock quotes.

The two XML-QL queries in Figure 3.1 retrieve stock
information on either Intel (symbol INTC) or Microsoft (symbol
MSFT).  Many users are likely to submit similar queries for
different stock symbols. An expression signature is created for
the selection predicates by replacing the constants appearing in
the predicates with a placeholder. The expression signature for
the two queries in Figure 3.1 is shown in Figure 3.2.

A query plan is generated by Niagara query parser. Figure 3.3
shows the query plans of the queries in Figure 3.1. The lower
part in each query plan corresponds to the expression signature
of the queries. A new operator TriggerAction is added on the top

of the XML-QL query plan after the query is parsed. Expression
signatures allow queries with the same syntactic structure to be
grouped together to share computation [HCH+99]. Expression
signatures for different queries will be discussed later. Note, in
NiagaraCQ, users can specify an XML-QL query without
specifying the destination data sources by using a “*” in the file
name position and giving a DTD name. This allows users to
specify continuous queries without naming the data sources. Our
group query optimizer is easily extended to support this
capability by using a mapping mechanism offered by the
Niagara Search Engine. Without losing generality for our
incremental grouping algorithm, we assume continuous queries
are defined on a specific data source in this paper.

3.2.2 Group
Groups are created for queries based on their expression
signatures.  For example, a group is generated for the queries in
Figure 3.1 because they have same expression signature. We use
this group in following discussion. A group consists of three
parts.

1. Group signature
The group signature is the common expression signature of all
queries in the group. For the example above, the expression
signature is given in Figure 3.2.

2. Group constant table
The group constant table contains the signature constants of all
queries in the group. The constant table is stored as an XML
file. For the example above, “INTC” and “MFST” are stored in
this table (Figure 3.4). Since the tuples produced by the shared
computation need to be directed to the correct individual query
for further processing, the destination information is also stored
with the constant.

Figure 3.1 XML-QL query examples

Where <Quotes> <Quote>
<Symbol>INTC</>

</> </> element_as $g
in “http://www.cs.wisc.edu/db/quotes.xml”
construct $g

Where <Quotes> <Quote>
<Symbol>MSFT</>

</> </> element_as $g
in “http://www.cs.wisc.edu/db/quotes.xml”
construct $g

                                             =

    Quotes.Quote.Symbol                     constant
         in quotes.xml
Figure 3.2 Expression signature of queries in Figure 3.1

…. ….

…. ….

Figure 3.4 an example of group constant table

INTC Dest. i

MSFT Dest. j

   Constant_value Destination_buffer

Figure 3.3 Query plans of queries in Figure 3.1

Select
Symbol = “MSFT”

quotes.xml

Trigger Action J

File Scan

Select
Symbol = “INTC”

quotes.xml

Trigger Action I

File Scan



3. Group plan
The group plan is the query plan shared by all queries in the
group. It is derived from the common part of all single query
plans in the group. Figure 3.5 shows the group plan for the
queries in Figure 3.1.

An expression signature allows queries in a group to have
different constants. Since the result of the shared computation
contains results for all the queries in the group, the results must
be filtered and sent to the correct destination operator for further
processing. NiagaraCQ performs filtering by combining a
special Split operator with a Join operator based on the constant
values stored in the constant table. Tuples from the data source
(e.g. Quotes.xml) are joined with the constant table. The Split
operator distributes each result tuple of the Join operator to its
correct destination based on the destination buffer name in the
tuple (obtained from the Constant Table). The Split operator
removes the name of the destination buffer from the tuple before
it is put into the output stream, so that subsequent operators in
the query do not need to be modified. In addition, queries with
the same constant value also share the same output stream. This
feature can significantly reduce the number of output buffers.

Since generally the number of active groups is likely to be on
the order of thousands or ten of thousands, group plans can be
stored in a memory-resident hash table (termed a group table)
with the group signature as the hash key. Group constant tables
are likely to be large and are stored on disk.

3.2.3 Incremental Grouping Algorithm
In this section we briefly describe how the NiagaraCQ group
optimizer performs incremental group optimization.

When a new query (Figure 3.6) is submitted, the group
optimizer traverses its query plan bottom up and tries to match
its expression signature with the signatures of existing groups.
The expression signature of the new query, which is the same as
the signature in Figure 3.2, matches the signature of the group in
Figure 3.5. The group optimizer breaks the query plan (Figure
3.7) into two parts. The lower part of the query is removed. The
upper part of the query is added onto the group plan. If the

constant table does not have an entry “AOL”, it will be added
and a new destination buffer allocated.

In the case that the signature of the query does not match any
group signature, a new group will be generated for this signature
and added to the group table.

In general, a query may have several signatures and may be
merged into several groups in the system. This matching process
will continue on the remainder of the query plan until the top of
the plan is reached. Our incremental grouping is very efficient
because it only requires one traversal of the query plan.

In the following sections, we first discuss our query-split
scheme and then describe how incremental group optimization
is performed on selection and join operators.

3.3 Query Split with Materialized
Intermediate Files
The destination buffer for the split operator can be implemented
either in a pipelined scheme or as an intermediate file.  Our
initial design of the split operator used a pipeline scheme in
which tuples are pipelined from the output of one operator into
the input of the next operator. However, such a pipeline scheme
does not work for grouping timer-based continuous queries.
Since timer-based queries will only be fired at specified time,
output tuples must be retained until the next firing time.  It is
difficult for a split operator to determine which tuples should be
stored and how long they should be stored for.

In addition, in the pipelined approach, the ungrouped parts of all
query plans in a group are combined with the group plan,
resulting in a single execution plan for all queries in the group.
This single plan has several disadvantages.  First, its structure is
a directed graph, and not a tree. Thus, the plan may be too
complicated for a general-purpose XML-QL query engine to
execute. Second, the combined plan may be very large and
require resources beyond the limits of some systems. Finally, a
large portion of the query plan may not need to be executed at
each query invocation. For example, in Figure 3.5, suppose only
the price of Intel stock changes. Although the destination buffer
for Microsoft is empty, the upper part of the Microsoft query
(Trigger Action J) is also executed. This problem can be avoided
only if the execution engine has the ability to selectively

Trigger Action I Trigger Action J

Figure 3.5 Group plan for queries in Figure 3.1

quotes.xml Constant Table

Group PlanSplit

Join

File Scan

Symbol  = Constant_value

File Figure 3.7 Query plan for
query in Figure 3.6

Figure 3.6 XML-QL
query examples

Where  <Quotes>

<Quote>

<Symbol>AOL</>

        </></>

    element_as $g

in

“http://www.cs.wisc.edu/

db/quotes.xml”

construct $g

Select
Symbol = “AOL”

quotes.xml

Trigger Action

File Scan



load part of a query plan in a bottom-up manner. Such a
capability would require a special implementation of the XML-
QL query engine.

Since a split operator has one input stream and multiple
(possibly tens of thousands) output streams, split operators may
become a bottleneck when the ungrouped parts of queries
consume output tuples from the split stream at widely varying
rates. For example, suppose 100 queries are grouped together,
99 of which are very simple selection queries, and one is a very
expensive query involving multiple joins. Since this expensive
query may process the input from the split operator very slowly,
it may block all the other simple queries.

The pipeline scheme can be used in systems that support only a
small number of change-based continuous queries.  Since our
goal is to support millions of both change-based and timer-based
continuous queries, we adopt an approach that is more scalable
and easier to implement. We also try to use a general query
engine to the maximal extent possible.

In our new design (Figure 3.8), the split operator writes each
output stream into an intermediate file.  A query plan is cut into
two parts at the split operator and a file scan operator is added to
the upper part of plan to read the intermediate file. NiagaraCQ
treats the two new queries like normal user queries. In
particular, changes to the intermediate files are monitored in the
same way as those to ordinary data sources!  Since a new
continuous query may overlap with multiple query groups, one
query may be split into several queries. However, the total
number of queries in the system will not exceed the number of
groups plus the number of original user queries. Since we
assume that no more than thousands of groups will be generated
for millions of user queries, the overall number of queries in the
system will increase only slightly. Intermediate file names are
stored in the constant table and grouped continuous queries with
the same constant share the same intermediate file.

The advantages of this new design include:

1. Each query is scheduled independently, thus only the
necessary queries are executed. For example, in Figure 3.8, if
only the price of Intel stock changes, queries on intermediate
files other than “file_i” will not be scheduled.  Since usually
only a small amount of data is changed, only a few of the
installed continuous queries will be fired.  Thus, computation
time and system resource usage is significantly reduced.

2. Queries after a split operator will be in a standard, tree-
structured query format and thus can be scheduled and executed
by a general query engine.

3. Each query in the system is about the size of a common
user query, so that it can be executed without consuming an
unusual amount of system resources.

4. This approach handles intermediate files and original data
source files uniformly. Changes to materialized intermediate
files will be processed and monitored just like changes to the
original data files.

5. The potential bottleneck problem of the pipelined approach
is avoided.

There are some potential disadvantages. First, the split operator
becomes a blocking operator since the execution of the upper
part of the query must wait for the intermediate files to be
completely materialized. Since continuous queries run over data
changes that are usually not very large, we do not believe that
the impact of this blocking will be significant. Second, reading
and writing the intermediate files incurs extra disk I/Os.  Since
most data changes will be relatively small, we anticipate that
they will be buffered in memory before the upper part queries
consume them.  There will be disk I/Os in the case of timer-
based queries that have long time intervals because data changes
may be accumulated. In this situation, data changes need to be
written to disk no matter what strategy is used. As discussed in
Section 3.7, NiagaraCQ uses special caching mechanisms to
reduce this cost.

3.4 Incremental Grouping of General
Selection Predicates
Our primary focus is on predicates that are in the format of
“Attribute op Constant.”  Attribute is a path expression without
wildcards in it. Op includes “=”, “<”, “>”. Such formats
dominate in selection queries. Other predicate formats could
also be handled in our approach, but we do not discuss them
further in this paper.

Figure 3.9 shows an example of a range selection query that
returns every stock whose price has risen more than 5%. Figure
3.9 also gives its expression signature. The group plan for
queries with this signature is the same in Figure 3.5, except the
join condition is Change_Ratio > constant.

A general range-query has both lower_bound and upper_bound
values. Two columns are needed to represent both bounds in the
constant table. Thus each entry of the constant table will be
[lower_bound, upper_bound, intermediate_file_name].  The join
condition is Change_Ratio < upper_bound and  Change_Ratio
> lower_bound. A special index would be helpful to evaluate
this predicate. For example, an interval skip list [HJ94] could be
used for this purpose when all the intervals fit in memory. We

Figure 3.8 query-split scheme using intermediate files

Group
Plan

…. ….

…. ….

INTC file. i

MSFT file. j

Constant
value

Intermediate
file name

quotes.xml

File Scan

Symbol  =
Constant_value

Constant Table

Split

Join

File Scan

file_ jfile_ i

File ScanFile Scan

Trig. Act. JTrig. Act. I



are considering developing a new index method that handles this
case more efficiently.

One potential problem for range-query groups is that the
intermediate files may contain a large number of duplicate tuples
because range predicates of the different queries might overlap.
“Virtual intermediate files” are used to handle this case. Each
virtual intermediate file stores a value range instead of actual
result tuples. All outputs from the split operator are stored in
one real intermediate file, which has a clustered index on the
range attribute. Modification on virtual intermediate files can
trigger upper-level queries in the same way as ordinary
intermediate files. The value range of a virtual intermediate file
is used to retrieve data from the real intermediate file. Our
query-split scheme need not be changed to handle virtual
intermediate files.

In general, a query may have multiple selection predicates, i.e.
multiple expression signatures. Predicates on the same data
source can be represented in conjunctive normal form. The
group optimizer chooses the most selective conjunct, which
does not contain “or”, to do incremental grouping. Other
predicates are evaluated in the upper levels of the continuous
query after the split operator.

Figure 3.10 shows a query with two selection predicates, which
retrieves Intel stock whenever its price falls below $100. This
query has two expression signatures, one is an equal selection
predicate on Symbol and the other is a range selection predicate
on Current_price. The expression signature on the equal
selection predicate (i.e. on Symbol) is used for grouping because
it is more selective. In addition, a new select operator with the
second selection predicate (i.e. the range select on
Current_price) will be added above the file scan operator.

3.5 Incremental Grouping of Join Operators
Since join operators are usually expensive, sharing common join
operations can significantly reduce the amount of computation.
Figure 3.11 shows a query with a join operator that, for each
company, retrieves the price of its stock and the company’s

profile.  The signature for the join operation is shown on the
right side of the figure. A join signature in our approach
contains the names of the two data sources and the predicate for
the join. The group optimizer groups join queries with the same
join signatures. A constant table is not needed in this case
because there is only one output intermediate file, whose name
is stored in the split operator. This file is used to hold the results
of the shared join operation.

There are two ways to group queries that contain both join
operators and selection operators. Figure 3.12 shows such an
example, which retrieves all stocks in the computer service
industry and the related company profiles. The group optimizer
can place the selection either below or above the join, so that
two different grouping sequences can be used during
incremental group optimization process. The group optimizer
chooses the better one based on a cost model.  We discuss these
alternatives below using the query example in Figure 3.12.

If the selection operator (e.g., on Industry) is pulled above the
join operator, the group optimizer first groups the query by the
join signature. The selection signature, which contains the
intermediate file, is grouped next. The advantage of this method
is that it allows the same join operator to be shared by queries
with different selection operators. The disadvantage is that the
join, which will be performed before the selection, may be very
expensive and may generate a large intermediate file. If there are
only a small number of queries in the join group and each of
them has a highly selective selection predicate, then this
grouping method may be even more expensive than evaluating
the queries individually.

Alternatively, the group optimizer can push down the selection
operator (e.g., on Industry) to avoid computing an expensive
join. First, the signature for the selection operator is matched
with an existing group. Then a file scan operator on the

Figure 3.9 Range selection query example and its
expression signature

Where <Quotes><Quote>
         <Change_Ratio>$c</></> element_as $g </>
In “quotes.xml”, $c > 0.05
Construct $g

 >

Quotes.Quote.Change_Ratio                   constant
in “quotes.xml”

Where <Quotes><Quote><Symbol>”INTC”</>
            <Current_Price>$p</></>  element_as $g </>
in “quotes.xml”, $p < 100
Construct $g

Figure 3.10 an example query with two selection predicates

      

Symbol = Symbol

quotes.xml                       companies.xml

Where <Quotes><Quote><Symbol>$s</></>
           element_as $g </> in “quotes.xml”,
<Companies><Company><Symbol>$s</></>
            element_as $t</> in “companies.xml”
construct $g, $t

Figure 3.11 an example query with join operator and its
signature

Where <Quotes><Quote><Symbol>$s</>
    <Industry>”Computer Service”</></>
           element_as $g </> in “quotes.xml”,
<Companies><Company><Symbol>$s</></>
           element_as $t</> in “companies.xml”
construct $g, $t

Figure 3.12 an example query with both join and
selection operators



intermediate file produced by the selection group is added and
the join operator is rewritten to use the intermediate file as one
of its inputs. Finally, the group optimizer incrementally groups
the join operation using its signature.  Compared to the first
approach, this approach may create many join groups with
significant overlap between them. Note, however, that this same
overlap exists in the non-grouping approach. Thus, in general,
this method always outperforms than non-grouping approach.

The group optimizer will select one of these two strategies based
on a cost model. To date we have implemented the second
approach in NiagaraCQ. In the future we plan on implementing
the first strategy and compare the performance of the two
approaches.

3.6 Grouping Timer-based Continuous Queries
Since timer-based queries are only periodically executed their
use can significantly reduce computation time and make the
system more scalable. Timer-based queries are grouped in the
same way as change-based queries except that the time
information needs to be recorded at installation time. Grouping
large number of timer-based queries poses two significant
challenges. First, it is hard to monitor the timer events of those
queries. Second, sharing the common computation becomes
difficult due to the various time intervals. For example, two
users may both request the query in Figure 3.1 with different
time intervals, e.g. weekly and monthly. The query with the
monthly interval should not repeat the weekly query’s work. In
general, queries with various time intervals should be able to
share the results that have already been produced.

3.6.1 Event Detection
Two types of events in NiagaraCQ can trigger continuous
queries. They are data-source change events and timer events.
Data sources can be classified into push-based and pull-based.
Push-based data sources will inform NiagaraCQ whenever
interesting data is changed. On the other hand, changes on pull-
based data sources must be checked periodically by NiagaraCQ.

Timer-based continuous queries are fired only at specified times.
However, queries will not be executed if the corresponding
input files have not been modified.  Timer events are stored in
an event list, which is sorted in time order. Each entry in the list
corresponds to a time instant where there exists a continuous
query to be scheduled. Each query in NiagaraCQ has a unique
id. Those query ids are also stored in the entry. Whenever a
timer event occurs, all related files will be checked. Each query
in the entry will be fired if its data source has been modified
since its last firing time. The next firing times for all queries in
the entry are calculated and the queries are added into the
corresponding entries on the list.

3.6.2  Incremental Evaluation
Incremental evaluation allows queries to be invoked only on the
changed data. It reduces the amount of computation significantly
because typically the amount of changed data is smaller than the
original data file. For each file, on which continuous queries are
defined, NiagaraCQ keeps a “delta file” that contains recent
changes.  Queries are run over the delta files whenever possible
instead of their original files. However, in some cases the
complete data files must be used, e.g., incremental evaluation of
join operators.  NiagaraCQ uses different techniques for
handling delta files of ordinary data sources and those of

intermediate files used to store the output of the split operator.
NiagaraCQ calculates the changes to a source XML file and
merges the changes into its delta file. For intermediate files,
outputs from the split operators are directly appended to the
delta file.

In order to support timer-based queries, a time stamp is added to
each tuple in the delta file. Since timer-based queries with
different firing times can be defined on one file, the delta file
must keep data for the longest time interval among those queries
that use the file as an input. At query execution time, NiagaraCQ
fetches only tuples that were added to the delta file since the
query's last firing time.

Whenever a grouped plan is invoked, the results of its execution
are stored in an intermediate file regardless of whether or not
queries defined on these intermediate files should be fired
immediately. Subsequent invocations of this group query do not
need to repeat previous computation. Upper level queries
defined on intermediate files will still be fired at their scheduled
execution time. Thus, the shared computation is totally
transparent to these subsequent operators.

3.7 Memory Caching
Due to the desired scale of the system, we do not assume that all
the information required by the continuous queries and
intermediate results will fit in memory. Caching is used to
obtain good performance with a limited amount of memory.
NiagaraCQ caches query plans, system data structures, and data
files for better performance.

1. Grouped query plans tend to be memory resident since we
assume that the number of query groups is relatively small.
Non-grouped change-based queries may be cached using an
LRU policy that favors frequently fired queries. Timer-based
queries with shorter firing intervals will have priority over
those with longer intervals.

2. NiagaraCQ caches recently accessed files. Small delta files
generated by split operators tend to be consumed and
discarded.  A caching policy that favors these small files saves
lots of disk I/Os.

3. The event list for monitoring the timer-based events can be
large if there are millions of timer-based continuous queries.
To avoid maintaining the whole list in memory, we keep only
a “time window” of this list. The window contains the front
part of the list that should be kept in memory, e.g. within 24
hours.

4. IMPLEMENTATION
NiagaraCQ is being developed as a sub-system of Niagara
project. The initial version of the system was implemented in
Java (JDK1.2).  A validating XML parser (IBM XML4J) from
IBM is used to parse XML documents. We describe the system
architecture of NiagaraCQ in Section 4.1 and how continuous
queries are processed in Section 4.2.

4.1 System Architecture
Figure 4.1 shows the architecture of Niagara system. NiagaraCQ
is a sub-system of Niagara that handles continuous queries.
NiagaraCQ consists of

1. A continuous query manager, which is the core module of
NiagaraCQ system. It provides a continuous query interface to



users and invokes the Niagara query engine to execute fired
queries.

2. A group optimizer that performs incremental group
optimization.

3. An event detector that detects timer events and changes of
data sources.

In addition, the Niagara data manager was enhanced to support
the incremental evaluation of continuous queries.

4.2 Processing Continuous Queries
Figure 4.2 shows the interactions among the Continuous Query
Manager, the Event Detector and the Data Manager as
continuous queries are installed, detected, and executed.
Continuous query processing is discussed in following sections.

4.2.1 Continuous Query Installation
When a new continuous query enters the system, the query is
parsed and the query plan is fed into the group optimizer for
incremental grouping.  The group optimizer may split this query
into several queries using the query-split scheme described in
Section 3. The continuous query manager then invokes the
Niagara query optimizer to perform common query optimization
for these queries and the optimized plans are stored for future
execution. Timer information and data source names of these
queries are given to the Event Detector (Step 1 in Figure 4.2).
The Event Detector then asks the Data Manager to monitor the
related source files and intermediate files (Step 2 in Figure 4.2),
which in turn caches a local copy of each source file. This step
is necessary in order to detect subsequent changes to the file.

The Event Detector monitors two types of events: timer events
and file-modification events. Whenever such events occur, the
Event Detector notifies the Continuous Query Manager about
which queries need to be fired and on which data sources.

The Data Manager in Niagara monitors web XML sources and
intermediate files on its local disk.  It handles the disk I/O for
both ordinary queries and continuous queries and supports both

push-based and pull-based data sources. For push-based data
sources, the Data Manager is informed of a file change and
notifies Event Detector actively. Otherwise, the Event Detector
periodically asks the Data Manager to check the last modified
time.

4.2.2 Continuous Query Deletion
A system unique name is generated for every user-defined
continuous query.  A user can use this name to retrieve the query
status or to delete the query. Queries are automatically removed
from the system when they expire.

Figure 4.1 NiagaraCQ system
architecture.
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4.2.3 Execution of Continuous Queries
The invocation of a continuous query requires a series of
interactions among the Continuous Query Manager, Event
Detector and Data Manager.

When a timer event happens, the Event Detector first asks the
Data Manager if any of the relevant data sources have been
modified (Step 3 in Figure 4.2).  The Data Manager returns a list
of names of modified source files.  The Data Manager also
notifies the Event Detector when push-based data sources have
been changed (Step 4 in Figure 4.2). If a continuous query needs
to be executed, its query id and the names of the modified files
are sent to the Continuous Query Manager (Step 5 in Figure
4.2). The Continuous Query Manager invokes the Niagara query
engine to execute the triggered queries (Step 6 in Figure 4.2).
At execution time, the Query Engine requests data from the Data
Manager (Step 7. in Figure 4.2).  The Data Manager recognizes
that it is a request for a continuous query and returns only the
delta file (Step 8 in Figure 4.2).  Delta files for source files are
computed by performing an XML-specific “diff” operation
using the original file and the new version of the file.

5. EXPERIMENTAL RESULTS
We expect that for a continuous query system over the Internet,
incremental group optimization will provide substantial
improvement to system performance and scalability. In the
following experiments, we compare our incremental grouping
approach with a non-grouping approach to show benefits from
sharing computation and avoiding unnecessary query
invocations.

5.1 Experiment Setting
The following experiments were conducted on a Sun Ultra 6000
with 1GB of RAM, running JDK1.2 on Solaris 2.6.

Data Sets
Our experiments were run against a database of stock
information consisting of two XML files, “quotes.xml” and
“companies.xml”. “Quotes.xml” contains stock information on
about 5000 NASDAQ companies. The size of “quotes.xml” is
about 2 MB. Related company information is stored in
“companies.xml”, whose size is about 1MB. The DTDs of these
two XML files are given in Figure 5.1 and 5.2, respectively.

Data changes on “quotes.xml” are generated artificially to
simulate the real stock market and continuous queries are
triggered by these changes. The “companies.xml” file was not
changed during our experiments.

We give a brief description of the assumptions that we made to
generate “quotes.xml”. Each stock has a unique Symbol value.
The Industry attribute takes a value randomly from a set with
about 100 values. The Change_Ratio represents the change
percentage of the current price to the closing price for the
previous session. It follows a normal distribution with a mean
value of 0 and standard deviation of 1.0.

Since time spent calculating changes in source files is the same
for both the grouped and non-grouped approaches, we run our
experiments directly against the data changes.  Unless specified,
the number of “tuples” modified is 1000, which is about 400K
bytes.

Queries
Although users may submit many different queries, we
hypothesize that many queries will contain similar expression
signatures. In our experiments, we use four types of queries to
represent the effect of grouping queries in a stock environment
by their expression signatures.

• Type-1 queries have the same expression signature on the
equal selection predicate on Symbol.

• Type-2 queries have the same expression signature on the
range selection predicate on Change_ratio.

<!ELEMENT Quotes ( Quote )*>
<!ELEMENT Quote ( Symbol, Sector, Industry,
Current_Price, Open, PrevCls, Volume, Day’s_range,
52_week_range?, Change_Ratio>
<!ELEMENT Day’s_range (low, high)>
<!ELEMENT 52_week_change (low, high)>

Figure 5.1 DTD of quotes.xml

<!ELEMENT Companies ( Company )*>
<!ELEMENT Company ( Symbol, Name, Sector, Industry,
Company_profiles?>
<!ELEMENT Company_profiles (Capital, Employees,
Address, Description)>
<!ELEMENT Address (City, State)>

Figure 5.2 DTD of companies.xml

Where <Quotes><Quote><Change_Ratio>$c</></>
element_as $g </> in “quotes.xml”, $c > 0.05
construct $g

Query Type-2 Example: Notify me of all stocks whose
prices rise more than 5 percent.

Where <Quotes><Quote><Symbol>”INTC”</></>
element_as $g </> in “quotes.xml”, construct $g

Query Type-1 Example: Notify me when Intel stocks change.

Where <Quotes><Quote><Symbol>”INTC”</>
<Current_Price>$p</></> element_as $g </>
in “quotes.xml”, $p < 100,   construct $g

Query Type-3 Example: Notify me when Intel stock trades
below 100 dollars.

Where <Quotes><Quote><Symbol>$s</><Industry>
”Computer Service”</></> element_as $g </>
in “quotes.xml”,
<Companies><Company><Symbol>$s</></>
element_as $t</> in “companies.xml”
construct $g, $t

Query Type-4 Example: Notify me all of changes to stocks in the
computer service industry and related company information.



• Type-3 queries have two common expression signatures,
one is on the equal selection predicate on Symbol, and the
other is on the range selection predicate on Current_price.
The expression signature of the equal selection predicate is
used for grouping Type-3 queries because it is more
selective than that of the range predicate.

• Type-4 queries contain expression signatures for both
selection and join operators. Selection operators are pushed
down under join operators. The incremental group
optimizer first groups selection signatures and then join
signatures.

Queries of Type-3 are generated following a normal distribution
with a mean value of 3 and a standard deviation of 1.0. Queries
of the other types are generated using different constants
following a uniform distribution on the range of values in the
data unless specified.

5.2 Interpretation of Experimental Result
The parameters in our experiments are:

1.  N, the number of installed queries, is an important measure
of system scalability.

2. F, the number of fired queries in the grouping case. The
number of fired queries may vary depending on triggering
conditions in the grouping case. For example, in a Tye-1 query,
if Intel stock does not change, queries defined on “INTC” are
not scheduled for execution after the common computation of
the group. This parameter does not affect non-grouping queries.

3. C, the number of tuples modified.

In our grouping approach, a user-defined query consists of
grouped part and non-grouped part. Tg and Tng represent the
execution time of each part. The execution time T for evaluating
N queries is the sum of Tg and Tng of each of F fired queries,

∑+=
F

ngg TTT , because the grouped portion is executed

only once.

Since the non-grouping strategy needs to scan each XML data
source file multiple times, we cache parsed XML files in
memory so that both approaches scan and parse XML files only
once.  This ensures that the comparison between the two
approaches is fair. However, in a production system, parsed
XML files probably could not be retained in memory for long
periods of time. Thus, many non-grouped queries may each have
to scan and parse the same XML files multiple times.

5.2.1 Experimental results on single type queries
We studied how effectively incremental group optimization
works for each type of query. We measured and compared
execution time for queries of each type for both the grouping
and non-grouping approaches.

Experiment results on type-1 queries

Experiment 1. (Figure 5.3)  C =1000 tuples.

• Case 1: F = N, i.e. all queries are fired in both approaches.

The execution time of the non-grouping approach grows
dramatically as N increases. It cannot be applied to a highly
loaded system. On the other hand, the grouping approach

consumes significantly less execution time by sharing the
computation of the selection operator. It also grows more slowly
because in a single Type-1 query Tng is much smaller than Tg.

• Case 2: F = 100, i.e., 100 queries are invoked in the
grouping approach.

In the grouping approach, the execution time of Case 2 is almost
constant when F is fixed. The execution time of the grouping
approach depends on number of fired queries F, not on the total
number of installed queries N. The reason is that, although Tg

increases as N grows, this shared computation is executed only
once and is a very small portion of total execution time. The
execution time for the upper queries, which is proportional to
the number of fired queries F, dominates the total execution
time.  On the other hand, the execution time for the non-
grouping approach is proportional to N because all queries are
scheduled for execution.

Experiment 2. (Figure 5.4) F = N = 2000 queries

In this experiment we explore the impact of C, the number of
modified tuples, on the performance of the two approaches.  C is
varied from 100 tuples (about 40K bytes) to 2000 tuples (about
800K bytes). Increasing C will increase the query execution
time. For the non-grouping approach, the total execution time is
proportional to C because the selection operator of every
installed query needs to be executed. For the grouping approach,
the execution time is not sensitive to the change of C because
the increase of Tg only counts for a small percentage of the total
execution time and the sum of Tng of all fired queries does not
change because of the predicate’s selectivity.

Experiment results for Type-2, 3, 4 queries (Figure 5.5, 5.6,
5.7) C =1000 tuples, F = N

We discuss the influence of different expression signatures in
this set of experiments.

Figure 5.5 and Figure 5.6 show that our group optimization
works well for various selection predicates.  Type-2 queries are
grouped according to their range selection signature. Type-3

queries have two signatures.  The group optimizer chooses an
equal predicate to group queries since it is more selective.

Figure 5.7 shows the results for Type-4 queries. Type-4 queries
have one selection signature and one join signature. The
selection operator is pushed below the join operator. Queries are
first grouped by their selection signature. There are 100 different
industries in our test data set. The output of the selection group
is written to 100 intermediate files and one hundred join groups
are created.  Each join group consumes one of the intermediate
files as its input.  The difference between the execution time
with and without grouping is much larger than in the previous
experiments because a join operator is more expensive than a
selection operator.

5.2.2 Experiment results on mixed queries of Type-1
and type-3 (Figure 5.8) C =1000 tuples, F = N (N/2
Type-1 queries and N/2 Type-3 queries)
Previous experiments studied each type of query separately for
the purpose of showing the effectiveness of different kinds of
expression signatures. Our incremental group optimizer is not
limited to group only one type of queries.  Different types of
queries can also be grouped together if they have common



signatures. In this experiment, Type-1 queries and Type-3
queries are grouped together because they have the same
selection signature.  Figure 5.8 shows the performance
difference between the grouped and non-grouped cases.

5.3 System Status and Future Work
A prototype version of NaigraCQ has been developed, which
includes a Group Optimizer, Continuous Query Manager, Event
Detector, and Data Manager. As the core of our incremental
group optimization, the Group Optimizer currently can
incrementally group selection and join operators. Our
incremental group optimizer is still at a preliminary stage.
However, incremental group optimization has been shown to be
a promising way to achieve good performance and scalability.
We intend to extend incremental group optimization to queries
containing operators other than selection and join. For example,
sharing computation for expensive operators, such as
aggregation, may be very effective. “Dynamic regrouping” is
another  interesting future direction that we intend to explore.

6. RELATED WORK AND DISCUSSION
Terry et al. first proposed the notion of "continuous queries"
[TGNO92] as queries that are issued once and run continuously.
He used an incremental evaluation approach to avoid repetitive
computation and return only new results to users. Their
approach was restricted to append-only systems, which is not

suitable for our target environment. NiagaraCQ uses an
incremental query evaluation method but is not limited to
append-only data sources. We also include action and timer
events in Niagara continuous queries.

Continuous queries are similar to triggers in traditional database
systems. Triggers have been widely studied and implemented
[WF89][MD89][SJGP90][SPAM91][SK95]. Most trigger
systems use an Event-Condition-Action (ECA) model [MD89].
General issues of implementing triggers can be found in
[WF89].

NiagaraCQ is different from traditional trigger systems in the
following ways.

1. The main purpose of the NiagaraCQ is to support continuous
query processing rather than to maintain data integrity.

2. NiagaraCQ is intended to support millions of continuous
queries defined on large number of data sources. In a
traditional DBMS, a very limited number of triggers can be
installed on each table and a trigger can usually only be
defined on a single table.

3. NiagaraCQ needs to monitor autonomous and heterogeneous
data sources over the Internet.  Traditional trigger systems
only handle local tables.

4. Timer-based events are supported in NiagaraCQ.

Figure 5.3

0

10 0

2 0 0

3 0 0

4 0 0

5 0 0

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 10 0 0 0

Number of Queries

E
xe

cu
tio

n 
T

im
e 

(s
)

Gr o u p e d  C a se 1

N o n - Gr o u p e d  C a se 1

Gr o u p e d  C a se 2

N o n - Gr o u p e d  C a se 2

0

10 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

0 2 0 0 4 0 0 6 0 0 8 0 0 10 0 0 12 0 0 14 0 0 16 0 0 18 0 0 2 0 0 0

Data Size (Number of Tuples)

E
xe

cu
tio

n 
T

im
e 

(s
) Gr o u p e d

N o n - Gr o u p e d

Figure 5.4
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Open-CQ [LPT99] [LPBZ96] also supports continuous queries
on web data sources and has functionality similar to NiagaraCQ.
NiagaraCQ differs from Open-CQ in that we explore the
similarity among large number of queries and use group
optimization to achieve system scalability.

The TriggerMan [HCH+99] project proposes a method for
implementing a scalable trigger system based on the assumption
that many triggers may have common structure. It uses a special
selection predicate index and an in-memory trigger cache to
achieve scalability. We share the same assumption in our work
and borrow the concept of an expression signature from their
work. We mainly focus on the incremental grouping of a subset
of the most frequently used expression signatures, which are in
the format “Attribute op Constant”, where op is one of “<”, “=”
and “>”. The major differences between NiagaraCQ and
TriggerMan are:

1. NiagaraCQ uses an incremental group optimization strategy.

2. NiagaraCQ uses a query-split scheme to allow the shared
computation to become an individual query that can be
monitored and executed using a slightly modified query
engine. TriggerMan uses a special in-memory predicate index
to evaluate the expression signature.

3. NiagaraCQ supports grouping of timer-based queries, a
capability not considered in [HCH+99].

Sellis's work [Sel86] focused on finding an optimal plan for a
small group of queries (usually lower than ten) by recognizing a
containment relationship among the selection predicates of
queries with both selection and join operators. This approach for
group optimization was very expensive and not extendable to a
large number of queries.

Recent work [ZDNS98] on group optimization mainly focuses
on applying group optimization to solve a specific problem. Our
approach also falls into this category. Alert [SPAM91] was
among the earliest active database systems.  It tried to reuse
most parts of a passive DBMS to implement an active database.

7. CONCLUSION
Our goal is to develop an Internet-scale continuous query system
using group optimization based on the assumption that many
continuous queries on the Internet will have some similarities.
Previous group optimization approaches consider grouping only
a small number of queries at the same time and are not scalable
to millions of queries. We propose a new “incremental
grouping” methodology that makes group optimization more
scalable than the previous approaches. This idea can be applied
to very general group optimization methods.  We also propose a
grouping method using a query-split scheme that requires
minimal changes to a general purposed query engine.  In our
system, both timer-based and change-based continuous queries
can be grouped together for event detection and group
execution, a capability not found in other systems.  Other
techniques to make our system scalable include incremental
evaluation of continuous queries, use of both pull and push
models for detecting heterogeneous data source changes and a
caching mechanism. Preliminary experiments demonstrate that
our incremental group optimization significantly improves the
execution time comparing to non-grouping approach. The
results of experiments also show that the system can be scaled to
support very large number of queries.
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