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Abstract 

In multicore processor systems, last-level caches (LLCs) play a crucial role in reducing 

system energy by i) filtering out expensive accesses to main memory and ii) reducing the time 

spent executing in high-power states. Increasing the LLC size can improve system performance 

and energy by reducing memory accesses, but at the cost of high area and power overheads. In 

this dissertation, I explored using compression to effectively improve the LLC capacity and 

ultimately system performance and energy consumption. 

Cache compression is a promising technique for expanding effective cache capacity with 

little area overhead. Compressed caches can achieve the benefits of larger caches using the area 

and power of smaller caches by fitting more cache blocks in the same cache space. However, 

previous compressed cache designs have demonstrated only limited benefits due to internal 

fragmentation, limited tags, and metadata overhead. In addition, most previous proposals 

targeted improving system performance even at high power and energy overheads.  

In this dissertation, I propose two novel compressed cache designs that are optimized for 

energy: Decoupled Compressed Cache (DCC) ‎[21]‎[22] and Skewed Compressed Cache (SCC) 

‎[23]. DCC and SCC tightly pack variable size compressed blocks to reduce internal 

fragmentation. They exploit spatial locality to track compressed blocks while reducing tag 

overheads by tracking super-blocks. Compared to conventional uncompressed caches, DCC and 
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SCC improve the cache miss rate by increasing the effective capacity and reducing conflicts. 

Compared to DCC, SCC further lowers area overhead and design complexity.  

In addition to proposing efficient compressed cache designs, I take another step forward to 

study compression benefits for real applications running on real machines. Since most proposals 

on compressed caching are on non-existing hardware, architects evaluate those using detailed 

simulators with small benchmarks. So, whether cache compression would benefit real 

applications running on real machines is not clear. In this dissertation, I address this question by 

analyzing the compressibility of several real applications, including production servers of the 

Computer Sciences Department of UW-Madison. I show that compression could in fact be 

beneficial to many real applications. 
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Chapter 1  

Introduction 

One of the major challenges for computer architects is today’s‎high power consumption of 

computer systems. According to the Department of Energy, data centers can consume up to 100 

to 200 times more energy than a standard office building, at a cost of billions of dollars per year 

‎[78]. In mobile and desktop technologies, lower power consumption is also critical to obtaining 

longer battery life and lower electricity costs. Future computer systems, however, face 

continuing power and energy challenges as the power-per-transistor is no longer scaling down as 

rapidly as the density ‎[71]. Thus, computer architects must consider power and energy as the 

main design constraints, rather than only focusing on performance. 

Although processors are supposed to burn energy when computing, they burn a lot more 

energy when communicating data. In particular, a large fraction of energy is consumed by the 

memory hierarchy. However, memory systems have not been classically designed to minimize 

energy. In the new era of power-constrained computer designs, caches, which are long used to 

reduce effective memory latency and increase effective bandwidth, play an increasingly 

important role in reducing system energy. Keckler ‎[72] showed that last-level caches (LLCs) are 

especially important, since obtaining operands of a double-precision multiply-add from off-chip 

memory requires approximately 200x the energy of the operation. Sodani ‎[76] showed that 

caches represent 45% and 12% of core power for non-compute-heavy and compute-heavy 
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floating point applications, respectively, on‎ Intel’s‎ Knight’s‎ Corner‎ processor.‎ Yet, off-chip 

accesses consume so much energy that the LLC can miss on 89% of accesses and still break even 

‎[76]. Thus, improving cache effectiveness is important, not only for system performance, but 

also for system energy.  

Increasing cache size can improve performance for most workloads, but comes at 

significant area cost. For example, the well-known‎“square‎ root”‎power‎ law‎ ‎[73] predicts that 

doubling LLC size will reduce misses by ~30%, on average. But it obviously doubles LLC area, 

which already accounts for 15–30% of the die area of most processors ‎[74]. In this dissertation, I 

explore using compression to effectively increase cache capacity and ultimately reduce overall 

system energy. 

Cache compression seeks to increase effective cache size by compressing and compacting 

cache blocks while incurring small overheads ‎[20]. For example, previously proposed techniques 

have the potential to double effective LLC capacity, while increasing LLC area by only ~8%. 

Unfortunately, previous compressed cache designs fail to achieve high potentials of compression 

mainly due to internal fragmentation and extra tags overheads. In addition, they mostly focus on 

performance benefits of compression, and are not optimized for energy. 

In this dissertation, I propose using cache compression to improve system energy. Through 

extensive analysis, I determine sources of inefficiencies in previously proposed compressed 

caches. I propose two novel compressed caches that significantly improve cache utilization and 

so system energy with small area overheads. I also do holistic analysis on compression both in 
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the main memory and caches, for a wide range of real applications and production servers, as 

well as standard benchmarks running on real machines. 

In this chapter, I first discuss the main reasons behind current power and energy problems 

in Section 1.1. I then present the sources of energy inefficiencies in multicore systems in Section 

1.2, emphasizing the role of memory hierarchy. In Section 1.3, I motivate using caches as energy 

filters to improve system energy, and advocate using compression. In Section 1.4, I identify the 

main contributions of this dissertation, and provide a roadmap for the remainder of this 

document in Section 1.5.  

1.1 The End of Dennard Scaling  

Over the past several decades, computer architects discovered innovative techniques to 

scale processor performance. They took advantage‎of‎more‎available‎transistors‎(Moore’s‎law)‎at‎

roughly constant power and cost per chip ‎[77]. The semiconductor technology is now facing 

serious challenges in further scaling transistors and integrating them into chips at an exponential 

rate. Even with smaller transistors,‎the‎fundamental‎driver‎of‎Moore’s‎law‎was‎Dennard‎scaling 

‎[71]. The key effect of Dennard scaling was that as transistors got smaller, the power density was 

constant. For example, if there‎was‎ a‎ reduction‎ in‎ a‎ transistor’s‎ linear‎ size‎ by‎ two, the power 

used to fall by a factor of four (with voltage and current both halving). It is still possible to etch 

smaller transistors. However, it is challenging to further drop the voltage in order for the 

processors to run faster. Further decreasing voltage increases leakage power more rapidly, 

heating the chip, and possibly threatening complete breakdown. With the end of Dennard 
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scaling, 21st century computer architects can no longer focus solely on performance, and must 

confront power and energy as the main design constraints. 

1.2 Where does energy go? 

In current processors, storing and communicating data are more energy expensive than 

computation. In multicore systems, a large fraction of energy is consumed by the memory 

hierarchy. Memory systems, however, have not been classically designed to minimize energy.   

Memory systems play a critical role in the new era of power-constrained computer designs. 

Figure ‎1-1 is‎borrowed‎from‎Keckler’s‎Micro‎keynote‎talk‎ ‎[72]. It shows the energy burnt for a 

simple operation versus the energy consumed to obtain its operands from across the chip at 

40nm. It estimates a double-precision multiply-add at 50pJ but obtaining its operands locally 

Figure ‎1-1: Communication vs. computation energy ‎[72]. 
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(1mm) uses 1.7x more energy (31pJ for the bus plus 56pJ to access on-chip SRAM storage). 

Alternatively, accessing non-local operands is much more expensive: cross-chip 25x 

(1200pJ+56pJ), or off-chip DRAM 200x (1300pJ+10000pJ). This emphasizes the importance of 

on-chip cache memories in reducing system energy. Thus, improving effective cache utilization 

and exploiting locality is crucial, not just for performance, but also for energy efficiency. 

1.3 Caches as Energy Filters 

Caches have long been used in processor systems. Early work focused on using caches to 

reduce effective access time or latency. Later, caches were also used to reduce required memory 

bandwidth, partly, to enable snooping symmetric multiprocessors. In modern multicore processor 

systems, where the memory hierarchy accounts for a large fraction of total system energy, caches 

play a critical role in reducing energy.  

Caches filter out expensive off-chip memory accesses, and replace them with much 

cheaper cache accesses. Although caches have been originally designed to hide the latency gap 

between processors and main memory, the energy gap is an order of magnitude higher. Thus, 

caches can save system energy, even with extremely high miss rates ‎[76]. 

Energy-optimized memory hierarchies can also afford to spend energy and time to improve 

efficiency. An architectural technique that eliminates a miss at a cache level is energy efficient as 

long as it dissipates less energy than the avoided miss. Since misses are very expensive at the 

larger levels of the hierarchy, new cache designs can afford to spend energy to reduce misses. A 

technique can also afford to spend time at caches to improve energy efficiency. Modern 
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processors use a variety of latency-tolerance techniques including data dependence speculation, 

out-of-order execution, and (simultaneous) multithreading to mitigate the effect of long-latency 

operations such as cache misses. A processor with a specific combination of techniques has a 

sphere of latency tolerance, within which performance is relatively insensitive to small changes 

in latency. Thus, improving the cache hit rate is effective, even at the cost of (relatively small) 

extra cache access latency and energy. 

In this dissertation, I advocate using compression in caches to address the energy 

challenges in multicore systems. Cache compression seeks to significantly improve cache 

utilization by fitting more blocks into the same space while incurring small latency, energy, and 

area overheads due to compressing and decompressing cache blocks. Compression has been 

studied for every level of the cache hierarchy to increase effective capacity, reduce miss rates, 

improve performance ‎‎[20]‎, reduce energy ‎[45] or reduce cache power and area ‎[53]. Cache 

compression is harder than other levels of the memory hierarchy, since performance is sensitive 

to cache latency, especially for L1 and L2 caches. But as multicore systems move to having three 

or more levels of cache, the sensitivity to LLC latency decreases, allowing systems to consider 

more effective, longer latency compression algorithms. Thus, in this dissertation, I revisit 

compressed caching at LLC and propose energy-optimized compressed LLCs to improve system 

energy.  

 



7 

 

1.4 Thesis Contributions 

In this section, I briefly explain the most important contributions of this dissertation. 

1.4.1 Understanding Potentials and Limits of Compressed Caching 

Designing a compressed cache typically has two main parts: a compression algorithm to 

represent the same data blocks with fewer bits, and a compaction mechanism to fit compressed 

blocks in the cache. There are several compression algorithms that exploit regular patterns and 

the redundancy to compress data. For cache compression, in particular, the compression and 

decompression latency, area and power overheads of an algorithm matter, in addition to its 

ability to achieve a good compression ratio (i.e., original size over compressed size). In this 

dissertation, I use practical hardware-based compression algorithms with fairly good 

compressibility and low overheads. In Chapter 2, I show that compression can more than triple 

the effective capacity of a cache while increasing accessing latency by few cycles, and access 

energy, negligibly.  

To achieve the potentials of a given compression algorithm, the compaction mechanism—

how to store and track more compressed blocks in the same space—plays a critical role. In order 

to track more blocks in the cache, a compressed cache needs extra tags and metadata. An ideal 

design would fit variable size compressed blocks tightly to reduce internal fragmentation, while 

keeping tag and metadata overheads low. Since I am proposing to use compressed caching for 

energy-efficiency as well as performance, an ideal compaction mechanism would also avoid 

incurring energy and latency overheads. In Chapter 3, I categorize previous proposals based on 

three main design factors: (1) how to provide the additional tags, (2) allocation granularity of 
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compressed blocks, and (3) how to find the corresponding block given a matching tag. 

Depending on these design factors, most previous proposals have demonstrated only limited 

benefits from compression, mainly due to internal fragmentation and limited tags. In addition, 

previously proposed techniques mostly focused on exploiting compression for performance, even 

at high energy costs. 

1.4.2 Decoupled Compressed Cache: Exploiting Spatial Locality for Energy Optimization 

In designing a Decoupled Compressed Cache (DCC), I have four main goals: (1) keeping 

tag and other metadata overheads low, (2) increasing cache utilization by tightly packing variable 

size compressed blocks, (3) optimizing for energy by eliminating sources of energy overheads 

present in previous designs, and (4) providing a practical design. 

In order to increase the number of compressed blocks while keeping tag overheads low, 

DCC proposes managing cache tags at multiple granularities. Although current multicore caches 

typically support a single block size, most workloads exhibit spatial locality at multiple 

granularities. For most applications, many neighboring blocks can exist in the cache at the same 

time. Instead of tracking these blocks separately, DCC exploits spatial locality, and uses super-

block (also known as sectors ‎[75]
1
) tags. A super-block tag tracks four aligned contiguous cache 

blocks. Since these neighboring blocks share a single address tag, using super-block tags slightly 

increases cache area overhead, while it allows DCC to track up to four times more blocks in the 

cache.  

                                                 
1 I use the unambiguous terms super-block, block, and sub-block, rather than the original, but sometimes confusing terms sectors, 

blocks, and segments. 
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DCC increases cache utilization by reducing internal fragmentation. It compresses 64-byte 

blocks into variable numbers of sub-blocks (e.g., 0 to 4 16-byte sub-blocks). DCC decouples the 

address tags, allowing any data sub-block in a set to map to any tag in that set, to reduce 

fragmentation within a super-block. In other words, DCC allows sub-blocks of a block to be non-

contiguous within a set. In this way, it eliminates the re-compaction overheads of previous 

variable size compressed caches ‎[57], while reducing internal fragmentation with sub-blocking. 

Since each sub-block in the data array could belong to any block, DCC keeps additional 

metadata (i.e., back pointers) to find the owner of each data sub-block. An optimized Co-DCC 

design further reduces internal fragmentation (and increases effective capacity) by compacting 

the compressed blocks from a super-block into the same set of data sub-blocks.  

In this work, I also demonstrate that DCC is practical. I present a concrete design for DCC 

and show how it can be integrated into a recent commercial LLC design (AMD Bulldozer LLC) 

with little additional complexity. 

1.4.3 Skewed Compressed Caches 

Given a compression algorithm, an ideal compressed cache tightly packs variable size 

compressed blocks to increase effective capacity, has a simple design, low tag area overheads 

and fast lookups. These goals are at odds with each other. Previously proposed compressed 

caches either do not support variable compressed block sizes ‎[39]‎[47]‎[48]‎[45] or need to keep 

extra metadata to find a compressed block ‎[20]‎[46]‎[50], which increases overheads and 

complexity. Even our proposal DCC requires per sub-block back pointers to locate a compressed 
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block. In addition, since DCC manages super-blocks and blocks independently, that complicates 

its replacement policy.   

I propose a Skewed Compressed Cache (SCC) to fill this gap. SCC allocates variable size 

compressed block while eliminating the need for extra metadata to track blocks. Our goal is to 

improve LLC effective capacity by compacting variable size compressed blocks in such a way 

that we can fit and track them with no extra storage overhead and with low design complexity.  

Similar to DCC, SCC exploits spatial locality and uses super-block tags to track more 

compressed blocks with low tag area overhead. It also allows variable size compressed blocks to 

reduce internal fragmentation. SCC retains direct tag-data mapping to eliminate extra metadata 

(i.e., no back pointers). SCC does this using novel sparse super-block tags and a skewed 

associative mapping that takes compressed size into account. SCC also simplifies cache 

replacement. On a conflict, SCC always replaces one sparse super-block tag and all of the one to 

eight adjacent blocks packed into the corresponding data entry. This is much simpler than DCC, 

which may need to replace blocks that correspond to multiple super-blocks, as DCC tracks all 

blocks of a super-block with only one tag. Like DCC, SCC achieves performance comparable to 

that of a conventional cache with twice the capacity and associativity. But SCC does this with 

less than half the area overhead (2.6% vs. 6.8%) of DCC. 

1.4.4 MythBusters: on Compression Effectiveness in the Memory Hierarchy 

Most compressed cache proposals rely on workload properties that have only been 

demonstrated to hold for small, CPU-centric benchmarks and very short (simulated) runtimes. 

Thus, it is largely a matter of faith that these properties hold for large, real-world workloads 
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running for long periods of time. Here, I treat these workload properties as myths—stories that 

may not be true—that must be tested. I explore 8 myths—common assertions and conventional 

wisdoms about compression effectiveness—that span a broad range of design options, including 

compression algorithms, granularity, and compression locality. Rather than limiting ourselves to 

standard CPU benchmarks and detailed architectural simulation, this study includes up to 24 

hour measurements of live workloads, including production servers (e.g., web, file and database 

servers), memory-intensive desktop applications (e.g., Google Chrome), mobile benchmarks, and 

emerging big data applications. Through extensive analysis, I show that two of the eight myths 

are‎“Busted!,”‎two‎are‎“Plausible,”‎and‎the‎rest‎are‎“Confirmed!”. 

1.5 Thesis Organization 

I begin this dissertation by discussing an overview of the background and related work on 

compression (Chapter 2). In Chapter 3, I discuss previously proposed compressed caches, and 

analyze their limitations. In Chapter 4, I present the Decoupled Compressed Cache (DCC), its 

hardware implementation, and an evaluation of its main properties. In Chapter 5, I present the 

Skewed Compressed Cache (SCC). In Chapter 6, I present MythBuster, which studies the 

compressibility of real applications running on real machines. Finally, Chapter 7 concludes this 

dissertation and outlines some potential areas of future research. 
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Chapter 2  

Compression Algorithms: Background and Related Work 

In information theory, entropy of a source input is the amount of information contained in 

that data. Entropy denotes the number of distinct values in the source. Low entropy suggests that 

data can be represented with fewer bits. Although computer designers try to use efficient coding 

for different data types, the memory footprints of many applications still have low entropy. This 

is mainly due to repeated bit patterns such as repeated characters in a string, zeros, and small 

values. Zeros are in particular common due to uninitialized variables, null pointers, or zero 

padding in memory pages. Small values (e.g., small integers) can also be represented with few 

 Frequent-Value Based Significance Based 

General-Purpose 

Static 
Static Huffman Coding ‎[24] 

FVC ‎[38] 

Significance-Based Address 

Compression ‎[43]‎[44] 

Dynamic 

Lempel-Ziv ‎[27]‎[28] 

Dynamic Huffman Coding ‎[25] 

BDI ‎[19] 

C-PACK ‎[18] 

FPC ‎[20] 

Special-Purpose 

Static Instruction Compression ‎[1]-‎[10] - 

Dynamic Floating-point Compression ‎[12]-‎[16] - 

 

Table ‎2-1: Compression Algorithms Taxonomy. 
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bits, while we often allocate them similar to maximum values (e.g., 64 bits). 

Compression algorithms compress a data message by exploiting the low entropy in the 

data. They map a data message to compressed code words by operating on a sequence of input 

bytes. In this section, we first describe and classify different compression algorithms. We then 

explain the main metrics to evaluate the success of a given compression algorithm. Finally, we 

evaluate the potentials of some popular compression algorithms for a wide range of applications. 

2.1 Compression Algorithm Classifications 

Several compression algorithms have been proposed. There are, in general, two types of 

compression algorithms: lossless and lossy. In lossless algorithms, decompression can exactly 

recover the original data, while with lossy algorithms only an approximation of the original data 

can be recovered. Lossy algorithms are mostly used in voice and image compression where lost 

data do not affect their usefulness. On the other hand, memory content compression techniques 

are lossless since any single memory bit loss or change can affect the validity of the results in 

most computer programs. Therefore, in this thesis, we focus only on lossless compression 

algorithms. 

Table ‎2-1 presents a taxonomy of well-known compression algorithms. For each 

algorithm, based on its techniques and applications, we classify it into: 

 General-Purpose versus Special-Purpose: General-purpose algorithms target 

compressing various data types independent of their semantics. Several existing algorithms fall 

in this category, including BZIP2, UNIX gzip, and most algorithms used in compressed caches 
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or memory. Unlike general-purpose algorithms, specialized compression algorithms are 

optimized for specific data types, exploiting the semantic knowledge of the data being 

compressed. Image/video compression and texture compression in GPUs ‎[17] are good examples 

of specialized compression. General-purpose techniques tend to achieve low compressibility for 

certain data types, including instructions and floating-point data. Thus, many have proposed 

specialized algorithms to improve instruction and floating-point compressibility. However, in 

this thesis, I focus on low-overhead general-purpose compression algorithms suitable for 

compression in the memory hierarchy. 

 Static versus Dynamic: Static compression algorithms provide a fixed mapping 

from the input data message to output code words ‎[29]. They represent a sequence of input bits 

with the same code words every time that sequence appears in the input data message. They 

require two passes on the input data: one pass to determine the mapping, and a second pass for 

compression. On the other hand, dynamic algorithms do not require any previous knowledge of 

the data input. They do compression on the fly and might change the mapping over time. In 

general, dynamic compression techniques are more widely adopted in hardware as they do not 

require any pre-processing of input data. Some techniques have a hybrid approach, they are 

neither completely static nor completely dynamic ‎[29].  

 Frequent-Value-Based versus Significance-Based: Frequent-value-based 

algorithms exploit a small number of distinct values that tend to repeat very frequently in the 

memory footprint of an application. For example, zero blocks are common in many applications. 

Thus, a simple form of a frequent-value-based compression technique is to detect zero blocks 

(ZERO ‎[37]). Significance-based compression algorithms, on the other hand, are based on the 
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observation that many values are small, and do not require the full space allocated for them. For 

example, small integer values are sign-bit extended into 32-bit or 64-bit blocks, while all the 

information can be retrieved from the least-significant bits. There are several variations of 

frequent-value-based and significance-based compression algorithms proposed for hardware-

based cache/memory compression techniques ‎[18]‎[20]. 

Below, we present some popular compression algorithms that are frequently used for 

compressing data in the memory hierarchy. We also explain how they fit in our taxonomy. 

2.1.1 Lempel-Ziv (LZ) Coding 

Lempel-Ziv (LZ) coding and its derivatives ‎[27]‎[28] are the most popular lossless dynamic 

compression algorithms, which form the basis for many hardware implementations. LZ methods 

parse data input on the fly using a dictionary in LZ78 ‎[28] and a sliding window in LZ77 ‎[27], 

which is the equivalent of an explicit dictionary. LZ78 compresses data by exploiting 

redundancy. It builds a dictionary on the fly. It replaces a repeated symbol (e.g., a string) with a 

reference to the dictionary. If a match does not exist, it adds the new symbol to the dictionary. 

LZ algorithms are, in general, effective at exploiting redundancy due to symbol frequency, 

character repetition, and highly used patterns. 

2.1.2 Huffman Coding  

Huffman algorithms represent more frequent symbols using shorter code words (i.e., fewer 

bits). Huffman coding derives a variable-length code table for each source symbol. It derives this 

table based on the probability or frequency of occurrence of each symbol in the data input. To 

build this table, static Huffman coding ‎[24] needs an extra pass on the input data to compute the 
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probabilities. Vitter ‎[25] proposed dynamic Huffman coding that only requires one pass of data 

to compress. 

2.1.3 Frequent Value Compression (FVC) 

Yang and Gupta ‎[38] introduced a frequent value locality phenomenon: for a running 

application at any execution point, a small number of distinct values occupy a large fraction of 

its memory footprint. They also found that the identity of the frequent values, which are fairly 

uniformly scattered across the memory, remains quite stable over the execution of a program. 

They exploited frequent value locality to compress data in the memory hierarchy. To find 

frequent values, they proposed three different profiling approaches: one profiling run for each 

application before any main run, an initial profiling phase per application execution, and 

contiguous profiling of a program during its execution. 

2.1.4 Frequent Pattern Compression (FPC) 

FPC ‎[57] is a general-purpose compression algorithm, mainly optimized for compressing 

small cache/memory data blocks. It exploits the fact that many values are small (e.g., small 

integers) and can be stored to a fewer number of bits (e.g., 4 bits), but are normally stored in full 

32-bit or 64-bit words. FPC compresses data blocks on a word-by-word basis by storing common 

word patterns in a compressed format accompanied with an appropriate prefix. It applies 

significance-based compression at word granularity (4 bytes), detecting and compressing a word 

to: 4 bits if 4-bit sign-extended, 8 bits if one-byte sign-extended, 16 bits if half-word sign-

extended or half-word padded with a zero half-word, or two half-words each a byte sign-

extended.  
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2.1.5 Significance-Based Address Compression 

Farrens and Park ‎[43] exploited the redundant information in high-order bits of addresses 

transferred between processor and memory to improve memory bandwidth. They basically used 

a variation of significance-based compression, cached high-order bits of addresses and only 

transferred the low-order address bits as well as small indices (in place of the high-order address 

bits). Citron and Rudolph ‎[44] applied a similar approach to addresses. They stored common 

high-order bits in address words in a table and transferred only the low order bits plus and index 

between the processor and memory. 

2.1.6 Base-Delta-Immediate (BDI)  

BDI compression algorithm ‎[19] is a low-overhead general-purpose algorithm for 

compressing data in on-chip caches and the main memory. It is based on the observation that the 

values within a small cache/memory data block have a low dynamic range (i.e., small differences 

in their values). BDI represents a block using one or more base values and an array of differences 

from the base values. Finding the optimum base value is complicated. Thus, to avoid 

compression latency increase and to reduce hardware complexity, for each block, BDI uses the 

first value and zero as the base values. In this way, BDI can compress/decompress all values in 

parallel.  

2.1.7 Cache Packer (C-PACK) 

C-PACK ‎[18] is designed specifically for hardware-based cache compression. C-PACK 

compresses a data-block at a 4-byte word granularity. It detects and compresses frequently 

appearing words (such as zero words) to fewer bits. In addition, it also uses a small dictionary to 
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compress other frequently appearing patterns. The dictionary has 16 entries, each storing a 4-

byte word.  The dictionary is built and updated on the fly per data block. C-PACK checks 

whether each word of the input block would match a dictionary entry (even partially). If so, C-

PACK then stores the index to that entry in the output compressed code. Otherwise, C-PACK 

inserts the word in the dictionary. Due to the dictionary, processing multiple words in parallel 

while permitting an accurate dictionary match is challenging. Thus, C-PACK 

compresses/decompresses only two words at each cycle. 

2.1.8 Instruction Compression 

General-purpose compression algorithms usually perform poorly for instruction blocks as 

instructions have complicated bit patterns compared to regular data blocks. Several specialized 

compression techniques have been proposed to improve compressibility of instructions. 

Instruction compression is in particular important in embedded systems, where instruction 

storage is expensive. Instruction compression can also improve performance by effectively 

increasing instruction fetch bandwidth.  

Most instruction compression techniques find frequently used instruction sequences in the 

instruction stream, replacing those with small code words to reduce instruction size 

‎[1]‎[2]‎[3]‎[4]‎[5]‎[6]‎[7]‎[8]‎[9]‎[10]. For example, Lefurgy et al. ‎[1] proposed a post-compilation 

analyzer that examines a program, and replaces common instruction sequences with small code 

words. The processor fetches these code words and expands them to the original sequence of 

instructions in the decode stage. Their technique benefits programs in embedded processors 

where instruction memory size is expensive. Benini et al. ‎[5] similarly compressed the most 



19 

 

commonly executed instructions to reduce energy in embedded systems. They decompressed 

instructions on the fly by a hardware module located between the processor and memory. 

Cooper et al. ‎[6] explored compiler techniques for reducing memory needed to load and 

run program executables for a RISC-like architecture. They reduced instruction size using 

pattern-matching techniques to identify and coalesce together repeated instruction sequences. 

Similarly, Wolfe and Chanin ‎[7] targeted reducing the instruction size of RISC architectures 

using compression. They designed a new RISC system that can directly execute compressed 

programs. They used an instruction cache to manage compressed programs. The processor 

executes instructions from the cache, so the compression is transparent to the processor.  

Thuresson and Stenström ‎[10] evaluated the effectiveness of different dictionary-based 

instruction compression techniques in reducing instruction size.  Dictionary-based instruction 

compression techniques statically identify identical instruction sequences in the instruction 

stream and replace them by a code word. Later, at runtime, they replace the code word by the 

corresponding instruction sequence (i.e., the dictionary entry). The authors showed that this 

technique can reduce instruction size significantly. 

Thuresson et al. ‎[11] addressed increased instruction-fetch bandwidth and larger 

instruction footprint in VLIW systems using compression. They compressed at compile time by 

analyzing what subset of a wide instruction set is used in each basic block based on profiling. 

They also proposed a decompression engine that comprises a set of tables that dynamically 

convert a narrow instruction into a wide instruction. 

http://www.informatik.uni-trier.de/~ley/pers/hd/s/Stenstr=ouml=m:Per.html
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2.1.9 Floating-Point Compression 

Similar to instructions, floating-point data is generally not compressible with general-

purpose compression algorithms.  There are several proposals to improve compression for 

floating-point data. Isenburg et al. ‎[12]‎[13] proposed a compression technique to reduce storage 

size for floating-point geometric coordinates in scientific and industrial applications. They 

proposed a lossless compression technique using predictive coding. For each coordinate, they 

predicted values in floating-point and compressed the corrections from the actual value using 

context-based arithmetic coding. Lindstrom and Isenburg ‎[14] also presented an online lossless 

compression of floating-point data to accelerate I/O throughput in real simulation runs. They also 

used prediction, and for each data value, they predicted it from previously encoded data. They 

then compressed the difference between the actual and predicted value.  

Ratanaworabhan et al. ‎[15] proposed an algorithm to compress sequences of IEEE double-

precision floating-point values. They used value prediction, predicted each value in the sequence, 

and XORed it with the true value. They then encoded and compressed the residual simply by 

dropping the high-order zero bits (leading-zero compress). In another work ‎[16], the authors 

further extended compression for fast double-precision floating-point data. 

2.2 Metrics to Evaluate the Success of a Compression Algorithm 

There are several parameters to evaluate the success of a compression algorithm, including 

compression ratio, compression and decompression latency, and area and power overheads of 

compression and decompression units. Compression ratio is defined as the size of the original 
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uncompressed data divided by the size of the compressed data. The higher the compression ratio 

is, the higher the compression benefits (e.g., saved space) would be. However, there are usually 

tradeoffs between compression ratio and compression/decompression overheads. The higher 

compressibility of more complex algorithms usually comes with higher overheads, including 

compression and decompression latency, area, and power. Thus, many approaches have favored 

simple algorithms with lower overheads, but at the same time, low compressibility ‎[19]‎[20].  

Existing tradeoffs change per design point. For example, in compressed caches and 

memory, decompression latency is particularly important as it lies on the critical path and can 

degrade performance. Cache compression is harder than other levels of the memory hierarchy, 

since performance is sensitive to cache latency, especially for L1 and L2 caches. But as 

multicore systems move to having three or more levels of cache, the sensitivity to LLC latency 

decreases, allowing systems to consider more effective, longer latency compression algorithms. 

In addition, many systems use different mechanisms to hide memory latency, such as OOO cores 

or multi-threading. Those systems can tolerate the extra decompression latency better, so they 

could possibly benefit from more complicated algorithms. Similarly, more complex algorithms 

are better suited at the main memory than caches, where cache hierarchy effectively hides the 

extra latency. For example, IBM MXT uses a complex algorithm to improve memory capacity 

‎[30]. Recently, Arelakis and Stenstrom ‎[46] showed how an aggressive compression algorithm 

like Huffman coding can be suitable for caches. 
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2.3 Compression Potentials 

Although some data and most instructions are difficult to compress, most workloads are 

highly compressible using general-purpose algorithms. Figure ‎2-1 illustrates the trade-off 

between decompression latency and compression ratio (i.e., original size over compressed size) 

for three hardware-based compression algorithms. A simple zero-block detection algorithm 

(denoted ZERO ‎[37]) has single-cycle decompression latency, but only achieves an average 

compression ratio of 1.4 and only really benefits a few workloads‎. Adding a more complex 

significance-based compression algorithm, FPC+Z (FPC ‎[20] augmented with ZERO) works for 

a broader range of workloads and improves the average compression ratio to 2.4, but increases 

decompression latency to five cycles, assuming 12 FO4 gate delays per cycle ‎[57]. Finally, 

adding dictionary-based compression, C-PACK+Z (C-PACK ‎[18] augmented with ZERO) 

increases the average compression ratio to 3.4. However, C-PACK takes 9 cycles to decompress 

Figure ‎2-1: Compression ratio of different compression algorithms. 
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a 64-byte data block at 3.2GHz ‎[21]‎[22]. Such a high compression ratio suggests the potential for 

a similarly large normalized effective cache capacity, that is, the number of compressed blocks 

stored divided by the maximum number of uncompressed blocks that could be stored. Because 

multi-megabyte LLCs already have relatively long access times (e.g., 30 cycles) and very high 

miss penalties (e.g., greater than 150 cycles and ~60 nJ), the benefit of higher compression ratio 

with C-PACK+Z has the potential to outweigh the longer decompression pipeline.  
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Chapter 3  

Managing Compressed Data in the Memory Hierarchy: 

Background and Related Work 

Compression has been studied for every level of the cache hierarchy to increase effective 

capacity, reduce miss rates, improve performance‎, reduce energy ‎or reduce cache power and 

area. Designing a compressed cache or memory typically involves: a compression algorithm to 

compress blocks, a compaction mechanism to fit the compressed blocks in the cache or memory, 

and a set of policies for managing compressed data. In the previous chapter, I explained several 

compression algorithms that exploit repeated patterns and redundancy within data blocks to 

achieve a good compression ratio.  

In this section, I focus on compaction mechanisms, and policies to manage compressed 

caches and memory. I first present the background and related work on cache compression. I 

describe the fundamentals of compacting compressed data in caches, and present how previous 

designs limit compression benefits. Finally, I will briefly explain related work on memory 

compression. 
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3.1 Compressed Caches: Background and Related Work 

3.1.1 Cache Compaction Mechanisms: Fundamentals and Limits 

3.1.1.1 Design Fundamentals 

While a compressor produces variable size codes at bit granularity, conventional caches 

operate on fixed size blocks (e.g., 64B). Thus, to achieve the potentials of a given compression 

algorithm, the compaction mechanism plays a critical role to manage compressed blocks in the 

cache. Table ‎3-1 shows a taxonomy of the current state of the art. We can classify previous work 

using three main design factors: (1) how to provide the additional tags, (2) allocation granularity 

of compressed blocks, and (3) how to find the corresponding block given a matching tag. 

Number of Tags: To track more blocks, compressed caches require additional tags. 

Traditionally, compressed caches double the number of tags (i.e., 2x Block Tags) to track up to 

Tags 
Data 

Half-Block Sub-Block Byte 

Per 

Block 

Direct 

One-to-One Tag 

Mapping 

CC‎[39] 

Lee et al. ‎[47]‎[48] 

Significance-compression ‎[45] 

 

- - 

Decoupled 

Forward Pointers 
- VSC ‎[20] SC2‎[46] 

Decoupled 

Back Pointers 
- IIC-C ‎[50] - 

Per 

Super Block 

Direct 

One-to-One Tag 

Mapping 

- SCC [new] - 

Decoupled 

Forward Pointers 
- - - 

Decoupled 

Back Pointers 
- DCC[new] - 

 

Table ‎3-1: Compressed Caches Taxonomy. 
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2x cache blocks in the cache ‎‎[20]. At the LLC, further increasing the number of tags is costly as 

the LLC is already one of the largest on-chip components. In this dissertation, I propose an 

alternative approach to increase the number of tags with low area overhead. My proposals, 

Decoupled Compressed Cache (DCC) and Skewed Compressed Cache (SCC), exploit spatial 

locality and use super-block tags to effectively track more blocks while keeping the overheads 

low. DCC, for example, uses the same number of tags as a regular cache, but each tag tracks a 4-

block super-block (i.e., 1x Super-Block Tags), and can map up to four cache blocks. Tracking 

super-blocks only slightly increases tag area compared to the same size regular cache. 

Allocation Granularity and Tag-Data Mapping: The subsequent issues are at what 

granularity to allocate compressed blocks, and how to find a compressed block given a matched 

tag (i.e., tag-data mapping). Traditional caches store small blocks (e.g., 64B) and maintain a 

direct one-to-one relationship between tags and data, so a matching tag implicitly identifies the 

corresponding data. In compressed caches, there is usually a trade-off between allocation 

granularity and required metadata to track compressed blocks. On the one hand, like many 

memory allocators, it is generally beneficial to tolerate some internal fragmentation than to deal 

with arbitrary variability. On the other hand, by lowering allocation granularity, we could lower 

internal fragmentation and fit more blocks in the cache, but at higher metadata costs. Previous 

proposals differ on how they balance this trade-off. 

The earliest compressed caches maintain such a direct relationship by allowing only one 

compressed size (i.e., half the block size). Yang et al. ‎[39] exploited the value locality 

phenomenon to design a first-level compressed cache (Compression Cache). Each cache line of 

the Compression Cache (CC) stores either one uncompressed line or two lines compressed to at 
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least half their original sizes ‎[39]. Lee et al. ‎[47]‎[48]  proposed a compressed cache that 

selectively compresses cache blocks if and only if they can be compressed to less than half their 

original size. They proposed several techniques to reduce the decompression overhead ‎[47] 

including selectively compressing blocks only if their compression ratio is less than a certain 

threshold, parallel decompression, and buffering recently accessed blocks at the L2 cache in an 

uncompressed format. In another work ‎[48], they compressed block pairs and stored them in a 

single line if both lines compressed by 50% or more. In this way, they free a cache block in an 

adjacent set; however, they need to check two sets for a potential hit on every access, which 

increases power overheads. Kim et al. ‎[45] also compressed cache blocks into half using a 

significance-based compression scheme to improve cache utilization. They compressed and 

stored‎a‎ cache‎block‎as‎ a‎half‎block‎ if‎ the‎block’s‎upper‎half‎was‎ either‎ all‎ zeros‎or‎ all‎ ones.‎

Otherwise, they stored the whole block as uncompressed. Overall, these techniques, which I refer 

to as Fixed Compression (FixedC), limit compressibility by failing to take advantage of blocks 

that compress by less than 50%, and so introducing internal fragmentation. 

More recent designs reduce internal fragmentation by decoupling tag-data mapping ‎[20] 

‎[46]‎[50]. Alameldeen and Wood ‎[20] presented a compressed cache that compacts compressed 

blocks into a variable number of sub-blocks (also called segments), using the FPC compression 

algorithm ‎[20] . Their proposal, which I refer to as Variable Size Compression (VSC), reduces 

internal fragmentation, since all blocks in a set share the same pool of sub-blocks. It stores a 

compressed block into contiguous sub-blocks in its corresponding data set. VSC decouples tag-

data‎mapping‎and‎keeps‎a‎block’s‎compressed‎size‎ in‎ its‎ tag‎ to‎ locate‎ the‎block.‎On‎a‎ lookup,‎

VSC finds the block by adding up the size of all its previous blocks in its corresponding set. 
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Using‎this‎technique,‎VSC‎keeps‎metadata‎small.‎However,‎on‎a‎block‎update,‎when‎the‎block’s‎

compressibility and size might change, VSC requires moving other blocks in the corresponding 

set in order to make enough contiguous space for the accessing block (i.e., re-compaction). As 

updates happen frequently, re-compactions incur high dynamic energy overheads on the cache. 

To increase cache utilization, SC
2
 ‎[46] also decouples tag-data mapping. It compresses 

blocks into a variable number of bytes, storing a byte index field in each tag to locate the starting 

byte of a compressed block in a set. For example, in a 16-way associate cache, it stores 10 extra 

bits per tag to locate the block in its corresponding data set. By allocating a block into contiguous 

sub-blocks, SC
2 

also requires evicting adjacent blocks on updates when the block size has 

increased. 

Hallnor et al. ‎[50] extended their earlier indirect index cache ‎[49] to support compression 

(IIC-C). IIC-C compresses blocks into a variable number of sub-blocks using the LZSS 

algorithm ‎[32]. Unlike VSC and SC
2
, IIC-C eliminates re-compaction overhead by allocating the 

sub-blocks of a block anywhere in the data array. However, to locate a block, it incurs huge 

metadata overhead by storing the corresponding set index of each sub-block in the tag (i.e., 

forward pointers).  For example, for an 8MB LLC with 64-byte blocks, 16-byte sub-blocks, and 

doubled number of tags, IIC-C incurs about 24% area overhead, while it at most doubles the 

effective capacity. Further increasing the number of tags will make its area overhead even worse. 

In this dissertation, I propose two different approaches to eliminate internal fragmentation 

through sub-blocking, while I eliminate the overheads involved with decoupling tag-data 

mapping. My proposal DCC supports variable size compression by decoupling tag-data 
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mapping. Unlike previous proposals, DCC provides a low-overhead decoupling mechanism. 

DCC decouples sub-blocks from the address tag to eliminate expensive re-compaction when a 

block’s‎ size‎ changes.‎ DCC allocates sub-blocks of a block in one set of the data array, not 

necessarily in contiguous space (unlike VSC), but in order. DCC still needs extra metadata to 

find a block in the data array. To keep the metadata overhead small, instead of storing where 

each sub-block of a block locates (i.e., forward pointers ‎[50]), I use a few bits per data sub-block 

in a data set to represent its owner block (i.e., back pointers).  

My proposal SCC similarly compacts blocks into a variable number of sub-blocks to 

reduce internal fragmentation, but retains direct tag-data mapping to find blocks quickly and 

eliminate extra metadata (i.e., no forward or back pointers). SCC does this using novel sparse 

super-block tags and skewed associative mapping that takes compressed size into account. 

3.1.1.2 Limits of Previously Proposed Compressed Caches 

As I showed in Figure ‎2-1 of Chapter 2, C-PACK+Z compression algorithm achieves an 

average compression ratio of 3.4 for a wide range of application. Ideally, a compressed cache 

could fit 3.4 times more compressed blocks in the same space using this algorithm. However, 

previous compressed cache designs fail to achieve this potential for three main reasons. First, all 

hardware caches map blocks into sets, introducing an internal fragmentation problem since a 

compressed block must (at least in current designs) be stored entirely within one set. In Figure 

‎3-1, the BytePack column represents an idealized compressed cache with infinite tags that 

compacts compressed blocks on arbitrary byte boundaries. BytePack achieves an average 

normalized effective capacity of 3.1. Note that some low memory intensive workloads, such as 

ammp, have small working sets, which fit in a small cache even though they have highly 
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compressible data. Second, practical compressed caches introduce a second internal 

fragmentation problem by compacting compressed blocks into one or more sub-blocks, rather 

than storing compressed data on arbitrary byte boundaries. The column labeled VSC-Inf in 

Figure ‎3-1 illustrates that compacting compressed blocks into 0–4 16-byte sub-blocks (but with 

infinite tags per set) degrades normalized effective capacity from 3.1 to 2.6, on average. Finally, 

compressed caches have a fixed number of tags per set. The remaining columns in Figure ‎3-1 

illustrate that reducing the number of tags from infinite to a more practical twice Baseline, 

degrades the normalized effective capacity from 2.6 to 1.7, on average.  

Figure ‎3-1 results suggest two approaches to unlocking the potential of cache compression. 

First, reduce the internal fragmentation within a set. However, this must be done with care in 

today’s‎energy‎constrained‎environment.‎VSC-2X relaxes the mapping constraint between tags 

and data and compacts compressed blocks into a variable number of contiguous sub-blocks ‎‎[20]. 

VSC-2X can compact more blocks in the cache than a simple FixedC compressed cache, which 

Figure ‎3-1: Limits of previous compressed caches. 
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only compacts compressed blocks into half-blocks (i.e., 32-byte sub-blocks).  However, VSC 

needs to repack the sub-blocks‎in‎a‎set‎whenever‎a‎block’s‎size‎changes,‎to‎make‎contiguous‎free‎

space. This can significantly increase the cache bank occupancy and dynamic energy. Figure ‎3-2 

shows the average number of accessed bytes at LLC normalized to Baseline. FixedC decreases 

the average number of accessed bytes by 36% compared to Baseline due to accessing shorter 

compressed blocks. On the other hand, VSC-2X increases the number of accessed bytes at LLC 

by nearly a factor of three since it needs to repack sets (copying almost half a set, on average). 

This significantly increases LLC dynamic energy.  

The second approach to improving cache compression is to increase the number of tags per 

set. Figure ‎3-1 shows that increasing the tags from twice the Baseline to four times the Baseline 

increases the normalized effective capacity from 1.7 to 2.3, on average. However, done naively, 

this significantly increases the area overhead. Figure ‎3-3 shows the area overhead (compared to 

Baseline) versus normalized effective capacity. A variable size compression cache (VSC-2X) 

with twice as many tags as Baseline ‎[20]‎increases LLC area by 8%. However, quadrupling the 

Figure ‎3-2: VSC overhead on the number of LLC accessed bytes. 
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number of tags (VSC-4X) increases LLC area by ~21%. 

3.1.2 Policies to Manage Compressed Caches 

Adaptive compression: Compressed caches introduce a trade-off between cache capacity 

and cache access latency. On the one hand, they can improve effective cache capacity by storing 

more cache blocks, resulting in a possibly lower cache miss rate. On the other hand, they incur 

higher access latency as they decompress compressed blocks. These trade-offs change depending 

on different parameters, including the sensitivity of the applications to cache latency and 

capacity, cache level and decompression latency. For capacity-sensitive workloads, compression 

can improve performance by reducing costly misses to the next level of hierarchy, while for 

cache insensitive workloads or latency-sensitive workloads, the latency overhead of 

decompression can impact performance. The overhead is higher with longer latency 

decompression techniques and at lower levels of cache hierarchy (L1 or L2).  

To balance this trade-off, Alameldeen and Wood ‎[20] proposed an adaptive policy that 

dynamically‎ adapts‎ to‎ the‎ costs‎ and‎ benefits‎ of‎ cache‎ compression.‎ In‎ a‎ two-level cache 

Figure ‎3-3: Area overhead of different cache designs. 
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hierarchy, they employed compression only at the L2 cache. They kept uncompressed blocks at 

the L1 cache as decompression overhead on the L1 cache hit latency can significantly impact 

performance. On a cache allocate, they compressed a new block if the entire cache appeared to 

be benefiting from compression. To determine whether compression was beneficial, they used 

the‎ cache‎ replacement‎ algorithm’s‎ stack‎ depth.‎ They‎ kept‎ a‎ global‎ saturating‎ counter‎ to‎ keep‎

track of whether compression (could have) eliminated a miss or incurred an unnecessary 

decompression. On each cache access, they incremented this counter by the L2 miss penalty if 

compression could elide a miss, and decremented the counter by the decompression latency if the 

access would have been a hit even without compression. Using this counter, they predicted 

whether to allocate future cache lines in compressed or uncompressed form. They showed that 

by‎dynamically‎monitoring‎workloads’‎behavior,‎ their‎adaptive‎compressed‎cache‎achieved‎the‎

benefits of compression for cache sensitive workloads, while avoiding performance degradation 

for others. Their adaptive mechanism can be used in other compressed caches and at other levels 

of cache hierarchy as long as we are using an LRU replacement policy.  

Tailored replacement policy: Compressed caches typically use the same replacement 

policy as traditional caches that treat all blocks similarly, while the sizes of the cache blocks vary 

depending on their compressibility. Baek et al. ‎[55] proposed a size-aware compressed cache 

management, Effective Capacity Maximizer (ECM), to improve the performance of compressed 

caches. They used cache block size as a hint to select a victim to improve cache performance. In 

a compressed cache, the eviction overhead varies based on the size of the evicted and evictee 

cache blocks. If the size of the new block is larger than the victim block, the compressed cache 

needs to evict more blocks. Thus, they considered block size in the cache management policies 
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to increase effective capacity. They classified blocks as big-size or small-size based on their 

compressed size in comparison with a threshold. They dynamically adjusted this threshold on 

every block insertion. Using a DRRIP ‎[56] framework, they proposed a size-aware insertion 

policy that gives the big-size cache blocks a higher chance of eviction. On evictions, they also 

chose the biggest-size cache block in case there were multiple possible victims. Employing these 

policies, they showed that ECM has the potential to improve effective capacity, cache miss rate 

and overall system performance. Pekhimenko et al. ‎[54] similarly proposed tailored replacement 

and insertion policies for compressed caches. 

Interactions with prefetching: Alameldeen and Wood ‎[57] showed that compression and 

prefetching can interact in strong positive ways. Prefetching, in general, suffers from bandwidth 

pressure and cache pollution, while compression can alleviate both of these. Similarly, 

prefetching can help compression by hiding the decompression latency. Alameldeen and Wood 

‎[57] proposed an adaptive prefetching mechanism that enables prefetching whenever beneficial. 

They‎ used‎ cache‎ compression’s‎ extra‎ tags‎ to‎ detect‎ useless‎ and‎ harmful‎ prefetches.‎ In‎ their‎

compressed cache, they doubled the number of tags to potentially track twice compressed blocks. 

However, in many cases, not all the blocks are compressible, so there are extra tags not being 

used. They leveraged these tags to track recently evicted blocks and to find whether prefetched 

blocks were evicting useful ones. They used a saturating counter that they incremented on useful 

prefetches, and decremented on useless or harmful prefetches. Using this counter, they disabled 

prefetching when it did not help. Overall, they showed by leveraging the interaction between 

compression and prefetching, they can significantly improve performance. 
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3.1.3 Cache Compression to Improve Cache Power and Area 

In addition to adopting compression to improve cache effective capacity, some techniques 

aim at reducing cache power and area using compression. In general, in compressed caches, we 

can reduce cache power on a block access if the power burnt to compress/decompress the block 

is lower than the power burnt to access the compressed block. Thus, in all these techniques, they 

use simple compression algorithms (such as significance-based) with small power overheads at 

the cost of lower compressibility compared to LZ-based compression algorithms.  

Yang et al. ‎[40] exploited frequent value locality to improve cache dynamic power. They 

compressed a cache line into half, if possible, otherwise, stored it as uncompressed. They 

partitioned the cache data array into two sub-arrays such that on an access to a compressed block 

(i.e., a frequent value), they would only activate the first data sub-array. Otherwise, it would 

require an additional cycle to access the second data sub-array. In this way, they could reduce 

cache dynamic energy consumption for frequent value accesses, which are dominant, at the cost 

of higher access time for non-frequent value accesses.  

Significance-compression ‎[45] similarly improves cache power by accessing half of a 

cache block if compressed, and packing more blocks in the cache. Dynamic zero compression 

(DZC) ‎[52] also reduces the L1 cache dynamic power by only storing and accessing non-zero 

bytes of a block in the data array.  

In a recent work, Kim et al. ‎[53] aimed at reducing the L2 cache area and power in single 

processor embedded systems. They halved the L2 cache size, and compressed cache blocks and 

stored them in half size in the L2 cache. If a block was not compressible, they stored its first half 
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in the L2 cache, and its second half in a small cache, called the residue cache. By reducing the 

size of the L2 cache and accessing half-sized blocks, they reduced both area and power. 

3.2 Compressed Memory: Background and Related Work 

Compression also has applications at other levels of memory hierarchy. In this section, I 

describe some hardware-based and software-based memory compression schemes that target 

increasing effective memory capacity, improving memory bandwidth, and reducing memory 

energy.  

3.2.1 Hardware-Based Memory Compression 

IBM Pinnacle ‎[29] was the first commercially available memory controller that employs 

real-time main-memory‎ compression.‎ It‎ employed‎ IBM’s‎ Memory‎ Expansion‎ Technology‎

(MXT) in a single-chip memory controller to effectively double the main memory capacity 

without significant overheads. MXT uses a parallelized variation of the Lempel-Ziv algorithm 

known as LZI as the compression algorithm ‎[27]. It compresses 1-KB cache blocks (same size as 

in the L3) into 0 to 4 256-byte sub-blocks depending on the block compressibility. As blocks 

have variable size when compressed, the memory controller needs to find where the block is by 

translating the block address on the system bus to the physical address in the physical memory. 

To do so, MXT keeps mapping in a Compression Translation Table (CTT) with one entry per 

block. CTT is stored at a reserved location in the physical memory. Each entry includes four 

physical sub-block addresses, each pointing to a 256-byte sub-block in the physical memory. On 

an access, the memory controller performs real to physical address translation by a lookup in the 
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CTT to find where the sub-blocks of a block reside. MXT has shown to be effective for many 

applications and servers. Compared to a standard uncompressed memory, it has negligible 

penalty due to decompression latency. However, to deal with the variable memory size, this 

scheme requires support from the operating system. 

Kjelso et al. ‎[62] also explored compression potentials at the main memory. They 

presented an X-Match hardware compression algorithm. X-Match maintains a dictionary, 

processes 4-byte sub-blocks replacing them with a shorter code in case of a match or a partial 

match with a dictionary element. They analyzed the compressibility of some Unix real 

applications using the X-Match algorithm, and demonstrated an average double increase in 

effective memory capacity with compression. Nunez and Jones ‎[63] further proposed 

XMatchPRO, a high-throughput hardware FPGA-based X-Match implementation. 

Ekman and Stenstrom ‎[59] used a frequent pattern compression scheme ‎[20] to compress 

memory contents. They addressed some of the drawbacks of MXT. First of all, they used a 

simple‎compression‎algorithm‎with‎small‎decompression‎latency‎(5‎cycles)‎as‎opposed‎to‎MXT’s‎

complicated LZ algorithm with 64 cycles of decompression latency. Second, to find a block in 

the main memory, the operating system maps the uncompressed virtual address space directly to 

a compressed physical address space by storing the size of each block in a page in its 

corresponding page table entry and using a small and fast TLB-like structure. 

In a recent study, Pekhimenko et al. ‎[61] proposed Linearly Compressed Pages (LCP) for 

compression at the main memory. They used a simple compression algorithm, Base-Delta-

Immediate Compression (BDI) ‎[19]. To simplify block access in physical memory, LCP uses 
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one fixed size for compressed cache blocks within a given page. In this way, the location of a 

compressed cache block within a page is simply the product of the index of the cache block 

within the page and the compressed size.  

Zhang and Gupta ‎[64] introduced a class of transformations that modify the representation 

of dynamically allocated data structures commonly used in pointer intensive programs. They 

compressed the fields of a node in a dynamic structure by compressing 32-bit address pointers 

and integer words into 15-bit entities, and packing two compressed fields in the space of one. To 

access data in the compressed format, they added six instructions, data compression extension 

(DCX), to the MISP instruction set. 

Dusser et al. ‎[60] proposed decoupled zero-compressed memory (DZC). They exploited 

null blocks that represent a significant fraction of the working set of many applications. DZC is a 

hardware compressed memory that only targets null data blocks. DZC represents null blocks 

with a bit. To store non-null blocks, DZC manages the main memory as a decoupled sectored 

set-associative cache with each page treated as a sector. Compared to other compression 

mechanisms, DZC limits the benefit by only focusing on null blocks. 

Shafiee et al. ‎[65] presented MemZip that exploits compression for improving memory 

bandwidth, energy, and reliability. Most techniques use compression at the main memory to 

improve memory capacity. MemZip, however, compresses blocks in the main memory, but does 

not pack them to make more space. By storing compressed blocks, on a memory access, MemZip 

would access fewer bytes. On a read, it first reads out metadata that tell the exact number of 

bursts required to fetch the compressed cache block. It next transfers the block over exactly that 



39 

 

burst length. In this way, it saves memory bandwidth and energy. It further uses the space freed 

by compression to improve reliability using better ECC coding.  

Sathish et al. ‎[114] exploits compression for data transferred between a GPU and its off-

chip memory to provide higher effective bandwidth. They use a combination of both lossy and 

lossless compression applying compression to floating-point numbers after truncating their least-

significant bits. In this way, they can improve bandwidth with little impact on overall 

computational accuracy. 

3.2.2 Software-Based Memory Compression 

In general, previously proposed software-based compressed memories store actively 

accessed data as uncompressed while storing others in a dedicated section of the main memory in 

a compressed format ‎[66]‎[67]‎[68]‎[69]. On a page fault in the uncompressed section, they search 

the compressed section. They then decompress and move the compressed page. In this way, the 

compressed section basically acts as a cache to hide the latency to the disk. 

Apple OS X Mavericks employs compression to increase performance ‎[70]. With OS X 

Mavericks, compressed memory allows Mac to free up memory space, when needed. As Mac 

approaches maximum memory capacity, OS X automatically compresses data from inactive 

apps, making more memory available for active processes. Linux zcache similarly compresses 

file pages that are in the process of being reclaimed storing them in memory. 
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Chapter 4  

Decoupled Compressed Caches 

4.1 Overview 

Cache compression can increase effective cache capacity, reduce misses, improve 

performance, and potentially reduce system energy. However, as I discussed in Chapter 3, 

previous compressed cache designs have demonstrated only limited benefits mainly due to 

internal fragmentation and limited tags. In addition, most previous proposals targeted improving 

system performance even at high power and energy overheads. For example, VSC ‎[20] allows 

variable compressed block sizes, but requires high-overhead re-compaction, which involves 

moving on average half of the blocks in a set, to make enough contiguous space on updates. 

Since updates happen frequently, re-compactions incur high dynamic energy overheads on the 

cache. 

In this chapter, I present Decoupled Compressed Cache (DCC) ‎[21]. DCC has five main 

goals: (1) increasing the number of tags to track more compressed blocks without incurring high 

area overheads, (2) eliminating energy inefficient re-compactions while allowing variable 

compressed block sizes, (3) reducing internal fragmentation to further improve effective capacity 

by packing compressed blocks tightly, (4) incurring low area and power overheads, and (5) 

providing a practical design. 
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As I discussed in Chapter 3, the first fundamental factor in designing a compressed cache 

is to provide extra tags to track more blocks in the cache. Simply increasing the number of tags 

(e.g., 4x tags) would increase area and power overheads by an unacceptable amount. In order to 

increase the number of tags while keeping the overheads low, DCC proposes managing cache 

tags at multiple granularities. Although caches typically support a single block size, most 

workloads exhibit spatial locality at multiple granularities, and thus, many neighboring blocks 

may exist in the cache at the same time. Instead of tracking these blocks separately, DCC 

exploits spatial locality, and uses super-block tags. A super-block tag tracks a group of aligned 

contiguous cache blocks (e.g., 4 blocks). While previous cache designs used super-blocks tags to 

reduce the number of tags, DCC keeps the same number of tags and use super-block tags to track 

more blocks. Since these neighboring blocks share a single address tag, using super-block tags 

slightly increases cache area overhead. Compared to a regular cache, DCC basically replaces 

each tag entry with a super-block tag. DCC compresses each 64-byte block independent of its 

neighbors. However, it tracks up to four neighbors with one super-block tag. In this way, it can 

track up to four times more blocks in the cache with low area and power overheads.  

To reduce internal fragmentation, DCC compresses a 64-byte block into variable number 

of sub-blocks (e.g., 0 to 4 16-byte sub-blocks), and allocates these sub-blocks in the data array. 

Previous proposals ‎[57]‎[20]‎[50] supported variable size compression at high metadata and power 

overheads. DCC, however, decouples the address tags—allowing any data sub-block in a set to 

map to any tag in that set—to reduce fragmentation within a super-block ‎[75]. In another word, 

DCC allows sub-blocks of a block to be non-contiguous within a set. In this way, it eliminates 

the re-compaction overheads of previous variable size compressed caches ‎[20], while reducing 
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internal fragmentation with sub-blocking. Since each sub-block in the data array could belong to 

any block, DCC keeps a few bits per data sub-block in a data set to represent its owner block 

(i.e., back pointers). 

Although sub-blocking reduces internal fragmentation, it reduces compression 

effectiveness because of wasted space within sub-block boundaries. For example, even if a block 

can fit in 10 bytes, DCC allocates a 16-byte sub-block for that. Reducing sub-block size would 

help, but could increase area and power overheads significantly. An optimized Co-DCC design 

further reduces internal fragmentation (and increases effective capacity) by compacting the 

compressed blocks from a super-block into the same set of data sub-blocks, but uses more 

metadata. 

Although many researchers have studied the potential of cache compression, the computer 

industry has shown lower interest in integrating these ideas in new processors due to possible 

design complexities. In this work, I take an additional step to demonstrate that DCC is practical. 

I present a concrete design for DCC and show how it can be integrated into a recent commercial 

LLC design (AMD Bulldozer LLC) with little additional complexity. 

I evaluate DCC using the GEMS full-system simulator ‎‎[81]. I show that DCC can improve 

average performance and system energy by 10% and 8%, respectively. Importantly, this is better 

than a conventional LLC of twice the capacity, and uses only 8% more area than a same-size 

uncompressed Baseline. In comparison with previous proposals, FixedC and VSC-2X, DCC 

nearly doubles the performance and energy benefits for comparable area overheads. Co-DCC 

further reduces runtimes and system energy, but at the cost of some additional complexity. 
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In the rest of this chapter, I show the potential in exploiting spatial locality for improving 

compression effectiveness in Section ‎4.2, present DCC design in Section ‎4.3, describe a practical 

design in Section ‎4.4, describe the experimental methodology and results in Sections ‎4.5 and ‎4.6, 

and conclude the chapter in Section ‎4.7. 

4.2 Spatial Locality at LLC 

Although current multicore caches typically support a single block size, most workloads 

exhibit spatial locality at multiple granularities. Figure ‎4-1 shows the distribution of neighboring 

blocks in a conventional LLC with a tag per 64-byte block (workloads and simulation parameters 

described in Section ‎4.5). Neighboring blocks are defined as those in a 4-block aligned super-

block (i.e., aligned 256-byte region). The graph shows the fraction of blocks that are part of a 

Quad (all four blocks in a super-block co-reside in the cache), Trios (three blocks out of four co-

reside), Pairs (two blocks out of four co-reside), and Singletons (only one block out of four 

resides in the cache). Pairs and Trios are not necessarily contiguous blocks, but represent two or 
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three blocks, respectively, that could share a super-block tag. Although access patterns differ, the 

majority of cache blocks reside as part of a Quad, Trio, or Pair. For applications with streaming 

access patterns (e.g. mgrid) Quads account for essentially all the blocks. Other workloads exhibit 

up to 29% singletons (canneal), but Quads or Trios account for over 50% of blocks for all but 

two of our workloads (canneal and gcc). 

Super-blocks (also known as sectors ‎[75]) have long exploited coarser-grain spatial locality 

to reduce tag overhead ‎[82]‎[83]‎[75]. Super-blocks associate one address tag with multiple cache 

blocks, replicating only the per-block metadata such as coherence state. Figure ‎4-2(a) shows one 

set of a 4-way-associative super-block cache (SC), with 4-block super-blocks. Using 4-block 

super-blocks reduces tag area by 70% compared to a conventional cache. However, Figure ‎4-2(a) 

illustrates that Singletons, Pairs, and Trios—such as, super-blocks D, C, and A, respectively—

result in internal fragmentation, which can lead to significantly higher miss rates ‎[75]. 

Seznec showed that decoupling super-block tags from data blocks helps reduce internal 

fragmentation ‎[75]. Decoupled super-block caches (DSC) increase the number of super-block 

Figure ‎4-2:  (a) Sectored Cache (b) Decoupled Sectored Cache. 
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tags per set and use per sub-block back pointers to identify the corresponding tag. Figure ‎4-2(b) 

illustrates how decoupling can reduce fragmentation by allowing two Singletons (i.e., blocks F1 

and G3) to share the same super-block. DSC uses more tag space than SC, but less than a 

conventional cache since back pointers are small.  

In this work, I use decoupled super-block tags to improve cache compression in two ways. 

First, super-blocks reduce tag overhead, permitting more tags per set for comparable overhead. 

Second, decoupling tags and data reduces internal fragmentation and, importantly, eliminates re-

compaction when the size of a compressed block changes. 

4.3 Decoupled Compressed Cache: Architecture and Functionality 

In this section, I describe Decoupled Compressed Cache (DCC) and Co-Compacted DCC 

(Co-DCC) designs in detail. While these designs may be applicable to other levels of the cache 

hierarchy, I target the LLC in this work. 

4.3.1 DCC Architecture 

To improve compression effectiveness at the LLC, DCC exploits super-blocks and 

manages the cache at three granularities:  coarse-grain super-blocks, single cache blocks, and 

fine-grain sub-blocks. DCC tracks super-blocks, which are groups of aligned, contiguous cache 

blocks (Figure ‎4-3(d)), while it compresses and stores single cache blocks as variable number of 

sub-blocks.  
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Figure ‎4-3(a) shows the key components of DCC architecture for a small 2-way-set 

associative cache with 4-block super-blocks, 64-byte blocks, and 16-byte sub-blocks. DCC 

consists of Tag Array, Sub-Blocked Back Pointer Array, and Sub-Blocked Data Array. DCC is 

indexed using the super-block address bits (Set Index in Figure ‎4-3 (e)). Note that like all super-

block caches, this index uses higher order bits. In this way, all blocks of the same super-block are 

mapped to the same data set. 

DCC explicitly tracks super-blocks through the tag array. The tag array is a largely 

conventional super-block tag array. Figure ‎4-3 (b) shows one tag entry that consists of one tag 

per super-block (Super-block tag) and coherence state (CState) and compression status (Comp) 

for each block of the super-block. Since all four blocks of a super-block share a tag address, the 

tag array can map four times as many blocks as the same size conventional cache with minimal 

Figure ‎4-3: DCC cache design. 
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area overhead. DCC holds as many super-block tags as the maximum number of uncompressed 

blocks that could be stored. For example, in Figure ‎4-3, for a 2-way-associative cache, it holds 

two super-block tags in each set of the tag array. In this way, each set in the tag array can map 

eight blocks (i.e., 2 super-blocks * 4 blocks/super-block), while a maximum of two 

uncompressed blocks can fit in each set. In the worst case scenario, when there is no spatial 

locality (i.e., all singletons) or cached data is uncompressible, DCC can still utilize all the cache 

data space, for example, by tracking two singletons per set in Figure ‎4-3 (a).  

DCC compresses and compacts cache blocks into a variable number of data sub-blocks. It 

dynamically allocates these sub-blocks in the sub-blocked data array. The data array is a mostly 

conventional cache data array, organized in sub-blocks. In Figure ‎4-3 (a), it provides eight 16-

byte sub-blocks per set, for a total of 128 bytes. This is only one quarter of the data space 

mapped by each set in the tag array (i.e., 2 super-blocks * 4 blocks/super-block * 64 bytes/block 

= 512). Thus using this configuration the tag array has the potential to map four times as many 

blocks as can fit in the same size uncompressed data array.  

DCC decouples sub-blocks from the address tag to eliminate the expensive re-compaction 

when‎ a‎ block’s‎ size‎ changes.‎ DCC‎ allocates‎ sub-blocks of a block in the data array not 

necessarily in contiguous space (unlike VSC ‎[20]) but in order. For example, in Figure ‎4-3 (a), 

block A0 is compressed into two sub-blocks (A0.1 and A0.0) that are stored in the sub-block #5 

and the sub-block #1 in the data array.  

For a low-overhead decoupled tag-data mapping, DCC uses small back pointers as one 

level of indirection to locate sub-blocks of a compressed block. For each sub-block in the data 
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array, the back pointer array keeps one back pointer entry (BPE) identifying the owner block of 

that sub-block.‎To‎do‎so,‎a‎BPE‎stores‎a‎corresponding‎block’s‎tag‎ID‎and‎block‎ID‎(Figure ‎4-3 

(c)). Tag ID (e.g., 1 bit for a 2-way-associative cache) refers to the super-block tag entry 

matching this block in the same set of the tag array (e.g., 1 in Figure ‎4-3 (a)). Block ID refers to 

the position of a block within its encompassing super-block. DCC derives Block ID (e.g., 2 bits 

for a 4-block super-block) from the block address (Blk# in Figure ‎4-3 (e)). Using the tag ID and 

block ID, a BPE encodes the owner block of a sub-block with minimum metadata. In this way, 

the back pointer array enables low-overhead variable size compression, while it slightly 

increases the LLC area (discussed in Section ‎4.5). 

4.3.2 DCC Lookup Process 

Figure ‎4-4 shows the DCC lookup procedure for different scenarios. On a cache lookup, 

both the tag array and the back pointer array are accessed in parallel. In the common case of a 

cache hit, both the block and its corresponding super-blocks are found available (i.e., tag 

matched and block is valid). In the event of a cache hit, the result of the tag array and the back 

pointer array lookup determines which sub-blocks of the data array belong to the accessing 

block. On a read, those sub-blocks are read out next, and the corresponding tag entry and BPEs 

Figure ‎4-4:  DCC cache lookup. 
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are updated. In Figure ‎4-3, for example, on a read access to block A0, Tag A, Index A, and block 

ID (e.g., #0) are derived from the address (Figure ‎4-3 (e)). The corresponding set of the tag array 

and the back pointer array (indexed by Index A) are read out. The tag match and sub-block 

selection logic then identify whether the block is available and where its sub-blocks locate in the 

data array. For instance, the tag entry #1 in the tag array matches super-block A, and its block #0 

is available (CState #0 is valid). The sub-block selection logic finds the matched BPEs (BPEs #5 

and #1 for A0) using the matched tag ID (e.g., 1 for A) and the block ID (e.g., 0 for A0). Since 

there is a one-to-one correspondence between BPEs and data sub-blocks, the corresponding sub-

blocks are then read out of the data array (e.g., the sub-blocks #5 and #1 for A0) and 

decompressed.  

On the other hand, in case of a cache miss, DCC must allocate the compressed block in the 

data array. A cache miss occurs when the block is not available in the cache even if its super-

block is available. If its super-block is available (Block Miss in Figure ‎4-4), the accessing block 

will be allocated in the data array, and its corresponding tag entry and BPEs will be updated. 

This might require replacing one or more cache blocks to make enough space for this block. If its 

super-block is not available (Super-Block Miss in Figure ‎4-4), I might need to replace another 

super-block (e.g., the least recently used one). In this case, the blocks belonging to the victim 

super-block are evicted from the LLC as well. I handle the eviction process in the background by 

storing the victim super-blocks in a small buffer until all of their blocks are evicted from the 

cache. In this way, their tag entries can be released to allocate the new super-blocks. 

Unlike conventional caches, on a write (or update) to a compressed cache, the block 

compressed size might change. To fit a larger block, DCC needs more sub-blocks, which may 
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force a block (or a super-block) eviction. On the other hand, if the new compressed size is 

smaller, DCC would deallocate the unused sub-blocks, and update the corresponding tag entry 

and BPEs. 

When DCC allocates a block or updates an existing block, it allocates from a set of free 

sub-blocks in the corresponding set. In the presented design, free sub-blocks are those pointing to 

invalid blocks. Since both the tag array and the back pointer array are accessed in parallel on a 

cache lookup, the cache controller gets the set of free data sub-blocks by finding those whose 

corresponding BPEs are pointing to invalid blocks. Thus, the cache controller always makes sure 

free sub-blocks are pointing to invalid blocks. An alternative design is to use an extra bit per 

BPE representing its validity, which would slightly increase area, but might simplify the logic. 

4.3.3 Co-DCC: Reducing Internal Fragmentation by Co-Compacting Super-Blocks 

DCC uses sub-blocks to reduce internal fragmentation, but it still limits the benefits due to 

internal fragmentation within sub-blocks. For example, DCC would allocate a 16-byte sub-block 

for a 10-byte compressed block. Compressing cache blocks and compacting them to byte 

granularity eliminates internal fragmentation but at high hardware overheads (discussed in 

Section ‎4.6). Using larger block sizes can also help reducing internal fragmentation by packing 

more data in the same space. However, increasing cache block size can lead to cache pollution 

and higher energy overheads ‎[84].   

Co-DCC exploits spatial locality to further optimize DCC to reduce internal fragmentation. 

As I show in earlier sections, for many applications, neighboring blocks co-reside in the LLC. 

Co-DCC exploit spatial locality, and treats super-blocks (e.g., a quad) as one large block. It 
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dynamically compacts compressed blocks of one super block into the same set of sub-blocks. By 

co-compacting super-blocks, Co-DCC can get some of the benefits of BytePack (packing the 

compressed blocks at byte granularity) with much lower overheads, as shown in Section ‎4.6.1. In 

the next sub-section, I show how Co-DCC works, and how it can be integrated to DCC design 

with small changes. 

4.3.3.1 Co-DCC Design 

Co-DCC operates mostly similar to DCC, except for co-compacting super-blocks. When 

allocating a block to an existing super-block, Co-DCC compacts and stores the compressed block 

with the existing blocks of the same super-block. Figure ‎4-5 shows an example of how Co-DCC 

works for the same configuration used in Figure ‎4-3. In this example, Co-DCC stores and co-

compacts A0, A1 and A2, which all belong to the super-block A, in chronological order in a 2-

way set associative data set. When allocating block A1, since it fits in less than a sub-block, it 

shares a sub-block with A0 (in the sub-block #5). When A2 is allocated, A2 can also share some 
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space (A2.0) with A0 and A1 in the sub-block #5. Its remaining sub-blocks (A2.1 and A2.2) 

need to be allocated in free sub-blocks of the set. In this example, there is not enough in-order 

space available for A2 if we want to share sub-block #5 among these blocks. Therefore, unlike 

DCC that stores the sub-blocks of a block in order, Co-DCC stores them not necessarily in order 

but in a round-robin fashion (e.g., block A2 in Figure ‎4-5). In this way, it will not need to move 

blocks if there is not enough in-order space available when co-compacting them. However, this 

design can slightly increase access latency (described in Section ‎4.4).  

Co-DCC can be integrated with DCC design with some small changes in the tag array and 

the back pointer array. Figure ‎4-6 shows one Co-DCC tag entry and one BPE for the same 

configuration used in Figure ‎4-3. Since the first byte of a compressed block can be stored 

anywhere in a data sub-block (e.g., A2.0 in Figure ‎4-5), Co-DCC‎ tracks‎ each‎ block’s‎ starting‎

byte separately in its corresponding tag entry (e.g., 7-bit Begin0 in Figure ‎4-6(a)). Co-DCC also 

tracks the last occupied byte of each super-block in its corresponding tag entry (7-bit End in 

Figure ‎4-6(a)). When allocating a new block to an existing super-block, Co-DCC stores it next to 

this last byte if there is free space in that sub-block, and updates this pointer.  

Unlike DCC, where each data sub-block belongs to only one block, Co-DCC can share one 

sub-block among multiple blocks of the same super-block. For example, A0.1, A1, and A2.0 

share the sub-block #5 in Figure ‎4-5. Therefore, each Co-DCC BPE tracks its sharers by storing 

a small bit-vector (e.g., 4-bit Sharers in Figure ‎4-6(b)). Each bit of the sharers bit-vector shows if 

its corresponding block shares that sub-block. This information will slightly increase the LLC 

area (Section ‎4.5), but allows Co-DCC to fit more blocks in the cache by reducing internal 

fragmentation. 
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4.4 A Practical Design for DCC 

(Co-)DCC can be integrated into the LLC of a recent commercial design with relatively 

little additional complexity and, more importantly, no need for an alignment network. The AMD 

Bulldozer implements an 8MB LLC that is broken into four 2MB sub-caches, each sub-cache 

consists of four banks that can independently service cache accesses ‎[85].  Figure ‎4-7 illustrates 

the data array of one bank in the LLC and shows how it is divided into 4 sequential regions (SR). 

Each sequential region runs one phase (i.e., half a cycle) behind the previous region and contains 

a quarter of a cache block (i.e., 16 bytes). Figure ‎4-7 shows‎how‎block‎A0’s‎four‎16-byte sub-

blocks (e.g., A0.0–A0.3) are distributed to the same row in each sequential region. Each 

subsequent sequential region receives the address a half cycle later and takes a half cycle longer 

to return the data. Thus, a 64-byte block is returned in a burst of four cycles on the same data 

bus. For example, A0.1 is returned one cycle after A0.0 in Figure ‎4-8(a). 

DCC requires only a small change to the data array to allow non-contiguous sub-blocks. In 

Figure ‎4-7, block B1 is compressed into 2 sub-blocks (B1.0 and B1.1), stored in sequential 

regions #1 and #2, but not in the same row. To select the correct sub-block, DCC must send 

additional address lines (i.e., 4 bits for a 16-way-associative cache) to each sequential region 

(illustrated by the dotted lines in Figure ‎4-7). DCC must also enforce the constraint that a 

compressed‎block’s‎sub-blocks are allocated to different sequential regions to prevent sequential 

region conflicts.  
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Figure ‎4-8(b) illustrates DCC timing when reading block B1. As described in Section ‎4.3, 

the back pointer array is accessed in parallel with the tag array. The sub-block selection logic 

finds the BPEs corresponding to this block using its block ID (derived from its address) and the 

matched tag ID, which is found by the tag match logic. The sub-block selection logic can only be 

partially overlapped with the tag match logic since it needs the matched tag ID. To calculate the 

latency overhead of the sub-block selection, I implemented the tag match and the sub-selection 

logic in Verilog, synthesized in 45nm and scaled to 32nm ‎[86]. The sub-block selection logic 

adds less than half a cycle to the critical path, which I conservatively assume increases the access 

latency by one cycle. Figure ‎4-8(b) shows how the matching sub-blocks are returned and fed 

directly into the decompression logic, which accepts 16-byte per cycle and has a small FIFO 

buffer to rate match. Decompression starts as soon as the first sub-block arrives (e.g., B1.0), 

which depends upon which sequential region it resides in. Since sub-block B1.0 resides in 

sequential region 1, there is one extra cycle (worst case is 3 cycles). Note that because the 

decompression latency is deterministic (9 cycles), DCC can determine at the end of sub-block 

selection when the data will be ready and whether the decompression hardware can be bypassed. 

Figure ‎4-7: (Co-)DCC Data Array Organization. 
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Thus, even though completion times vary, DCC has ample time to arbitrate for the response 

network.  

Figure ‎4-7 also shows how block C3 is allocated by Co-DCC. Co-DCC also stores sub-

blocks of a block in different regions, but allocates them in round-robin fashion and not 

necessarily in order. Therefore, Co-DCC cannot necessarily start decompression as soon as it 

reads the first sub-block (e.g., C3.1 will be read out first before C3.0).  To handle these cases, 

Co-DCC must buffer the sub-blocks and pass them to the decompression logic in order. The 

decompression logic must also pre-align the first sub-block,‎since‎the‎compressed‎block‎doesn’t‎

necessarily start in the first byte. The reordering and pre-alignment add up to 3 additional cycles 

compared to DCC.  

Figure ‎4-8: (a) Timing of a conventional cache and (b) DCC. 
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4.5 Experimental Methodology 

4.5.1 Simulation Configurations 

I evaluate (Co-)DCC using a full-system simulator based on GEMS ‎[81]. I model a 

multicore system with three levels of cache hierarchy (Table ‎4-1) ‎‎[74]. I use an 8MB LLC that is 

broken into 8 banks, each divided into 4 sequential regions. Note that although I use a different 

cache configuration than AMD Bulldozer LLC, I model the timing and allocation constraints of 

sequential regions at the LLC in detail, as discussed in Section ‎4.4. I use CACTI ‎[87]‎to model 

power at 32nm. I also use a detailed DRAM power model developed based on the Micron 

Corporation power model ‎‎[88] with energy per operation listed in Table ‎4-1. In this section, I 

report total system energy that include energy consumption of processors (cores + caches), on-

chip network, and off-chip memory.  

Table ‎4-1: Simulation parameters. 

Cores OOO, 3.2 GHz, 4-wide issue, 128-entry Instruction Window. 

L1I$/L1D$ Private, 32-KB, 8-way, 2 cycles, HP transistors. 

L2 $ 
Private, 256-KB, 8-way, 10 cycles, HP transistors. 

 

L3 $ Shared, 8-MB, 16-way, 8 banks, 30 cycles, LSTP transistors. 

Main Memory 
4GB, 16 Banks, 800 MHz bus frequency DDR3, 60.35 nJ per Read, 66.5 nJ per Write, and 

4.25W static power. 
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Table ‎4-2 shows the configurations I use. For (Co-)DCC, I use 4-block super-blocks, 64-

byte blocks, and 16-byte sub-blocks. With these parameters, DCC has similar area overhead as 

FixedC and VSC-2X (Section ‎‎4.6). Alternative super-block and sub-block sizes can be used. I 

use 4-block super-blocks, since not all workloads would benefit from larger super-blocks due to 

their limited spatial locality. Using smaller sub-blocks also potentially improves compression 

effectiveness by reducing internal fragmentation, but at the cost of higher hardware complexities 

and overheads (discussed in Section ‎‎4.6).  

4.5.2 Workloads 

Our evaluations use representative multi-threaded and multi-programmed workloads from 

Commercial workloads ‎‎[89], SPEC-OMP ‎‎[92], PARSEC ‎[91], and mixes of SPEC CPU2006 

benchmarks, summarized in Table ‎4-3. I evaluate eight multi-programmed workloads with 

different mixes of compute-bound and memory intensive benchmarks. Each workload consists of 

8 threads evenly divided among the named Spec2006 benchmarks. For example, cactus-mcf-

milc-bwaves runs two copies of each of the four benchmarks.   

Table ‎4-2: Configurations. 

Baseline Conventional 16-way-associative 8MB LLC. 

2X Baseline Conventional 32-way-associative 16MB LLC. 

FixedC 2x tags per set (i.e., 32 tags per set). Each cache block is compressed to half if compressible. 

VSC-2X 2x tags per set (i.e., 32 tags per set). A block is compressed into 0-4 16-byte sub-blocks.  

DCC 
Same number of tags per set (i.e., 16 tags per set). Each tag tracks up to 4 blocks (4-block 

Super-Blocks). Blocks are compressed individually to 0-4 16-byte sub-blocks. 

Co-DCC Similar to DCC, except it dynamically co-compacts blocks of the same super-blocks. 
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Figure ‎4-9 shows the sensitivity of our workloads to the LLC capacity and the LLC access 

latency. Compressed caches in general benefit cache capacity sensitive workloads by providing 

higher effective cache capacity. On the other hand, they might hurt cache latency sensitive 

workloads due to the decompression latency. I categorize our workloads as cache latency 

sensitive if they observe more than 1% runtime slowdown compared to Baseline when I use the 

same size cache with 9 cycles extra LLC access latency, which represents the decompression 

latency. Many of our workloads (e.g., freqmine and oltp) are sensitive to cache latency and 

observe up to 6% (for oltp) slow down with the slower cache. I also categorize our workloads 

Table ‎4-3: Workloads. 

Suite Workloads 

Commercial apache, jbb, oltp, zeus 

SPEC-OMP 

 
ammp, applu, equake, mgrid, wupwise 

PARSEC  

 
blackscholes, canneal, freqmine 

Spec2006  

(denoted as m1-m8) 

bzip2, libquantum-bzip2, libquantum, gcc, astar-bwaves, cactus-mcf-milc-bwaves, 

gcc-omnetpp-mcf-bwaves-lbm-milc-cactus-bzip, omnetpp-lbm 
 

Figure ‎4-9: Cache sensitivity of our workloads. 
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that observe more than 2% speedup with double LLC capacity (with the same access latency as 

Baseline) as cache capacity sensitive. Our workloads have a wide range of sensitivity to cache 

capacity (maximum 22% speedup for apache). Among our workloads, ammp, applu, 

blackscholes, and libquantum are cache insensitive. I run each workload for approximately 500M 

instructions with warmed up caches. I use a work-related metric, run each workload for a fixed 

number of transactions/iterations and report the average over multiple runs to address workload 

variability ‎[90]. 

4.6 Evaluation 

4.6.1 Area and Power 

Compressed caches can increase cache area due to their extra metadata. Table ‎4-4 shows 

the quantitative area overheads of DCC, Co-DCC, FixedC and VSC-2X over the same size 

conventional cache (16-way-associative 8MB LLC) with the parameters in Table ‎4-1 and Table 

‎4-2. DCC uses the same number of tags as Baseline, but almost doubles the per-block metadata 

largely due to the back pointers. However, since the data array is much larger than the tag array, 

Table ‎4-4: LLC area overheads of different compressed caches over the conventional cache. 

Components DCC Co-DCC FixedC/VSC-2X VSC-3X VSC-4X 
DCC-

BytePack 

Tag Array 

Back Pointer Array 

Compressors 

Decompressors 

2.1% 

4.4% 

0.6% 

1.2% 

11.3% 

5.4% 

0.6% 

1.2% 

6.3% 

0% 

0.6% 

1.2% 

12.7% 

0% 

0.6% 

1.2% 

18.8% 

0% 

0.6% 

1.2% 

2.1% 

70.6% 

0.6% 

1.2% 

Total Area 

Overhead 
8.3% 18.5% 8.1% 14.5% 20.6% 74.5% 
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Cacti calculates the overall LLC area overhead as about ~6% ‎[87].‎ DCC’s‎ area‎ overhead‎ is‎

similar to FixedC and VSC-2X, which track twice as many tags per set (e.g., 32 tags per 16 

blocks). Co-DCC increases metadata stored per block, as discussed in Section ‎4.3.3, resulting in 

16% area overhead compared to Baseline. Co-DCC still has less area overhead than naively 

quadrupling the number of tags (VSC-4X). It also incurs much lower overhead compared to a 

DCC configuration with no packing constraint. DCC-BytePack (i.e., packing compressed blocks 

at byte granularity) can increase compression effectiveness by reducing internal fragmentation. 

However, using 1-byte sub-blocks requires 16 times more BPEs per set than (Co-)DCC with 16-

byte sub-blocks. BytePack would also require a complex alignment network to compact the bytes 

into 16-byte sub-blocks before passing them to the decompression hardware. Table ‎4-4 also 

includes the area overhead of (de-)compression units. Since C-PACK+Z’s‎ decompressors‎

produce 8 bytes per cycle, I match the cache bandwidth by considering two decompressors per 

cache bank. Since compression is not on the critical path, I consider one compressor per bank. 

For the LLC configuration in Table ‎4-1, we need 8 compressors and 16 decompressors resulting 

to an extra 1.8% area overhead. 

Compressed caches can also increase the LLC per-access dynamic power and the LLC 

static power due to their extra metadata. DCC, similar to FixedC and VSC-2X, increases the 

LLC per-access dynamic power by 2% and the LLC static power by 6%. Co-DCC also incurs 

6% overhead on the LLC per-access dynamic power and 16% LLC static power overhead ‎[87]. I 

model these overheads as well as the power overheads of (de-)compression in detail. 
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4.6.2 Effective Cache Capacity 

Result 1: By exploiting spatial locality, DCC achieves on average 2.2 times (up to 4 times) 

higher LLC effective capacity compared to Baseline, resulting in 18% lower LLC miss rate on 

average and up to 38% lower LLC miss rate. 

Result 2: Co-DCC further improves the effective cache capacity by co-compacting the 

blocks in a super-block. It achieves on average 2.6 times and up to 4 times higher effective 

capacity and on average 24% and up to 42% lower LLC miss rate. 

Result 3: (Co)-DCC provides significantly higher effective cache capacity and lower miss 

rate than FixedC and VSC-2X. (Co-)DCC also performs on average better than 2X Baseline with 

much lower area overhead. 

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

rm
 L

LC
 E

ff
e

ct
iv

e
 C

ap
ac

it
y

0.20

0.40

0.60

0.80

1.00

N
o

rm
 L

LC
 M

is
s 

R
at

e

(a) Normalized LLC effective capacity (b) Normalized LLC miss rate 

Figure ‎4-10: The LLC effective capacity and the LLC miss rate normalized to Baseline. 
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Compressed caches improve effective capacity by fitting more blocks in the same space. 

They can achieve the benefits of larger cache sizes with lower area and power overheads. Figure 

‎4-10(a) and Figure ‎4-10(b) plot the LLC effective capacity and the LLC miss rate of different 

techniques normalized to Baseline. I calculate the effective cache capacity by periodically 

counting valid LLC cache blocks. I measure the LLC miss rate as the total number of misses per 

thousand executed instructions (MPKI). Figure ‎4-10(b) also plots the average LLC miss rate 

reduction predicted using the well-known power law for miss rate ‎[73] in dashed lines. This 

model predicts the cache miss rate will be inversely proportional to the increased capacity with 

an‎scaling‎factor‎ typically‎ set‎ to‎0.5‎(i.e.,‎“square‎root”‎power‎ law),‎0.3,‎or‎0.7‎(the‎higher the 

scaling factor, the lower the predicted miss rate). The average improvement I found for our 

workloads is less than what these models predict. I hypothesis this is because our workloads 

represent a wide range of cache sensitivities and I am not picking only highly cache sensitive 

ones. 

DCC can significantly improve the LLC effective capacity and the LLC miss rate for many 

applications by fitting more compressed blocks. On average, DCC provides 2.2x (i.e., 17.6MB) 

higher effective capacity and 18% lower LLC miss rate compared to Baseline. DCC benefits 

differ‎ per‎ workload,‎ depending‎ on‎ the‎ workload’s‎ sensitivity‎ to‎ cache‎ capacity,‎ compression‎

ratio, and spatial locality. It achieves highest benefits for cache sensitive workloads with good 

compressibility and spatial locality (e.g., apache and omnetpp-lbm/m8). Workloads with low 

spatial locality (e.g., canneal) or low compression ratio (e.g., wupwise) observe lower 

improvements. Cache insensitive workloads (e.g., blackscholes) also do not benefit from 

compression.  
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Co-DCC further improves compression effectiveness by reducing internal fragmentation 

within data sets. Co-DCC achieves, on average, 2.6x higher effective capacity (i.e., 20.8MB) and 

24% lower miss rate than Baseline. By fitting more compressed blocks in the cache, compared to 

DCC, Co-DCC can further reduce the LLC miss rate for almost half of our workloads, including 

commercial workloads (e.g., 18% lower miss rate for jbb), canneal, and some of our Spec2006 

mixes (e.g., 19% lower miss rate for libquantum-bzip2/m2). By co-compacting super-blocks, 

Co-DCC gets some of the benefits of the idealized BytePack with much lower hardware 

overheads, as discussed in Section ‎4.6. 

Compared to FixedC and VSC-2X, (Co-)DCC provides higher LLC effective capacity and 

lower miss rate. Both FixedC and VSC-2X can at most double effective cache capacity 

compared to Baseline (i.e., 16MB). FixedC achieves on average 1.5x higher effective capacity 

and 8% lower miss rate than Baseline. VSC-2X provides slightly higher benefits (1.7x effective 

capacity, and 10% lower miss rate). Increasing VSC tag space can improve its benefits. For 

example, VSC-4X has similar miss rate reduction as DCC, but with 2.6x higher area overhead. 

Compared to 2X Baseline, (Co-)DCC effectively more than doubles cache capacity with 

lower overheads. DCC achieves higher LLC effective capacity than 2X-Baseline for majority of 

our workloads. It provides lower LLC miss rate reduction than 2X-Baseline (within 27%) for 

apache, jbb, oltp and gcc, which have lower compression ratio and spatial locality compared to 

other workloads. For these workloads, Co-DCC provides similar or better LLC miss rate 

reduction than 2X-Baseline by reducing internal fragmentation. 
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4.6.3 Overall Performance and Energy 

Result 4: DCC and Co-DCC improve the LLC efficiency and boost system performance 

by 10% (up to 29%) and 14% (up to 38%) on average, respectively. 

Result 5: DCC and Co-DCC save on average 8% (up to 24%) and 12% (up to 39%) of 

system energy, respectively, due to shorter runtime and fewer accesses to the main memory. 
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Result 6: DCC and Co-DCC achieve respectively 2.5x and 3.5x higher performance 

improvements, and 2.2x and 3.3x higher system energy improvements compared to FixedC and 

VSC-2X. 

Result 7: (Co-)DCC also improves the LLC dynamic energy by about 50% on average due 

to accessing fewer bytes. On the other hand, VSC-2X hurts the LLC dynamic energy for 

majority of our workloads due to its need for energy-expensive re-compactions. 

By improving the LLC utilization and reducing accesses to the main memory (i.e., the 

lower LLC miss rate), (Co-)DCC significantly improves system performance over Baseline. 

Figure ‎4-11(a) plots runtime of different techniques normalized to Baseline. DCC and Co-DCC 

improve performance by 10% (up to 29% for omnetpp-lbm/m8) and 14% (up to 38% for 

libquantum-bzip2/m3) on average, respectively. For cache sensitive applications with medium-

to-high compressibility and medium-to-high spatial locality (e.g., apache and zeus), (Co-)DCC 

achieves significant performance improvements by fitting more blocks in the cache. They 

provide lower improvements for applications with low spatial locality and low compression ratio 

(e.g., canneal and gcc). On the other hand, compressed caches, including (Co-)DCC, can hurt 

performance of workloads sensitive to the LLC access latency (e.g., freqmine) due to the 

decompression latency. (Co-)DCC hurts performance by less than 3% (for freqmine). Cache 

insensitive workloads also do not benefit from compressed caches. An adaptive technique can be 

employed to further reduce these overheads ‎[20], which is orthogonal to our proposals.  

(Co-)DCC significantly outperforms FixedC, VSC-2X and 2X-Baseline by effectively 

more than doubling the cache capacity. FixedC and VSC-2X limit compression effectiveness in 
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improving system performance, achieving on average 4% and 5% performance improvements, 

respectively. (Co-)DCC outperforms 2X-Basline for majority of our workloads. 2X-Baseline 

performs better than DCC for six of our workloads (within 11% for canneal). These workloads 

have lower spatial locality (e.g. canneal), lower compression ratio (e.g., jbb), or higher sensitivity 

to cache latency (e.g., freqmine) than the rest of our workloads. Co-DCC improves performance 

for more workloads, providing slightly lower performance than 2X-Baseline only for three 

workloads (within 3% for freqmine). 

(Co-)DCC improves system energy both due to shorter runtime and fewer accesses to the 

main memory. Figure ‎4-11(b) shows the total system energy of different techniques. DCC and 

Co-DCC reduce the total system energy by 8% (up to 24% for omnetpp-lbm/m8) and 12% (up to 

39% for libquantum-bzip/m2) on average, respectively. Figure ‎4-11(c) plots the main memory 

dynamic energy for these techniques. (Co-)DCC significantly reduces the main memory dynamic 

energy by reducing the number of cache misses. Compared to FixedC and VSC-2X, (Co-)DCC 

achieves higher energy savings. Although VSC-2X provides slightly higher performance and 

lower main memory dynamic energy consumption than FixedC, its system energy saving is less 

due to its high overheads on the LLC dynamic energy. Figure ‎4-11(d) shows the dynamic energy 

of different compressed caches normalized to Baseline. FixedC, DCC and Co-DCC improve the 

LLC dynamic energy by 27%, 52% and 46% on average over Baseline, respectively. On the 

other hand, VSC-2X significantly increases the LLC dynamic energy (about 3x) by increasing 

the number of cache accesses. 

I also measured the sensitivity of (Co-)DCC to different design parameters including the 

decompression latency and the LLC access latency. Our simulations (not shown here) show that 



67 

 

reducing decompression latency (for the same C-PACK+Z algorithm) from 9 cycles to 3 cycles 

only slightly increases (Co-)DCC performance. It achieves on average 1% and up to 3% higher 

performance than the results shown in Figure ‎4-11(a). I also studied the sensitivity of (Co-)DCC 

to the LLC cache access latency. Our simulation results (not shown here) show that even 

reducing the LLC access latency to 20 cycles (33% faster LLC) does not significantly impact 

(Co-)DCC results.  

4.7 Conclusions 

In this work, I propose Decoupled Compressed Cache, which exploits spatial locality to 

improve both the performance and energy-efficiency of cache compression. DCC manages the 

cache at three granularities, tracking super-blocks while dynamically compressing and allocating 

single blocks as variable number of sub-blocks. It addresses the issues with conventional 

compressed caches, and achieves significantly higher LLC effective cache capacity while 

incurring low area overheads. It also decouples sub-blocks from the address tag to eliminate 

energy-expensive re-compaction‎ when‎ a‎ block’s‎ size‎ changes.‎ A‎ further‎ optimized‎ design‎

(Co-DCC) reduces internal fragmentation in the cache by co-compacting super-blocks. I show 

that on average, DCC and Co-DCC reduce system energy by 8% and 12%, respectively, and 

improve performance by 10% and 14%, respectively, compared to the same size conventional 

cache. (Co-)DCC nearly doubles compression benefits compared to previous proposals with 

comparable overheads. 
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Chapter 5  

Skewed Compressed Caches 

5.1 Overview 

A compressed cache design must balance three frequently-conflicting goals: i) tightly 

compacting variable-size compressed blocks to reduce internal fragmentation, ii) keeping tag 

overheads low, and iii) allowing fast lookups by eliminating the need for extra metadata to locate 

compressed blocks. Previous compressed cache designs, including our proposal DCC, achieved 

at most two of these three goals. As we showed in Table ‎3-1, the earliest compressed caches do 

not support variable compressed block sizes ‎[39]‎[47]‎[48]‎[45], allowing fast lookups with 

relatively low area overheads, but achieve lower compression effectiveness due to internal 

fragmentation. More recent designs ‎[20]‎[46]‎[50] improve compression effectiveness using 

variable-size compressed blocks, but at the cost of extra metadata and indirection latency to 

locate a compressed block. For example, DCC requires per-block back pointers to locate a block. 

DCC also complicates cache management, specifically replacements, due to managing blocks 

and super-blocks separately on evictions. 

In this chapter, we propose Skewed Compressed Cache (SCC), which achieves all three 

goals. SCC exploits the fact that most workloads exhibit both (1) spatial locality (i.e., 

neighboring blocks tend to reside in the cache at the same time), and (2) compression locality 
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(i.e., neighboring blocks tend to compress similarly) ‎[61]. Like DCC, SCC exploits spatial 

locality by tracking super-blocks, e.g., an aligned, adjacent group of blocks (e.g., eight 64-byte 

blocks). Using super-blocks allows SCC to track up to eight times as many compressed blocks 

with little additional metadata. Unlike DCC, SCC also exploits compression locality by 

compacting neighboring blocks with similar compression ratio into the same physical data entry, 

tracking them with one tag.  

SCC does this using a novel sparse super-block tag, which tracks anywhere from one 

block to all blocks in a super-block, depending upon their compressibility. SCC compacts 

neighboring blocks to the same data block and tracks them with one tag, if they are similarly 

compressible. For example, a single sparse super-block tag can track: all eight blocks in a super-

block, if each block is compressible to 8 bytes; four adjacent blocks, if each is compressible to 

16 bytes; two adjacent blocks, if each is compressible to 32 bytes; and only one block, if it is not 

compressible. By allowing variable compressed block sizes—8, 16, 32, and (uncompressed) 64 

bytes—SCC is able to tightly compact blocks and achieve high compression effectiveness.  

Using sparse super-block tags allows SCC to retain a direct, one-to-one tag-data mapping, 

but also means that more than one tag may be needed to map blocks from the same super-block. 

SCC minimizes conflicts between blocks using two forms of skewing. First, it maps blocks to 

different cache ways based on their compressibility, using different index hash functions for each 

cache way ‎[93]. To spread all the different compressed sizes across all the cache ways, the hash 

function used to index a given way is a function of the block address. Second, SCC skews 

compressed blocks across sets within a cache way to decrease conflicts ‎[94]‎[95] and increase 

effective cache capacity. 
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Compared to DCC, SCC eliminates the extra metadata needed to locate a block (i.e., the 

back pointers),‎ reducing‎ tag‎ and‎metadata‎ overhead.‎ SCC’s‎ direct‎ tag-data mapping allows a 

simpler data access path with no extra latency for a tag-data indirection. SCC also simplifies 

cache replacement. On a conflict, SCC always replaces one sparse super-block tag and all of the 

one to eight adjacent blocks packed into the corresponding data entry. This is much simpler than 

DCC, which may need to replace blocks that correspond to multiple super-blocks as DCC tracks 

all blocks of a super-block with only one tag. 

Compared to conventional uncompressed caches, SCC improves cache miss rate by 

increasing effective capacity and reducing conflicts. In our experiments, SCC improves system 

performance and energy by on average 8% and 6% respectively, and up to 22% and 20% 

respectively. Compared to DCC, SCC achieves comparable or better performance, with a factor 

of four lower area overhead, a simpler data access path, and a simpler replacement policy. 

This chapter is organized as follows. We discuss background on skewed associative 

caching in Section 2. Then, Section 3 presents our proposal: the Skewed Compressed Cache. 

Section 4 explains our simulation infrastructure and workloads. In Section 5, we discuss the 

overheads of compressed caches. We present our evaluations in Section 6. Finally, Section 7 

concludes the chapter. 

5.2 Skewed Associative Caching 

SCC builds on ideas first introduced for skewed-associative caches. In a conventional 

N-way set-associative cache, each way is indexed using the same index hash function. Thus 
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conflict misses arise when more than N cache blocks compete for space in a given set. Increasing 

associativity reduces conflict misses, but typically causes an increase in cache access latency and 

energy cost. Skewed associative caches ‎[94]‎[95] index each way with a different hash function, 

spreading out accesses and reducing conflict misses.  

Figure ‎5-1 (a) shows a simple 2-way associative cache, which indexes all cache ways with 

the same function. In this example, blocks A, B, and C all map to the same set. Thus, only two of 

these blocks can stay in the cache at any time. Figure ‎5-1 (b) illustrates a skewed associative 

cache, which indexes each cache way with a different hash function. In this example, even 

though blocks A, B, and C map to the same set using function f1, they map to different sets using 

function f2 in the second cache way. In this way, all three of these blocks can reside in the cache 

at the same time. By distributing blocks across the sets, skewed associative caches typically 

exhibit miss ratios comparable to a conventional set-associative cache with twice the ways 

‎‎[94]‎[95]. 

Skewed associativity has also been used to support multiple page sizes in the same TLB 

‎[94]‎[115], at the cost of reduced associativity for each page size. Using different, page-size 

specific hash functions for each way, such a TLB can look for different size page table entries in 

(a) (b) 

Figure ‎5-1: (a) two-way set associative cache (b) skewed associative cache. 
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parallel. In this work, we use a similar skewing technique but use compressed size, rather than 

page size, to select the appropriate way and hash-function combinations. 

5.3 Skewed Compressed Cache 

 Previously proposed compressed caches either do not support variable-size compressed 

blocks ‎[39]‎[47]‎[48]‎[45] or need extra metadata to find a compressed block, increasing overhead 

and complexity ‎[20]‎[46]‎[50]. SCC stores neighboring compressed blocks in a power-of-two 

number of sub-blocks (e.g., 1, 2, 4, or 8 8-byte sub-blocks), using sparse super-block tags and a 

skewed associative mapping that preserves a one-to-one direct mapping between tags and data. 

SCC builds on the observation that most workloads exhibit (1) spatial locality, i.e., 

neighboring blocks tend to simultaneously reside in the cache, and (2) compression locality, i.e., 

neighboring blocks often have similar compressibility ‎[61]. SCC exploits both types of locality 

to compact neighboring blocks with similar compressibility in one physical data entry (i.e., 64 

bytes) if possible. Otherwise, it stores neighbors separately.  

SCC differs from a conventional cache by storing a sparse super-block tag per data entry. 

Like a conventional super-block‎(aka‎sector)‎cache,‎SCC’s‎tags‎provide‎additional‎metadata‎that‎

can track the state of a group of neighboring blocks (e.g., up to eight aligned, adjacent blocks). 

However,‎SCC’s‎tags‎are sparse because—based on the compressibility of the blocks—they may 

map only 1 (uncompressed), 2, or 4 compressed blocks. This allows SCC to maintain a 

conventional one-to-one relationship between a tag and its corresponding data entry (e.g., 64 

bytes). 
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SCC only maps neighboring blocks with similar compressibility to the same data entry. 

For example, if two aligned, adjacent blocks are each compressible to half their original size, 

SCC‎will‎allocate‎them‎in‎one‎data‎entry.‎This‎allows‎a‎block’s‎offset‎within a data entry to be 

directly determined using the appropriate address bits. This eliminates the need for additional 

metadata (e.g., back pointers in DCC ‎[21]) to locate a block.  

SCC’s‎ cache‎ lookup‎ function‎ is‎ made‎ more‎ complicated‎ because‎ the‎ amount‎ of‎ data‎

mapped by a sparse super-block‎tag‎depends‎upon‎the‎blocks’‎compressibility.‎SCC‎handles‎this‎

by‎using‎a‎block’s‎compressibility‎and‎a‎few‎address‎bits to determine in which cache way(s) to 

place the block. For example, for a given super-block, uncompressed blocks might map to cache 

way #0, blocks compressed to half size might map to cache way #2, etc. Using address bits in the 

placement decision allows different super-blocks to map blocks with different compressibility to 

different cache ways. This is important, as it permits the entire cache to be utilized even if all 

blocks compress to the same size. 

To prevent conflicts between blocks in the same super-block, SCC uses different hash 

functions to access ways holding different size compressed blocks. On a cache lookup, the same 

address bits determine which hash function should be used for each cache way. Like all skewed 

associative caches, SCC tends to have fewer conflicts than a conventional set-associative cache 

with the same number of ways. 

5.3.1 SCC Functionality 

Figure ‎5-2 illustrates SCC functionality using some examples. This figure shows a 16-way 

cache with 8 cache sets. The 16 cache ways are divided into four way groups, each including 
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four cache ways. For the sake of clarity, Figure ‎5-2 only illustrates super-blocks that are stored in 

the first way of each way group. This example assumes 64-byte cache blocks, 8-block super-

blocks, and 8-byte sub-blocks, but other configurations are possible. A 64-byte cache block can 

compress to any power-of-two number of 8-byte sub-blocks (i.e., 1, 2, 4, or 8 sub-blocks). Eight 

aligned neighbors form an 8-block super-block. For example, blocks I—P belongs to SB2.  

SCC associates one sparse super-block tag with each data entry in the data array. Each tag 

can map (1) a single uncompressed cache block, (2) two adjacent compressed blocks, each 

compressed to 32 bytes, (3) four adjacent compressed blocks, each compressed to 16 bytes, or 

(4) eight adjacent compressed blocks, each compressed to 8 bytes. A tag keeps appropriate per-

block metadata (e.g., valid and coherence) bits, so it may not be fully populated. If all eight 

neighbors exist and are compressible to one 8-byte sub-block each, SCC will compact them in 

one data entry, tracking them with one tag. For example, all blocks of SB2 are compacted in one 

data entry in set #7 of way #1. SCC tracks them with the corresponding tag entry with the states 

of all blocks set as valid (V in Figure ‎5-2). If all cache blocks were similarly compressible, SCC 

would be able to fit eight times more blocks in the cache compared to a conventional 

uncompressed cache. On the other hand, in the worst-case scenario when there is no spatial 

locality (i.e., only one out of eight neighbors exists in the cache) or blocks are not compressible, 

SCC can still utilize all cache space by allocating each block separately. For example, there are 

only blocks Y and Z from SB4 present in the cache, and neither are compressible. Thus, SCC 

stores them separately in two different sets in the same way group, tracking them separately with 

their corresponding tags. 
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SCC‎uses‎a‎block’s‎compressibility‎or‎compression‎factor‎(CF)‎and‎a‎few‎address‎bits‎ to‎

determine in which way group to‎place‎ the‎block.‎A‎block’s‎ compression‎ factor‎ is‎ zero‎ if‎ the‎

block is not compressible, one if compressible to 32 bytes, two if compressible to 16 bytes, and 

three if compressible to 8 bytes. For instance, in Figure ‎5-2, block A maps to a different set in 

each cache way depending on its compressibility, shown in hatched (red) entries. SCC allocates 

A in way group #0, #1, #2, or #3 if A is compressible to 32 bytes (4 sub-blocks), 64 bytes (8 sub-

blocks), 8 bytes (1 sub-block), or 16 bytes (2 sub-blocks), respectively. These mappings would 

change for a different address, so that each cache way would have a mix of blocks with different 

compression ratios. For instance, SCC allocates block A and block I in cache way #1, if A is 

uncompressible and I is compressed to 8 bytes (1 sub-block). Using this mapping technique, for 

a given block, its location determines its compression ratio. This eliminates the need for extra 

metadata to record block compressibility. 

Figure ‎5-2: Skewed Compressed Cache. 
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Although SCC separately compresses blocks, it maps and packs neighbors with similar 

compressibility into one physical data entry. For example, SCC compacts blocks I to P (SB2) 

into a single physical data entry (set #7 of way #1) as each block is compressed to 8 bytes. 

However, when neighboring blocks have different compressibility, SCC packs them separately 

into different physical data entries. For instance, blocks of SB3 (blocks Q to X) have three 

different compression ratios. SCC allocates blocks R, U, V, and X, which are compressible to 

one sub-block each, in one physical data entry (set #3 of way #0). It tracks them with the 

corresponding tag entry (also shown in Figure ‎5-2) with valid states for these blocks. It stores 

adjacent blocks S and T in a different physical entry since each one is compressed to four sub-

blocks. It also stores block Q in way #2 as it is compressible to 32B. Finally, it allocates block W 

separately as it is not compressible, tracking it with a separate sparse super-block tag shown in 

Figure ‎5-2.  

Within a physical data entry, a block offset directly corresponds to the block position in its 

encompassing super-block. In Figure ‎5-2, for example block X is the first block of SB3, similarly 

its position in the physical data entry in cache way #0 is fixed in the first sub-block. In this way, 

unlike previous work, SCC does not require any extra metadata (e.g., back pointers ‎[21]‎ or 

forward pointers ‎[50]) to locate a block in the data array. By eliminating the need for extra 

pointers, SCC simplifies data paths, provides fast lookups, lowers area overhead and design 

complexity, while still allowing variable compressed sizes. 

While eliminating extra metadata‎simplifies‎SCC’s‎design,‎it‎has‎the‎potential‎to‎hurt‎cache‎

performance by increasing conflict misses and lowering effective cache associativity. A 

conventional 16-way set-associative cache can allocate a block in any cache way, but SCC 
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restricts a block to a 4-way‎way‎group‎based‎on‎ the‎block’s‎compression‎ factor.‎For‎example,‎

when storing block A with compressed size of 16B, SCC can store it only in one of the four 

cache ways (including way #3) grouped together in Figure ‎5-2. To mitigate the effect of this 

restriction, SCC employs skewing inside way groups, indexing each cache way with a different 

hash function to spread out accesses. This helps to reduce conflict misses and increases effective 

associativity.  

5.3.2 SCC Structure 

Structurally, SCC shares many common elements with previously proposed compressed 

caches ‎[21] and the multi-page size skewed-associative TLB ‎[94]. Figure ‎5-3 (a) shows one set 

of SCC tag array and its corresponding data set for a 4-way associative cache. Similar to a 

regular cache, SCC keeps the same number of tags as physical data entries in a cache set (e.g., 4 

tags and 4 data entries per set in Figure ‎5-3). However, unlike a regular cache, which tracks 

exactly one single block per tag entry, SCC tag entries track a super-block containing 8 adjacent 

blocks. Figure ‎5-3 illustrates that each tag entry includes the super-block tag address and per-

block coherency/valid states (e.g., eight states for 8-block super-blocks). Figure ‎5-2 also shows 

some examples of tag entries for block W in set #4 of way #3, blocks I—P in set #7 of way #1, 

(a) (b) 

Figure ‎5-3: (a) One set of SCC (b) Address. 
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and blocks R,U,V,X in set #3 of way #0. The data array is largely similar to a conventional cache 

data array, except it is organized at sub-blocks (e.g., 8 bytes). 

W1W0 = A10A9 ^ CF1CF0                        (1) 

Unlike a regular cache that can allocate a block in any cache way, SCC takes into account 

block compressibility. Equation (1) shows the way selection logic that SCC uses when allocating 

a cache block. It uses the block compression factor (CF1CF0) and two address bits (A10A9) to 

select the appropriate way group (W1W0). The block compression factor (CF1CF0) is zero if the 

block is not compressible, one if compressible to 32 bytes, two if compressible to 16 bytes, and 

three if compressible to 8 bytes. SCC maps neighboring blocks with similar compressibility to 

the same data entry. Thus, the way selection logic uses address bits A10A9, which are above the 

super-block offset. Note that since SCC uses address bits in way selection, even if all cache 

blocks are uncompressible (CF == 0), they will spread out among all cache ways.  

SCC uses different set index functions to prevent conflicts between blocks in the same 

super-block. Just using bit selection, e.g., the consecutive bits beginning with A11, would result 

in all blocks in the same super-block mapping to the same set in a way group, resulting in 

unnecessary conflicts. For example, if none of the blocks were compressible, then all eight 

Set Index =          h0({A47 —A11, A8A7A6})    if CF==0                (2) 

                            h1({A47 —A11, A8A7})        if CF==1 

                            h2({A47 —A11, A8})            if CF==2 

                             h3(A47 —A11)                     if CF==3 
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uncompressed blocks would compete for the four entries in the selected way group (in Figure 

‎5-2). To prevent this, SCC uses the index hash functions shown in (2), which draw address bits 

from the Block ID for the less compressible blocks. These functions map neighboring blocks to 

the same set only if they can share a data entry (based on their compression factor). SCC also 

uses different hash functions ‎[95] for different ways in the same way group, to further reduce the 

possibility of conflicts.  

Within a 64-byte data entry, a compressed blocks location depends only on its compression 

factor and address, eliminating the need for extra metadata. Equation 3 shows the function to 

compute the byte offset for a compressed block within a data entry.  

5.3.3 SCC Cache Operations 

Figure ‎5-4 illustrates how SCC operates for the main cache operations. On a cache lookup, 

since‎ the‎ accessing‎ block’s‎ compressibility‎ is‎ not‎ known,‎ SCC‎ must‎ check‎ the‎ block’s‎

corresponding positions in all cache ways. To determine which index hash function to use for 

each way, SCC uses (4), the inverse of (1).  

CF1CF0 = A10A9 ^ W1W0          (4) 

Byte Offset =        none                  if CF==0                       (3) 

                               A6 << 5              if CF==1 

                               A7A6 << 4          if CF==2 

                               A8A7A6 << 3      if CF==3 
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For example, in Figure ‎5-2, when accessing block A, the tag entries in set #1 of way #3, set 

#5 of way #2, set #2 of way #1, and set #6 of way #0 (i.e., all hatched red tag entries) are 

checked for a possible match. A cache hit occurs if its encompassing super-block is present (i.e., 

a sparse super-block tag match), and the block state is valid. On a read hit, SCC uses the 

compression factor and appropriate address bits (using (3)) to determine which of the 

corresponding sub-blocks should be read from the data array. 

On a write hit (e.g., a write-back to an inclusive last-level‎ cache),‎ the‎ block’s‎

compressibility might change. If the block can still fit in the same place as before (i.e., its new 

size is less than or equal to the old one), SCC will update the block in place. Otherwise, SCC 

invalidates the current version of the block first by setting its corresponding state to invalid. Note 

that neighboring blocks that share the data entry are not affected. SCC then allocates a new entry 

as described below for a cache miss. Fortunately, this case does not arise very frequently; 

simulation results show that on average 97% of updated blocks fit in their previously allocated 

space. 

SCC handles cache misses and write hits that do not fit in their previous space the same 

way.‎ SCC‎ first‎ uses‎ the‎ block’s‎ (new)‎ compression‎ factor‎ and‎ address‎ to‎ search‎ whether‎ an‎

existing sparse super-block of the right size has already been allocated for a neighboring block. 

For example, consider a write to block R in Figure ‎5-2 that changes the compression factor from 

3 (8 bytes) to 1 (32 bytes). SCC would invalidate the old copy of R in set #7 of way #0 and write 

the new data in set #3 in way #2.  
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Detecting a sparse super-block hit is more complex than a normal tag match for two 

reasons. First, the size of the sparse super-block—and hence the number of tag bits that must be 

checked—depends upon the compression factor. For example, to detect that block R can be 

reallocated to the sparse super-block in set #3 of way #2, SCC must make sure that not only the 

super-block tag bits match, but that bits A8 and A7 also match, since the compression factor is 1 

(32 bytes). Second, since SCC does not store bits A8A7A6 in the tag entry, it must infer them 

from the coherence states. For example, SCC can infer that both A8 and A7 are one in set #3 of 

way #2 by testing if either State7 or State6 are valid (in this example State7 is valid because 

block Q is valid). 

If no matching sparse super-block tag with the right compression factor exists, SCC needs 

to select and evict a victim to make room. SCC selects the least-recently-used super-block tag 

within the way group (e.g., one of 4 ways in Figure ‎5-2). It then evicts all blocks that map to that 

Figure ‎5-4: SCC Operations. 
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tag’s‎corresponding‎data‎entry.‎For‎example,‎if‎SCC‎needs‎to‎allocate‎a‎new‎block‎in‎set‎#0‎of‎

way #2, it would free that data entry by evicting blocks S and T (i.e., both cache lines in that data 

entry).  Note that the rest of blocks from SB3 will stay in the cache in set #4 of way #3 (block 

W) and set #3 of way #0 (blocks R,U,V,X). For victim blocks, SCC can determine their 

compression factor based on the cache way and tag address using (4). After evicting the victim 

blocks, SCC updates the sparse super-block tag and inserts the new compressed block into the 

appropriate sub-blocks of the data entry.  

SCC’s‎ replacement‎ mechanism‎ is‎ much‎ simpler‎ than‎ that‎ needed‎ by‎ DCC.‎ In‎ DCC,‎

allocating space for a block can trigger the eviction of several blocks, sometimes belonging to 

different super-blocks.  In case of a super-block miss, all blocks associated with the victim super-

block tag must be evicted, unlike SCC that evicts only blocks belonging to a particular data 

entry. In addition, in DCC, blocks belonging to other super-blocks may need to be evicted too. 

Thus, determining which block or super-block is best to replace in DCC is very complex.  

SCC also never needs to evict a block on a super-block hit, while DCC may. SCC will 

allocate the missing block in its corresponding data entry, which is guaranteed to have enough 

space since the compression factor is used as part of the search criteria. In DCC, a super-block 

hit does not guarantee that there is any free space in the data array. 
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5.4 Methodology 

Our target machine is an 8-core multicore system (Table ‎5-1) with OOO cores, per-core 

private L1 and L2 caches, and one shared last level cache (L3) ‎[74]. We implement SCC and 

other compressed caches at the L3. We evaluate SCC using full-system cycle-accurate GEMS 

simulator ‎[81]. We use CACTI 6.5 ‎‎[87] to model area and power at 32nm. We report total energy 

of cores, caches, on-chip network, and main memory. 

We simulate different applications from SPEC OMP ‎‎[92], PARSEC ‎[91], commercial 

workloads ‎[89], and SPEC CPU 2006. Table ‎5-2 shows the list of our applications. We run 

mixes of multi-programmed workloads from memory-bound and compute-bound SPEC CPU 

2006 benchmarks. For example, for astar-bwaves, we run four copies of each benchmark. In 

Table ‎5-2, we show our applications in increasing LLC MPKI (Misses per Kilo executed 

Instructions) order for the Baseline configuration.  We classify these workloads into: low 

memory intensive (L), medium memory intensive (M), and high memory intensive (H) if their 

LLC MPKI is lower than one, between one and five, and over five respectively. We run each 

workload for approximately 500M instructions with warmed up caches. To address workload 

Processors 8, 3.2 GHz, 4-wide issue, out-of-order 

L1 Caches 32 KB 8-way split, 2 cycles 

L2 Caches 256 KB 8-way, 10 cycles 

L3 Cache 8 MB 16-way, 8 banks, 27 cycles 

Memory 
4GB, 16 Banks, 800 MHz DDR3. 

 

Table ‎5-1: Simulation Parameters. 
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variability, we simulate each workload for a fixed number of work units (e.g., transactions) and 

report the average over multiple runs ‎‎[90]. 

We study the following configurations at LLC: 

 Baseline is a conventional 16-way 8MB LLC. 

 2X Baseline is a conventional 32-way 16MB LLC. 

 FixedC doubles the number of tags (i.e., 32 tags per set) compared to Baseline. Each 

cache block is compressed to half if compressible, otherwise stored as uncompressed. 

 VSC doubles the number of tags compared to Baseline. A block is compressed and 

compacted into 0-4 contiguous 16-byte sub-blocks. 

 DCC_4_16 has same number of tags per set (i.e., 16 tags per set) as the Baseline, but 

each tracks up to 4 neighboring blocks (4-block super-blocks). In DCC, one tag tracks all 

Table ‎5-2: Applications. 

 Application LLC MPKI 

Low Mem Intensive ammp 

blackscholes 

canneal 

freqmine 

0.01 

0.13 

0.51 

0.65 

Medium Mem Intensive bzip2 (mix1) 

equake 

oltp 

jbb 

wupwise 

1.7 

2.2 

2.3 

2.7 

4.3 

High Mem Intensive gcc-omnetpp-mcf-bwaves-lbm-milc-cactus-bzip (mix7) 

libquantum-bzip2 (mix2) 

astar-bwaves (mix5) 

zeus 

gcc-166 (mix4) 

apache 

omnetpp-4-lbm-4(mix8) 

cactus-mcf-milc-bwaves (mix6) 

applu 

libquantum(mix3) 

8.4 

9.3 

9.3 

9.3 

10.1 

10.6 

11.2 

13.4 

25.9 

43.9 
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blocks belonging to a super-block. A block is compressed to 0-4 16-byte sub-blocks, 

compacted in order but not necessarily in contiguous space in a set. This is the main 

configuration we used in evaluating DCC in Chapter 4. 

 DCC_8_8 is similar to DCC_4_16, but it tracks up to 8 neighboring blocks (8-block 

super-blocks). A block is compressed to 0-8 8-byte sub-blocks. 

 SCC_8_8 has same number of tags per set (i.e., 16 tags per set) as the Baseline, but each 

tracks up to 8 neighboring blocks (8-block super-blocks). Unlike DCC, SCC might use 

multiple sparse super-block tags to track blocks of a super-block in case all cannot fit in 

one data entry. A block is compressed to 1-8 8-byte sub-blocks. A given block can be 

mapped to a group of four cache ways (out of 16 ways) based on block address and 

compressibility. 

 SCC_4_16 is similar to SCC_8_8, but it tracks 4-block super-blocks. A block is 

compressed to 1-4 16-byte sub-blocks. For a given address, we divide the cache into three 

way groups containing 4 ways, 4 ways, and 8 ways, respectively. We map a block to 

these groups if the block is uncompressed, compressed to 32-bytes, or compressed to 16-

bytes, respectively. 

 Skewed Base models a 4-way skewed associative cache with conventional tags (no 

super-blocks) and no compression. 

5.5 Design Complexities 

Compressed caches effectively increase cache capacity at the cost of more metadata. Table 

‎5-3 shows the area breakdown of different compressed caches compared to Baseline. We assume 
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a 48-bit physical address space. These compressed caches differ in the way they provide needed 

tags to track compressed blocks, and their tag-data mapping. In Table ‎5-3, we separate their area 

overhead caused by more tags (including tag addresses and LRU information), extra metadata for 

coherence information, and extra metadata for compression (including any compression flag, 

compressed block size, etc.).  

The earlier FixedC and VSC designs double the number of tags, which increases the LLC 

area by about 6%. FixedC requires no additional metadata for tag-data mapping, since it retains a 

one-to-one tag-data relationship. It only stores a 1-bit flag per block to represent if a block is 

compressed or not. VSC allows variable-size compressed blocks, requiring three bits of 

additional metadata per block to store its compressed size. VSC uses this modest additional 

metadata to determine the location of a compressed block. 

DCC uses the same number of tags as Baseline, but each tag tracks a 4- or 8-block super-

block. The tags use fewer bits for the matching address, thus compared to a regular cache tags 

are smaller. On the other hand, DCC needs additional coherence state for each block. 

DCC_4_16, with 4-block super-blocks, increases LLC area by 1.7% due to more coherence 

Table ‎5-3: Compressed Caches Area Overhead relative to Baseline. 

 Tags Coherence Metadata Compression Metadata Total LLC Overhead 

FixedC 5.3% 0.6% 0.3% 6.2% 

VSC 5.3% 0.6% 1.1% 7.0% 

DCC 4_16 -0.1% 1.7% 5.2% 6.8% 

DCC 8_8 -0.3% 3.8% 11.8% 15.3% 

SCC 4_16 -0.2% 1.7% 0 1.5% 

SCC 8_8 -0.4% 3.9% 0 3.5% 
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states. By doubling the super-block size, DCC_8_8 can track twice as many blocks but increases 

the additional area overhead to 3.8%. DCC decouples tag-data mapping, requiring extra metadata 

to hold the back pointers‎ that‎ identify‎ a‎ block’s‎ location. DCC keeps one back pointer entry 

(BPE) per sub-block in a set. In DCC_4_16, back pointer entries incur 5.2% area overhead. 

Smaller sub-block sizes can reduce internal fragmentation, and so improve cache utilization, but 

at the cost of more BPEs. DCC_8_8 uses 8-block sub-blocks, has 16*8 BPEs per set, resulting in 

11.8% extra area overhead for the metadata. 

SCC also tracks super-blocks, and thus has tag overhead lower than a conventional cache, 

but differs from DCC in two ways. First, SCC only needs (pseudo-)LRU state for the tags, while 

DCC maintains additional state for the decoupled sub-blocks. Second, SCC does not require 

extra‎metadata‎to‎track‎a‎block’s‎location‎because‎of‎its‎direct‎tag-data mapping. SCC keeps only 

the tag address, LRU state and per-block coherence states. SCC_4_16 incurs 1.5% area 

overhead, more than a factor of 4 lower overhead than DCC_4_16.  Similarly, SCC_8_8 incurs 

3.5% area overhead, 78% less area overhead than DCC_8_8. 

5.6 Evaluation 

5.6.1 Cache Utilization 

Figure ‎5-5 shows the effective capacity of the alternative cache designs normalized to 

Baseline for our workloads. We calculate the effective capacity of a cache by periodically 

counting the number of valid blocks. An ideal compressed cache would have a normalized 

effective‎capacity‎ that‎ is‎ the‎same‎as‎ the‎application’s‎compression‎ratio.‎Practical‎compressed‎
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caches trade off effective capacity for lower overheads and lower complexity. In addition, some 

low memory intensive workloads, such as ammp, have small working sets, which fit in a small 

cache even though they have highly compressible data. 

Figure ‎5-5 also shows that compressed caches can achieve much of the benefit of doubling 

the cache size, despite their low area overheads. 2X Baseline, which doubles the area used by the 

LLC, can hold on average 1.9 times more blocks (at most 2x and only 1.6x for the low memory 

intensive applications). FixedC and VSC provide, on average, 1.5x and 1.6x the normalized 

effective capacity, respectively. Like 2X Baseline, they can hold at most twice as many blocks 

since they have exactly twice as many (regular) tags.  

SCC and DCC can further increase effective capacity because tracking super-blocks allow 

a maximum effective capacity equal to the super-block size (e.g., 4x and 8x). SCC_4_16 and 

SCC_8_8 provide, on average, normalized effective capacities of 1.7 and 1.8. SCC achieves the 

highest effective capacity for memory intensive workloads (on average ~2.3), outperforming 2X 

Baseline. 

Figure ‎5-5: Normalized LLC effective capacity. 
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DCC achieves a greater normalized effective capacity than SCC because its decoupled tag-

data mapping reduces internal fragmentation and eliminates the need to ever store more than one 

tag for the same super-block. In DCC, non-neighboring blocks can share adjacent sub-blocks, 

while in SCC only neighboring blocks can share a data entry and only if they are similarly 

compressible. In addition, DCC does not store zero blocks in the data array, while SCC must 

allocate a block with compression factor of 3 (i.e., 8 bytes).  DCC_4_16 and DCC_8_8 achieve, 

on average, normalized effective capacities of 2.1 and 2.4, respectively. Of course, this comes at 

more than four times the area overhead and higher design complexity compared to SCC. 

5.6.2 Cache Miss Rate 

Figure ‎5-6 shows the LLC MPKI (Misses per Kilo executed Instructions) for different 

cache designs. Doubling cache size (2X Baseline) improves LLC MPKI by 15%, on average, but 

at significant area and power costs. Compressed caches, on the other hand, increase effective 

capacity and reduce cache miss rate with smaller overheads. 

SCC improves LLC miss rate, achieving most of the benefits of 2x Baseline. On average, 

Figure ‎5-6: Normalized LLC MPKI. 
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SCC provides about 13% lower LLC MPKI than Baseline. It achieves the greatest improvements 

for memory‎ intensive‎ workloads‎ (on‎ average‎ %16).‎ SCC’s‎ improvements‎ come‎ from‎ two‎

sources: reduced capacity misses and reduced conflict misses. By increasing effective capacity 

using compression, SCC obviously tends to reduce capacity misses. But SCC also reduces 

conflict misses as a result of its skewed-associative tag mapping. SCC primarily uses skewing to 

map different size compressed blocks to one of four way groups, while preserving a direct, one-

to-one tag-data mapping. SCC further uses skewing to reduce conflicts between blocks within a 

4-way way group.  

To show the impacts of skewing on miss rate, Skewed Base in Figure ‎5-6 models a 4-way 

skewed cache. On average, Skewed Base performs in the same range as the 16-way Baseline 

(about 4% lower MPKI). For some workloads, such as Apache and Zeus, skewing reduces 

conflict misses significantly by spreading out the accesses. In SCC, this results to even lower 

miss rate of these workloads due to compression. On the other hand, for few workloads (mix2, 

mix5, and mix8), skewing cannot compensate the negative impacts of lowering the associativity 

in Skewed Base. For those workloads, SCC shows lower miss rate improvements, and even 7% 

LLC miss rate increase for mix5. 

Compared to DCC, SCC provides similar improvements with a factor of 4 lower area 

overheads. By tracking super-blocks, both DCC and SCC perform better than FixedC and VSC. 

Although DCC_8_8 achieves higher effective capacity than DCC_4_16 and SCC, it performs on 

average similar to DCC_4_16. For oltp, DCC_8_8 even increases LLC MPKI by about 13% as 

mapping 8 neighbors to the same set can increase conflict misses. 
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For completeness we also analyzed a design that combines skewed associativity with DCC. 

Due to the decoupled tag-data mapping of DCC, adding skewing to DCC results in a more 

complicated design and replacement policy that we do not consider practical to implement. DCC 

stores sub-blocks of a block anywhere in a cache set. When applying skewing, this means the 

sub-blocks of a block can be indexed to different sets. Thus, a BPE needs to store set index as 

well resulting to high area overheads (~15% area overhead for a configuration similar to 

DCC_4_16). In addition, skewing can significantly complicate replacement policy in DCC. A 

block allocation can trigger multiple block evictions as a block can be allocated across different 

sets. Our results (not shown here) show that adding skewing to DCC improves it marginally. 

5.6.3 System Performance and Energy 

Figure ‎5-8, Figure ‎5-7, and Figure ‎5-9 show system performance and energy of different 

cache designs. Our reported system energy includes both leakage and dynamic energy of cores, 

caches, on-chip network, and off-chip main memory. 

Figure ‎5-7: Normalized performance of different SCC and DCC configurations. 
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By increasing cache efficiency and reducing accesses to the main memory, compressed 

caches can improve system performance and energy, achieving the benefits of larger caches. 

SCC improves system performance and energy by up to 22% and 20% respectively, and on 

average 8% and 6% respectively. SCC achieves comparable benefits as previous work DCC with 

a factor of four lower area overheads.  

SCC benefits differ per application. It provides the highest improvements for memory 

intensive workloads (on average 11% and maximum of 23% faster runtime for apache). On the 

other hand, it has the smallest gains for low memory intensive workloads (on average 4%). For 

cache insensitive workloads, such as ammp, blackscholes and libquantum (mix3), SCC does not 

impact their performance and energy. 

Figure ‎5-7 also shows the performance of Skewed Base, which basically separates skewing 

impacts on SCC performance. In Skewed Base, a block can be mapped to a group of 4 ways 

based on its address. Each of those ways is hashed differently. For some workloads, such as 

apache, Skewed Base improves their performance and energy by spreading out accesses. For 

Figure ‎5-8: Normalized performance of different cache designs. 
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these workloads, although SCC has smaller effective capacity than previous work DCC, SCC 

overall miss rate improvement is comparable to DCC and 2X Baseline. On the other hand, for 

few workloads (mix1, mix5, and mix8), skewing cannot compensate the effect of lower effective 

associativity in Skewed Base. For these workloads, SCC achieves lower performance and energy 

improvements. For mix5 (astar-bwave), SCC has about 5% increase in runtime and energy. 

5.7 Conclusions 

In this chapter, we propose Skewed Compressed Cache, a new low-overhead hardware 

compressed cache. SCC compacts compressed blocks in the last-level cache in such a way that it 

can find them quickly, and minimize the storage overhead and design complexity. To do so, SCC 

uses sparse super-block tags to track more compressed blocks, compact blocks into a variable 

number of sub-blocks to reduce internal fragmentation, but retain a direct tag-data mapping to 

find blocks quickly and eliminate the extra metadata.  

SCC proposes a direct tag-data mapping by exploiting compression locality. It compresses 

blocks to variable sizes, and at the same time eliminates the need for extra metadata (e.g., back 

Figure ‎5-9: Normalized system energy. 
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pointers). It dynamically packs neighboring blocks with similar compressibility in the same 

space tracking them with one sparse super-block tag. SCC further uses skewing to spread out 

blocks for lower conflicts. Like previous work DCC, SCC achieves performance comparable to 

that of a conventional cache with twice the capacity and associativity. But SCC does this with 

less area overhead (1.5% vs. 6.8%). 
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Chapter 6  

On Compression Effectiveness in the Memory Hierarchy 

6.1 Overview 

There have been several recent proposals on exploiting compression in the memory 

hierarchy. Software-based approaches focus on compressing pages in main memory. For 

example, Apple OS X compresses the least recently used pages to free up memory for active 

processes ‎[70]. Hardware-based techniques span the memory hierarchy, using simpler algorithms 

to keep design complexity and overheads low. For example, several recent proposals, including 

DCC and SCC, seek to double (or more) the effective capacity of the last level cache in a 

multicore processor ‎[21]‎[22]‎[23]. 

Since most of these proposals are on non-existing hardware, architects evaluate those using 

detailed simulators. Due to the complexity of existing simulators, simulations are slow. For 

example, the gem5 simulator ‎[96] with an OOO processor configuration runs a benchmark 

approximately 10,000 times slower compared to running it directly on a real machine. 

Simulating a one-hour desktop application (e.g., watching a movie on YouTube), if at all 

possible, would take over one year of simulation time. Consequently, most researchers end up 

evaluating their proposals with small benchmarks for short runtimes. While previous studies, 

such as SimPoint ‎[97], have sought to identify representative points within a workload, they have 
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focused on microarchitecture or workload behavior, not memory compression. Therefore, many 

of studies on compression rely on workload properties that have only been demonstrated to hold 

for small benchmarks and short runtimes. Thus, we cannot clearly infer how they would work for 

large, real-world workloads running for long periods of time. 

In this chapter, I take a holistic approach toward compression focusing on compression 

both in main memory and in caches. I explore 8 myths (i.e., commonly made assertions and 

conventional wisdoms) spanning a wide range of different design options consisting of 

compression algorithms, granularity of compression, compression locality, etc. These myths, 

listed in Table ‎6-1, arise from previous proposals mostly through simulation of standard 

benchmarks. I evaluate the strength of each myth under several design parameters, resulting in 

12 overall findings.‎ For‎ each‎ myth,‎ I‎ rate‎ them‎ as‎ “Busted!”‎ if‎ I‎ cannot‎ replicate‎ them,‎

“Plausible”‎ if‎ I‎ can‎ only‎ replicate‎ them‎ for‎ few‎ applications‎ or‎ with‎ certain‎ parameters,‎ and‎

“Confirmed!”2 if the myth holds. 

                                                 
2 This terminology is inspired by MythBusters: http://en.wikipedia.org/wiki/MythBusters 

Table ‎6-1: Myths on compression. 

M1 Most‎workloads‎are‎compressible:‎50%‎of‎workloads‎have‎compression‎ratio‎≥‎2. 

M2 Cache data are more compressible than memory data. 

M3 Floating point data is mostly uncompressible. 

M4 Instructions are mostly uncompressible. 

M5 Compression locality: neighboring blocks have similar compressibility. 

M6 Bigger blocks are more compressible. 

M7 More complex compression algorithms improve compressibility. 

M8 Sub-blocking eliminates most internal fragmentation. 
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Unlike most previous work, rather than focusing on small CPU benchmarks, I 

quantitatively evaluate compressibility of workloads for up to 24 hours. In addition to standard 

CPU benchmarks (e.g., SPEC CPU2006), I study the production servers of the Computer 

Sciences Department of UW-Madison (e.g., web, file and database servers), memory-intensive 

desktop applications (e.g., Google Chrome), mobile benchmarks, and emerging big data 

applications. To evaluate compressibility on real machines, I have developed a toolset that 

enables measuring compressibility of cache and memory contents for any running application. 

Through my extensive analysis, I show that two of‎ the‎ eight‎ myths‎ are‎ “Busted!,”‎ two‎ are‎

“Plausible,”‎and‎the‎rest‎are‎“Confirmed!”. 

This chapter is organized as follows. I discuss the eight popular myths on compression in 

Section 2. I explain our infrastructure, tools, and workloads in Section 3. I then test and analyze 

the myths in Section 4. Finally, Section 5 concludes the chapter. 

6.2 Myths about Compression 

Several proposals have been exploiting compression to improve cache and memory 

utilization. Many of these studies rely on workload properties that have only been demonstrated 

to hold for small, CPU-centric benchmarks and very short runtimes using simulators. In this 

work, we treat these workload properties as myths that must be tested. Table ‎6-1 lists these 

myths, and we describe them in detail below: 

Myth 1: Several proposals show that many workloads are compressible ‎[20]‎[21]‎[23]. 

Many applications must benefit from compression to justify hardware-based compression 
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mechanisms. To quantify this myth (M1) at least half the workloads are compressible to half (i.e. 

compression‎ratio‎≥‎2).‎This‎is‎a‎statement‎of‎overall‎compression‎effectiveness.‎If‎this‎turns‎out‎

to be false, it would mean that compression might not be of general use. 

Myth 2: Compression effectiveness could also change depending on where in the memory 

hierarchy it is applied. Most previous work only focuses on one level of the memory hierarchy, 

and ignores the possible drawbacks or benefits at other levels. Mahapatra et al. ‎[98]‎[99] states 

that (M2) caches are more compressible than memory. They show that compressibility is lower 

at higher levels of the memory hierarchy, achieving the best compressibility at L1 caches. We 

evaluate the credentials of this myth under different design options. This would give designers 

insights on where they can get the highest benefits from compression: caches or main memory? 

Myths 3 and 4: The conventional belief is that compressibility depends on quality of data 

being compressed. For a given compression algorithm, data type is usually an indicator of 

compressibility. (M3) Floating-point data and (M4) instructions are mostly uncompressible 

using general-purpose compression mechanisms ‎[42]. We use different compression algorithms 

to test these myths. 

Myth 5: Although compressibility changes per memory region or page, (M5) neighboring 

blocks have similar compressibility ‎[61]. We do extensive analysis to find out if this myth holds, 

and if so, under what circumstances. 

Myth 6: In addition to quality of data, quantity or granularity of data matters too. 

Conventional belief is that (M6) compressibility improves when compressing larger chunks of 

memory ‎[98]‎[99]‎[21]. Usually a lot of effort is needed to compress larger granularity of data 
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(e.g., compressing a 4096B page versus compressing a 64B block). Thus, we examine whether 

these efforts and overheads worth the possible higher compressibility.  

Myth 7: Compression algorithm is a key player in compressed caches and memory. Myth 

M7 arises from conventional wisdoms that more complex algorithms improve compressibility 

‎[19]‎[20]‎[21]. Using our framework, we analyze if this myth holds, and if so to what extent. 

Myth 8: Finally, for a given compression algorithm, compaction mechanism (i.e., how to 

pack compressed blocks) plays an important role to get the benefits of compression ‎[20]‎[21]‎[23]. 

As storing blocks at byte granularity is not practical, several previous works use different sub-

blocking mechanisms. They store compressed blocks as multiple small sub-blocks to reduce 

internal fragmentation. In M8, we check whether sub-blocking could reduce internal 

fragmentation especially for real applications. 

6.3 Infrastructure 

In this section, we describe the infrastructure, tools, and workloads that we use to test these 

myths. We have two tools, one to study compressibility of data in main memory and one to study 

compressibility of data placed in the caches. Both our tools measure compressibility in real 

systems for any running application. We use representative real applications and benchmarks, 

and use rigorous methodology for measurements. 
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6.3.1 Platforms 

Servers: In this work, we evaluate compressibility of three servers in production use in the 

Computer Sciences Department of UW-Madison: a webserver, a fileserver, and a Postgres 

database server. All these servers run RedHat Enterprise Linux 6.5. The Fileserver and the 

Postgres server run on a machine with 2 Intel Xeon cores, while the webserver run on a 4-core 

Intel Xeon machine. 

Desktop machine: In addition to servers, we evaluate several real desktop applications 

and benchmarks. We run those on a desktop machine with Ubuntu 13.10. The machine has 4 

Intel Corei5-2500K cores. 

6.3.2 Tools 

In this section, we present our toolsets to study compressibility in main memory and 

caches on real machines. Unlike simulators, our tools are fast. They enable us to measure 

compressibility of actively used production servers for long period of time (e.g., 24 hours). Such 

study would take over a year on a simulator like gem5. In addition, using these tools, we can 

study any running application, eliminating hassles of benchmarking. 

6.3.2.1 Memory Compression Tool 

We have developed a tool to study the compressibility of blocks in main memory for a 

running application. The basic idea is to take snapshots from the physical memory of a running 

application periodically. To do so, our tool uses ptrace to connect to the process(es) of a running 

application. Through the ptrace interface, our tool reads the pages of each process present in the 

physical memory and measures their compressibility. 
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Our tool takes the following steps to calculate memory compressibility of an application. A 

running application on Linux relates to one parent process and maybe multiple spawned 

processes. In case there is more than one process (e.g., for servers and multi-threaded 

applications), we repeat the next steps for each process. Our tool also handles synonyms. It does 

not re-count compressibility of a physical page in case more than one virtual page maps to it. The 

page size is 4096B, and the block size is 64B (i.e., typical cache block size), unless otherwise 

stated. 

Step 1: For a running process with a given process id (i.e., pid), our tool finds its virtual 

memory‎ regions‎ by‎ accessing‎ "/proc/pid/maps”.‎ For‎ each‎ virtual‎ memory‎ region,‎ this‎ file‎

includes the start and the end addresses along with descriptions of the region (e.g., heap or 

stack). 

Step 2: For each page in a given virtual memory region (found in step 1), we then access 

"/proc/pid/pagemap" to find whether the page is present in the physical memory, and if so, to get 

its physical address. 

Step 3: For the physical pages found in step 2, we then read their contents through ptrace 

interface, and calculate their compressibility. We repeat step 2 and step 3 for all pages in each 

region. 

For an application, we repeat this procedure (step1-3) periodically. For short running 

benchmarks, we take samples every few seconds. For long running servers, we take a snapshot 

every half an hour. For real desktop applications, we repeat the experiment every few minutes.  
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6.3.2.2 Cache Compression Tool 

Unlike memory, there is no direct way to scan cache contents in a real machine for a 

specific running application. To find the compressibility of cached data in a real system, we 

build on BadgerTrap ‎[100], a tool that enables instrumentation of x86-64 TLB misses. 

BadgerTrap allows tracing data TLB misses in a Linux machine for a running application. It does 

so by converting hardware-assisted page walks to page faults handled by a special software-

assisted TLB handler. Our basic approach is to use this tool to get a random sample of data 

memory blocks accessed by CPUs for a running application.  

To analyze the compression ratio of data blocks randomly accessed by CPUs, we 

periodically flush TLBs in the Linux timer interrupt handler. We then analyze the access that 

causes the first TLB miss. Although data blocks could bypass the caches, modern processors 

store most accessed blocks in on-chip caches. Thus, measuring compressibility of randomly 

accessed data blocks could represent the compressibility of data blocks randomly accessed at L1 

data caches.  

Using BadgerTrap, we can get samples of accesses to data blocks but not instruction 

blocks. As instructions are read-only, their compressibility in main memory is the same as their 

compressibility in caches. Also, as this tool involves modifying Linux kernel, we use it on our 

desktop machine to measure cache compressibility of real desktop applications and benchmarks. 

It is not feasible for us to use it on our production servers. 
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6.3.3 Applications 

Since compression is a candidate in many platforms including servers, desktops, and 

mobiles, we consider a suite of workloads that span these. Table ‎6-2 summarizes our 

applications, and we describe them in detail below: 

Servers: We analyze three servers providing production service: a webserver, a fileserver, 

and a Postgres database server. These servers are running all the time to service our department. 

For these servers, we analyze them for 24 hours. These servers usually have multiple processes 

running simultaneously. 

Desktop Applications: We use five representative desktop applications running on our 

desktop machine for about an hour. We use Google Chrome while streaming a one-hour long 

movie on YouTube, Firefox while browsing a Wikipedia page with text and pictures 

(http://en.wikipedia.org/wiki/United_States), gedit text editor while editing a large text file, Open 

Office Writer while editing a version of this chapter, and Open Office Calc while editing an 

excel file. 

Gaming: We run three games supported on Ubuntu: Battle for Wesnoth (Wesnoth), 

Extreme Tux Racer (Tracer), and Pingus. We play each game for about an hour on the desktop 

platform explained in Section 3.1. 

Desktop Benchmarks: We use SPEC CPU2006 suite with reference input sets. We use 

benchmarks from both floating-point (SPEC-CFP) and integer (SPEC-CINT) categories.  

http://en.wikipedia.org/wiki/United_States


104 

 

Mobile Client: We use CoreMark ‎[103] that is a widely used benchmark for evaluating 

mobile systems. We also use BBench ‎[105],‎“a‎web-page rendering benchmark comprising 11 of 

the‎most‎popular‎sites‎on‎the‎internet‎today”. 

Big Data: We use graph-analytics and memcached from Cloudsuite ‎[102], and Graph500 

‎[101] as a representative of emerging big data applications. Memcached (or Data Serving) 

Table ‎6-2: Applications summary. 

Domain Application 

Servers 

(24 hours) 

An AFS Fileserver. 

A Webserver. It‎is‎in‎charge‎of‎“www.cs.wisc.edu”‎webpage. 

A Postgres database server for Linux backup metadata. 

Desktop Applications 

(1 hour) 

youtube: Google Chrome while streaming a video on Youtube. 

wiki: FireFox while browsing a Wikipedia page. 

gedit while editing a large text file. 

openWrt: Open Office Write while editing a version of this chapter. 

openCalc: Open Office Calc while editing an excel file. 

Gaming 

(1 hour) 

Extreme tux racer (Tracer) 

Pingus 

Battle for Wesnoth (Wesnoth) 

Desktop Benchmarks 

(to completion) 

SPEC CINT: astar, bzip2, gcc, gobmk, h264, hmmer, libquantum, mcf, omnetpp, 

perlbench, sjeng. 

SPEC CFP: lbm, milc, namd, povray, soplex, sphinx. 

Mobile Client 

(to completion) 

Coremark ‎[103] for ten million iterations. 

BBench ‎[105]. 

Big Data 

(to completion) 

Graph500 ‎[101]. 

Memcached ‎[102]. 

Graph-analytics ‎[102]. 
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simulate the behavior of a Twitter caching server. Graph analytics runs a machine learning and 

data mining software. We run them with default parameters ‎[104]. Graph500 generates a large 

graph, compresses it into sparse structures, and then does parallel breadth-first search. We use it 

with scaling factor of 24 (8GB memory footprint).  

6.4 Compression Algorithms 

In this work, we study four representative compression algorithms. The first three (C-

PACK+Z ‎[18], FPC+Z ‎[20], and BDI ‎[19]) have practical hardware implementations, and are 

suitable for hardware-based cache/memory compression. We also study a more ideal case using 

the gzip UNIX utility. For all these algorithms, we compress 64-byte blocks unless otherwise 

mentioned. We use C-PACK+Z in most experiments as a representative of hardware-based 

algorithms, as it is shown to have a good compressibility with low overheads compared to other 

algorithms ‎[21]. 

C-PACK+Z: Cache Packer (C-PACK) ‎[18] is a lossless compression algorithm that is 

designed specifically for hardware-based cache compression. C-Pack compresses a data-block at 

a 4-byte word granularity. It detects and compresses frequently appearing words (such as sign-

extended words or zero words) to fewer bits. In addition, it also uses a small dictionary to 

compress other frequently appearing patterns. The dictionary has 16 entries, each storing a 4-

byte word.  The dictionary is built and updated per data block. C-PACK checks whether each 

word of the input block would match a dictionary entry (even partially). If so, C-PACK then 

stores the index to that entry in the output compressed code. Otherwise, C-PACK inserts the 
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word in the dictionary. C-PACK takes 16 cycles to compress a 64-byte data block, and 9 cycles 

to decompress at 3.2GHz ‎[21]. In this work, we use a modified version of C-PACK 

(C-PACK+Z) that also detects zero blocks ‎[21]. 

FPC+Z: Frequent Pattern Compression (FPC) is a significance-based compression 

algorithm ‎[20]. It exploits the fact that many values are small (e.g., small integers) and do not 

require the full space allocated for them. FPC compresses data blocks on a word-by-word basis 

by storing common word patterns (such as sign-extended words or repeated bytes) in a 

compressed format accompanied with an appropriate prefix. Compared to dictionary-based 

approaches, FPC has lower decompression latency. FPC decompresses a 64-byte line in five 

cycles, assuming 12 FO4 gate delays per cycle. We also augment FPC to detect zero blocks 

(FPC+Z). 

BDI: Base-Delta-Immediate (BDI) compression algorithm ‎[19] is another low-overhead 

algorithm optimized for cache/memory compression. It is based on the observation that in a 

cache/memory block, many words have small differences in their values. BDI encodes a block as 

one or more base-values and an array of differences from the base-values or simply zero. In this 

work, we use a version of BDI that is optimized for capacity (i.e., high compression ratio). It 

uses two base values, and takes 2-3 cycles to decompress a block. 

gzip: To estimate the potential of compression with a complex algorithm, we use gzip. 

gzip is based on the DEFLATE algorithm, which is a combination of LZ77 and Huffman coding. 

We run gzip with its highest compressibility level (i.e., gzip -9). This algorithm is too complex 

for hardware-based compressed caches or memory. However, gzip can give us an approximate 
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bound on compressibility of our applications when compressing large chunks of memory (e.g., a 

page). However, gzip is not a real bound for all data types including floating point as it is not 

optimized for those. 

6.5 MythBusters: Testing Myths on Compression 

In this section, we evaluate the strength of the myths on compression. Our basic strategy is 

to address each myth in the context of our applications. In several cases we present additional 

analysis in which we vary the base configuration (presented in Section 3) to determine separate 

findings for the myth in question. 

6.5.1 Myth 1: Many Workloads Are Highly Compressible 

Several studies have shown that many workloads (mostly benchmarks) are highly 

compressible using basic general-purpose algorithms ‎[19]‎[21]. We quantify this myth as at least 

50%‎of‎workloads‎ have‎ compression‎ ratio‎ ≥‎ 2.‎ In‎ this‎ section,‎we‎ evaluate‎ this‎myth‎ for‎ our‎

applications with a hardware-based data-independent compression algorithm. 

Figure ‎6-1 shows the compression ratio of our applications in main memory. We evaluate 

compression ratio (i.e., original block size / compressed block size) of our applications using C-

PACK+Z algorithm. As discussed in section 3.2, we use our memory compression tool and 

periodically calculate the compression ratio of 64-byte blocks of a running application present in 

main memory. We report the average compression ratio over all the snapshots taken throughout 

the application runtime. 
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On average we observe the compression ratio of 2.3 across all applications. Our real 

applications and servers have the average compression ratio of 2.6 with the highest compression 

ratio of 18 for the file server (due to a large number of zero blocks) and the lowest compression 

ratio of 1.5 for gedit text editor. The average compression ratio of our benchmarks is 2.1. Among 

our benchmarks, milc has the lowest compression ratio (1.1), and bzip2 has the highest 

compression ratio (3.8). 

To better understand these results we show the distribution of compressed block sizes in 

Figure ‎6-2. We show the cumulative distribution for all applications in skinny gray lines, while 

we highlight some representative applications using wider colored lines. Overall, on average 

18% of blocks are zero, 16% of blocks are uncompressible (64B), and the rest of the blocks are 

compressible to 1B to 63B. In some real applications, like Tracer and Fileserver, and 

benchmarks, like bzip2, zero blocks and highly compressed blocks are dominant in memory 

resulting in high compression ratios. On the other hand, for low compressible applications, such 
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Figure ‎6-1: Compression ratio of our applications in memory with C-PACK+Z. 
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as coremark and milc, many blocks are uncompressible or poorly compressible (i.e., they have 

large compressed block sizes). The rest of applications, such as our webserver and wiki 

(browsing a wikipedia page on FireFox), have more uniform distributions.  

Although our results suggest that many applications can benefit from general-purpose 

hardware compression, we have to be aware of the worst cases too. The bad news is that 12 of 

our applications have compressibility < 2‎ and‎ even‎ six‎ have‎ compression‎ ratio‎ ≤‎ 1.5.‎ These‎

applications, including coremark, SPEC CFP benchmarks, and gedit, might still benefit from 

special-purpose compression algorithms, such as those optimized for floating-point data 

‎[15]‎[16]‎[106]. 

Myth 1: [Confirmed!] 64% of our applications have compression ratio ≥ 2. This holds for 

both the benchmarks and real applications. 
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Figure ‎6-2: Cumulative distribution of compressed block sizes in main memory. 
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6.5.2 Myth 2: Cache Data Are More Compressible than Memory Data 

Several proposals have exploited compression at different levels of the memory hierarchy. 

Most of them do not differentiate the impacts of compression in main memory versus caches. 

Mahapatra et al. ‎[98]‎[99] show that data in L1 caches are more compressible than data in main 

memory using the same compression algorithms for their studied applications.  

To test this myth, we use our memory compression and cache compression tools with the 

C-PACK+Z algorithm. We measure the average compression ratio of 64B blocks in main 

memory and compare it with the average compressibility of 64B data blocks accessed by CPUs. 

As we discussed in Section 3.2, the compressibility of data blocks randomly accessed by CPUs is 

an indicator of the compressibility of data blocks randomly accessed at L1 data caches. Since our 

Figure ‎6-3: Data block compression: cache vs. 

memory. 
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cache compression tool could only analyze data blocks (not instructions), we evaluate 

compressibility of only data blocks in main memory (i.e., blocks in stack and heap regions). For 

our benchmarks and real applications except servers, Figure ‎6-3 shows the average compression 

ratio of data blocks accessed by CPUs (on the X axis) versus the compression ratio of data 

blocks in main memory (on the Y axis). 

Unlike Mahapatra et al. ‎[98]‎[99], we found that for all but one application (lbm) cache data 

are not more compressible than memory data. Majority of our real applications and benchmarks 

have similar compressibility in main memory and L1 data caches. Out of 30 applications, for 18 

applications, the compression ratio of memory data blocks is similar to the compression ratio of 

L1 data blocks (i.e., less than 0.5 different). For the rest of applications (except lbm), 

compression ratio is considerably higher in memory than L1 caches. For example, bzip2 has the 

compression ratio of 3.8 in memory, while the compression ratio of its cached blocks is 1.3. 

Similarly, youtube has the compression ratios of 5.5 in memory and 1.9 in L1 caches. 

Figure ‎6-4: Percent of zero data blocks: memory vs. caches. 
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In general, for many applications the memory content is more compressible than cache 

content mainly due to larger percent of zero blocks in memory. Figure ‎6-4 shows the percent of 

data blocks that are zero in memory versus those accessed by CPUs. For some of our real 

applications, a significant number of data blocks are zero in memory. For example, for openWrt, 

Fileserver, Postgres server, and Tracer, 36%, 40%, 22% and 29% of blocks in stack and heap 

regions are zero respectively. This results in high compression ratios for these applications in 

memory. Similarly for some of our benchmarks, such as bzip2, gcc, and h264, the number of 

zero blocks is significant in memory as oppose to the caches. 

Most zero blocks in memory are due to zero padding at the end of pages and zero pages. 

Thus, most of these zero blocks are never read by the CPUs or placed in caches, resulting in a 

low number of zero blocks (less than 5%) and lower compression ratio at caches. To check this, 
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Figure ‎6-5 NON-ZERO block compression: cache vs. memory. 
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in Figure ‎6-5, we compare the compression ratio of non-zero data blocks in main memory 

against the compression ratio of all blocks (including zeros) in caches. When we exclude zero 

data blocks, we observe more similar compression ratio in main memory and L1 caches. 

Here, we compare compressibility of memory data versus cache data using the same 

configurations (i.e., C-PACK+Z algorithm at 64B block granularity). However, as we will 

discuss later, we can use even more complex compression techniques to compress larger chunks 

of data in main memory to further improve its compressibility. 

Myth 2: [Busted!] For almost all of our applications, the compression ratio in memory is 

either similar or better than the compression ratio in the L1 data caches. 

Finding 2.1: Higher compressibility in main memory is mainly due to the abundance of 

zero blocks in memory. 

Figure ‎6-6: Compression ratio of SPEC CFP benchmark. 
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6.5.3 Myth 3: Floating-Point Data Is Mostly Uncompressible 

Although there are several compression algorithms proposed for floating point 

applications, floating point data is considered mostly uncompressible using general-purpose 

compression algorithms ‎[42]. In this section, we analyze compressibility of the selected 

benchmarks from SPEC CFP (listed in Table ‎6-2). 

Figure ‎6-6 shows the compression ratio of SPEC CFP benchmarks in memory using 

different algorithms. For all these algorithms, on average the compression ratio is less than 1.5 

with the highest compression ratio for soplex and povray. To better understand these results, 

Figure ‎6-7 shows the percent of integer blocks in data regions (i.e., stack and heap) in memory 

on the X axis, and overall memory compression ratio using C-PACK+Z on the Y axis. Similar to 

Kant et al. ‎[42], we classify blocks as integer if the 8MSBs are 0x00 or 0xFF in each 32-bit 

word. In this way, we detect small integer values, which are most common. C-PACK+Z, similar 

Figure ‎6-7: Percent of integer blocks in data regions of memory vs. compression ratio of  

SPEC CFP using C-PACK+Z. 
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to other basic algorithms, is mostly optimized for small integer values. Thus, in Figure ‎6-7, the 

higher the percentage of integer blocks, the higher the compression ratio is. In other words, 

integer data is more compressible than non-integer data. Among these benchmarks, povray and 

soplex have the highest percent of integer values, resulting in their higher compression ratio. On 

the other hand, lbm and milc have mostly non-integer values, and so the lowest compression 

ratios. In general, the higher the percentage of non-integer blocks (including floating-point data), 

the lower the compression ratio is. 

There are several proposals to improve compression for floating-point data. Mahapatra et 

al. ‎[98]‎[99] state that floating-point benchmarks of SPEC CPU2000 have lower entropy, and so 

potentially higher compressibility than integer benchmarks. Burtscher et al. ‎[16]‎[106] also 

propose specialized compression algorithms that exploit the similarities among a sequence of 

floating-point values. Although these techniques achieve high compressibility for floating-point 

data, they might not be viable for on-line hardware cache/memory compression due to their 

complexity and overheads. Since our focus is on more general compression algorithms, we do 

not evaluate these techniques here. 

Myth 3: [Confirmed!] floating-point data have low compression ratio with general-

purpose algorithms. 

6.5.4 Myth 4: Instructions Are Mostly Uncompressible 

Existing general-purpose compression algorithms usually achieve good compressibility for 

data blocks with repeated bit patterns; however, instruction blocks have more complicated 

coding. In addition, one 64-byte instruction block can include multiple different instructions 
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(e.g., X86 instructions can have variable length) with low resemblance. Thus, instruction blocks 

are mostly considered as uncompressible using general-purpose compression algorithms ‎[42]. To 

evaluate this myth for our applications, we analyze compressibility of instruction blocks (i.e., 

blocks in instruction/binary region) in main memory.  

Figure ‎6-8 shows the average compression ratio of 64-byte instruction blocks in memory 

using different compression algorithms. In general, all our studied algorithms perform similarly 

and poorly for instruction blocks of our applications. Overall, the compression ratio of 

instruction blocks is on average 1.13, and up to 1.6 for gedit, Wiki, povray and soplex using C-

PACK+Z.  

Figure ‎6-9 shows the cumulative distribution of compressed block sizes in 

instruction/binary regions. Most applications have similar distributions, shown as skinny gray 

lines. We highlight a few representative applications. Zero blocks exist in instruction regions due 

to zero padding. There are on average 5% (up to 50% for openCalc) zero blocks in these regions. 

Note that, we do not count zero blocks in Figure ‎6-8 when we calculate the average compression 

Figure ‎6-8: Compression ratio of instruction blocks. 
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ratio of instruction blocks. Ignoring zero blocks, on average over 70% of instruction blocks are 

uncompressible (i.e., compressed block size of 64B) or poorly compressible (i.e., compressed 

block‎size‎≥‎48B). 

Although instruction blocks are mostly uncompressible using general algorithms, there are 

several specialized techniques to improve compressibility of instructions. These techniques 

usually find frequently used instruction sequences in instruction stream, replacing those with 

small code-words ‎[1]‎[4]‎[107]. These techniques are usually applied after compilation and code 

generation. Mahapatra et al. ‎[98]‎[99] also show that instruction caches have low entropy and so 

high potentials for compression. Compressing instruction caches could be useful to reduce cache 

miss rate in case of large instruction footprints. However, since instructions account for a small 

fraction (i.e., few pages) of memory footprint for most applications, compressing instructions 

have low impacts on overall memory utilization of many applications. 

Figure ‎6-9: Cumulative distribution of compressed block sizes in instruction memory regions. 
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Myth 4: [Confirmed!] On average, over 70% of instruction blocks are uncompressible or 

poorly compressible.  

6.5.5 Myth 5: Neighboring Blocks Have Similar Compressibility 

Neighboring blocks tend to have similar characteristics including access rate, hit or miss 

patterns ‎[108]. Previous work ‎[61] also shows that blocks of a page have similar compressibility 

(i.e., compression locality). Pekhimenko et al. ‎[61] assume‎ that‎ “all‎ cache‎ lines‎within‎ a‎ page‎

should be compressed‎to‎the‎same‎size”.‎They‎propose‎Linearly‎Compressed‎Pages‎(LCP)‎that‎

uses a fixed size for compressed blocks within a given page of main memory to simplify 

lookups. In SCC ‎[23], we also exploit compression locality within small regions (4 or 8 

neighboring blocks) in the L3 cache. In this way, as we discussed in the previous section, SCC 

simplifies cache lookups by compressing and fitting the neighboring blocks in one 64-byte data 

block if possible. These techniques ‎[61]‎[23] would benefit applications that have high 

compression locality. Otherwise, they might lower compression benefits due to internal 

fragmentation. In this section, we explore whether compression locality holds for our 

applications, and if so to what extent.  

Figure ‎6-10 shows the cumulative distribution of unique compressed block sizes within a 

4KB page. We use C-PACK+Z to compress each block to 0 to 8 8-byte sub-blocks. For each 

page, we then find the distribution of blocks ranked from the most common size to the least 

common size. The most common size (1-MCS) changes per page. For example, for Wiki, the 

most common size is zero in one page, and 32B in another. For each application, we then report 

the overall distribution in Figure ‎6-10.  
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Figure ‎6-10 also shows the OVERALL-AVG, the cumulative distribution (most common 

to least common) of compressed block sizes across all pages of all workloads.  This curve shows 

that the most common compressed block size over all workloads, 64 bytes, accounts for 22% of 

all blocks and the top three most common sizes, 64, 0, and 32 bytes, account for 55% of all 

blocks. In contrast, PAGE-AVG averages the frequency of the most common size within a page 

across all pages and all workloads (where different pages may have different most common 

sizes). If compressed block sizes were randomly distributed across pages, we would expect the 

per-page distribution be similar to the overall average distribution. Instead, PAGE-AVG shows 

that the most common block size within a page accounts for 53% of the blocks, while the top 

three most common sizes account for 82% of the blocks. These results clearly show that pages 

exhibit compression locality, with the most common block size within a page occurring more 

than twice as often as the most common block size overall.  We observed similar results using 

other compression algorithms, e.g., BDI, and other sub-block sizes. 

Figure ‎6-10: Cumulative distribution of compressed block sizes within a page in main memory. Sizes are ordered 

from the most common size (1-MCS) to the least common size (LCS) for each individual application on the X axis. 
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The most common compressed block size changes per application. For many of our 

applications, either zero or 64 bytes is the most common block size. 64B blocks (i.e., 

uncompressible blocks) are most common for gedit, hammer and milc, while zero blocks are 

most common in bzip2, Postgres server, Fileserver, and Tracer. 

Applications exhibit different levels of compression locality. Figure ‎6-11 shows the overall 

and per-page distributions of compressed block sizes for two representative workloads. 

Webserver exhibits compression locality similar to the overall average: the most common block 

size (32B) accounts for 27% of blocks overall (Webserver-overall), while the most common size 

within a page accounts for 48% of blocks (Webserver-per-page). This locality holds even for the 

second and the third most common block sizes, similar to the average across all workloads. In 

contrast, gedit exhibits no compression locality, with the per-page distribution (gedit-per-page) 

essentially identical to its overall distribution of block sizes (gedit-overall). 

Even though some applications have low compression locality within pages, they can have 

better locality in smaller memory regions. Figure ‎6-12 shows the cumulative distribution of 

Figure ‎6-11: Cumulative distribution of compressed block sizes within a page in main memory (per-

page) versus overall memory footprint for two representative applications. 
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compressed block sizes for gedit at different memory region sizes. Although gedit has low 

compression locality at page granularity, it has high locality at small regions. For example, in a 

small 8-block region, the most common size would account for 80% of the blocks. This means 

on average 6 blocks of 8 blocks have the same compressed block size. This could be due to 

similar compressibility of elements in data structures. 

Myth 5: [Plausible!] On average, the most common block size accounts for 53% of blocks 

within a page. However, the distribution has a heavy tail and even 3 different block sizes only 

account for 82% of the blocks in a page. 

Finding 5.1: Compression locality is higher in smaller memory regions. 

6.5.6 Myth 6: Bigger Blocks Are More Compressible 

Conventional belief is that larger blocks are more compressible ‎[98]‎[99]‎[21].  In general 

more redundancy is present within larger blocks, but more effort is also needed to compress 

them. In this section, we study the impact of block granularity on compression ratio. We analyze 

the trade-offs to see whether the efforts worth the potential benefits of compressing larger 

Figure ‎6-12: Cumulative distribution of compressed block sizes for gedit within regions with different sizes. 
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blocks. 

Figure ‎6-13 shows the compression ratio of our applications in main memory using C-

PACK+Z algorithm. We change block size from the small regular size (64B) to the page size 

(4096B). For C-PACK+Z, we use the default parameters described in Section 3.4. Compression 

ratio increases as we increase block size. Among our applications, servers, desktop applications, 

and SPEC CINT gain higher compressibility than SPEC CFP and mobile benchmarks at larger 

block granularities.  

Figure ‎6-14 shows the average compression ratio of our servers with different compression 

algorithms at different block granularities. Compression sensitivity to block size differs per 

algorithm. While compressibility improves at larger block sizes with C-PACK+Z, larger block 

sizes do not impact compressibility with FPC+Z, and even can hurt efficiency of BDI. FPC+Z 

compresses each word in a block separately, so it is not sensitive to block size. The efficiency of 

BDI reduces at page granularity as it would be hard to find a small number of base values that 
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are good for all words in a page. On the other hand, gzip is highly sensitive to block size. When 

applied at page granularity, gzip can provide on average 4.5x, and up to 12x (for Fileserver) 

higher compression ratio for servers.  

Figure ‎6-13 and Figure ‎6-14 emphasize on the importance of picking the right compression 

algorithm at specific design points. While using larger blocks improve compression ratio, the 

benefits come at higher costs. Using larger blocks might negate the benefits from compression 

by increasing cache pollution, reducing cache efficiency, and incurring energy overheads ‎[109]. 

Alternatively, as we showed in Chapter 4, DCC ‎[21] dynamically detect neighboring blocks and 

co-compact them to get some of the compression benefits of larger blocks at lower overheads.  

Myth 6: [Plausible!] On average, compression ratio improves for block sizes larger than 

64B. Overall, compressibility is not a direct function of block size. Compression sensitivity to 

block size depends on many factors including compression algorithm and data being 

compressed. 

Finding 6.1: Compression sensitivity to block size depends more on the compression 

algorithm than the applications. 

Figure ‎6-14: Compression ratio of servers in main memory. 
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6.5.7 Myth 7: More Complex Compression Algorithms Improve Compressibility 

Compression algorithm is a key player in compressed caches and memory. In general, the 

conventional wisdom says more complex algorithms improve compressibility ‎[19]‎[20]‎[21]. In 

this section, we study if this myth holds using different algorithms. 

Figure ‎6-15 summarizes the compression ratio of different algorithms in main memory. 

We use 64B blocks with BDI, FPC+Z, and C-PACK+Z. Regarding complexity, we can order 

these algorithms as: BDI (the simplest), FPC+Z, C-PACK+Z, and gzip (the most complex). BDI 

has the simplest design, and so the lowest decompression latency. gzip uses the most complex 

technique, useful for software mechanisms. Despite the high complexity of gzip, it does not 

perform nearly as well as other algorithms for small block sizes. C-PACK+Z gains the highest 

compression ratio since it is especially designed to exploit replications in small cache/memory 

blocks. FPC+Z and BDI perform similarly on average despite more complexity of FPC+Z. At 

page granularity, gzip performs the best as it is optimized for compressing large amount of data.  

Complexity is not necessarily an indicator of effectiveness of an algorithm. The key is to 

Figure ‎6-15: Memory compression with different algorithms. 
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find the algorithm that is tailored for the data being compressed at a particular level of the 

memory hierarchy. Besides compression ratio, there are different parameters to evaluate the 

success of a compression algorithm in the memory hierarchy, including 

compression/decompression latency, design complexity, and area and power overheads. For 

example, although C-PACK+Z gains higher compression ratio than BDI, its higher 

decompression latency might negate its benefits if applied at L1 caches.  However, at higher 

levels of the memory hierarchy (i.e., L3 or memory), most applications can tolerate its 

decompression latency ‎[21]‎[22]. 

For a given compression algorithm, the next question is whether increasing its complexity 

would improve its effectiveness. For example, increasing dictionary size in a dictionary-based 

algorithm might improve its effectiveness ‎[18]. Here, we study this myth for C-PACK+Z. 

Figure ‎6-16 shows the effect of dictionary size on the compression ratio of our applications 

Figure ‎6-16: Sensitivity of compression ratio to dictionary size. 
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using C-PACK+Z at different block granularities. At each block granularity, we measure 

compression ratio with the default-size dictionary (16-entry), the half-size dictionary (8-entry), 

and the full-size dictionary. For example, when compressing a 128B block, which has 32 4-byte 

words, we measure the compression ratio with 8-entry, 16-entry and 32-entry dictionary sizes. A 

32-entry dictionary can hold all words of a 128-byte block in case no word is repeated.  

There are trade-offs in changing the dictionary size. While a larger dictionary can detect 

more repeated values, it would increase overheads. For example, with a 64-entry dictionary, C-

PACK+Z stores 6 bits (the index to the matched entry) per matched word in the output code. 

While with an 8-entry dictionary it stores only 3 bits per word. This increase of metadata in the 

output code would negate the benefits of larger dictionary for majority of our applications even 

with large block sizes. 

Myth 7: [Busted!] Algorithm complexity is not always an indicator of better 

compressibility.  

Finding 7.1: Overall, increasing the dictionary size does not improve compressibility. It 

can even hurt effectiveness of the algorithm. 

6.5.8 Myth 8: Sub-blocking Eliminates Most Internal Fragmentation 

Managing variable-size compressed blocks complicates compressed cache/memory 

designs. Storing compressed blocks at byte granularity has huge overheads on cache metadata 

‎[21]. An alternative is to compress blocks into variable number of small sub-blocks to eliminate 

internal fragmentation while allowing variable-size compressed blocks ‎[20]‎[21]‎[22]‎[23].  
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Figure ‎6-17 shows the average compressed block size of our applications when using 

different sub-block sizes. The higher the compressed block size is, the lower the effective 

capacity would be. Using 32-byte sub-blocks (i.e., compressing a block to half if possible) would 

increase the average compressed size by 33% and up to 2 times (for libquantum). This means 

roughly on average 33% increase in internal fragmentation. Using small sub-block sizes, we can 

gain some of the benefits of byte-granularity with significantly lower overheads. For example, in 

Figure ‎6-17, 8-byte or 16-byte sub-blocks perform better than 32-byte sub-blocks (i.e., lower 

compressed block sizes), and get most benefits of 1-byte sub-blocks. Using 8-block sub-blocks 

would increase the average compressed size by only 7% compared to 1-byte sub-blocks, 

significantly lowering internal fragmentation compared to 32-byte sub-blocks. 

Myth 8: [Confirmed!] Compressing blocks to small sub-blocks reduce internal 

fragmentation. 

Figure ‎6-17: Average compressed block size using C-PACK+Z with different sub-block sizes. 
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6.6 Conclusions 

In this chapter, I take a holistic approach toward compression in the memory hierarchy. I 

explore 8 popular myths arise from conventional wisdoms and past experiences on compression, 

including a broad range of different design options (e.g., compression algorithm). I evaluate 

them using real-world workloads (such as production servers) and refine them into overall 12 

findings about compression effectiveness. Through extensive analysis, I show that two of the 

eight‎ myths‎ are‎ “Busted!,”‎ two‎ are‎ “Plausible,”‎ and‎ the‎ rest‎ are‎ “Confirmed!”.‎ The‎ analysis‎

provides insights into compression in the memory hierarchy. 
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Chapter 7  

Conclusions 

In modern processors, last level caches (LLCs) mitigate the limited bandwidth and high 

latency of off-chip main memory. LLCs also play an increasingly important role in reducing 

memory system energy as they can filter out energy-expensive memory accesses. Increasing the 

LLC size can improve system performance and energy by reducing memory accesses, but at the 

cost of high area and power overheads. In this dissertation, I explored using compression to 

effectively improve the LLC capacity and ultimately system performance and energy 

consumption. 

Cache compression is a promising technique for expanding effective cache capacity with 

little area overhead. Compressed caches can achieve the benefits of larger caches using the area 

and power of smaller caches by fitting more cache blocks in the same cache space. Ideally, a 

compressed cache design must balance three frequently-conflicting goals: i) tightly compacting 

variable-size compressed blocks, ii) keeping tag and other metadata overheads low, and iii) 

allowing fast lookups. Previous compressed cache designs achieved at most two of these three 

goals, limiting the potential benefits of compression. In addition, most previous proposals 

targeted improving system performance even at high power and energy overheads.  

In this dissertation, I made several contributions that address concerns on different aspects 

of cache compression. I presented two novel compressed cache designs: Decoupled Compressed 
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Cache (DCC) ‎[21]‎[22] and Skewed Compressed Cache (SCC) ‎[23]. DCC and SCC are both 

optimized for energy, eliminating the sources of energy inefficiencies in previous designs, while 

tightly packing variable size compressed blocks. They exploit spatial locality to reduce tag 

overheads by tracking super-blocks. Compared to conventional uncompressed caches, DCC and 

SCC improve the cache miss rate by increasing the effective capacity and reducing conflicts. 

Compared to DCC, SCC further lowers area overhead and design complexity.  

Despite years of research on compressed caches, the industry has not yet adopted the use of 

cache compression. In this dissertation, in addition to presenting novel techniques to improve 

compression effectiveness, I showed that our designs can be implemented with limited changes 

to existing designs. Another main concern is that since most proposals on compressed caching 

are on non-existing hardware, architects evaluate those using detailed simulators with small 

benchmarks. So, whether cache compression would benefit real applications running on real 

machines was an open question. In this dissertation, I addressed this question by analyzing the 

compressibility of several real applications, including production servers of the Computer 

Sciences Department of UW-Madison. I showed that compression could in fact be beneficial to 

many real applications. 

7.1 Directions for Future Work 

While in this dissertation, I re-visited compressed caching for improving system 

performance and energy, I believe there are several opportunities for future research on 

compression in the memory hierarchy. Here, I outline few possible areas of research: 
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7.1.1 Adaptive Selective Compression 

Although compression improves the performance and system energy of some applications, 

it might not help or it might even hurt the performance or energy of some others. In this thesis, I 

focused on compressing the LLC. At lower levels of the cache hierarchy (e.g., the L2 cache), at 

which sensitivity to cache latency is higher, more applications might get hurt from compression.  

Even for a specific application, different phases of one application may also show different 

levels of compressibility and cache sensitivity. Therefore, dynamically balancing the benefits of 

compression with its overheads is important. Here, I briefly explain how we can achieve this 

balance. 

Adaptive Compression: Several techniques can be used to adaptively control 

compression. Alameldeen and Wood ‎[57] used stack depth information of the cache replacement 

algorithm to determine whether or not to compress a block. By dynamically monitoring 

workloads’‎behavior‎and‎disabling‎compression‎when‎not‎effective,‎they‎balanced‎the‎benefits‎of‎

compression for cache sensitive workloads, while avoiding performance degradation for others. 

Another possible technique for determining whether to compress a block or not is to use 

sampling mechanisms ‎[79]. We can reserve a group of cache sets to compress their blocks all the 

time, and have another group that we never compress. By tracking and comparing the miss rates 

of these two groups, we can enable compression when it results in a lower number of misses. 

These techniques can be used with SCC and DCC. In addition, since SCC and DCC track blocks 

at multiple granularities, we could also leverage spatial locality, and the fact that many 

contiguous blocks have similar compressibility allows for better prediction of which blocks to 

compress or not. 
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Selective Compression: In addition to dynamically controlling compression, we can be 

selective with regard to which specific blocks to compress or not. Not all blocks brought to the 

cache are similarly sensitive to latency. Instruction blocks are usually on the critical path, and 

any extra delay on their access time might hurt performance. Some loads are also critical and 

need to complete early to prevent processor stalls (i.e., critical), while others could tolerate a 

longer latency (i.e., non-critical). The criticality of a load mostly depends on the chain of 

instructions dependent on that load. If most instructions following that load depend on it, the 

processor may stall if that load takes a long time. Previous work presented hardware-based 

techniques to classify the criticality of loads ‎[80]. My hypothesis is that by considering the 

criticality of data stored in the caches, and compressing non-critical ones, we could balance the 

benefits of compression (i.e., lower miss rate) versus its overheads (i.e., decompression latency), 

especially at lower levels of the cache hierarchy (e.g., L2). 

7.1.2 Exploiting High Tag-Reach and Coarse-Granularity 

In large caches, accessing the data array incurs much higher energy and latency overheads 

than the tag array. Thus, using the available data space efficiently is critical for improving energy 

costs. I define Tag-Reach as the ratio of the maximum number of cache blocks mapped by the 

tag array over the maximum number of uncompressed blocks held in the data array. Regular 

caches have tag-reach of one. A compressed cache must have a tag-reach greater than one, so 

that it can fit more blocks in the cache. Both DCC and SCC provide high tag-reach by tracking 

super-blocks. They can track up to 4x (using 4-block super-blocks), and 8x (using 8-block super-

blocks) blocks. With compression, DCC and SCC hold on average about twice as many blocks 

as a conventional cache, using on average 50% and 25% of available tags, respectively. 
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However, on average 50% of available tags in DCC and 75% of tags in SCC are not employed. 

Therefore, there is plenty of space left for improvement. Here, I explain some potential 

techniques. 

 Exploiting extra tags for tracking non-reusable blocks in the LLC: Inclusion 

has been widely used in commercial processors to simplify the LLC coherence and reduce on-

chip traffic. On the other hand, inclusion can reduce locality due to replication. For instance, 

some cache blocks are being accessed once at the LLC and possibly multiple times at lower 

cache levels (i.e., streaming access patterns) ‎[110]‎[113]. Storing these blocks at the LLC reduces 

the LLC effective associativity, and thus locality. DCC and SCC can be extended to leverage 

these properties. Using their high tag-reach, I can store these blocks as data-less at the LLC, 

storing only their tags, and so releasing data space to fit more data blocks at the LLC.  

 Global cache space management: Another possible way to leverage the high 

tag-reach of SCC and DCC is for better cache hierarchy space management. The memory 

requirements of threads or applications running on different cores of a multicore processor 

usually vary ‎[111]‎[112]. For example, some threads are usually more critical and affect system 

performance and energy the most. I can leverage this variation for better cache management. In 

addition to sharing the LLC, SCC and DCC can enable better aggregate cache space 

management across the cache hierarchy. They can enable cores to even share their private cache 

space if necessary. For larger private caches, which are common in commercial systems, some 

threads or applications can trade a portion of their private caches with more critical threads 

running on other cores. I can leverage extra tags at the LLC for implementing this feature. For 

these blocks, I can store their tags at the LLC while keeping the whole cache blocks (tag+data) in 
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another‎core’s‎private‎cache‎space.‎Later,‎on‎a‎new‎request,‎the‎block‎can‎be‎transferred‎to‎the‎

requester’s‎private‎cache.‎In‎this‎way,‎I‎potentially‎expand‎the‎LLC‎shared‎capacity‎by‎stealing‎

space‎from‎different‎cores’‎private‎caches.‎Thus,‎I‎can‎replace some of the off-chip accesses with 

cheaper on-chip accesses. 

 Interaction with prefetching: The extra tags provided by our designs could also 

be used to further improve cache utilization through techniques orthogonal to compression, such 

as prefetching. In this thesis, I did not study the interaction between prefetching and compression 

in our designs. Similar to previous work ‎[57], I can use the extra tags to better predict useful and 

harmful prefetches. In addition, I predict that prefetching, especially stream prefetching, could 

further improve the benefits of DCC and SCC, as there would be more neighboring blocks in the 

cache, and so more populated super-blocks. 

7.1.3 Parallel Lookup with SCC 

In this dissertation, I focused on compressing the LLC. To reduce power consumption, 

current LLC designs use sequential tag-data access, checking the tag array first before accessing 

the data array. Typical compressed caches build on this technique, checking whether a block is 

compressed and where it is located in the data array first. Unlike LLCs, the lower-level caches 

(L1 or L2) use a parallel tag-data access model reading both the tag array and the data array 

simultaneously. In this way, they keep access latency low at the cost of higher power 

consumption as both the tag array and the data array would be accessed even on cache misses. 

Unlike VSC ‎[57] and even our proposal DCC, which cannot support parallel tag-data access, 

SCC can also support parallel tag/data array access. Not only does SCC allow fast lookups, 
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which are suitable for lower-level caches, but it also can save power on cache accesses, thanks to 

its special direct tag-data mapping. 

Since SCC eliminates any extra metadata or level of indirection to locate a compressed 

block, it supports fast low-power parallel access. Given a block address, in each cache way, SCC 

knows its compressed size and exact location within a set. Thus, when reading the tag array and 

the data array in parallel, instead of reading out the whole 64B blocks, SCC will read out less 

(e.g., 32B if compressed to half). In this way, compared to a regular parallel cache, SCC can 

significantly reduce cache dynamic energy, which is considerable at L1/L2. For example, in a 4-

way cache associative cache, SCC reads 120 bytes (64B from way #1 (uncompressed) +  32B 

from way #2 + 16B from way #3 + 8B from way #4), reducing cache dynamic energy by 53%. 

This gain is not possible by typical compressed caches or DCC as they do not know the block 

size before checking the tag array. 
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