

Using Compression for Energy-Optimized Memory Hierarchies

By

 Somayeh Sardashti

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

2015

Date of final oral examination: 2/25/2015

The dissertation is approved by the following members of the Final Oral Committee:

Prof. David A. Wood, Professor, Computer Sciences

Prof. Mark D. Hill, Professor, Computer Sciences

Prof. Nam Sung Kim, Associate Professor, Electrical and Computer Engineering

Prof. André Seznec, Professor, Computer Architecture

Prof. Gurindar S. Sohi, Professor, Computer Sciences

Prof. Michael M. Swift, Associate Professor, Computer Sciences

© Copyright by Somayeh Sardashti 2015

All Rights Reserved

i

Abstract

In multicore processor systems, last-level caches (LLCs) play a crucial role in reducing

system energy by i) filtering out expensive accesses to main memory and ii) reducing the time

spent executing in high-power states. Increasing the LLC size can improve system performance

and energy by reducing memory accesses, but at the cost of high area and power overheads. In

this dissertation, I explored using compression to effectively improve the LLC capacity and

ultimately system performance and energy consumption.

Cache compression is a promising technique for expanding effective cache capacity with

little area overhead. Compressed caches can achieve the benefits of larger caches using the area

and power of smaller caches by fitting more cache blocks in the same cache space. However,

previous compressed cache designs have demonstrated only limited benefits due to internal

fragmentation, limited tags, and metadata overhead. In addition, most previous proposals

targeted improving system performance even at high power and energy overheads.

In this dissertation, I propose two novel compressed cache designs that are optimized for

energy: Decoupled Compressed Cache (DCC) ‎[21]‎[22] and Skewed Compressed Cache (SCC)

‎[23]. DCC and SCC tightly pack variable size compressed blocks to reduce internal

fragmentation. They exploit spatial locality to track compressed blocks while reducing tag

overheads by tracking super-blocks. Compared to conventional uncompressed caches, DCC and

ii

SCC improve the cache miss rate by increasing the effective capacity and reducing conflicts.

Compared to DCC, SCC further lowers area overhead and design complexity.

In addition to proposing efficient compressed cache designs, I take another step forward to

study compression benefits for real applications running on real machines. Since most proposals

on compressed caching are on non-existing hardware, architects evaluate those using detailed

simulators with small benchmarks. So, whether cache compression would benefit real

applications running on real machines is not clear. In this dissertation, I address this question by

analyzing the compressibility of several real applications, including production servers of the

Computer Sciences Department of UW-Madison. I show that compression could in fact be

beneficial to many real applications.

iii

Table of Contents

ABSTRACT .. I

TABLE OF CONTENTS .. III

LIST OF FIGURES .. V

LIST OF TABLES ... VIII

ACKNOWLEDGEMENTS .. IX

CHAPTER 1 INTRODUCTION ... 1

1.1 THE END OF DENNARD SCALING ... 3

1.2 WHERE DOES ENERGY GO? .. 4

1.3 CACHES AS ENERGY FILTERS ... 5

1.4 THESIS CONTRIBUTIONS .. 7

1.5 THESIS ORGANIZATION .. 11

CHAPTER 2 COMPRESSION ALGORITHMS: BACKGROUND AND RELATED WORK 12

2.1 COMPRESSION ALGORITHM CLASSIFICATIONS .. 13

2.2 METRICS TO EVALUATE THE SUCCESS OF A COMPRESSION ALGORITHM ... 20

2.3 COMPRESSION POTENTIALS ... 22

CHAPTER 3 MANAGING COMPRESSED DATA IN THE MEMORY HIERARCHY:

BACKGROUND AND RELATED WORK .. 24

3.1 COMPRESSED CACHES: BACKGROUND AND RELATED WORK .. 25

3.2 COMPRESSED MEMORY: BACKGROUND AND RELATED WORK .. 36

CHAPTER 4 DECOUPLED COMPRESSED CACHES .. 40

iv

4.1 OVERVIEW ... 40

4.2 SPATIAL LOCALITY AT LLC .. 43

4.3 DECOUPLED COMPRESSED CACHE: ARCHITECTURE AND FUNCTIONALITY 45

4.4 A PRACTICAL DESIGN FOR DCC .. 53

4.5 EXPERIMENTAL METHODOLOGY ... 56

4.6 EVALUATION ... 59

4.7 CONCLUSIONS .. 67

CHAPTER 5 SKEWED COMPRESSED CACHES ... 68

5.1 OVERVIEW ... 68

5.2 SKEWED ASSOCIATIVE CACHING ... 70

5.3 SKEWED COMPRESSED CACHE .. 72

5.4 METHODOLOGY ... 83

5.5 DESIGN COMPLEXITIES .. 85

5.6 EVALUATION ... 87

5.7 CONCLUSIONS .. 93

CHAPTER 6 ON COMPRESSION EFFECTIVENESS IN THE MEMORY HIERARCHY 95

6.1 OVERVIEW ... 95

6.2 MYTHS ABOUT COMPRESSION ... 97

6.3 INFRASTRUCTURE .. 99

6.4 COMPRESSION ALGORITHMS ... 105

6.5 MYTHBUSTERS: TESTING MYTHS ON COMPRESSION ... 107

6.6 CONCLUSIONS .. 128

CHAPTER 7 CONCLUSIONS .. 129

7.1 DIRECTIONS FOR FUTURE WORK ... 130

REFERENCES ... 136

v

List of Figures

Figure ‎1-1: Communication vs. computation energy ‎[72]. .. 4

Figure ‎2-1: Compression ratio of different compression algorithms. .. 22

Figure ‎3-1: Limits of previous compressed caches. ... 30

Figure ‎3-2: VSC overhead on the number of LLC accessed bytes. ... 31

Figure ‎3-3: Area overhead of different cache designs. .. 32

Figure ‎4-1: Distribution of LLC cache blocks. .. 43

Figure ‎4-2: (a) Sectored Cache (b) Decoupled Sectored Cache. .. 44

Figure ‎4-3: DCC cache design. .. 46

Figure ‎4-4: DCC cache lookup. .. 48

Figure ‎4-5: Co-DCC co-compaction example. .. 51

Figure ‎4-6: (a) One Co-DCC tag entry (b) One Co-DCC BPE.. 51

Figure ‎4-7: (Co-)DCC Data Array Organization. .. 54

Figure ‎4-8: (a) Timing of a conventional cache and (b) DCC. .. 55

Figure ‎4-9: Cache sensitivity of our workloads. .. 58

Figure ‎4-10: The LLC effective capacity and the LLC miss rate normalized to Baseline. .. 61

Figure ‎4-11: performance and energy normalized to Baseline. ... 64

Figure ‎5-1: (a) two-way set associative cache (b) skewed associative cache. ... 71

file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907556
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907557
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907558
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907559
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907560
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907561
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907562
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907563
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907564
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907565
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907566
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907567
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907568
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907569
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907570
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907571
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907572

vi

Figure ‎5-2: Skewed Compressed Cache. ... 75

Figure ‎5-3: (a) One set of SCC (b) Address. ... 77

Figure ‎5-4: SCC Operations. ... 81

Figure ‎5-5: Normalized LLC effective capacity. ... 88

Figure ‎5-6: Normalized LLC MPKI. ... 89

Figure ‎5-7: Normalized performance of different SCC and DCC configurations. .. 91

Figure ‎5-8: Normalized performance of different cache designs. .. 92

Figure ‎5-9: Normalized system energy. ... 93

Figure ‎6-1: Compression ratio of our applications in memory with C-PACK+Z. ... 108

Figure ‎6-2: Cumulative distribution of compressed block sizes in main memory. .. 109

Figure ‎6-3: Data block compression: cache vs. memory. .. 110

Figure ‎6-4: Percent of zero data blocks: memory vs. caches. .. 111

Figure ‎6-5 NON-ZERO block compression: cache vs. memory. .. 112

Figure ‎6-6: Compression ratio of SPEC CFP benchmark. ... 113

Figure ‎6-7: Percent of integer blocks in data regions of memory vs. compression ratio of 114

Figure ‎6-8: Compression ratio of instruction blocks. .. 116

Figure ‎6-9: Cumulative distribution of compressed block sizes in instruction memory regions. 117

Figure ‎6-10: Cumulative distribution of compressed block sizes within a page in main memory. Sizes are ordered

from the most common size (1-MCS) to the least common size (LCS) for each individual application on the X axis.

 ... 119

file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907573
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907574
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907575
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907576
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907577
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907578
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907579
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907580
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907581
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907582
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907583
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907584
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907585
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907586
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907587
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907588
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907589
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907590
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907590
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907590

vii

Figure ‎6-11: Cumulative distribution of compressed block sizes within a page in main memory (per-page) versus

overall memory footprint for two representative applications. .. 120

Figure ‎6-12: Cumulative distribution of compressed block sizes for gedit within regions with different sizes. 121

Figure ‎6-13: Compression with different block sizes. ... 122

Figure ‎6-14: Compression ratio of servers in main memory. .. 123

Figure ‎6-15: Memory compression with different algorithms. .. 124

Figure ‎6-16: Sensitivity of compression ratio to dictionary size. .. 125

Figure ‎6-17: Average compressed block size using C-PACK+Z with different sub-block sizes. 127

file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907591
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907591
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907592
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907593
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907594
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907595
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907596
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907597

viii

List of Tables

Table ‎2-1: Compression Algorithms Taxonomy. .. 12

Table ‎3-1: Compressed Caches Taxonomy. .. 25

Table ‎4-1: Simulation parameters. ... 56

Table ‎4-2: Configurations. ... 57

Table ‎4-3: Workloads. ... 58

Table ‎4-4: LLC area overheads of different compressed caches over the conventional cache. 59

Table ‎5-1: Simulation Parameters.. 83

Table ‎5-2: Applications. .. 84

Table ‎5-3: Compressed Caches Area Overhead relative to Baseline. .. 86

Table ‎6-1: Myths on compression. .. 96

Table ‎6-2: Applications summary.. 104

file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907598
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907599
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907600
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907601
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907602
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907603
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907604
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907605
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907606
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907607
file:///C:/Users/somayeh/Desktop/mine/courses_research/dissertation/Final%20version/Dissertation%20Somayeh%20Sardashti%20-%20April%2016.doc%23_Toc417907608

ix

Acknowledgements

I have received an incredible amount of help, support, and encouragement from many

people over the past years. I would not be able to make it this far without such support.

It has been truly an honor for me to work with my adviser, Professor David A. Wood. He

is an outstanding researcher and a brilliant mentor. Throughout these years, David gave me

directions on how to find the right problem to work on, how to become a critical thinker, and

how to present my ideas. David has very high standards in his work. He gave me freedom and

flexibility to explore and enjoy research while he was making sure that I am on the right path and

I pay attention to insights and intuitions. On both professional and personal levels, he provided

me with the mentorship and support whenever I needed it the most. I am so thankful to him.

Many other professors have also profoundly affected me. I would like to thank Professor

Mark D. Hill. Mark has always been a mentor for me. I feel lucky to interact with Mark closely. I

have learned a great deal from Mark not only about computer architecture, but also on time

management, communicating with others, and presenting ideas. I also express my deep gratitude

to Professor André Seznec. André is a brilliant scientist. I have had the great pleasure to

collaborate with him. In addition, I’ve‎benefited‎greatly‎from‎taking‎classes‎and‎getting feedback

on my research from many other faculty members of UW-Madison. I would like to thank

Professor Guri Sohi, Professor Mike Swift, Professor Mikko Lipasti, Professor Mary Vernon,

x

Professor Remzi Arpaci-Dusseau, Professor Karu Sankaralingam, Professor Jeff Nauthghon, and

Professor Nam Sung Kim.

It has been an honor for me to be part of Wisconsin Architecture community. Main

advantage of being in such a great group is the constant mentorship I have received from our

former and current students. I would like to thank Dan Gibson, Alaa Alameldeen, Kevin Moore,

Dan Sorin, Milo Martin, Babak Falsafi, Jichuan Chen, Yasuko Eckert, Luke Yen, Haris Volos,

Arka Basu, Srinath Sridharan, Gagan Gupta, Mike Marty, Philip Wells, Emily Blem, Derek

Hower, Marc De Kruijf, Jayaram Boba, Jason Power, Marc Orr, Joel Hestness, Rathijit Sen, Lena

Olson, Hongil Yoon, Tony Nowatzki, Mohammad Shoaib Bin Altaf, Nilay Vaish, Newsha

Ardalani, Vijay Thiruvengadam, Swapnil Haria, Jayneel Gandhi, Chris Feilbach, and

Sankaralingam Panneerselvam. I would like to give special thanks to Jayneel Gandhi,

Sankaralingam Panneerselvam, Rathijit Sen, and Dan Gibson for helping me developing and

setting up the infrastructures in my projects.

I have also benefited greatly from interacting with many members of larger computer

community. I would like to thank Dr. Srilatha Manne, Professor Margaret Martonosi, Professor

Sarita Adve, Professor Natalie Enright Jerger, Professor Kathryn S McKinley, Professor Cindy

Rubio González and Leng Leng Tan. These wonderful smart women have inspired me and have

been my role models. I am so thankful for the great mentorship and support that I have received

from them. In conferences, I have had the great chance to interact with many brilliant computer

architects, including Professor Joel Emer, Dr. Dileep Bhandarkar, Dr. John Davis, Professor Tom

Wenisch, and Professor Babak Falsafi. In Micro 2013, I had a profound discussion with

Professor Joel Emer on my research, which has led to better understanding of problems and

xi

better solutions in my work. In summer 2011, I did an internship at AMD under supervision of

Dr. John Kalamatianos. I would like to thank John. Working with John and his team was a great

opportunity for me to learn about the state of the art in computer architecture.

Both‎ the‎UW’s‎Computer‎ Systems‎ Lab‎ (CSL)‎ staff‎ and‎Condor‎ Project‎ staff‎ have‎ been‎

invaluable in providing hardware and software resources I have required. Especially, I would

like to thank Tim, the member of CSL. His support enabled me to extend my compression

studies to real servers.

My research has been financially supported in part by different sources for which I am

grateful: the National Science Foundation (CNS-0916725, CCF-1017650, CNS- 1117280, and

CCF-1218323) and a University of Wisconsin Vilas award.

Last but not least, I could not achieve any of these without tremendous support and

encouragement from my family. First and foremost I thank my husband, Dr. Hamid Reza

Ghasemi, for all his love, support, encouragement, understanding, and patience throughout all of

the ups and down of the graduate school. He is my inspiration and joy in my life. I would not be

here without his support. I would like to thank my parents for their encouragement, constant

support, and believing in me. During this time that I have been far from home, they have always

been there for me, encouraged me to progress, advised me to be patient in hard times, and

cheered for me for every single one of my successes. My brothers have played an important role

in the person I am today. I am so grateful to have them. My eldest brother, Babak, has always

encouraged and supported me to get good education. He was the one making sure that I get into

great schools, and sign up for English classes every semester from early in my life. My second

xii

brother, Behrouz, is the one who inspired me to become an engineer. While I was a teenager, he

was taking me to electronics and computer technical fairs and conferences in Tehran to get to

know the new technology. Finally, my youngest brother, Mohammad, has always been the

kindest and the most supportive brother. He is the one I can always count on. My lovely nieces,

Maryam and Fatemeh, and my nephew, Amir Ali, have been the joy in my life, and a good

reason not to give up in hard times. I also would like to thank my parents-in-laws, brothers-in-

laws, and my sisters-in-laws for their constant love, support and encouragements. I feel so lucky

and fortunate to have these many supportive people around myself.

Finally, I would like to dedicate this dissertation to my husband, Dr. Hamid Reza Ghasemi,

and my parents, Aghdas Zeinali and Khosro Sardashti.

1

Chapter 1

Introduction

One of the major challenges for computer architects is today’s‎high power consumption of

computer systems. According to the Department of Energy, data centers can consume up to 100

to 200 times more energy than a standard office building, at a cost of billions of dollars per year

‎[78]. In mobile and desktop technologies, lower power consumption is also critical to obtaining

longer battery life and lower electricity costs. Future computer systems, however, face

continuing power and energy challenges as the power-per-transistor is no longer scaling down as

rapidly as the density ‎[71]. Thus, computer architects must consider power and energy as the

main design constraints, rather than only focusing on performance.

Although processors are supposed to burn energy when computing, they burn a lot more

energy when communicating data. In particular, a large fraction of energy is consumed by the

memory hierarchy. However, memory systems have not been classically designed to minimize

energy. In the new era of power-constrained computer designs, caches, which are long used to

reduce effective memory latency and increase effective bandwidth, play an increasingly

important role in reducing system energy. Keckler ‎[72] showed that last-level caches (LLCs) are

especially important, since obtaining operands of a double-precision multiply-add from off-chip

memory requires approximately 200x the energy of the operation. Sodani ‎[76] showed that

caches represent 45% and 12% of core power for non-compute-heavy and compute-heavy

2

floating point applications, respectively, on‎ Intel’s‎ Knight’s‎ Corner‎ processor.‎ Yet, off-chip

accesses consume so much energy that the LLC can miss on 89% of accesses and still break even

‎[76]. Thus, improving cache effectiveness is important, not only for system performance, but

also for system energy.

Increasing cache size can improve performance for most workloads, but comes at

significant area cost. For example, the well-known‎“square‎ root”‎power‎ law‎ ‎[73] predicts that

doubling LLC size will reduce misses by ~30%, on average. But it obviously doubles LLC area,

which already accounts for 15–30% of the die area of most processors ‎[74]. In this dissertation, I

explore using compression to effectively increase cache capacity and ultimately reduce overall

system energy.

Cache compression seeks to increase effective cache size by compressing and compacting

cache blocks while incurring small overheads ‎[20]. For example, previously proposed techniques

have the potential to double effective LLC capacity, while increasing LLC area by only ~8%.

Unfortunately, previous compressed cache designs fail to achieve high potentials of compression

mainly due to internal fragmentation and extra tags overheads. In addition, they mostly focus on

performance benefits of compression, and are not optimized for energy.

In this dissertation, I propose using cache compression to improve system energy. Through

extensive analysis, I determine sources of inefficiencies in previously proposed compressed

caches. I propose two novel compressed caches that significantly improve cache utilization and

so system energy with small area overheads. I also do holistic analysis on compression both in

3

the main memory and caches, for a wide range of real applications and production servers, as

well as standard benchmarks running on real machines.

In this chapter, I first discuss the main reasons behind current power and energy problems

in Section 1.1. I then present the sources of energy inefficiencies in multicore systems in Section

1.2, emphasizing the role of memory hierarchy. In Section 1.3, I motivate using caches as energy

filters to improve system energy, and advocate using compression. In Section 1.4, I identify the

main contributions of this dissertation, and provide a roadmap for the remainder of this

document in Section 1.5.

1.1 The End of Dennard Scaling

Over the past several decades, computer architects discovered innovative techniques to

scale processor performance. They took advantage‎of‎more‎available‎transistors‎(Moore’s‎law)‎at‎

roughly constant power and cost per chip ‎[77]. The semiconductor technology is now facing

serious challenges in further scaling transistors and integrating them into chips at an exponential

rate. Even with smaller transistors,‎the‎fundamental‎driver‎of‎Moore’s‎law‎was‎Dennard‎scaling

‎[71]. The key effect of Dennard scaling was that as transistors got smaller, the power density was

constant. For example, if there‎was‎ a‎ reduction‎ in‎ a‎ transistor’s‎ linear‎ size‎ by‎ two, the power

used to fall by a factor of four (with voltage and current both halving). It is still possible to etch

smaller transistors. However, it is challenging to further drop the voltage in order for the

processors to run faster. Further decreasing voltage increases leakage power more rapidly,

heating the chip, and possibly threatening complete breakdown. With the end of Dennard

4

scaling, 21st century computer architects can no longer focus solely on performance, and must

confront power and energy as the main design constraints.

1.2 Where does energy go?

In current processors, storing and communicating data are more energy expensive than

computation. In multicore systems, a large fraction of energy is consumed by the memory

hierarchy. Memory systems, however, have not been classically designed to minimize energy.

Memory systems play a critical role in the new era of power-constrained computer designs.

Figure ‎1-1 is‎borrowed‎from‎Keckler’s‎Micro‎keynote‎talk‎ ‎[72]. It shows the energy burnt for a

simple operation versus the energy consumed to obtain its operands from across the chip at

40nm. It estimates a double-precision multiply-add at 50pJ but obtaining its operands locally

Figure ‎1-1: Communication vs. computation energy ‎[72].

5

(1mm) uses 1.7x more energy (31pJ for the bus plus 56pJ to access on-chip SRAM storage).

Alternatively, accessing non-local operands is much more expensive: cross-chip 25x

(1200pJ+56pJ), or off-chip DRAM 200x (1300pJ+10000pJ). This emphasizes the importance of

on-chip cache memories in reducing system energy. Thus, improving effective cache utilization

and exploiting locality is crucial, not just for performance, but also for energy efficiency.

1.3 Caches as Energy Filters

Caches have long been used in processor systems. Early work focused on using caches to

reduce effective access time or latency. Later, caches were also used to reduce required memory

bandwidth, partly, to enable snooping symmetric multiprocessors. In modern multicore processor

systems, where the memory hierarchy accounts for a large fraction of total system energy, caches

play a critical role in reducing energy.

Caches filter out expensive off-chip memory accesses, and replace them with much

cheaper cache accesses. Although caches have been originally designed to hide the latency gap

between processors and main memory, the energy gap is an order of magnitude higher. Thus,

caches can save system energy, even with extremely high miss rates ‎[76].

Energy-optimized memory hierarchies can also afford to spend energy and time to improve

efficiency. An architectural technique that eliminates a miss at a cache level is energy efficient as

long as it dissipates less energy than the avoided miss. Since misses are very expensive at the

larger levels of the hierarchy, new cache designs can afford to spend energy to reduce misses. A

technique can also afford to spend time at caches to improve energy efficiency. Modern

6

processors use a variety of latency-tolerance techniques including data dependence speculation,

out-of-order execution, and (simultaneous) multithreading to mitigate the effect of long-latency

operations such as cache misses. A processor with a specific combination of techniques has a

sphere of latency tolerance, within which performance is relatively insensitive to small changes

in latency. Thus, improving the cache hit rate is effective, even at the cost of (relatively small)

extra cache access latency and energy.

In this dissertation, I advocate using compression in caches to address the energy

challenges in multicore systems. Cache compression seeks to significantly improve cache

utilization by fitting more blocks into the same space while incurring small latency, energy, and

area overheads due to compressing and decompressing cache blocks. Compression has been

studied for every level of the cache hierarchy to increase effective capacity, reduce miss rates,

improve performance ‎‎[20]‎, reduce energy ‎[45] or reduce cache power and area ‎[53]. Cache

compression is harder than other levels of the memory hierarchy, since performance is sensitive

to cache latency, especially for L1 and L2 caches. But as multicore systems move to having three

or more levels of cache, the sensitivity to LLC latency decreases, allowing systems to consider

more effective, longer latency compression algorithms. Thus, in this dissertation, I revisit

compressed caching at LLC and propose energy-optimized compressed LLCs to improve system

energy.

7

1.4 Thesis Contributions

In this section, I briefly explain the most important contributions of this dissertation.

1.4.1 Understanding Potentials and Limits of Compressed Caching

Designing a compressed cache typically has two main parts: a compression algorithm to

represent the same data blocks with fewer bits, and a compaction mechanism to fit compressed

blocks in the cache. There are several compression algorithms that exploit regular patterns and

the redundancy to compress data. For cache compression, in particular, the compression and

decompression latency, area and power overheads of an algorithm matter, in addition to its

ability to achieve a good compression ratio (i.e., original size over compressed size). In this

dissertation, I use practical hardware-based compression algorithms with fairly good

compressibility and low overheads. In Chapter 2, I show that compression can more than triple

the effective capacity of a cache while increasing accessing latency by few cycles, and access

energy, negligibly.

To achieve the potentials of a given compression algorithm, the compaction mechanism—

how to store and track more compressed blocks in the same space—plays a critical role. In order

to track more blocks in the cache, a compressed cache needs extra tags and metadata. An ideal

design would fit variable size compressed blocks tightly to reduce internal fragmentation, while

keeping tag and metadata overheads low. Since I am proposing to use compressed caching for

energy-efficiency as well as performance, an ideal compaction mechanism would also avoid

incurring energy and latency overheads. In Chapter 3, I categorize previous proposals based on

three main design factors: (1) how to provide the additional tags, (2) allocation granularity of

8

compressed blocks, and (3) how to find the corresponding block given a matching tag.

Depending on these design factors, most previous proposals have demonstrated only limited

benefits from compression, mainly due to internal fragmentation and limited tags. In addition,

previously proposed techniques mostly focused on exploiting compression for performance, even

at high energy costs.

1.4.2 Decoupled Compressed Cache: Exploiting Spatial Locality for Energy Optimization

In designing a Decoupled Compressed Cache (DCC), I have four main goals: (1) keeping

tag and other metadata overheads low, (2) increasing cache utilization by tightly packing variable

size compressed blocks, (3) optimizing for energy by eliminating sources of energy overheads

present in previous designs, and (4) providing a practical design.

In order to increase the number of compressed blocks while keeping tag overheads low,

DCC proposes managing cache tags at multiple granularities. Although current multicore caches

typically support a single block size, most workloads exhibit spatial locality at multiple

granularities. For most applications, many neighboring blocks can exist in the cache at the same

time. Instead of tracking these blocks separately, DCC exploits spatial locality, and uses super-

block (also known as sectors ‎[75]
1
) tags. A super-block tag tracks four aligned contiguous cache

blocks. Since these neighboring blocks share a single address tag, using super-block tags slightly

increases cache area overhead, while it allows DCC to track up to four times more blocks in the

cache.

1 I use the unambiguous terms super-block, block, and sub-block, rather than the original, but sometimes confusing terms sectors,

blocks, and segments.

9

DCC increases cache utilization by reducing internal fragmentation. It compresses 64-byte

blocks into variable numbers of sub-blocks (e.g., 0 to 4 16-byte sub-blocks). DCC decouples the

address tags, allowing any data sub-block in a set to map to any tag in that set, to reduce

fragmentation within a super-block. In other words, DCC allows sub-blocks of a block to be non-

contiguous within a set. In this way, it eliminates the re-compaction overheads of previous

variable size compressed caches ‎[57], while reducing internal fragmentation with sub-blocking.

Since each sub-block in the data array could belong to any block, DCC keeps additional

metadata (i.e., back pointers) to find the owner of each data sub-block. An optimized Co-DCC

design further reduces internal fragmentation (and increases effective capacity) by compacting

the compressed blocks from a super-block into the same set of data sub-blocks.

In this work, I also demonstrate that DCC is practical. I present a concrete design for DCC

and show how it can be integrated into a recent commercial LLC design (AMD Bulldozer LLC)

with little additional complexity.

1.4.3 Skewed Compressed Caches

Given a compression algorithm, an ideal compressed cache tightly packs variable size

compressed blocks to increase effective capacity, has a simple design, low tag area overheads

and fast lookups. These goals are at odds with each other. Previously proposed compressed

caches either do not support variable compressed block sizes ‎[39]‎[47]‎[48]‎[45] or need to keep

extra metadata to find a compressed block ‎[20]‎[46]‎[50], which increases overheads and

complexity. Even our proposal DCC requires per sub-block back pointers to locate a compressed

10

block. In addition, since DCC manages super-blocks and blocks independently, that complicates

its replacement policy.

I propose a Skewed Compressed Cache (SCC) to fill this gap. SCC allocates variable size

compressed block while eliminating the need for extra metadata to track blocks. Our goal is to

improve LLC effective capacity by compacting variable size compressed blocks in such a way

that we can fit and track them with no extra storage overhead and with low design complexity.

Similar to DCC, SCC exploits spatial locality and uses super-block tags to track more

compressed blocks with low tag area overhead. It also allows variable size compressed blocks to

reduce internal fragmentation. SCC retains direct tag-data mapping to eliminate extra metadata

(i.e., no back pointers). SCC does this using novel sparse super-block tags and a skewed

associative mapping that takes compressed size into account. SCC also simplifies cache

replacement. On a conflict, SCC always replaces one sparse super-block tag and all of the one to

eight adjacent blocks packed into the corresponding data entry. This is much simpler than DCC,

which may need to replace blocks that correspond to multiple super-blocks, as DCC tracks all

blocks of a super-block with only one tag. Like DCC, SCC achieves performance comparable to

that of a conventional cache with twice the capacity and associativity. But SCC does this with

less than half the area overhead (2.6% vs. 6.8%) of DCC.

1.4.4 MythBusters: on Compression Effectiveness in the Memory Hierarchy

Most compressed cache proposals rely on workload properties that have only been

demonstrated to hold for small, CPU-centric benchmarks and very short (simulated) runtimes.

Thus, it is largely a matter of faith that these properties hold for large, real-world workloads

11

running for long periods of time. Here, I treat these workload properties as myths—stories that

may not be true—that must be tested. I explore 8 myths—common assertions and conventional

wisdoms about compression effectiveness—that span a broad range of design options, including

compression algorithms, granularity, and compression locality. Rather than limiting ourselves to

standard CPU benchmarks and detailed architectural simulation, this study includes up to 24

hour measurements of live workloads, including production servers (e.g., web, file and database

servers), memory-intensive desktop applications (e.g., Google Chrome), mobile benchmarks, and

emerging big data applications. Through extensive analysis, I show that two of the eight myths

are‎“Busted!,”‎two‎are‎“Plausible,”‎and‎the‎rest‎are‎“Confirmed!”.

1.5 Thesis Organization

I begin this dissertation by discussing an overview of the background and related work on

compression (Chapter 2). In Chapter 3, I discuss previously proposed compressed caches, and

analyze their limitations. In Chapter 4, I present the Decoupled Compressed Cache (DCC), its

hardware implementation, and an evaluation of its main properties. In Chapter 5, I present the

Skewed Compressed Cache (SCC). In Chapter 6, I present MythBuster, which studies the

compressibility of real applications running on real machines. Finally, Chapter 7 concludes this

dissertation and outlines some potential areas of future research.

12

Chapter 2

Compression Algorithms: Background and Related Work

In information theory, entropy of a source input is the amount of information contained in

that data. Entropy denotes the number of distinct values in the source. Low entropy suggests that

data can be represented with fewer bits. Although computer designers try to use efficient coding

for different data types, the memory footprints of many applications still have low entropy. This

is mainly due to repeated bit patterns such as repeated characters in a string, zeros, and small

values. Zeros are in particular common due to uninitialized variables, null pointers, or zero

padding in memory pages. Small values (e.g., small integers) can also be represented with few

 Frequent-Value Based Significance Based

General-Purpose

Static
Static Huffman Coding ‎[24]

FVC ‎[38]

Significance-Based Address

Compression ‎[43]‎[44]

Dynamic

Lempel-Ziv ‎[27]‎[28]

Dynamic Huffman Coding ‎[25]

BDI ‎[19]

C-PACK ‎[18]

FPC ‎[20]

Special-Purpose

Static Instruction Compression ‎[1]-‎[10] -

Dynamic Floating-point Compression ‎[12]-‎[16] -

Table ‎2-1: Compression Algorithms Taxonomy.

13

bits, while we often allocate them similar to maximum values (e.g., 64 bits).

Compression algorithms compress a data message by exploiting the low entropy in the

data. They map a data message to compressed code words by operating on a sequence of input

bytes. In this section, we first describe and classify different compression algorithms. We then

explain the main metrics to evaluate the success of a given compression algorithm. Finally, we

evaluate the potentials of some popular compression algorithms for a wide range of applications.

2.1 Compression Algorithm Classifications

Several compression algorithms have been proposed. There are, in general, two types of

compression algorithms: lossless and lossy. In lossless algorithms, decompression can exactly

recover the original data, while with lossy algorithms only an approximation of the original data

can be recovered. Lossy algorithms are mostly used in voice and image compression where lost

data do not affect their usefulness. On the other hand, memory content compression techniques

are lossless since any single memory bit loss or change can affect the validity of the results in

most computer programs. Therefore, in this thesis, we focus only on lossless compression

algorithms.

Table ‎2-1 presents a taxonomy of well-known compression algorithms. For each

algorithm, based on its techniques and applications, we classify it into:

 General-Purpose versus Special-Purpose: General-purpose algorithms target

compressing various data types independent of their semantics. Several existing algorithms fall

in this category, including BZIP2, UNIX gzip, and most algorithms used in compressed caches

14

or memory. Unlike general-purpose algorithms, specialized compression algorithms are

optimized for specific data types, exploiting the semantic knowledge of the data being

compressed. Image/video compression and texture compression in GPUs ‎[17] are good examples

of specialized compression. General-purpose techniques tend to achieve low compressibility for

certain data types, including instructions and floating-point data. Thus, many have proposed

specialized algorithms to improve instruction and floating-point compressibility. However, in

this thesis, I focus on low-overhead general-purpose compression algorithms suitable for

compression in the memory hierarchy.

 Static versus Dynamic: Static compression algorithms provide a fixed mapping

from the input data message to output code words ‎[29]. They represent a sequence of input bits

with the same code words every time that sequence appears in the input data message. They

require two passes on the input data: one pass to determine the mapping, and a second pass for

compression. On the other hand, dynamic algorithms do not require any previous knowledge of

the data input. They do compression on the fly and might change the mapping over time. In

general, dynamic compression techniques are more widely adopted in hardware as they do not

require any pre-processing of input data. Some techniques have a hybrid approach, they are

neither completely static nor completely dynamic ‎[29].

 Frequent-Value-Based versus Significance-Based: Frequent-value-based

algorithms exploit a small number of distinct values that tend to repeat very frequently in the

memory footprint of an application. For example, zero blocks are common in many applications.

Thus, a simple form of a frequent-value-based compression technique is to detect zero blocks

(ZERO ‎[37]). Significance-based compression algorithms, on the other hand, are based on the

15

observation that many values are small, and do not require the full space allocated for them. For

example, small integer values are sign-bit extended into 32-bit or 64-bit blocks, while all the

information can be retrieved from the least-significant bits. There are several variations of

frequent-value-based and significance-based compression algorithms proposed for hardware-

based cache/memory compression techniques ‎[18]‎[20].

Below, we present some popular compression algorithms that are frequently used for

compressing data in the memory hierarchy. We also explain how they fit in our taxonomy.

2.1.1 Lempel-Ziv (LZ) Coding

Lempel-Ziv (LZ) coding and its derivatives ‎[27]‎[28] are the most popular lossless dynamic

compression algorithms, which form the basis for many hardware implementations. LZ methods

parse data input on the fly using a dictionary in LZ78 ‎[28] and a sliding window in LZ77 ‎[27],

which is the equivalent of an explicit dictionary. LZ78 compresses data by exploiting

redundancy. It builds a dictionary on the fly. It replaces a repeated symbol (e.g., a string) with a

reference to the dictionary. If a match does not exist, it adds the new symbol to the dictionary.

LZ algorithms are, in general, effective at exploiting redundancy due to symbol frequency,

character repetition, and highly used patterns.

2.1.2 Huffman Coding

Huffman algorithms represent more frequent symbols using shorter code words (i.e., fewer

bits). Huffman coding derives a variable-length code table for each source symbol. It derives this

table based on the probability or frequency of occurrence of each symbol in the data input. To

build this table, static Huffman coding ‎[24] needs an extra pass on the input data to compute the

16

probabilities. Vitter ‎[25] proposed dynamic Huffman coding that only requires one pass of data

to compress.

2.1.3 Frequent Value Compression (FVC)

Yang and Gupta ‎[38] introduced a frequent value locality phenomenon: for a running

application at any execution point, a small number of distinct values occupy a large fraction of

its memory footprint. They also found that the identity of the frequent values, which are fairly

uniformly scattered across the memory, remains quite stable over the execution of a program.

They exploited frequent value locality to compress data in the memory hierarchy. To find

frequent values, they proposed three different profiling approaches: one profiling run for each

application before any main run, an initial profiling phase per application execution, and

contiguous profiling of a program during its execution.

2.1.4 Frequent Pattern Compression (FPC)

FPC ‎[57] is a general-purpose compression algorithm, mainly optimized for compressing

small cache/memory data blocks. It exploits the fact that many values are small (e.g., small

integers) and can be stored to a fewer number of bits (e.g., 4 bits), but are normally stored in full

32-bit or 64-bit words. FPC compresses data blocks on a word-by-word basis by storing common

word patterns in a compressed format accompanied with an appropriate prefix. It applies

significance-based compression at word granularity (4 bytes), detecting and compressing a word

to: 4 bits if 4-bit sign-extended, 8 bits if one-byte sign-extended, 16 bits if half-word sign-

extended or half-word padded with a zero half-word, or two half-words each a byte sign-

extended.

17

2.1.5 Significance-Based Address Compression

Farrens and Park ‎[43] exploited the redundant information in high-order bits of addresses

transferred between processor and memory to improve memory bandwidth. They basically used

a variation of significance-based compression, cached high-order bits of addresses and only

transferred the low-order address bits as well as small indices (in place of the high-order address

bits). Citron and Rudolph ‎[44] applied a similar approach to addresses. They stored common

high-order bits in address words in a table and transferred only the low order bits plus and index

between the processor and memory.

2.1.6 Base-Delta-Immediate (BDI)

BDI compression algorithm ‎[19] is a low-overhead general-purpose algorithm for

compressing data in on-chip caches and the main memory. It is based on the observation that the

values within a small cache/memory data block have a low dynamic range (i.e., small differences

in their values). BDI represents a block using one or more base values and an array of differences

from the base values. Finding the optimum base value is complicated. Thus, to avoid

compression latency increase and to reduce hardware complexity, for each block, BDI uses the

first value and zero as the base values. In this way, BDI can compress/decompress all values in

parallel.

2.1.7 Cache Packer (C-PACK)

C-PACK ‎[18] is designed specifically for hardware-based cache compression. C-PACK

compresses a data-block at a 4-byte word granularity. It detects and compresses frequently

appearing words (such as zero words) to fewer bits. In addition, it also uses a small dictionary to

18

compress other frequently appearing patterns. The dictionary has 16 entries, each storing a 4-

byte word. The dictionary is built and updated on the fly per data block. C-PACK checks

whether each word of the input block would match a dictionary entry (even partially). If so, C-

PACK then stores the index to that entry in the output compressed code. Otherwise, C-PACK

inserts the word in the dictionary. Due to the dictionary, processing multiple words in parallel

while permitting an accurate dictionary match is challenging. Thus, C-PACK

compresses/decompresses only two words at each cycle.

2.1.8 Instruction Compression

General-purpose compression algorithms usually perform poorly for instruction blocks as

instructions have complicated bit patterns compared to regular data blocks. Several specialized

compression techniques have been proposed to improve compressibility of instructions.

Instruction compression is in particular important in embedded systems, where instruction

storage is expensive. Instruction compression can also improve performance by effectively

increasing instruction fetch bandwidth.

Most instruction compression techniques find frequently used instruction sequences in the

instruction stream, replacing those with small code words to reduce instruction size

‎[1]‎[2]‎[3]‎[4]‎[5]‎[6]‎[7]‎[8]‎[9]‎[10]. For example, Lefurgy et al. ‎[1] proposed a post-compilation

analyzer that examines a program, and replaces common instruction sequences with small code

words. The processor fetches these code words and expands them to the original sequence of

instructions in the decode stage. Their technique benefits programs in embedded processors

where instruction memory size is expensive. Benini et al. ‎[5] similarly compressed the most

19

commonly executed instructions to reduce energy in embedded systems. They decompressed

instructions on the fly by a hardware module located between the processor and memory.

Cooper et al. ‎[6] explored compiler techniques for reducing memory needed to load and

run program executables for a RISC-like architecture. They reduced instruction size using

pattern-matching techniques to identify and coalesce together repeated instruction sequences.

Similarly, Wolfe and Chanin ‎[7] targeted reducing the instruction size of RISC architectures

using compression. They designed a new RISC system that can directly execute compressed

programs. They used an instruction cache to manage compressed programs. The processor

executes instructions from the cache, so the compression is transparent to the processor.

Thuresson and Stenström ‎[10] evaluated the effectiveness of different dictionary-based

instruction compression techniques in reducing instruction size. Dictionary-based instruction

compression techniques statically identify identical instruction sequences in the instruction

stream and replace them by a code word. Later, at runtime, they replace the code word by the

corresponding instruction sequence (i.e., the dictionary entry). The authors showed that this

technique can reduce instruction size significantly.

Thuresson et al. ‎[11] addressed increased instruction-fetch bandwidth and larger

instruction footprint in VLIW systems using compression. They compressed at compile time by

analyzing what subset of a wide instruction set is used in each basic block based on profiling.

They also proposed a decompression engine that comprises a set of tables that dynamically

convert a narrow instruction into a wide instruction.

http://www.informatik.uni-trier.de/~ley/pers/hd/s/Stenstr=ouml=m:Per.html

20

2.1.9 Floating-Point Compression

Similar to instructions, floating-point data is generally not compressible with general-

purpose compression algorithms. There are several proposals to improve compression for

floating-point data. Isenburg et al. ‎[12]‎[13] proposed a compression technique to reduce storage

size for floating-point geometric coordinates in scientific and industrial applications. They

proposed a lossless compression technique using predictive coding. For each coordinate, they

predicted values in floating-point and compressed the corrections from the actual value using

context-based arithmetic coding. Lindstrom and Isenburg ‎[14] also presented an online lossless

compression of floating-point data to accelerate I/O throughput in real simulation runs. They also

used prediction, and for each data value, they predicted it from previously encoded data. They

then compressed the difference between the actual and predicted value.

Ratanaworabhan et al. ‎[15] proposed an algorithm to compress sequences of IEEE double-

precision floating-point values. They used value prediction, predicted each value in the sequence,

and XORed it with the true value. They then encoded and compressed the residual simply by

dropping the high-order zero bits (leading-zero compress). In another work ‎[16], the authors

further extended compression for fast double-precision floating-point data.

2.2 Metrics to Evaluate the Success of a Compression Algorithm

There are several parameters to evaluate the success of a compression algorithm, including

compression ratio, compression and decompression latency, and area and power overheads of

compression and decompression units. Compression ratio is defined as the size of the original

21

uncompressed data divided by the size of the compressed data. The higher the compression ratio

is, the higher the compression benefits (e.g., saved space) would be. However, there are usually

tradeoffs between compression ratio and compression/decompression overheads. The higher

compressibility of more complex algorithms usually comes with higher overheads, including

compression and decompression latency, area, and power. Thus, many approaches have favored

simple algorithms with lower overheads, but at the same time, low compressibility ‎[19]‎[20].

Existing tradeoffs change per design point. For example, in compressed caches and

memory, decompression latency is particularly important as it lies on the critical path and can

degrade performance. Cache compression is harder than other levels of the memory hierarchy,

since performance is sensitive to cache latency, especially for L1 and L2 caches. But as

multicore systems move to having three or more levels of cache, the sensitivity to LLC latency

decreases, allowing systems to consider more effective, longer latency compression algorithms.

In addition, many systems use different mechanisms to hide memory latency, such as OOO cores

or multi-threading. Those systems can tolerate the extra decompression latency better, so they

could possibly benefit from more complicated algorithms. Similarly, more complex algorithms

are better suited at the main memory than caches, where cache hierarchy effectively hides the

extra latency. For example, IBM MXT uses a complex algorithm to improve memory capacity

‎[30]. Recently, Arelakis and Stenstrom ‎[46] showed how an aggressive compression algorithm

like Huffman coding can be suitable for caches.

22

2.3 Compression Potentials

Although some data and most instructions are difficult to compress, most workloads are

highly compressible using general-purpose algorithms. Figure ‎2-1 illustrates the trade-off

between decompression latency and compression ratio (i.e., original size over compressed size)

for three hardware-based compression algorithms. A simple zero-block detection algorithm

(denoted ZERO ‎[37]) has single-cycle decompression latency, but only achieves an average

compression ratio of 1.4 and only really benefits a few workloads‎. Adding a more complex

significance-based compression algorithm, FPC+Z (FPC ‎[20] augmented with ZERO) works for

a broader range of workloads and improves the average compression ratio to 2.4, but increases

decompression latency to five cycles, assuming 12 FO4 gate delays per cycle ‎[57]. Finally,

adding dictionary-based compression, C-PACK+Z (C-PACK ‎[18] augmented with ZERO)

increases the average compression ratio to 3.4. However, C-PACK takes 9 cycles to decompress

Figure ‎2-1: Compression ratio of different compression algorithms.

1

2

3

4

5

1 5 9

ZERO FPC+Z C-PACK+Z

C
o

m
p

re
ss

io
n

 R
at

io

Compression Latency

apache jbb oltp zeus ammp
applu equake mgrid wupwise blackscholes
canneal freqmine m1 m2 m3
m4 m5 m6 m7 m8
GEOMEAN

23

a 64-byte data block at 3.2GHz ‎[21]‎[22]. Such a high compression ratio suggests the potential for

a similarly large normalized effective cache capacity, that is, the number of compressed blocks

stored divided by the maximum number of uncompressed blocks that could be stored. Because

multi-megabyte LLCs already have relatively long access times (e.g., 30 cycles) and very high

miss penalties (e.g., greater than 150 cycles and ~60 nJ), the benefit of higher compression ratio

with C-PACK+Z has the potential to outweigh the longer decompression pipeline.

24

Chapter 3

Managing Compressed Data in the Memory Hierarchy:

Background and Related Work

Compression has been studied for every level of the cache hierarchy to increase effective

capacity, reduce miss rates, improve performance‎, reduce energy ‎or reduce cache power and

area. Designing a compressed cache or memory typically involves: a compression algorithm to

compress blocks, a compaction mechanism to fit the compressed blocks in the cache or memory,

and a set of policies for managing compressed data. In the previous chapter, I explained several

compression algorithms that exploit repeated patterns and redundancy within data blocks to

achieve a good compression ratio.

In this section, I focus on compaction mechanisms, and policies to manage compressed

caches and memory. I first present the background and related work on cache compression. I

describe the fundamentals of compacting compressed data in caches, and present how previous

designs limit compression benefits. Finally, I will briefly explain related work on memory

compression.

25

3.1 Compressed Caches: Background and Related Work

3.1.1 Cache Compaction Mechanisms: Fundamentals and Limits

3.1.1.1 Design Fundamentals

While a compressor produces variable size codes at bit granularity, conventional caches

operate on fixed size blocks (e.g., 64B). Thus, to achieve the potentials of a given compression

algorithm, the compaction mechanism plays a critical role to manage compressed blocks in the

cache. Table ‎3-1 shows a taxonomy of the current state of the art. We can classify previous work

using three main design factors: (1) how to provide the additional tags, (2) allocation granularity

of compressed blocks, and (3) how to find the corresponding block given a matching tag.

Number of Tags: To track more blocks, compressed caches require additional tags.

Traditionally, compressed caches double the number of tags (i.e., 2x Block Tags) to track up to

Tags
Data

Half-Block Sub-Block Byte

Per

Block

Direct

One-to-One Tag

Mapping

CC‎[39]

Lee et al. ‎[47]‎[48]

Significance-compression ‎[45]

- -

Decoupled

Forward Pointers
- VSC ‎[20] SC2‎[46]

Decoupled

Back Pointers
- IIC-C ‎[50] -

Per

Super Block

Direct

One-to-One Tag

Mapping

- SCC [new] -

Decoupled

Forward Pointers
- - -

Decoupled

Back Pointers
- DCC[new] -

Table ‎3-1: Compressed Caches Taxonomy.

26

2x cache blocks in the cache ‎‎[20]. At the LLC, further increasing the number of tags is costly as

the LLC is already one of the largest on-chip components. In this dissertation, I propose an

alternative approach to increase the number of tags with low area overhead. My proposals,

Decoupled Compressed Cache (DCC) and Skewed Compressed Cache (SCC), exploit spatial

locality and use super-block tags to effectively track more blocks while keeping the overheads

low. DCC, for example, uses the same number of tags as a regular cache, but each tag tracks a 4-

block super-block (i.e., 1x Super-Block Tags), and can map up to four cache blocks. Tracking

super-blocks only slightly increases tag area compared to the same size regular cache.

Allocation Granularity and Tag-Data Mapping: The subsequent issues are at what

granularity to allocate compressed blocks, and how to find a compressed block given a matched

tag (i.e., tag-data mapping). Traditional caches store small blocks (e.g., 64B) and maintain a

direct one-to-one relationship between tags and data, so a matching tag implicitly identifies the

corresponding data. In compressed caches, there is usually a trade-off between allocation

granularity and required metadata to track compressed blocks. On the one hand, like many

memory allocators, it is generally beneficial to tolerate some internal fragmentation than to deal

with arbitrary variability. On the other hand, by lowering allocation granularity, we could lower

internal fragmentation and fit more blocks in the cache, but at higher metadata costs. Previous

proposals differ on how they balance this trade-off.

The earliest compressed caches maintain such a direct relationship by allowing only one

compressed size (i.e., half the block size). Yang et al. ‎[39] exploited the value locality

phenomenon to design a first-level compressed cache (Compression Cache). Each cache line of

the Compression Cache (CC) stores either one uncompressed line or two lines compressed to at

27

least half their original sizes ‎[39]. Lee et al. ‎[47]‎[48] proposed a compressed cache that

selectively compresses cache blocks if and only if they can be compressed to less than half their

original size. They proposed several techniques to reduce the decompression overhead ‎[47]

including selectively compressing blocks only if their compression ratio is less than a certain

threshold, parallel decompression, and buffering recently accessed blocks at the L2 cache in an

uncompressed format. In another work ‎[48], they compressed block pairs and stored them in a

single line if both lines compressed by 50% or more. In this way, they free a cache block in an

adjacent set; however, they need to check two sets for a potential hit on every access, which

increases power overheads. Kim et al. ‎[45] also compressed cache blocks into half using a

significance-based compression scheme to improve cache utilization. They compressed and

stored‎a‎ cache‎block‎as‎ a‎half‎block‎ if‎ the‎block’s‎upper‎half‎was‎ either‎ all‎ zeros‎or‎ all‎ ones.‎

Otherwise, they stored the whole block as uncompressed. Overall, these techniques, which I refer

to as Fixed Compression (FixedC), limit compressibility by failing to take advantage of blocks

that compress by less than 50%, and so introducing internal fragmentation.

More recent designs reduce internal fragmentation by decoupling tag-data mapping ‎[20]

‎[46]‎[50]. Alameldeen and Wood ‎[20] presented a compressed cache that compacts compressed

blocks into a variable number of sub-blocks (also called segments), using the FPC compression

algorithm ‎[20] . Their proposal, which I refer to as Variable Size Compression (VSC), reduces

internal fragmentation, since all blocks in a set share the same pool of sub-blocks. It stores a

compressed block into contiguous sub-blocks in its corresponding data set. VSC decouples tag-

data‎mapping‎and‎keeps‎a‎block’s‎compressed‎size‎ in‎ its‎ tag‎ to‎ locate‎ the‎block.‎On‎a‎ lookup,‎

VSC finds the block by adding up the size of all its previous blocks in its corresponding set.

28

Using‎this‎technique,‎VSC‎keeps‎metadata‎small.‎However,‎on‎a‎block‎update,‎when‎the‎block’s‎

compressibility and size might change, VSC requires moving other blocks in the corresponding

set in order to make enough contiguous space for the accessing block (i.e., re-compaction). As

updates happen frequently, re-compactions incur high dynamic energy overheads on the cache.

To increase cache utilization, SC
2
 ‎[46] also decouples tag-data mapping. It compresses

blocks into a variable number of bytes, storing a byte index field in each tag to locate the starting

byte of a compressed block in a set. For example, in a 16-way associate cache, it stores 10 extra

bits per tag to locate the block in its corresponding data set. By allocating a block into contiguous

sub-blocks, SC
2

also requires evicting adjacent blocks on updates when the block size has

increased.

Hallnor et al. ‎[50] extended their earlier indirect index cache ‎[49] to support compression

(IIC-C). IIC-C compresses blocks into a variable number of sub-blocks using the LZSS

algorithm ‎[32]. Unlike VSC and SC
2
, IIC-C eliminates re-compaction overhead by allocating the

sub-blocks of a block anywhere in the data array. However, to locate a block, it incurs huge

metadata overhead by storing the corresponding set index of each sub-block in the tag (i.e.,

forward pointers). For example, for an 8MB LLC with 64-byte blocks, 16-byte sub-blocks, and

doubled number of tags, IIC-C incurs about 24% area overhead, while it at most doubles the

effective capacity. Further increasing the number of tags will make its area overhead even worse.

In this dissertation, I propose two different approaches to eliminate internal fragmentation

through sub-blocking, while I eliminate the overheads involved with decoupling tag-data

mapping. My proposal DCC supports variable size compression by decoupling tag-data

29

mapping. Unlike previous proposals, DCC provides a low-overhead decoupling mechanism.

DCC decouples sub-blocks from the address tag to eliminate expensive re-compaction when a

block’s‎ size‎ changes.‎ DCC allocates sub-blocks of a block in one set of the data array, not

necessarily in contiguous space (unlike VSC), but in order. DCC still needs extra metadata to

find a block in the data array. To keep the metadata overhead small, instead of storing where

each sub-block of a block locates (i.e., forward pointers ‎[50]), I use a few bits per data sub-block

in a data set to represent its owner block (i.e., back pointers).

My proposal SCC similarly compacts blocks into a variable number of sub-blocks to

reduce internal fragmentation, but retains direct tag-data mapping to find blocks quickly and

eliminate extra metadata (i.e., no forward or back pointers). SCC does this using novel sparse

super-block tags and skewed associative mapping that takes compressed size into account.

3.1.1.2 Limits of Previously Proposed Compressed Caches

As I showed in Figure ‎2-1 of Chapter 2, C-PACK+Z compression algorithm achieves an

average compression ratio of 3.4 for a wide range of application. Ideally, a compressed cache

could fit 3.4 times more compressed blocks in the same space using this algorithm. However,

previous compressed cache designs fail to achieve this potential for three main reasons. First, all

hardware caches map blocks into sets, introducing an internal fragmentation problem since a

compressed block must (at least in current designs) be stored entirely within one set. In Figure

‎3-1, the BytePack column represents an idealized compressed cache with infinite tags that

compacts compressed blocks on arbitrary byte boundaries. BytePack achieves an average

normalized effective capacity of 3.1. Note that some low memory intensive workloads, such as

ammp, have small working sets, which fit in a small cache even though they have highly

30

compressible data. Second, practical compressed caches introduce a second internal

fragmentation problem by compacting compressed blocks into one or more sub-blocks, rather

than storing compressed data on arbitrary byte boundaries. The column labeled VSC-Inf in

Figure ‎3-1 illustrates that compacting compressed blocks into 0–4 16-byte sub-blocks (but with

infinite tags per set) degrades normalized effective capacity from 3.1 to 2.6, on average. Finally,

compressed caches have a fixed number of tags per set. The remaining columns in Figure ‎3-1

illustrate that reducing the number of tags from infinite to a more practical twice Baseline,

degrades the normalized effective capacity from 2.6 to 1.7, on average.

Figure ‎3-1 results suggest two approaches to unlocking the potential of cache compression.

First, reduce the internal fragmentation within a set. However, this must be done with care in

today’s‎energy‎constrained‎environment.‎VSC-2X relaxes the mapping constraint between tags

and data and compacts compressed blocks into a variable number of contiguous sub-blocks ‎‎[20].

VSC-2X can compact more blocks in the cache than a simple FixedC compressed cache, which

Figure ‎3-1: Limits of previous compressed caches.

1

2

3

4

5

BytePack VSC-Inf VSC-4X VSC-3X VSC-2X

N
o

rm
. L

LC
 C

ap
ac

it
y

apache jbb oltp zeus ammp
applu equake mgrid wupwise black
canneal freqmine m1 m2 m3
m4 m5 m6 m7 m8
GEOMEAN

31

only compacts compressed blocks into half-blocks (i.e., 32-byte sub-blocks). However, VSC

needs to repack the sub-blocks‎in‎a‎set‎whenever‎a‎block’s‎size‎changes,‎to‎make‎contiguous‎free‎

space. This can significantly increase the cache bank occupancy and dynamic energy. Figure ‎3-2

shows the average number of accessed bytes at LLC normalized to Baseline. FixedC decreases

the average number of accessed bytes by 36% compared to Baseline due to accessing shorter

compressed blocks. On the other hand, VSC-2X increases the number of accessed bytes at LLC

by nearly a factor of three since it needs to repack sets (copying almost half a set, on average).

This significantly increases LLC dynamic energy.

The second approach to improving cache compression is to increase the number of tags per

set. Figure ‎3-1 shows that increasing the tags from twice the Baseline to four times the Baseline

increases the normalized effective capacity from 1.7 to 2.3, on average. However, done naively,

this significantly increases the area overhead. Figure ‎3-3 shows the area overhead (compared to

Baseline) versus normalized effective capacity. A variable size compression cache (VSC-2X)

with twice as many tags as Baseline ‎[20]‎increases LLC area by 8%. However, quadrupling the

Figure ‎3-2: VSC overhead on the number of LLC accessed bytes.

0

1

2

3

4

5

Baseline FixedC VSC-2X

A
cc

e
ss

e
d

 B
yt

e
s

at
 L

LC

apache jbb oltp zeus ammp
applu equake mgrid wupwise blackscholes
canneal freqmine m1 m2 m3
m4 m5 m6 m7 m8
GEOMEAN

8

32

number of tags (VSC-4X) increases LLC area by ~21%.

3.1.2 Policies to Manage Compressed Caches

Adaptive compression: Compressed caches introduce a trade-off between cache capacity

and cache access latency. On the one hand, they can improve effective cache capacity by storing

more cache blocks, resulting in a possibly lower cache miss rate. On the other hand, they incur

higher access latency as they decompress compressed blocks. These trade-offs change depending

on different parameters, including the sensitivity of the applications to cache latency and

capacity, cache level and decompression latency. For capacity-sensitive workloads, compression

can improve performance by reducing costly misses to the next level of hierarchy, while for

cache insensitive workloads or latency-sensitive workloads, the latency overhead of

decompression can impact performance. The overhead is higher with longer latency

decompression techniques and at lower levels of cache hierarchy (L1 or L2).

To balance this trade-off, Alameldeen and Wood ‎[20] proposed an adaptive policy that

dynamically‎ adapts‎ to‎ the‎ costs‎ and‎ benefits‎ of‎ cache‎ compression.‎ In‎ a‎ two-level cache

Figure ‎3-3: Area overhead of different cache designs.

0%

5%

10%

15%

20%

25%

1 1.5 2 2.5

LL
C

 A
re

a
O

ve
rh

e
ad

 (
%

)

Normalized Avg Effective LLC Capacity

Baseline

FixedC

VSC-2X

VSC-3X

VSC-4X

33

hierarchy, they employed compression only at the L2 cache. They kept uncompressed blocks at

the L1 cache as decompression overhead on the L1 cache hit latency can significantly impact

performance. On a cache allocate, they compressed a new block if the entire cache appeared to

be benefiting from compression. To determine whether compression was beneficial, they used

the‎ cache‎ replacement‎ algorithm’s‎ stack‎ depth.‎ They‎ kept‎ a‎ global‎ saturating‎ counter‎ to‎ keep‎

track of whether compression (could have) eliminated a miss or incurred an unnecessary

decompression. On each cache access, they incremented this counter by the L2 miss penalty if

compression could elide a miss, and decremented the counter by the decompression latency if the

access would have been a hit even without compression. Using this counter, they predicted

whether to allocate future cache lines in compressed or uncompressed form. They showed that

by‎dynamically‎monitoring‎workloads’‎behavior,‎ their‎adaptive‎compressed‎cache‎achieved‎the‎

benefits of compression for cache sensitive workloads, while avoiding performance degradation

for others. Their adaptive mechanism can be used in other compressed caches and at other levels

of cache hierarchy as long as we are using an LRU replacement policy.

Tailored replacement policy: Compressed caches typically use the same replacement

policy as traditional caches that treat all blocks similarly, while the sizes of the cache blocks vary

depending on their compressibility. Baek et al. ‎[55] proposed a size-aware compressed cache

management, Effective Capacity Maximizer (ECM), to improve the performance of compressed

caches. They used cache block size as a hint to select a victim to improve cache performance. In

a compressed cache, the eviction overhead varies based on the size of the evicted and evictee

cache blocks. If the size of the new block is larger than the victim block, the compressed cache

needs to evict more blocks. Thus, they considered block size in the cache management policies

34

to increase effective capacity. They classified blocks as big-size or small-size based on their

compressed size in comparison with a threshold. They dynamically adjusted this threshold on

every block insertion. Using a DRRIP ‎[56] framework, they proposed a size-aware insertion

policy that gives the big-size cache blocks a higher chance of eviction. On evictions, they also

chose the biggest-size cache block in case there were multiple possible victims. Employing these

policies, they showed that ECM has the potential to improve effective capacity, cache miss rate

and overall system performance. Pekhimenko et al. ‎[54] similarly proposed tailored replacement

and insertion policies for compressed caches.

Interactions with prefetching: Alameldeen and Wood ‎[57] showed that compression and

prefetching can interact in strong positive ways. Prefetching, in general, suffers from bandwidth

pressure and cache pollution, while compression can alleviate both of these. Similarly,

prefetching can help compression by hiding the decompression latency. Alameldeen and Wood

‎[57] proposed an adaptive prefetching mechanism that enables prefetching whenever beneficial.

They‎ used‎ cache‎ compression’s‎ extra‎ tags‎ to‎ detect‎ useless‎ and‎ harmful‎ prefetches.‎ In‎ their‎

compressed cache, they doubled the number of tags to potentially track twice compressed blocks.

However, in many cases, not all the blocks are compressible, so there are extra tags not being

used. They leveraged these tags to track recently evicted blocks and to find whether prefetched

blocks were evicting useful ones. They used a saturating counter that they incremented on useful

prefetches, and decremented on useless or harmful prefetches. Using this counter, they disabled

prefetching when it did not help. Overall, they showed by leveraging the interaction between

compression and prefetching, they can significantly improve performance.

35

3.1.3 Cache Compression to Improve Cache Power and Area

In addition to adopting compression to improve cache effective capacity, some techniques

aim at reducing cache power and area using compression. In general, in compressed caches, we

can reduce cache power on a block access if the power burnt to compress/decompress the block

is lower than the power burnt to access the compressed block. Thus, in all these techniques, they

use simple compression algorithms (such as significance-based) with small power overheads at

the cost of lower compressibility compared to LZ-based compression algorithms.

Yang et al. ‎[40] exploited frequent value locality to improve cache dynamic power. They

compressed a cache line into half, if possible, otherwise, stored it as uncompressed. They

partitioned the cache data array into two sub-arrays such that on an access to a compressed block

(i.e., a frequent value), they would only activate the first data sub-array. Otherwise, it would

require an additional cycle to access the second data sub-array. In this way, they could reduce

cache dynamic energy consumption for frequent value accesses, which are dominant, at the cost

of higher access time for non-frequent value accesses.

Significance-compression ‎[45] similarly improves cache power by accessing half of a

cache block if compressed, and packing more blocks in the cache. Dynamic zero compression

(DZC) ‎[52] also reduces the L1 cache dynamic power by only storing and accessing non-zero

bytes of a block in the data array.

In a recent work, Kim et al. ‎[53] aimed at reducing the L2 cache area and power in single

processor embedded systems. They halved the L2 cache size, and compressed cache blocks and

stored them in half size in the L2 cache. If a block was not compressible, they stored its first half

36

in the L2 cache, and its second half in a small cache, called the residue cache. By reducing the

size of the L2 cache and accessing half-sized blocks, they reduced both area and power.

3.2 Compressed Memory: Background and Related Work

Compression also has applications at other levels of memory hierarchy. In this section, I

describe some hardware-based and software-based memory compression schemes that target

increasing effective memory capacity, improving memory bandwidth, and reducing memory

energy.

3.2.1 Hardware-Based Memory Compression

IBM Pinnacle ‎[29] was the first commercially available memory controller that employs

real-time main-memory‎ compression.‎ It‎ employed‎ IBM’s‎ Memory‎ Expansion‎ Technology‎

(MXT) in a single-chip memory controller to effectively double the main memory capacity

without significant overheads. MXT uses a parallelized variation of the Lempel-Ziv algorithm

known as LZI as the compression algorithm ‎[27]. It compresses 1-KB cache blocks (same size as

in the L3) into 0 to 4 256-byte sub-blocks depending on the block compressibility. As blocks

have variable size when compressed, the memory controller needs to find where the block is by

translating the block address on the system bus to the physical address in the physical memory.

To do so, MXT keeps mapping in a Compression Translation Table (CTT) with one entry per

block. CTT is stored at a reserved location in the physical memory. Each entry includes four

physical sub-block addresses, each pointing to a 256-byte sub-block in the physical memory. On

an access, the memory controller performs real to physical address translation by a lookup in the

37

CTT to find where the sub-blocks of a block reside. MXT has shown to be effective for many

applications and servers. Compared to a standard uncompressed memory, it has negligible

penalty due to decompression latency. However, to deal with the variable memory size, this

scheme requires support from the operating system.

Kjelso et al. ‎[62] also explored compression potentials at the main memory. They

presented an X-Match hardware compression algorithm. X-Match maintains a dictionary,

processes 4-byte sub-blocks replacing them with a shorter code in case of a match or a partial

match with a dictionary element. They analyzed the compressibility of some Unix real

applications using the X-Match algorithm, and demonstrated an average double increase in

effective memory capacity with compression. Nunez and Jones ‎[63] further proposed

XMatchPRO, a high-throughput hardware FPGA-based X-Match implementation.

Ekman and Stenstrom ‎[59] used a frequent pattern compression scheme ‎[20] to compress

memory contents. They addressed some of the drawbacks of MXT. First of all, they used a

simple‎compression‎algorithm‎with‎small‎decompression‎latency‎(5‎cycles)‎as‎opposed‎to‎MXT’s‎

complicated LZ algorithm with 64 cycles of decompression latency. Second, to find a block in

the main memory, the operating system maps the uncompressed virtual address space directly to

a compressed physical address space by storing the size of each block in a page in its

corresponding page table entry and using a small and fast TLB-like structure.

In a recent study, Pekhimenko et al. ‎[61] proposed Linearly Compressed Pages (LCP) for

compression at the main memory. They used a simple compression algorithm, Base-Delta-

Immediate Compression (BDI) ‎[19]. To simplify block access in physical memory, LCP uses

38

one fixed size for compressed cache blocks within a given page. In this way, the location of a

compressed cache block within a page is simply the product of the index of the cache block

within the page and the compressed size.

Zhang and Gupta ‎[64] introduced a class of transformations that modify the representation

of dynamically allocated data structures commonly used in pointer intensive programs. They

compressed the fields of a node in a dynamic structure by compressing 32-bit address pointers

and integer words into 15-bit entities, and packing two compressed fields in the space of one. To

access data in the compressed format, they added six instructions, data compression extension

(DCX), to the MISP instruction set.

Dusser et al. ‎[60] proposed decoupled zero-compressed memory (DZC). They exploited

null blocks that represent a significant fraction of the working set of many applications. DZC is a

hardware compressed memory that only targets null data blocks. DZC represents null blocks

with a bit. To store non-null blocks, DZC manages the main memory as a decoupled sectored

set-associative cache with each page treated as a sector. Compared to other compression

mechanisms, DZC limits the benefit by only focusing on null blocks.

Shafiee et al. ‎[65] presented MemZip that exploits compression for improving memory

bandwidth, energy, and reliability. Most techniques use compression at the main memory to

improve memory capacity. MemZip, however, compresses blocks in the main memory, but does

not pack them to make more space. By storing compressed blocks, on a memory access, MemZip

would access fewer bytes. On a read, it first reads out metadata that tell the exact number of

bursts required to fetch the compressed cache block. It next transfers the block over exactly that

39

burst length. In this way, it saves memory bandwidth and energy. It further uses the space freed

by compression to improve reliability using better ECC coding.

Sathish et al. ‎[114] exploits compression for data transferred between a GPU and its off-

chip memory to provide higher effective bandwidth. They use a combination of both lossy and

lossless compression applying compression to floating-point numbers after truncating their least-

significant bits. In this way, they can improve bandwidth with little impact on overall

computational accuracy.

3.2.2 Software-Based Memory Compression

In general, previously proposed software-based compressed memories store actively

accessed data as uncompressed while storing others in a dedicated section of the main memory in

a compressed format ‎[66]‎[67]‎[68]‎[69]. On a page fault in the uncompressed section, they search

the compressed section. They then decompress and move the compressed page. In this way, the

compressed section basically acts as a cache to hide the latency to the disk.

Apple OS X Mavericks employs compression to increase performance ‎[70]. With OS X

Mavericks, compressed memory allows Mac to free up memory space, when needed. As Mac

approaches maximum memory capacity, OS X automatically compresses data from inactive

apps, making more memory available for active processes. Linux zcache similarly compresses

file pages that are in the process of being reclaimed storing them in memory.

40

Chapter 4

Decoupled Compressed Caches

4.1 Overview

Cache compression can increase effective cache capacity, reduce misses, improve

performance, and potentially reduce system energy. However, as I discussed in Chapter 3,

previous compressed cache designs have demonstrated only limited benefits mainly due to

internal fragmentation and limited tags. In addition, most previous proposals targeted improving

system performance even at high power and energy overheads. For example, VSC ‎[20] allows

variable compressed block sizes, but requires high-overhead re-compaction, which involves

moving on average half of the blocks in a set, to make enough contiguous space on updates.

Since updates happen frequently, re-compactions incur high dynamic energy overheads on the

cache.

In this chapter, I present Decoupled Compressed Cache (DCC) ‎[21]. DCC has five main

goals: (1) increasing the number of tags to track more compressed blocks without incurring high

area overheads, (2) eliminating energy inefficient re-compactions while allowing variable

compressed block sizes, (3) reducing internal fragmentation to further improve effective capacity

by packing compressed blocks tightly, (4) incurring low area and power overheads, and (5)

providing a practical design.

41

As I discussed in Chapter 3, the first fundamental factor in designing a compressed cache

is to provide extra tags to track more blocks in the cache. Simply increasing the number of tags

(e.g., 4x tags) would increase area and power overheads by an unacceptable amount. In order to

increase the number of tags while keeping the overheads low, DCC proposes managing cache

tags at multiple granularities. Although caches typically support a single block size, most

workloads exhibit spatial locality at multiple granularities, and thus, many neighboring blocks

may exist in the cache at the same time. Instead of tracking these blocks separately, DCC

exploits spatial locality, and uses super-block tags. A super-block tag tracks a group of aligned

contiguous cache blocks (e.g., 4 blocks). While previous cache designs used super-blocks tags to

reduce the number of tags, DCC keeps the same number of tags and use super-block tags to track

more blocks. Since these neighboring blocks share a single address tag, using super-block tags

slightly increases cache area overhead. Compared to a regular cache, DCC basically replaces

each tag entry with a super-block tag. DCC compresses each 64-byte block independent of its

neighbors. However, it tracks up to four neighbors with one super-block tag. In this way, it can

track up to four times more blocks in the cache with low area and power overheads.

To reduce internal fragmentation, DCC compresses a 64-byte block into variable number

of sub-blocks (e.g., 0 to 4 16-byte sub-blocks), and allocates these sub-blocks in the data array.

Previous proposals ‎[57]‎[20]‎[50] supported variable size compression at high metadata and power

overheads. DCC, however, decouples the address tags—allowing any data sub-block in a set to

map to any tag in that set—to reduce fragmentation within a super-block ‎[75]. In another word,

DCC allows sub-blocks of a block to be non-contiguous within a set. In this way, it eliminates

the re-compaction overheads of previous variable size compressed caches ‎[20], while reducing

42

internal fragmentation with sub-blocking. Since each sub-block in the data array could belong to

any block, DCC keeps a few bits per data sub-block in a data set to represent its owner block

(i.e., back pointers).

Although sub-blocking reduces internal fragmentation, it reduces compression

effectiveness because of wasted space within sub-block boundaries. For example, even if a block

can fit in 10 bytes, DCC allocates a 16-byte sub-block for that. Reducing sub-block size would

help, but could increase area and power overheads significantly. An optimized Co-DCC design

further reduces internal fragmentation (and increases effective capacity) by compacting the

compressed blocks from a super-block into the same set of data sub-blocks, but uses more

metadata.

Although many researchers have studied the potential of cache compression, the computer

industry has shown lower interest in integrating these ideas in new processors due to possible

design complexities. In this work, I take an additional step to demonstrate that DCC is practical.

I present a concrete design for DCC and show how it can be integrated into a recent commercial

LLC design (AMD Bulldozer LLC) with little additional complexity.

I evaluate DCC using the GEMS full-system simulator ‎‎[81]. I show that DCC can improve

average performance and system energy by 10% and 8%, respectively. Importantly, this is better

than a conventional LLC of twice the capacity, and uses only 8% more area than a same-size

uncompressed Baseline. In comparison with previous proposals, FixedC and VSC-2X, DCC

nearly doubles the performance and energy benefits for comparable area overheads. Co-DCC

further reduces runtimes and system energy, but at the cost of some additional complexity.

43

In the rest of this chapter, I show the potential in exploiting spatial locality for improving

compression effectiveness in Section ‎4.2, present DCC design in Section ‎4.3, describe a practical

design in Section ‎4.4, describe the experimental methodology and results in Sections ‎4.5 and ‎4.6,

and conclude the chapter in Section ‎4.7.

4.2 Spatial Locality at LLC

Although current multicore caches typically support a single block size, most workloads

exhibit spatial locality at multiple granularities. Figure ‎4-1 shows the distribution of neighboring

blocks in a conventional LLC with a tag per 64-byte block (workloads and simulation parameters

described in Section ‎4.5). Neighboring blocks are defined as those in a 4-block aligned super-

block (i.e., aligned 256-byte region). The graph shows the fraction of blocks that are part of a

Quad (all four blocks in a super-block co-reside in the cache), Trios (three blocks out of four co-

reside), Pairs (two blocks out of four co-reside), and Singletons (only one block out of four

resides in the cache). Pairs and Trios are not necessarily contiguous blocks, but represent two or

0%

20%

40%

60%

80%

100%

LL
C

 C
ap

ac
it

y
D

is
tr

ib
u

ti
o

n

Pairs:Singleton: Trios: Quads:

Figure ‎4-1: Distribution of LLC cache blocks.

44

three blocks, respectively, that could share a super-block tag. Although access patterns differ, the

majority of cache blocks reside as part of a Quad, Trio, or Pair. For applications with streaming

access patterns (e.g. mgrid) Quads account for essentially all the blocks. Other workloads exhibit

up to 29% singletons (canneal), but Quads or Trios account for over 50% of blocks for all but

two of our workloads (canneal and gcc).

Super-blocks (also known as sectors ‎[75]) have long exploited coarser-grain spatial locality

to reduce tag overhead ‎[82]‎[83]‎[75]. Super-blocks associate one address tag with multiple cache

blocks, replicating only the per-block metadata such as coherence state. Figure ‎4-2(a) shows one

set of a 4-way-associative super-block cache (SC), with 4-block super-blocks. Using 4-block

super-blocks reduces tag area by 70% compared to a conventional cache. However, Figure ‎4-2(a)

illustrates that Singletons, Pairs, and Trios—such as, super-blocks D, C, and A, respectively—

result in internal fragmentation, which can lead to significantly higher miss rates ‎[75].

Seznec showed that decoupling super-block tags from data blocks helps reduce internal

fragmentation ‎[75]. Decoupled super-block caches (DSC) increase the number of super-block

Figure ‎4-2: (a) Sectored Cache (b) Decoupled Sectored Cache.

(a) (b)

A0 C0B0H0

A1 E1 F1 B1

C2

D3 E3

H2 A2

G3

B2

B3

A B C D E F G H

E:<E3,E1>
F:<F1>
G:<G3>
H:<H2,H0>

Tag Array Data Array

Re-used space

A B C D

A:<A2,A1,A0>
B:<B3,B2,B1,B0>
C:<C2,C0>
D:<D3>

Tag Array Data Array

Unused space

A0

A1

A2

B0

B1

B2

B3

C2

D3

C0

45

tags per set and use per sub-block back pointers to identify the corresponding tag. Figure ‎4-2(b)

illustrates how decoupling can reduce fragmentation by allowing two Singletons (i.e., blocks F1

and G3) to share the same super-block. DSC uses more tag space than SC, but less than a

conventional cache since back pointers are small.

In this work, I use decoupled super-block tags to improve cache compression in two ways.

First, super-blocks reduce tag overhead, permitting more tags per set for comparable overhead.

Second, decoupling tags and data reduces internal fragmentation and, importantly, eliminates re-

compaction when the size of a compressed block changes.

4.3 Decoupled Compressed Cache: Architecture and Functionality

In this section, I describe Decoupled Compressed Cache (DCC) and Co-Compacted DCC

(Co-DCC) designs in detail. While these designs may be applicable to other levels of the cache

hierarchy, I target the LLC in this work.

4.3.1 DCC Architecture

To improve compression effectiveness at the LLC, DCC exploits super-blocks and

manages the cache at three granularities: coarse-grain super-blocks, single cache blocks, and

fine-grain sub-blocks. DCC tracks super-blocks, which are groups of aligned, contiguous cache

blocks (Figure ‎4-3(d)), while it compresses and stores single cache blocks as variable number of

sub-blocks.

46

Figure ‎4-3(a) shows the key components of DCC architecture for a small 2-way-set

associative cache with 4-block super-blocks, 64-byte blocks, and 16-byte sub-blocks. DCC

consists of Tag Array, Sub-Blocked Back Pointer Array, and Sub-Blocked Data Array. DCC is

indexed using the super-block address bits (Set Index in Figure ‎4-3 (e)). Note that like all super-

block caches, this index uses higher order bits. In this way, all blocks of the same super-block are

mapped to the same data set.

DCC explicitly tracks super-blocks through the tag array. The tag array is a largely

conventional super-block tag array. Figure ‎4-3 (b) shows one tag entry that consists of one tag

per super-block (Super-block tag) and coherence state (CState) and compression status (Comp)

for each block of the super-block. Since all four blocks of a super-block share a tag address, the

tag array can map four times as many blocks as the same size conventional cache with minimal

Figure ‎4-3: DCC cache design.

Sub-Blocked
Back Pointer

Array

Sub-Blocked Data Array

Index A

Set
Index Blk#

6b

Byte
Tag ID Blk#

(c) One BPE:
...

Super-Block Size

(d) Address Space:

(e) Address:

{Tag #1, Blk #0}{Tag A,(I,N), (I,N), (I,N), (VALID,COMP)}

Tag Array

Tag A,
Blk #0

A0.1

Super-Block Tag

Tag Match and Sub-Block Selection

(a) DCC Cache Layout:

15

Super-Block Tag

C
st

at
e

3

3b 1b

C
o

m
p

3

C
st

at
e

2

3b 1b

C
o

m
p

2

C
st

at
e

1

3b 1b

C
o

m
p

1

C
st

at
e

0

3b 1b

C
o

m
p

0

1b 2b

A0.0

1 5 1

(b) One Tag Entry:

47

area overhead. DCC holds as many super-block tags as the maximum number of uncompressed

blocks that could be stored. For example, in Figure ‎4-3, for a 2-way-associative cache, it holds

two super-block tags in each set of the tag array. In this way, each set in the tag array can map

eight blocks (i.e., 2 super-blocks * 4 blocks/super-block), while a maximum of two

uncompressed blocks can fit in each set. In the worst case scenario, when there is no spatial

locality (i.e., all singletons) or cached data is uncompressible, DCC can still utilize all the cache

data space, for example, by tracking two singletons per set in Figure ‎4-3 (a).

DCC compresses and compacts cache blocks into a variable number of data sub-blocks. It

dynamically allocates these sub-blocks in the sub-blocked data array. The data array is a mostly

conventional cache data array, organized in sub-blocks. In Figure ‎4-3 (a), it provides eight 16-

byte sub-blocks per set, for a total of 128 bytes. This is only one quarter of the data space

mapped by each set in the tag array (i.e., 2 super-blocks * 4 blocks/super-block * 64 bytes/block

= 512). Thus using this configuration the tag array has the potential to map four times as many

blocks as can fit in the same size uncompressed data array.

DCC decouples sub-blocks from the address tag to eliminate the expensive re-compaction

when‎ a‎ block’s‎ size‎ changes.‎ DCC‎ allocates‎ sub-blocks of a block in the data array not

necessarily in contiguous space (unlike VSC ‎[20]) but in order. For example, in Figure ‎4-3 (a),

block A0 is compressed into two sub-blocks (A0.1 and A0.0) that are stored in the sub-block #5

and the sub-block #1 in the data array.

For a low-overhead decoupled tag-data mapping, DCC uses small back pointers as one

level of indirection to locate sub-blocks of a compressed block. For each sub-block in the data

48

array, the back pointer array keeps one back pointer entry (BPE) identifying the owner block of

that sub-block.‎To‎do‎so,‎a‎BPE‎stores‎a‎corresponding‎block’s‎tag‎ID‎and‎block‎ID‎(Figure ‎4-3

(c)). Tag ID (e.g., 1 bit for a 2-way-associative cache) refers to the super-block tag entry

matching this block in the same set of the tag array (e.g., 1 in Figure ‎4-3 (a)). Block ID refers to

the position of a block within its encompassing super-block. DCC derives Block ID (e.g., 2 bits

for a 4-block super-block) from the block address (Blk# in Figure ‎4-3 (e)). Using the tag ID and

block ID, a BPE encodes the owner block of a sub-block with minimum metadata. In this way,

the back pointer array enables low-overhead variable size compression, while it slightly

increases the LLC area (discussed in Section ‎4.5).

4.3.2 DCC Lookup Process

Figure ‎4-4 shows the DCC lookup procedure for different scenarios. On a cache lookup,

both the tag array and the back pointer array are accessed in parallel. In the common case of a

cache hit, both the block and its corresponding super-blocks are found available (i.e., tag

matched and block is valid). In the event of a cache hit, the result of the tag array and the back

pointer array lookup determines which sub-blocks of the data array belong to the accessing

block. On a read, those sub-blocks are read out next, and the corresponding tag entry and BPEs

Figure ‎4-4: DCC cache lookup.

YES YES

Read?

Write?

NONO
Super-Block

Miss

Tag Match? Valid Block?

Block
Miss

Lookup
Back Pointer Array

U
p

d
at

e
 L

R
U

, T
ag

,
an

d
 B

P
Es

Lookup
Tag Array

Replace Victim
Super-Block

Replace Victim
Blocks

Compress and Write
Sub-blocks

Read Sub-blocks and
Decompress

49

are updated. In Figure ‎4-3, for example, on a read access to block A0, Tag A, Index A, and block

ID (e.g., #0) are derived from the address (Figure ‎4-3 (e)). The corresponding set of the tag array

and the back pointer array (indexed by Index A) are read out. The tag match and sub-block

selection logic then identify whether the block is available and where its sub-blocks locate in the

data array. For instance, the tag entry #1 in the tag array matches super-block A, and its block #0

is available (CState #0 is valid). The sub-block selection logic finds the matched BPEs (BPEs #5

and #1 for A0) using the matched tag ID (e.g., 1 for A) and the block ID (e.g., 0 for A0). Since

there is a one-to-one correspondence between BPEs and data sub-blocks, the corresponding sub-

blocks are then read out of the data array (e.g., the sub-blocks #5 and #1 for A0) and

decompressed.

On the other hand, in case of a cache miss, DCC must allocate the compressed block in the

data array. A cache miss occurs when the block is not available in the cache even if its super-

block is available. If its super-block is available (Block Miss in Figure ‎4-4), the accessing block

will be allocated in the data array, and its corresponding tag entry and BPEs will be updated.

This might require replacing one or more cache blocks to make enough space for this block. If its

super-block is not available (Super-Block Miss in Figure ‎4-4), I might need to replace another

super-block (e.g., the least recently used one). In this case, the blocks belonging to the victim

super-block are evicted from the LLC as well. I handle the eviction process in the background by

storing the victim super-blocks in a small buffer until all of their blocks are evicted from the

cache. In this way, their tag entries can be released to allocate the new super-blocks.

Unlike conventional caches, on a write (or update) to a compressed cache, the block

compressed size might change. To fit a larger block, DCC needs more sub-blocks, which may

50

force a block (or a super-block) eviction. On the other hand, if the new compressed size is

smaller, DCC would deallocate the unused sub-blocks, and update the corresponding tag entry

and BPEs.

When DCC allocates a block or updates an existing block, it allocates from a set of free

sub-blocks in the corresponding set. In the presented design, free sub-blocks are those pointing to

invalid blocks. Since both the tag array and the back pointer array are accessed in parallel on a

cache lookup, the cache controller gets the set of free data sub-blocks by finding those whose

corresponding BPEs are pointing to invalid blocks. Thus, the cache controller always makes sure

free sub-blocks are pointing to invalid blocks. An alternative design is to use an extra bit per

BPE representing its validity, which would slightly increase area, but might simplify the logic.

4.3.3 Co-DCC: Reducing Internal Fragmentation by Co-Compacting Super-Blocks

DCC uses sub-blocks to reduce internal fragmentation, but it still limits the benefits due to

internal fragmentation within sub-blocks. For example, DCC would allocate a 16-byte sub-block

for a 10-byte compressed block. Compressing cache blocks and compacting them to byte

granularity eliminates internal fragmentation but at high hardware overheads (discussed in

Section ‎4.6). Using larger block sizes can also help reducing internal fragmentation by packing

more data in the same space. However, increasing cache block size can lead to cache pollution

and higher energy overheads ‎[84].

Co-DCC exploits spatial locality to further optimize DCC to reduce internal fragmentation.

As I show in earlier sections, for many applications, neighboring blocks co-reside in the LLC.

Co-DCC exploit spatial locality, and treats super-blocks (e.g., a quad) as one large block. It

51

dynamically compacts compressed blocks of one super block into the same set of sub-blocks. By

co-compacting super-blocks, Co-DCC can get some of the benefits of BytePack (packing the

compressed blocks at byte granularity) with much lower overheads, as shown in Section ‎4.6.1. In

the next sub-section, I show how Co-DCC works, and how it can be integrated to DCC design

with small changes.

4.3.3.1 Co-DCC Design

Co-DCC operates mostly similar to DCC, except for co-compacting super-blocks. When

allocating a block to an existing super-block, Co-DCC compacts and stores the compressed block

with the existing blocks of the same super-block. Figure ‎4-5 shows an example of how Co-DCC

works for the same configuration used in Figure ‎4-3. In this example, Co-DCC stores and co-

compacts A0, A1 and A2, which all belong to the super-block A, in chronological order in a 2-

way set associative data set. When allocating block A1, since it fits in less than a sub-block, it

shares a sub-block with A0 (in the sub-block #5). When A2 is allocated, A2 can also share some

Tag
ID Sh

ar
e

rs

4b

Super-
Block Tag C

st
at

e
3

C
o

m
p

3

C
st

at
e

2
C

o
m

p
2

B
e

gi
n

3

7b
B

e
gi

n
2

C
st

at
e

1
C

o
m

p
1

C
st

at
e

0
C

o
m

p
0

B
e

gi
n

1

B
e

gi
n

0

EN
D

7b3b 1b 1b7b3b1b 7b3b 1b 7b3b1b(a) (b)

Figure ‎4-6: (a) One Co-DCC tag entry (b) One Co-DCC BPE.

Figure ‎4-5: Co-DCC co-compaction

example.

A2.1

A: <A2,A1,A0>
A-ENDA1-Begin

Sub-block 7

…

Sub-block 6 Sub-block 5

…

Sub-blocks 4-2

A0.0

Sub-block 1 Sub-block 0

A0-Begin

A2.2A0.1A1A2.0

52

space (A2.0) with A0 and A1 in the sub-block #5. Its remaining sub-blocks (A2.1 and A2.2)

need to be allocated in free sub-blocks of the set. In this example, there is not enough in-order

space available for A2 if we want to share sub-block #5 among these blocks. Therefore, unlike

DCC that stores the sub-blocks of a block in order, Co-DCC stores them not necessarily in order

but in a round-robin fashion (e.g., block A2 in Figure ‎4-5). In this way, it will not need to move

blocks if there is not enough in-order space available when co-compacting them. However, this

design can slightly increase access latency (described in Section ‎4.4).

Co-DCC can be integrated with DCC design with some small changes in the tag array and

the back pointer array. Figure ‎4-6 shows one Co-DCC tag entry and one BPE for the same

configuration used in Figure ‎4-3. Since the first byte of a compressed block can be stored

anywhere in a data sub-block (e.g., A2.0 in Figure ‎4-5), Co-DCC‎ tracks‎ each‎ block’s‎ starting‎

byte separately in its corresponding tag entry (e.g., 7-bit Begin0 in Figure ‎4-6(a)). Co-DCC also

tracks the last occupied byte of each super-block in its corresponding tag entry (7-bit End in

Figure ‎4-6(a)). When allocating a new block to an existing super-block, Co-DCC stores it next to

this last byte if there is free space in that sub-block, and updates this pointer.

Unlike DCC, where each data sub-block belongs to only one block, Co-DCC can share one

sub-block among multiple blocks of the same super-block. For example, A0.1, A1, and A2.0

share the sub-block #5 in Figure ‎4-5. Therefore, each Co-DCC BPE tracks its sharers by storing

a small bit-vector (e.g., 4-bit Sharers in Figure ‎4-6(b)). Each bit of the sharers bit-vector shows if

its corresponding block shares that sub-block. This information will slightly increase the LLC

area (Section ‎4.5), but allows Co-DCC to fit more blocks in the cache by reducing internal

fragmentation.

53

4.4 A Practical Design for DCC

(Co-)DCC can be integrated into the LLC of a recent commercial design with relatively

little additional complexity and, more importantly, no need for an alignment network. The AMD

Bulldozer implements an 8MB LLC that is broken into four 2MB sub-caches, each sub-cache

consists of four banks that can independently service cache accesses ‎[85]. Figure ‎4-7 illustrates

the data array of one bank in the LLC and shows how it is divided into 4 sequential regions (SR).

Each sequential region runs one phase (i.e., half a cycle) behind the previous region and contains

a quarter of a cache block (i.e., 16 bytes). Figure ‎4-7 shows‎how‎block‎A0’s‎four‎16-byte sub-

blocks (e.g., A0.0–A0.3) are distributed to the same row in each sequential region. Each

subsequent sequential region receives the address a half cycle later and takes a half cycle longer

to return the data. Thus, a 64-byte block is returned in a burst of four cycles on the same data

bus. For example, A0.1 is returned one cycle after A0.0 in Figure ‎4-8(a).

DCC requires only a small change to the data array to allow non-contiguous sub-blocks. In

Figure ‎4-7, block B1 is compressed into 2 sub-blocks (B1.0 and B1.1), stored in sequential

regions #1 and #2, but not in the same row. To select the correct sub-block, DCC must send

additional address lines (i.e., 4 bits for a 16-way-associative cache) to each sequential region

(illustrated by the dotted lines in Figure ‎4-7). DCC must also enforce the constraint that a

compressed‎block’s‎sub-blocks are allocated to different sequential regions to prevent sequential

region conflicts.

54

Figure ‎4-8(b) illustrates DCC timing when reading block B1. As described in Section ‎4.3,

the back pointer array is accessed in parallel with the tag array. The sub-block selection logic

finds the BPEs corresponding to this block using its block ID (derived from its address) and the

matched tag ID, which is found by the tag match logic. The sub-block selection logic can only be

partially overlapped with the tag match logic since it needs the matched tag ID. To calculate the

latency overhead of the sub-block selection, I implemented the tag match and the sub-selection

logic in Verilog, synthesized in 45nm and scaled to 32nm ‎[86]. The sub-block selection logic

adds less than half a cycle to the critical path, which I conservatively assume increases the access

latency by one cycle. Figure ‎4-8(b) shows how the matching sub-blocks are returned and fed

directly into the decompression logic, which accepts 16-byte per cycle and has a small FIFO

buffer to rate match. Decompression starts as soon as the first sub-block arrives (e.g., B1.0),

which depends upon which sequential region it resides in. Since sub-block B1.0 resides in

sequential region 1, there is one extra cycle (worst case is 3 cycles). Note that because the

decompression latency is deterministic (9 cycles), DCC can determine at the end of sub-block

selection when the data will be ready and whether the decompression hardware can be bypassed.

Figure ‎4-7: (Co-)DCC Data Array Organization.

B

 P
h

as
e

 F
lo

p

A
 P

h
as

e
 F

lo
p

A
 P

h
as

e
 F

lo
p

B
 P

h
as

e
 F

lo
p

A0: uncompressed; B1 and C2 are compressed to 2 sub-blocks

SR0SR 1SR 2SR3

A0.3
C3.0

A0.2

B1.1

A0.1
B1.0

A0.0
C3.1

N
Set Addr

4

SR0 Addr

SR3 Addr

4

4
4

SR1 Addr
SR2 Addr

Read Data

55

Thus, even though completion times vary, DCC has ample time to arbitrate for the response

network.

Figure ‎4-7 also shows how block C3 is allocated by Co-DCC. Co-DCC also stores sub-

blocks of a block in different regions, but allocates them in round-robin fashion and not

necessarily in order. Therefore, Co-DCC cannot necessarily start decompression as soon as it

reads the first sub-block (e.g., C3.1 will be read out first before C3.0). To handle these cases,

Co-DCC must buffer the sub-blocks and pass them to the decompression logic in order. The

decompression logic must also pre-align the first sub-block,‎since‎the‎compressed‎block‎doesn’t‎

necessarily start in the first byte. The reordering and pre-alignment add up to 3 additional cycles

compared to DCC.

Figure ‎4-8: (a) Timing of a conventional cache and (b) DCC.

Access Data
Array

t cycles d cycles

SR0
A0.0

Access
Tag Array

Tag
Match

m cycles 1

Access
BPA

SR1
A0.1

1

SR2
A0.2

1

SR3
A0.3

1

(a)

Access Data
Array

t cycles d cycles

SR0Access
Tag Array

Tag
Match

m cycles 1

SR1
B1.0

1

SR2
B1.1

1

SR3

9 cycles

(b)
Sub-Block
Selection

1

Decompression

56

4.5 Experimental Methodology

4.5.1 Simulation Configurations

I evaluate (Co-)DCC using a full-system simulator based on GEMS ‎[81]. I model a

multicore system with three levels of cache hierarchy (Table ‎4-1) ‎‎[74]. I use an 8MB LLC that is

broken into 8 banks, each divided into 4 sequential regions. Note that although I use a different

cache configuration than AMD Bulldozer LLC, I model the timing and allocation constraints of

sequential regions at the LLC in detail, as discussed in Section ‎4.4. I use CACTI ‎[87]‎to model

power at 32nm. I also use a detailed DRAM power model developed based on the Micron

Corporation power model ‎‎[88] with energy per operation listed in Table ‎4-1. In this section, I

report total system energy that include energy consumption of processors (cores + caches), on-

chip network, and off-chip memory.

Table ‎4-1: Simulation parameters.

Cores OOO, 3.2 GHz, 4-wide issue, 128-entry Instruction Window.

L1I$/L1D$ Private, 32-KB, 8-way, 2 cycles, HP transistors.

L2 $
Private, 256-KB, 8-way, 10 cycles, HP transistors.

L3 $ Shared, 8-MB, 16-way, 8 banks, 30 cycles, LSTP transistors.

Main Memory
4GB, 16 Banks, 800 MHz bus frequency DDR3, 60.35 nJ per Read, 66.5 nJ per Write, and

4.25W static power.

57

Table ‎4-2 shows the configurations I use. For (Co-)DCC, I use 4-block super-blocks, 64-

byte blocks, and 16-byte sub-blocks. With these parameters, DCC has similar area overhead as

FixedC and VSC-2X (Section ‎‎4.6). Alternative super-block and sub-block sizes can be used. I

use 4-block super-blocks, since not all workloads would benefit from larger super-blocks due to

their limited spatial locality. Using smaller sub-blocks also potentially improves compression

effectiveness by reducing internal fragmentation, but at the cost of higher hardware complexities

and overheads (discussed in Section ‎‎4.6).

4.5.2 Workloads

Our evaluations use representative multi-threaded and multi-programmed workloads from

Commercial workloads ‎‎[89], SPEC-OMP ‎‎[92], PARSEC ‎[91], and mixes of SPEC CPU2006

benchmarks, summarized in Table ‎4-3. I evaluate eight multi-programmed workloads with

different mixes of compute-bound and memory intensive benchmarks. Each workload consists of

8 threads evenly divided among the named Spec2006 benchmarks. For example, cactus-mcf-

milc-bwaves runs two copies of each of the four benchmarks.

Table ‎4-2: Configurations.

Baseline Conventional 16-way-associative 8MB LLC.

2X Baseline Conventional 32-way-associative 16MB LLC.

FixedC 2x tags per set (i.e., 32 tags per set). Each cache block is compressed to half if compressible.

VSC-2X 2x tags per set (i.e., 32 tags per set). A block is compressed into 0-4 16-byte sub-blocks.

DCC
Same number of tags per set (i.e., 16 tags per set). Each tag tracks up to 4 blocks (4-block

Super-Blocks). Blocks are compressed individually to 0-4 16-byte sub-blocks.

Co-DCC Similar to DCC, except it dynamically co-compacts blocks of the same super-blocks.

58

Figure ‎4-9 shows the sensitivity of our workloads to the LLC capacity and the LLC access

latency. Compressed caches in general benefit cache capacity sensitive workloads by providing

higher effective cache capacity. On the other hand, they might hurt cache latency sensitive

workloads due to the decompression latency. I categorize our workloads as cache latency

sensitive if they observe more than 1% runtime slowdown compared to Baseline when I use the

same size cache with 9 cycles extra LLC access latency, which represents the decompression

latency. Many of our workloads (e.g., freqmine and oltp) are sensitive to cache latency and

observe up to 6% (for oltp) slow down with the slower cache. I also categorize our workloads

Table ‎4-3: Workloads.

Suite Workloads

Commercial apache, jbb, oltp, zeus

SPEC-OMP

ammp, applu, equake, mgrid, wupwise

PARSEC

blackscholes, canneal, freqmine

Spec2006

(denoted as m1-m8)

bzip2, libquantum-bzip2, libquantum, gcc, astar-bwaves, cactus-mcf-milc-bwaves,

gcc-omnetpp-mcf-bwaves-lbm-milc-cactus-bzip, omnetpp-lbm

Figure ‎4-9: Cache sensitivity of our workloads.

0%

1%

2%

3%

0% 1% 2% 3% 4% 5%

Sl
o

w
 D

o
w

n
 d

u
e

to
 H

ig
h

er
 L

at
e

n
cy

Speedup due to Double Capacity

apache jbb

oltp zeus

ammp applu

equake mgrid

wupwise black

canneal freqmine

m1 m2

m3 m4

m5 m6

m7 m8

>

>

6%

22%

59

that observe more than 2% speedup with double LLC capacity (with the same access latency as

Baseline) as cache capacity sensitive. Our workloads have a wide range of sensitivity to cache

capacity (maximum 22% speedup for apache). Among our workloads, ammp, applu,

blackscholes, and libquantum are cache insensitive. I run each workload for approximately 500M

instructions with warmed up caches. I use a work-related metric, run each workload for a fixed

number of transactions/iterations and report the average over multiple runs to address workload

variability ‎[90].

4.6 Evaluation

4.6.1 Area and Power

Compressed caches can increase cache area due to their extra metadata. Table ‎4-4 shows

the quantitative area overheads of DCC, Co-DCC, FixedC and VSC-2X over the same size

conventional cache (16-way-associative 8MB LLC) with the parameters in Table ‎4-1 and Table

‎4-2. DCC uses the same number of tags as Baseline, but almost doubles the per-block metadata

largely due to the back pointers. However, since the data array is much larger than the tag array,

Table ‎4-4: LLC area overheads of different compressed caches over the conventional cache.

Components DCC Co-DCC FixedC/VSC-2X VSC-3X VSC-4X
DCC-

BytePack

Tag Array

Back Pointer Array

Compressors

Decompressors

2.1%

4.4%

0.6%

1.2%

11.3%

5.4%

0.6%

1.2%

6.3%

0%

0.6%

1.2%

12.7%

0%

0.6%

1.2%

18.8%

0%

0.6%

1.2%

2.1%

70.6%

0.6%

1.2%

Total Area

Overhead
8.3% 18.5% 8.1% 14.5% 20.6% 74.5%

60

Cacti calculates the overall LLC area overhead as about ~6% ‎[87].‎ DCC’s‎ area‎ overhead‎ is‎

similar to FixedC and VSC-2X, which track twice as many tags per set (e.g., 32 tags per 16

blocks). Co-DCC increases metadata stored per block, as discussed in Section ‎4.3.3, resulting in

16% area overhead compared to Baseline. Co-DCC still has less area overhead than naively

quadrupling the number of tags (VSC-4X). It also incurs much lower overhead compared to a

DCC configuration with no packing constraint. DCC-BytePack (i.e., packing compressed blocks

at byte granularity) can increase compression effectiveness by reducing internal fragmentation.

However, using 1-byte sub-blocks requires 16 times more BPEs per set than (Co-)DCC with 16-

byte sub-blocks. BytePack would also require a complex alignment network to compact the bytes

into 16-byte sub-blocks before passing them to the decompression hardware. Table ‎4-4 also

includes the area overhead of (de-)compression units. Since C-PACK+Z’s‎ decompressors‎

produce 8 bytes per cycle, I match the cache bandwidth by considering two decompressors per

cache bank. Since compression is not on the critical path, I consider one compressor per bank.

For the LLC configuration in Table ‎4-1, we need 8 compressors and 16 decompressors resulting

to an extra 1.8% area overhead.

Compressed caches can also increase the LLC per-access dynamic power and the LLC

static power due to their extra metadata. DCC, similar to FixedC and VSC-2X, increases the

LLC per-access dynamic power by 2% and the LLC static power by 6%. Co-DCC also incurs

6% overhead on the LLC per-access dynamic power and 16% LLC static power overhead ‎[87]. I

model these overheads as well as the power overheads of (de-)compression in detail.

61

4.6.2 Effective Cache Capacity

Result 1: By exploiting spatial locality, DCC achieves on average 2.2 times (up to 4 times)

higher LLC effective capacity compared to Baseline, resulting in 18% lower LLC miss rate on

average and up to 38% lower LLC miss rate.

Result 2: Co-DCC further improves the effective cache capacity by co-compacting the

blocks in a super-block. It achieves on average 2.6 times and up to 4 times higher effective

capacity and on average 24% and up to 42% lower LLC miss rate.

Result 3: (Co)-DCC provides significantly higher effective cache capacity and lower miss

rate than FixedC and VSC-2X. (Co-)DCC also performs on average better than 2X Baseline with

much lower area overhead.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

rm
 L

LC
 E

ff
e

ct
iv

e
 C

ap
ac

it
y

0.20

0.40

0.60

0.80

1.00

N
o

rm
 L

LC
 M

is
s

R
at

e

(a) Normalized LLC effective capacity (b) Normalized LLC miss rate

Figure ‎4-10: The LLC effective capacity and the LLC miss rate normalized to Baseline.

apache jbb oltp zeus ammp applu equake

mgrid wupwise black canneal freqmine m2 m3

m4 m5 m6 m7 m8 GEOMEAN

62

Compressed caches improve effective capacity by fitting more blocks in the same space.

They can achieve the benefits of larger cache sizes with lower area and power overheads. Figure

‎4-10(a) and Figure ‎4-10(b) plot the LLC effective capacity and the LLC miss rate of different

techniques normalized to Baseline. I calculate the effective cache capacity by periodically

counting valid LLC cache blocks. I measure the LLC miss rate as the total number of misses per

thousand executed instructions (MPKI). Figure ‎4-10(b) also plots the average LLC miss rate

reduction predicted using the well-known power law for miss rate ‎[73] in dashed lines. This

model predicts the cache miss rate will be inversely proportional to the increased capacity with

an‎scaling‎factor‎ typically‎ set‎ to‎0.5‎(i.e.,‎“square‎root”‎power‎ law),‎0.3,‎or‎0.7‎(the‎higher the

scaling factor, the lower the predicted miss rate). The average improvement I found for our

workloads is less than what these models predict. I hypothesis this is because our workloads

represent a wide range of cache sensitivities and I am not picking only highly cache sensitive

ones.

DCC can significantly improve the LLC effective capacity and the LLC miss rate for many

applications by fitting more compressed blocks. On average, DCC provides 2.2x (i.e., 17.6MB)

higher effective capacity and 18% lower LLC miss rate compared to Baseline. DCC benefits

differ‎ per‎ workload,‎ depending‎ on‎ the‎ workload’s‎ sensitivity‎ to‎ cache‎ capacity,‎ compression‎

ratio, and spatial locality. It achieves highest benefits for cache sensitive workloads with good

compressibility and spatial locality (e.g., apache and omnetpp-lbm/m8). Workloads with low

spatial locality (e.g., canneal) or low compression ratio (e.g., wupwise) observe lower

improvements. Cache insensitive workloads (e.g., blackscholes) also do not benefit from

compression.

63

Co-DCC further improves compression effectiveness by reducing internal fragmentation

within data sets. Co-DCC achieves, on average, 2.6x higher effective capacity (i.e., 20.8MB) and

24% lower miss rate than Baseline. By fitting more compressed blocks in the cache, compared to

DCC, Co-DCC can further reduce the LLC miss rate for almost half of our workloads, including

commercial workloads (e.g., 18% lower miss rate for jbb), canneal, and some of our Spec2006

mixes (e.g., 19% lower miss rate for libquantum-bzip2/m2). By co-compacting super-blocks,

Co-DCC gets some of the benefits of the idealized BytePack with much lower hardware

overheads, as discussed in Section ‎4.6.

Compared to FixedC and VSC-2X, (Co-)DCC provides higher LLC effective capacity and

lower miss rate. Both FixedC and VSC-2X can at most double effective cache capacity

compared to Baseline (i.e., 16MB). FixedC achieves on average 1.5x higher effective capacity

and 8% lower miss rate than Baseline. VSC-2X provides slightly higher benefits (1.7x effective

capacity, and 10% lower miss rate). Increasing VSC tag space can improve its benefits. For

example, VSC-4X has similar miss rate reduction as DCC, but with 2.6x higher area overhead.

Compared to 2X Baseline, (Co-)DCC effectively more than doubles cache capacity with

lower overheads. DCC achieves higher LLC effective capacity than 2X-Baseline for majority of

our workloads. It provides lower LLC miss rate reduction than 2X-Baseline (within 27%) for

apache, jbb, oltp and gcc, which have lower compression ratio and spatial locality compared to

other workloads. For these workloads, Co-DCC provides similar or better LLC miss rate

reduction than 2X-Baseline by reducing internal fragmentation.

64

4.6.3 Overall Performance and Energy

Result 4: DCC and Co-DCC improve the LLC efficiency and boost system performance

by 10% (up to 29%) and 14% (up to 38%) on average, respectively.

Result 5: DCC and Co-DCC save on average 8% (up to 24%) and 12% (up to 39%) of

system energy, respectively, due to shorter runtime and fewer accesses to the main memory.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o

rm
 S

ys
te

m
 E

n
e

rg
y

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o

rm
 M

e
m

o
ry

 D
yn

am
ic

 E
n

e
rg

y

0

1

2

3

4

5

6
N

o
rm

 L
LC

 D
yn

am
ic

 E
n

e
rg

y

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o

rm
 R

u
n

ti
m

e

(a) Normalized runtime (b) Normalized total system energy

(c) Normalized main memory dynamic energy (d) Normalized LLC dynamic energy

Figure ‎4-11: performance and energy normalized to Baseline.

apache jbb oltp zeus ammp applu equake

mgrid wupwise black canneal freqmine m2 m3

m4 m5 m6 m7 m8 GEOMEAN

65

Result 6: DCC and Co-DCC achieve respectively 2.5x and 3.5x higher performance

improvements, and 2.2x and 3.3x higher system energy improvements compared to FixedC and

VSC-2X.

Result 7: (Co-)DCC also improves the LLC dynamic energy by about 50% on average due

to accessing fewer bytes. On the other hand, VSC-2X hurts the LLC dynamic energy for

majority of our workloads due to its need for energy-expensive re-compactions.

By improving the LLC utilization and reducing accesses to the main memory (i.e., the

lower LLC miss rate), (Co-)DCC significantly improves system performance over Baseline.

Figure ‎4-11(a) plots runtime of different techniques normalized to Baseline. DCC and Co-DCC

improve performance by 10% (up to 29% for omnetpp-lbm/m8) and 14% (up to 38% for

libquantum-bzip2/m3) on average, respectively. For cache sensitive applications with medium-

to-high compressibility and medium-to-high spatial locality (e.g., apache and zeus), (Co-)DCC

achieves significant performance improvements by fitting more blocks in the cache. They

provide lower improvements for applications with low spatial locality and low compression ratio

(e.g., canneal and gcc). On the other hand, compressed caches, including (Co-)DCC, can hurt

performance of workloads sensitive to the LLC access latency (e.g., freqmine) due to the

decompression latency. (Co-)DCC hurts performance by less than 3% (for freqmine). Cache

insensitive workloads also do not benefit from compressed caches. An adaptive technique can be

employed to further reduce these overheads ‎[20], which is orthogonal to our proposals.

(Co-)DCC significantly outperforms FixedC, VSC-2X and 2X-Baseline by effectively

more than doubling the cache capacity. FixedC and VSC-2X limit compression effectiveness in

66

improving system performance, achieving on average 4% and 5% performance improvements,

respectively. (Co-)DCC outperforms 2X-Basline for majority of our workloads. 2X-Baseline

performs better than DCC for six of our workloads (within 11% for canneal). These workloads

have lower spatial locality (e.g. canneal), lower compression ratio (e.g., jbb), or higher sensitivity

to cache latency (e.g., freqmine) than the rest of our workloads. Co-DCC improves performance

for more workloads, providing slightly lower performance than 2X-Baseline only for three

workloads (within 3% for freqmine).

(Co-)DCC improves system energy both due to shorter runtime and fewer accesses to the

main memory. Figure ‎4-11(b) shows the total system energy of different techniques. DCC and

Co-DCC reduce the total system energy by 8% (up to 24% for omnetpp-lbm/m8) and 12% (up to

39% for libquantum-bzip/m2) on average, respectively. Figure ‎4-11(c) plots the main memory

dynamic energy for these techniques. (Co-)DCC significantly reduces the main memory dynamic

energy by reducing the number of cache misses. Compared to FixedC and VSC-2X, (Co-)DCC

achieves higher energy savings. Although VSC-2X provides slightly higher performance and

lower main memory dynamic energy consumption than FixedC, its system energy saving is less

due to its high overheads on the LLC dynamic energy. Figure ‎4-11(d) shows the dynamic energy

of different compressed caches normalized to Baseline. FixedC, DCC and Co-DCC improve the

LLC dynamic energy by 27%, 52% and 46% on average over Baseline, respectively. On the

other hand, VSC-2X significantly increases the LLC dynamic energy (about 3x) by increasing

the number of cache accesses.

I also measured the sensitivity of (Co-)DCC to different design parameters including the

decompression latency and the LLC access latency. Our simulations (not shown here) show that

67

reducing decompression latency (for the same C-PACK+Z algorithm) from 9 cycles to 3 cycles

only slightly increases (Co-)DCC performance. It achieves on average 1% and up to 3% higher

performance than the results shown in Figure ‎4-11(a). I also studied the sensitivity of (Co-)DCC

to the LLC cache access latency. Our simulation results (not shown here) show that even

reducing the LLC access latency to 20 cycles (33% faster LLC) does not significantly impact

(Co-)DCC results.

4.7 Conclusions

In this work, I propose Decoupled Compressed Cache, which exploits spatial locality to

improve both the performance and energy-efficiency of cache compression. DCC manages the

cache at three granularities, tracking super-blocks while dynamically compressing and allocating

single blocks as variable number of sub-blocks. It addresses the issues with conventional

compressed caches, and achieves significantly higher LLC effective cache capacity while

incurring low area overheads. It also decouples sub-blocks from the address tag to eliminate

energy-expensive re-compaction‎ when‎ a‎ block’s‎ size‎ changes.‎ A‎ further‎ optimized‎ design‎

(Co-DCC) reduces internal fragmentation in the cache by co-compacting super-blocks. I show

that on average, DCC and Co-DCC reduce system energy by 8% and 12%, respectively, and

improve performance by 10% and 14%, respectively, compared to the same size conventional

cache. (Co-)DCC nearly doubles compression benefits compared to previous proposals with

comparable overheads.

68

Chapter 5

Skewed Compressed Caches

5.1 Overview

A compressed cache design must balance three frequently-conflicting goals: i) tightly

compacting variable-size compressed blocks to reduce internal fragmentation, ii) keeping tag

overheads low, and iii) allowing fast lookups by eliminating the need for extra metadata to locate

compressed blocks. Previous compressed cache designs, including our proposal DCC, achieved

at most two of these three goals. As we showed in Table ‎3-1, the earliest compressed caches do

not support variable compressed block sizes ‎[39]‎[47]‎[48]‎[45], allowing fast lookups with

relatively low area overheads, but achieve lower compression effectiveness due to internal

fragmentation. More recent designs ‎[20]‎[46]‎[50] improve compression effectiveness using

variable-size compressed blocks, but at the cost of extra metadata and indirection latency to

locate a compressed block. For example, DCC requires per-block back pointers to locate a block.

DCC also complicates cache management, specifically replacements, due to managing blocks

and super-blocks separately on evictions.

In this chapter, we propose Skewed Compressed Cache (SCC), which achieves all three

goals. SCC exploits the fact that most workloads exhibit both (1) spatial locality (i.e.,

neighboring blocks tend to reside in the cache at the same time), and (2) compression locality

69

(i.e., neighboring blocks tend to compress similarly) ‎[61]. Like DCC, SCC exploits spatial

locality by tracking super-blocks, e.g., an aligned, adjacent group of blocks (e.g., eight 64-byte

blocks). Using super-blocks allows SCC to track up to eight times as many compressed blocks

with little additional metadata. Unlike DCC, SCC also exploits compression locality by

compacting neighboring blocks with similar compression ratio into the same physical data entry,

tracking them with one tag.

SCC does this using a novel sparse super-block tag, which tracks anywhere from one

block to all blocks in a super-block, depending upon their compressibility. SCC compacts

neighboring blocks to the same data block and tracks them with one tag, if they are similarly

compressible. For example, a single sparse super-block tag can track: all eight blocks in a super-

block, if each block is compressible to 8 bytes; four adjacent blocks, if each is compressible to

16 bytes; two adjacent blocks, if each is compressible to 32 bytes; and only one block, if it is not

compressible. By allowing variable compressed block sizes—8, 16, 32, and (uncompressed) 64

bytes—SCC is able to tightly compact blocks and achieve high compression effectiveness.

Using sparse super-block tags allows SCC to retain a direct, one-to-one tag-data mapping,

but also means that more than one tag may be needed to map blocks from the same super-block.

SCC minimizes conflicts between blocks using two forms of skewing. First, it maps blocks to

different cache ways based on their compressibility, using different index hash functions for each

cache way ‎[93]. To spread all the different compressed sizes across all the cache ways, the hash

function used to index a given way is a function of the block address. Second, SCC skews

compressed blocks across sets within a cache way to decrease conflicts ‎[94]‎[95] and increase

effective cache capacity.

70

Compared to DCC, SCC eliminates the extra metadata needed to locate a block (i.e., the

back pointers),‎ reducing‎ tag‎ and‎metadata‎ overhead.‎ SCC’s‎ direct‎ tag-data mapping allows a

simpler data access path with no extra latency for a tag-data indirection. SCC also simplifies

cache replacement. On a conflict, SCC always replaces one sparse super-block tag and all of the

one to eight adjacent blocks packed into the corresponding data entry. This is much simpler than

DCC, which may need to replace blocks that correspond to multiple super-blocks as DCC tracks

all blocks of a super-block with only one tag.

Compared to conventional uncompressed caches, SCC improves cache miss rate by

increasing effective capacity and reducing conflicts. In our experiments, SCC improves system

performance and energy by on average 8% and 6% respectively, and up to 22% and 20%

respectively. Compared to DCC, SCC achieves comparable or better performance, with a factor

of four lower area overhead, a simpler data access path, and a simpler replacement policy.

This chapter is organized as follows. We discuss background on skewed associative

caching in Section 2. Then, Section 3 presents our proposal: the Skewed Compressed Cache.

Section 4 explains our simulation infrastructure and workloads. In Section 5, we discuss the

overheads of compressed caches. We present our evaluations in Section 6. Finally, Section 7

concludes the chapter.

5.2 Skewed Associative Caching

SCC builds on ideas first introduced for skewed-associative caches. In a conventional

N-way set-associative cache, each way is indexed using the same index hash function. Thus

71

conflict misses arise when more than N cache blocks compete for space in a given set. Increasing

associativity reduces conflict misses, but typically causes an increase in cache access latency and

energy cost. Skewed associative caches ‎[94]‎[95] index each way with a different hash function,

spreading out accesses and reducing conflict misses.

Figure ‎5-1 (a) shows a simple 2-way associative cache, which indexes all cache ways with

the same function. In this example, blocks A, B, and C all map to the same set. Thus, only two of

these blocks can stay in the cache at any time. Figure ‎5-1 (b) illustrates a skewed associative

cache, which indexes each cache way with a different hash function. In this example, even

though blocks A, B, and C map to the same set using function f1, they map to different sets using

function f2 in the second cache way. In this way, all three of these blocks can reside in the cache

at the same time. By distributing blocks across the sets, skewed associative caches typically

exhibit miss ratios comparable to a conventional set-associative cache with twice the ways

‎‎[94]‎[95].

Skewed associativity has also been used to support multiple page sizes in the same TLB

‎[94]‎[115], at the cost of reduced associativity for each page size. Using different, page-size

specific hash functions for each way, such a TLB can look for different size page table entries in

(a) (b)

Figure ‎5-1: (a) two-way set associative cache (b) skewed associative cache.

f

A, B, C

f(A)=f(B) =f(C)

Tag DataTag Data

A, B, C

Tag DataTag Data

f1 f2

f1(A)

f1(B)

f1(C)

f2(A)

f2(B)

f2(C)

72

parallel. In this work, we use a similar skewing technique but use compressed size, rather than

page size, to select the appropriate way and hash-function combinations.

5.3 Skewed Compressed Cache

 Previously proposed compressed caches either do not support variable-size compressed

blocks ‎[39]‎[47]‎[48]‎[45] or need extra metadata to find a compressed block, increasing overhead

and complexity ‎[20]‎[46]‎[50]. SCC stores neighboring compressed blocks in a power-of-two

number of sub-blocks (e.g., 1, 2, 4, or 8 8-byte sub-blocks), using sparse super-block tags and a

skewed associative mapping that preserves a one-to-one direct mapping between tags and data.

SCC builds on the observation that most workloads exhibit (1) spatial locality, i.e.,

neighboring blocks tend to simultaneously reside in the cache, and (2) compression locality, i.e.,

neighboring blocks often have similar compressibility ‎[61]. SCC exploits both types of locality

to compact neighboring blocks with similar compressibility in one physical data entry (i.e., 64

bytes) if possible. Otherwise, it stores neighbors separately.

SCC differs from a conventional cache by storing a sparse super-block tag per data entry.

Like a conventional super-block‎(aka‎sector)‎cache,‎SCC’s‎tags‎provide‎additional‎metadata‎that‎

can track the state of a group of neighboring blocks (e.g., up to eight aligned, adjacent blocks).

However,‎SCC’s‎tags‎are sparse because—based on the compressibility of the blocks—they may

map only 1 (uncompressed), 2, or 4 compressed blocks. This allows SCC to maintain a

conventional one-to-one relationship between a tag and its corresponding data entry (e.g., 64

bytes).

73

SCC only maps neighboring blocks with similar compressibility to the same data entry.

For example, if two aligned, adjacent blocks are each compressible to half their original size,

SCC‎will‎allocate‎them‎in‎one‎data‎entry.‎This‎allows‎a‎block’s‎offset‎within a data entry to be

directly determined using the appropriate address bits. This eliminates the need for additional

metadata (e.g., back pointers in DCC ‎[21]) to locate a block.

SCC’s‎ cache‎ lookup‎ function‎ is‎ made‎ more‎ complicated‎ because‎ the‎ amount‎ of‎ data‎

mapped by a sparse super-block‎tag‎depends‎upon‎the‎blocks’‎compressibility.‎SCC‎handles‎this‎

by‎using‎a‎block’s‎compressibility‎and‎a‎few‎address‎bits to determine in which cache way(s) to

place the block. For example, for a given super-block, uncompressed blocks might map to cache

way #0, blocks compressed to half size might map to cache way #2, etc. Using address bits in the

placement decision allows different super-blocks to map blocks with different compressibility to

different cache ways. This is important, as it permits the entire cache to be utilized even if all

blocks compress to the same size.

To prevent conflicts between blocks in the same super-block, SCC uses different hash

functions to access ways holding different size compressed blocks. On a cache lookup, the same

address bits determine which hash function should be used for each cache way. Like all skewed

associative caches, SCC tends to have fewer conflicts than a conventional set-associative cache

with the same number of ways.

5.3.1 SCC Functionality

Figure ‎5-2 illustrates SCC functionality using some examples. This figure shows a 16-way

cache with 8 cache sets. The 16 cache ways are divided into four way groups, each including

74

four cache ways. For the sake of clarity, Figure ‎5-2 only illustrates super-blocks that are stored in

the first way of each way group. This example assumes 64-byte cache blocks, 8-block super-

blocks, and 8-byte sub-blocks, but other configurations are possible. A 64-byte cache block can

compress to any power-of-two number of 8-byte sub-blocks (i.e., 1, 2, 4, or 8 sub-blocks). Eight

aligned neighbors form an 8-block super-block. For example, blocks I—P belongs to SB2.

SCC associates one sparse super-block tag with each data entry in the data array. Each tag

can map (1) a single uncompressed cache block, (2) two adjacent compressed blocks, each

compressed to 32 bytes, (3) four adjacent compressed blocks, each compressed to 16 bytes, or

(4) eight adjacent compressed blocks, each compressed to 8 bytes. A tag keeps appropriate per-

block metadata (e.g., valid and coherence) bits, so it may not be fully populated. If all eight

neighbors exist and are compressible to one 8-byte sub-block each, SCC will compact them in

one data entry, tracking them with one tag. For example, all blocks of SB2 are compacted in one

data entry in set #7 of way #1. SCC tracks them with the corresponding tag entry with the states

of all blocks set as valid (V in Figure ‎5-2). If all cache blocks were similarly compressible, SCC

would be able to fit eight times more blocks in the cache compared to a conventional

uncompressed cache. On the other hand, in the worst-case scenario when there is no spatial

locality (i.e., only one out of eight neighbors exists in the cache) or blocks are not compressible,

SCC can still utilize all cache space by allocating each block separately. For example, there are

only blocks Y and Z from SB4 present in the cache, and neither are compressible. Thus, SCC

stores them separately in two different sets in the same way group, tracking them separately with

their corresponding tags.

75

SCC‎uses‎a‎block’s‎compressibility‎or‎compression‎factor‎(CF)‎and‎a‎few‎address‎bits‎ to‎

determine in which way group to‎place‎ the‎block.‎A‎block’s‎ compression‎ factor‎ is‎ zero‎ if‎ the‎

block is not compressible, one if compressible to 32 bytes, two if compressible to 16 bytes, and

three if compressible to 8 bytes. For instance, in Figure ‎5-2, block A maps to a different set in

each cache way depending on its compressibility, shown in hatched (red) entries. SCC allocates

A in way group #0, #1, #2, or #3 if A is compressible to 32 bytes (4 sub-blocks), 64 bytes (8 sub-

blocks), 8 bytes (1 sub-block), or 16 bytes (2 sub-blocks), respectively. These mappings would

change for a different address, so that each cache way would have a mix of blocks with different

compression ratios. For instance, SCC allocates block A and block I in cache way #1, if A is

uncompressible and I is compressed to 8 bytes (1 sub-block). Using this mapping technique, for

a given block, its location determines its compression ratio. This eliminates the need for extra

metadata to record block compressibility.

Figure ‎5-2: Skewed Compressed Cache.

h3 h0 h1A A AA h2 W

Tag Data

SB1: A_ _ _ _ _ _ _; SB2: IJKLMNOP; SB3: QRSTUVWX; SB4: YZ_ _ _ _ _ _

Y

S T

Z

Tag Data

I JKLMNOP

Tag Data Tag

R UV X

Data

0

1

2

4

5

7

3

6

Way 3 Way 2 Way 1 Way 0

Q

SB3 Tag I I I I I I IV SB3 Tag I V I I VV VI

SB2 Tag VVVVVV VV

SB3 Tag V I I I I I II

76

Although SCC separately compresses blocks, it maps and packs neighbors with similar

compressibility into one physical data entry. For example, SCC compacts blocks I to P (SB2)

into a single physical data entry (set #7 of way #1) as each block is compressed to 8 bytes.

However, when neighboring blocks have different compressibility, SCC packs them separately

into different physical data entries. For instance, blocks of SB3 (blocks Q to X) have three

different compression ratios. SCC allocates blocks R, U, V, and X, which are compressible to

one sub-block each, in one physical data entry (set #3 of way #0). It tracks them with the

corresponding tag entry (also shown in Figure ‎5-2) with valid states for these blocks. It stores

adjacent blocks S and T in a different physical entry since each one is compressed to four sub-

blocks. It also stores block Q in way #2 as it is compressible to 32B. Finally, it allocates block W

separately as it is not compressible, tracking it with a separate sparse super-block tag shown in

Figure ‎5-2.

Within a physical data entry, a block offset directly corresponds to the block position in its

encompassing super-block. In Figure ‎5-2, for example block X is the first block of SB3, similarly

its position in the physical data entry in cache way #0 is fixed in the first sub-block. In this way,

unlike previous work, SCC does not require any extra metadata (e.g., back pointers ‎[21]‎ or

forward pointers ‎[50]) to locate a block in the data array. By eliminating the need for extra

pointers, SCC simplifies data paths, provides fast lookups, lowers area overhead and design

complexity, while still allowing variable compressed sizes.

While eliminating extra metadata‎simplifies‎SCC’s‎design,‎it‎has‎the‎potential‎to‎hurt‎cache‎

performance by increasing conflict misses and lowering effective cache associativity. A

conventional 16-way set-associative cache can allocate a block in any cache way, but SCC

77

restricts a block to a 4-way‎way‎group‎based‎on‎ the‎block’s‎compression‎ factor.‎For‎example,‎

when storing block A with compressed size of 16B, SCC can store it only in one of the four

cache ways (including way #3) grouped together in Figure ‎5-2. To mitigate the effect of this

restriction, SCC employs skewing inside way groups, indexing each cache way with a different

hash function to spread out accesses. This helps to reduce conflict misses and increases effective

associativity.

5.3.2 SCC Structure

Structurally, SCC shares many common elements with previously proposed compressed

caches ‎[21] and the multi-page size skewed-associative TLB ‎[94]. Figure ‎5-3 (a) shows one set

of SCC tag array and its corresponding data set for a 4-way associative cache. Similar to a

regular cache, SCC keeps the same number of tags as physical data entries in a cache set (e.g., 4

tags and 4 data entries per set in Figure ‎5-3). However, unlike a regular cache, which tracks

exactly one single block per tag entry, SCC tag entries track a super-block containing 8 adjacent

blocks. Figure ‎5-3 illustrates that each tag entry includes the super-block tag address and per-

block coherency/valid states (e.g., eight states for 8-block super-blocks). Figure ‎5-2 also shows

some examples of tag entries for block W in set #4 of way #3, blocks I—P in set #7 of way #1,

(a) (b)

Figure ‎5-3: (a) One set of SCC (b) Address.

Super-Block Tag

B
y
teSet Index

B
lo

ck
 I

D

06947

Tags Data

Super-Block Tag S
ta

te
 7

S
ta

te
 6

S
ta

te
 0

…
3b3b3b

78

and blocks R,U,V,X in set #3 of way #0. The data array is largely similar to a conventional cache

data array, except it is organized at sub-blocks (e.g., 8 bytes).

W1W0 = A10A9 ^ CF1CF0 (1)

Unlike a regular cache that can allocate a block in any cache way, SCC takes into account

block compressibility. Equation (1) shows the way selection logic that SCC uses when allocating

a cache block. It uses the block compression factor (CF1CF0) and two address bits (A10A9) to

select the appropriate way group (W1W0). The block compression factor (CF1CF0) is zero if the

block is not compressible, one if compressible to 32 bytes, two if compressible to 16 bytes, and

three if compressible to 8 bytes. SCC maps neighboring blocks with similar compressibility to

the same data entry. Thus, the way selection logic uses address bits A10A9, which are above the

super-block offset. Note that since SCC uses address bits in way selection, even if all cache

blocks are uncompressible (CF == 0), they will spread out among all cache ways.

SCC uses different set index functions to prevent conflicts between blocks in the same

super-block. Just using bit selection, e.g., the consecutive bits beginning with A11, would result

in all blocks in the same super-block mapping to the same set in a way group, resulting in

unnecessary conflicts. For example, if none of the blocks were compressible, then all eight

Set Index = h0({A47 —A11, A8A7A6}) if CF==0 (2)

 h1({A47 —A11, A8A7}) if CF==1

 h2({A47 —A11, A8}) if CF==2

 h3(A47 —A11) if CF==3

79

uncompressed blocks would compete for the four entries in the selected way group (in Figure

‎5-2). To prevent this, SCC uses the index hash functions shown in (2), which draw address bits

from the Block ID for the less compressible blocks. These functions map neighboring blocks to

the same set only if they can share a data entry (based on their compression factor). SCC also

uses different hash functions ‎[95] for different ways in the same way group, to further reduce the

possibility of conflicts.

Within a 64-byte data entry, a compressed blocks location depends only on its compression

factor and address, eliminating the need for extra metadata. Equation 3 shows the function to

compute the byte offset for a compressed block within a data entry.

5.3.3 SCC Cache Operations

Figure ‎5-4 illustrates how SCC operates for the main cache operations. On a cache lookup,

since‎ the‎ accessing‎ block’s‎ compressibility‎ is‎ not‎ known,‎ SCC‎ must‎ check‎ the‎ block’s‎

corresponding positions in all cache ways. To determine which index hash function to use for

each way, SCC uses (4), the inverse of (1).

CF1CF0 = A10A9 ^ W1W0 (4)

Byte Offset = none if CF==0 (3)

 A6 << 5 if CF==1

 A7A6 << 4 if CF==2

 A8A7A6 << 3 if CF==3

80

For example, in Figure ‎5-2, when accessing block A, the tag entries in set #1 of way #3, set

#5 of way #2, set #2 of way #1, and set #6 of way #0 (i.e., all hatched red tag entries) are

checked for a possible match. A cache hit occurs if its encompassing super-block is present (i.e.,

a sparse super-block tag match), and the block state is valid. On a read hit, SCC uses the

compression factor and appropriate address bits (using (3)) to determine which of the

corresponding sub-blocks should be read from the data array.

On a write hit (e.g., a write-back to an inclusive last-level‎ cache),‎ the‎ block’s‎

compressibility might change. If the block can still fit in the same place as before (i.e., its new

size is less than or equal to the old one), SCC will update the block in place. Otherwise, SCC

invalidates the current version of the block first by setting its corresponding state to invalid. Note

that neighboring blocks that share the data entry are not affected. SCC then allocates a new entry

as described below for a cache miss. Fortunately, this case does not arise very frequently;

simulation results show that on average 97% of updated blocks fit in their previously allocated

space.

SCC handles cache misses and write hits that do not fit in their previous space the same

way.‎ SCC‎ first‎ uses‎ the‎ block’s‎ (new)‎ compression‎ factor‎ and‎ address‎ to‎ search‎ whether‎ an‎

existing sparse super-block of the right size has already been allocated for a neighboring block.

For example, consider a write to block R in Figure ‎5-2 that changes the compression factor from

3 (8 bytes) to 1 (32 bytes). SCC would invalidate the old copy of R in set #7 of way #0 and write

the new data in set #3 in way #2.

81

Detecting a sparse super-block hit is more complex than a normal tag match for two

reasons. First, the size of the sparse super-block—and hence the number of tag bits that must be

checked—depends upon the compression factor. For example, to detect that block R can be

reallocated to the sparse super-block in set #3 of way #2, SCC must make sure that not only the

super-block tag bits match, but that bits A8 and A7 also match, since the compression factor is 1

(32 bytes). Second, since SCC does not store bits A8A7A6 in the tag entry, it must infer them

from the coherence states. For example, SCC can infer that both A8 and A7 are one in set #3 of

way #2 by testing if either State7 or State6 are valid (in this example State7 is valid because

block Q is valid).

If no matching sparse super-block tag with the right compression factor exists, SCC needs

to select and evict a victim to make room. SCC selects the least-recently-used super-block tag

within the way group (e.g., one of 4 ways in Figure ‎5-2). It then evicts all blocks that map to that

Figure ‎5-4: SCC Operations.

Lookup

Read and decompress corresponding sub-blocks

Allocate

Compress & check corresponding ways

Replace victim super-block

Set block state

yes

no

Tag Match?

Check all cache ways

Valid Block?

Read

yes

Write
Fit?

Write the compressed block into corresponding sub-blocks

no

yes

no

Tag Match?
no

yes

82

tag’s‎corresponding‎data‎entry.‎For‎example,‎if‎SCC‎needs‎to‎allocate‎a‎new‎block‎in‎set‎#0‎of‎

way #2, it would free that data entry by evicting blocks S and T (i.e., both cache lines in that data

entry). Note that the rest of blocks from SB3 will stay in the cache in set #4 of way #3 (block

W) and set #3 of way #0 (blocks R,U,V,X). For victim blocks, SCC can determine their

compression factor based on the cache way and tag address using (4). After evicting the victim

blocks, SCC updates the sparse super-block tag and inserts the new compressed block into the

appropriate sub-blocks of the data entry.

SCC’s‎ replacement‎ mechanism‎ is‎ much‎ simpler‎ than‎ that‎ needed‎ by‎ DCC.‎ In‎ DCC,‎

allocating space for a block can trigger the eviction of several blocks, sometimes belonging to

different super-blocks. In case of a super-block miss, all blocks associated with the victim super-

block tag must be evicted, unlike SCC that evicts only blocks belonging to a particular data

entry. In addition, in DCC, blocks belonging to other super-blocks may need to be evicted too.

Thus, determining which block or super-block is best to replace in DCC is very complex.

SCC also never needs to evict a block on a super-block hit, while DCC may. SCC will

allocate the missing block in its corresponding data entry, which is guaranteed to have enough

space since the compression factor is used as part of the search criteria. In DCC, a super-block

hit does not guarantee that there is any free space in the data array.

83

5.4 Methodology

Our target machine is an 8-core multicore system (Table ‎5-1) with OOO cores, per-core

private L1 and L2 caches, and one shared last level cache (L3) ‎[74]. We implement SCC and

other compressed caches at the L3. We evaluate SCC using full-system cycle-accurate GEMS

simulator ‎[81]. We use CACTI 6.5 ‎‎[87] to model area and power at 32nm. We report total energy

of cores, caches, on-chip network, and main memory.

We simulate different applications from SPEC OMP ‎‎[92], PARSEC ‎[91], commercial

workloads ‎[89], and SPEC CPU 2006. Table ‎5-2 shows the list of our applications. We run

mixes of multi-programmed workloads from memory-bound and compute-bound SPEC CPU

2006 benchmarks. For example, for astar-bwaves, we run four copies of each benchmark. In

Table ‎5-2, we show our applications in increasing LLC MPKI (Misses per Kilo executed

Instructions) order for the Baseline configuration. We classify these workloads into: low

memory intensive (L), medium memory intensive (M), and high memory intensive (H) if their

LLC MPKI is lower than one, between one and five, and over five respectively. We run each

workload for approximately 500M instructions with warmed up caches. To address workload

Processors 8, 3.2 GHz, 4-wide issue, out-of-order

L1 Caches 32 KB 8-way split, 2 cycles

L2 Caches 256 KB 8-way, 10 cycles

L3 Cache 8 MB 16-way, 8 banks, 27 cycles

Memory
4GB, 16 Banks, 800 MHz DDR3.

Table ‎5-1: Simulation Parameters.

84

variability, we simulate each workload for a fixed number of work units (e.g., transactions) and

report the average over multiple runs ‎‎[90].

We study the following configurations at LLC:

 Baseline is a conventional 16-way 8MB LLC.

 2X Baseline is a conventional 32-way 16MB LLC.

 FixedC doubles the number of tags (i.e., 32 tags per set) compared to Baseline. Each

cache block is compressed to half if compressible, otherwise stored as uncompressed.

 VSC doubles the number of tags compared to Baseline. A block is compressed and

compacted into 0-4 contiguous 16-byte sub-blocks.

 DCC_4_16 has same number of tags per set (i.e., 16 tags per set) as the Baseline, but

each tracks up to 4 neighboring blocks (4-block super-blocks). In DCC, one tag tracks all

Table ‎5-2: Applications.

 Application LLC MPKI

Low Mem Intensive ammp

blackscholes

canneal

freqmine

0.01

0.13

0.51

0.65

Medium Mem Intensive bzip2 (mix1)

equake

oltp

jbb

wupwise

1.7

2.2

2.3

2.7

4.3

High Mem Intensive gcc-omnetpp-mcf-bwaves-lbm-milc-cactus-bzip (mix7)

libquantum-bzip2 (mix2)

astar-bwaves (mix5)

zeus

gcc-166 (mix4)

apache

omnetpp-4-lbm-4(mix8)

cactus-mcf-milc-bwaves (mix6)

applu

libquantum(mix3)

8.4

9.3

9.3

9.3

10.1

10.6

11.2

13.4

25.9

43.9

85

blocks belonging to a super-block. A block is compressed to 0-4 16-byte sub-blocks,

compacted in order but not necessarily in contiguous space in a set. This is the main

configuration we used in evaluating DCC in Chapter 4.

 DCC_8_8 is similar to DCC_4_16, but it tracks up to 8 neighboring blocks (8-block

super-blocks). A block is compressed to 0-8 8-byte sub-blocks.

 SCC_8_8 has same number of tags per set (i.e., 16 tags per set) as the Baseline, but each

tracks up to 8 neighboring blocks (8-block super-blocks). Unlike DCC, SCC might use

multiple sparse super-block tags to track blocks of a super-block in case all cannot fit in

one data entry. A block is compressed to 1-8 8-byte sub-blocks. A given block can be

mapped to a group of four cache ways (out of 16 ways) based on block address and

compressibility.

 SCC_4_16 is similar to SCC_8_8, but it tracks 4-block super-blocks. A block is

compressed to 1-4 16-byte sub-blocks. For a given address, we divide the cache into three

way groups containing 4 ways, 4 ways, and 8 ways, respectively. We map a block to

these groups if the block is uncompressed, compressed to 32-bytes, or compressed to 16-

bytes, respectively.

 Skewed Base models a 4-way skewed associative cache with conventional tags (no

super-blocks) and no compression.

5.5 Design Complexities

Compressed caches effectively increase cache capacity at the cost of more metadata. Table

‎5-3 shows the area breakdown of different compressed caches compared to Baseline. We assume

86

a 48-bit physical address space. These compressed caches differ in the way they provide needed

tags to track compressed blocks, and their tag-data mapping. In Table ‎5-3, we separate their area

overhead caused by more tags (including tag addresses and LRU information), extra metadata for

coherence information, and extra metadata for compression (including any compression flag,

compressed block size, etc.).

The earlier FixedC and VSC designs double the number of tags, which increases the LLC

area by about 6%. FixedC requires no additional metadata for tag-data mapping, since it retains a

one-to-one tag-data relationship. It only stores a 1-bit flag per block to represent if a block is

compressed or not. VSC allows variable-size compressed blocks, requiring three bits of

additional metadata per block to store its compressed size. VSC uses this modest additional

metadata to determine the location of a compressed block.

DCC uses the same number of tags as Baseline, but each tag tracks a 4- or 8-block super-

block. The tags use fewer bits for the matching address, thus compared to a regular cache tags

are smaller. On the other hand, DCC needs additional coherence state for each block.

DCC_4_16, with 4-block super-blocks, increases LLC area by 1.7% due to more coherence

Table ‎5-3: Compressed Caches Area Overhead relative to Baseline.

 Tags Coherence Metadata Compression Metadata Total LLC Overhead

FixedC 5.3% 0.6% 0.3% 6.2%

VSC 5.3% 0.6% 1.1% 7.0%

DCC 4_16 -0.1% 1.7% 5.2% 6.8%

DCC 8_8 -0.3% 3.8% 11.8% 15.3%

SCC 4_16 -0.2% 1.7% 0 1.5%

SCC 8_8 -0.4% 3.9% 0 3.5%

87

states. By doubling the super-block size, DCC_8_8 can track twice as many blocks but increases

the additional area overhead to 3.8%. DCC decouples tag-data mapping, requiring extra metadata

to hold the back pointers‎ that‎ identify‎ a‎ block’s‎ location. DCC keeps one back pointer entry

(BPE) per sub-block in a set. In DCC_4_16, back pointer entries incur 5.2% area overhead.

Smaller sub-block sizes can reduce internal fragmentation, and so improve cache utilization, but

at the cost of more BPEs. DCC_8_8 uses 8-block sub-blocks, has 16*8 BPEs per set, resulting in

11.8% extra area overhead for the metadata.

SCC also tracks super-blocks, and thus has tag overhead lower than a conventional cache,

but differs from DCC in two ways. First, SCC only needs (pseudo-)LRU state for the tags, while

DCC maintains additional state for the decoupled sub-blocks. Second, SCC does not require

extra‎metadata‎to‎track‎a‎block’s‎location‎because‎of‎its‎direct‎tag-data mapping. SCC keeps only

the tag address, LRU state and per-block coherence states. SCC_4_16 incurs 1.5% area

overhead, more than a factor of 4 lower overhead than DCC_4_16. Similarly, SCC_8_8 incurs

3.5% area overhead, 78% less area overhead than DCC_8_8.

5.6 Evaluation

5.6.1 Cache Utilization

Figure ‎5-5 shows the effective capacity of the alternative cache designs normalized to

Baseline for our workloads. We calculate the effective capacity of a cache by periodically

counting the number of valid blocks. An ideal compressed cache would have a normalized

effective‎capacity‎ that‎ is‎ the‎same‎as‎ the‎application’s‎compression‎ratio.‎Practical‎compressed‎

88

caches trade off effective capacity for lower overheads and lower complexity. In addition, some

low memory intensive workloads, such as ammp, have small working sets, which fit in a small

cache even though they have highly compressible data.

Figure ‎5-5 also shows that compressed caches can achieve much of the benefit of doubling

the cache size, despite their low area overheads. 2X Baseline, which doubles the area used by the

LLC, can hold on average 1.9 times more blocks (at most 2x and only 1.6x for the low memory

intensive applications). FixedC and VSC provide, on average, 1.5x and 1.6x the normalized

effective capacity, respectively. Like 2X Baseline, they can hold at most twice as many blocks

since they have exactly twice as many (regular) tags.

SCC and DCC can further increase effective capacity because tracking super-blocks allow

a maximum effective capacity equal to the super-block size (e.g., 4x and 8x). SCC_4_16 and

SCC_8_8 provide, on average, normalized effective capacities of 1.7 and 1.8. SCC achieves the

highest effective capacity for memory intensive workloads (on average ~2.3), outperforming 2X

Baseline.

Figure ‎5-5: Normalized LLC effective capacity.

1.0

2.0

3.0

4.0

5.0

N
o

rm
al

iz
e

d
 L

LC
 E

ff
e

ct
iv

e
 C

ap
ac

it
y

2X Baseline FixedC VSC DCC_4_16 SCC_4_16 DCC_8_8 SCC_8_8 IDEAL Compressed Cache

89

DCC achieves a greater normalized effective capacity than SCC because its decoupled tag-

data mapping reduces internal fragmentation and eliminates the need to ever store more than one

tag for the same super-block. In DCC, non-neighboring blocks can share adjacent sub-blocks,

while in SCC only neighboring blocks can share a data entry and only if they are similarly

compressible. In addition, DCC does not store zero blocks in the data array, while SCC must

allocate a block with compression factor of 3 (i.e., 8 bytes). DCC_4_16 and DCC_8_8 achieve,

on average, normalized effective capacities of 2.1 and 2.4, respectively. Of course, this comes at

more than four times the area overhead and higher design complexity compared to SCC.

5.6.2 Cache Miss Rate

Figure ‎5-6 shows the LLC MPKI (Misses per Kilo executed Instructions) for different

cache designs. Doubling cache size (2X Baseline) improves LLC MPKI by 15%, on average, but

at significant area and power costs. Compressed caches, on the other hand, increase effective

capacity and reduce cache miss rate with smaller overheads.

SCC improves LLC miss rate, achieving most of the benefits of 2x Baseline. On average,

Figure ‎5-6: Normalized LLC MPKI.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
o

rm
al

iz
e

d
 L

LC
 M

P
K

I

2X Baseline Skewed Base FixedC VSC DCC_4_16 SCC_4_16 DCC_8_8 SCC_8_8

1.13 1.12

90

SCC provides about 13% lower LLC MPKI than Baseline. It achieves the greatest improvements

for memory‎ intensive‎ workloads‎ (on‎ average‎ %16).‎ SCC’s‎ improvements‎ come‎ from‎ two‎

sources: reduced capacity misses and reduced conflict misses. By increasing effective capacity

using compression, SCC obviously tends to reduce capacity misses. But SCC also reduces

conflict misses as a result of its skewed-associative tag mapping. SCC primarily uses skewing to

map different size compressed blocks to one of four way groups, while preserving a direct, one-

to-one tag-data mapping. SCC further uses skewing to reduce conflicts between blocks within a

4-way way group.

To show the impacts of skewing on miss rate, Skewed Base in Figure ‎5-6 models a 4-way

skewed cache. On average, Skewed Base performs in the same range as the 16-way Baseline

(about 4% lower MPKI). For some workloads, such as Apache and Zeus, skewing reduces

conflict misses significantly by spreading out the accesses. In SCC, this results to even lower

miss rate of these workloads due to compression. On the other hand, for few workloads (mix2,

mix5, and mix8), skewing cannot compensate the negative impacts of lowering the associativity

in Skewed Base. For those workloads, SCC shows lower miss rate improvements, and even 7%

LLC miss rate increase for mix5.

Compared to DCC, SCC provides similar improvements with a factor of 4 lower area

overheads. By tracking super-blocks, both DCC and SCC perform better than FixedC and VSC.

Although DCC_8_8 achieves higher effective capacity than DCC_4_16 and SCC, it performs on

average similar to DCC_4_16. For oltp, DCC_8_8 even increases LLC MPKI by about 13% as

mapping 8 neighbors to the same set can increase conflict misses.

91

For completeness we also analyzed a design that combines skewed associativity with DCC.

Due to the decoupled tag-data mapping of DCC, adding skewing to DCC results in a more

complicated design and replacement policy that we do not consider practical to implement. DCC

stores sub-blocks of a block anywhere in a cache set. When applying skewing, this means the

sub-blocks of a block can be indexed to different sets. Thus, a BPE needs to store set index as

well resulting to high area overheads (~15% area overhead for a configuration similar to

DCC_4_16). In addition, skewing can significantly complicate replacement policy in DCC. A

block allocation can trigger multiple block evictions as a block can be allocated across different

sets. Our results (not shown here) show that adding skewing to DCC improves it marginally.

5.6.3 System Performance and Energy

Figure ‎5-8, Figure ‎5-7, and Figure ‎5-9 show system performance and energy of different

cache designs. Our reported system energy includes both leakage and dynamic energy of cores,

caches, on-chip network, and off-chip main memory.

Figure ‎5-7: Normalized performance of different SCC and DCC configurations.

0.70.80.91.01.1

black
Skewed Base DCC_4_16 SCC_4_16 DCC_8_8 SCC_8_8

0.7

0.8

0.9

1.0

1.1

N
o

rm
al

iz
e

d
 R

u
n

ti
m

e

92

By increasing cache efficiency and reducing accesses to the main memory, compressed

caches can improve system performance and energy, achieving the benefits of larger caches.

SCC improves system performance and energy by up to 22% and 20% respectively, and on

average 8% and 6% respectively. SCC achieves comparable benefits as previous work DCC with

a factor of four lower area overheads.

SCC benefits differ per application. It provides the highest improvements for memory

intensive workloads (on average 11% and maximum of 23% faster runtime for apache). On the

other hand, it has the smallest gains for low memory intensive workloads (on average 4%). For

cache insensitive workloads, such as ammp, blackscholes and libquantum (mix3), SCC does not

impact their performance and energy.

Figure ‎5-7 also shows the performance of Skewed Base, which basically separates skewing

impacts on SCC performance. In Skewed Base, a block can be mapped to a group of 4 ways

based on its address. Each of those ways is hashed differently. For some workloads, such as

apache, Skewed Base improves their performance and energy by spreading out accesses. For

Figure ‎5-8: Normalized performance of different cache designs.

0.70.80.91.01.1

apch
2X Baseline FixedC VSC DCC_4_16 SCC_4_16

0.7

0.8

0.9

1.0

1.1

N
o

rm
al

iz
e

d
 R

u
n

ti
m

e

93

these workloads, although SCC has smaller effective capacity than previous work DCC, SCC

overall miss rate improvement is comparable to DCC and 2X Baseline. On the other hand, for

few workloads (mix1, mix5, and mix8), skewing cannot compensate the effect of lower effective

associativity in Skewed Base. For these workloads, SCC achieves lower performance and energy

improvements. For mix5 (astar-bwave), SCC has about 5% increase in runtime and energy.

5.7 Conclusions

In this chapter, we propose Skewed Compressed Cache, a new low-overhead hardware

compressed cache. SCC compacts compressed blocks in the last-level cache in such a way that it

can find them quickly, and minimize the storage overhead and design complexity. To do so, SCC

uses sparse super-block tags to track more compressed blocks, compact blocks into a variable

number of sub-blocks to reduce internal fragmentation, but retain a direct tag-data mapping to

find blocks quickly and eliminate the extra metadata.

SCC proposes a direct tag-data mapping by exploiting compression locality. It compresses

blocks to variable sizes, and at the same time eliminates the need for extra metadata (e.g., back

Figure ‎5-9: Normalized system energy.

0.7

0.8

0.9

1.0

1.1

N
o

rm
al

iz
e

d
 S

ys
te

m
 E

n
e

rg
y

2X Baseline Skewed Base FixedC VSC DCC_4_16 SCC_4_16 DCC_8_8 SCC_8_8

94

pointers). It dynamically packs neighboring blocks with similar compressibility in the same

space tracking them with one sparse super-block tag. SCC further uses skewing to spread out

blocks for lower conflicts. Like previous work DCC, SCC achieves performance comparable to

that of a conventional cache with twice the capacity and associativity. But SCC does this with

less area overhead (1.5% vs. 6.8%).

95

Chapter 6

On Compression Effectiveness in the Memory Hierarchy

6.1 Overview

There have been several recent proposals on exploiting compression in the memory

hierarchy. Software-based approaches focus on compressing pages in main memory. For

example, Apple OS X compresses the least recently used pages to free up memory for active

processes ‎[70]. Hardware-based techniques span the memory hierarchy, using simpler algorithms

to keep design complexity and overheads low. For example, several recent proposals, including

DCC and SCC, seek to double (or more) the effective capacity of the last level cache in a

multicore processor ‎[21]‎[22]‎[23].

Since most of these proposals are on non-existing hardware, architects evaluate those using

detailed simulators. Due to the complexity of existing simulators, simulations are slow. For

example, the gem5 simulator ‎[96] with an OOO processor configuration runs a benchmark

approximately 10,000 times slower compared to running it directly on a real machine.

Simulating a one-hour desktop application (e.g., watching a movie on YouTube), if at all

possible, would take over one year of simulation time. Consequently, most researchers end up

evaluating their proposals with small benchmarks for short runtimes. While previous studies,

such as SimPoint ‎[97], have sought to identify representative points within a workload, they have

96

focused on microarchitecture or workload behavior, not memory compression. Therefore, many

of studies on compression rely on workload properties that have only been demonstrated to hold

for small benchmarks and short runtimes. Thus, we cannot clearly infer how they would work for

large, real-world workloads running for long periods of time.

In this chapter, I take a holistic approach toward compression focusing on compression

both in main memory and in caches. I explore 8 myths (i.e., commonly made assertions and

conventional wisdoms) spanning a wide range of different design options consisting of

compression algorithms, granularity of compression, compression locality, etc. These myths,

listed in Table ‎6-1, arise from previous proposals mostly through simulation of standard

benchmarks. I evaluate the strength of each myth under several design parameters, resulting in

12 overall findings.‎ For‎ each‎ myth,‎ I‎ rate‎ them‎ as‎ “Busted!”‎ if‎ I‎ cannot‎ replicate‎ them,‎

“Plausible”‎ if‎ I‎ can‎ only‎ replicate‎ them‎ for‎ few‎ applications‎ or‎ with‎ certain‎ parameters,‎ and‎

“Confirmed!”2 if the myth holds.

2 This terminology is inspired by MythBusters: http://en.wikipedia.org/wiki/MythBusters

Table ‎6-1: Myths on compression.

M1 Most‎workloads‎are‎compressible:‎50%‎of‎workloads‎have‎compression‎ratio‎≥‎2.

M2 Cache data are more compressible than memory data.

M3 Floating point data is mostly uncompressible.

M4 Instructions are mostly uncompressible.

M5 Compression locality: neighboring blocks have similar compressibility.

M6 Bigger blocks are more compressible.

M7 More complex compression algorithms improve compressibility.

M8 Sub-blocking eliminates most internal fragmentation.

97

Unlike most previous work, rather than focusing on small CPU benchmarks, I

quantitatively evaluate compressibility of workloads for up to 24 hours. In addition to standard

CPU benchmarks (e.g., SPEC CPU2006), I study the production servers of the Computer

Sciences Department of UW-Madison (e.g., web, file and database servers), memory-intensive

desktop applications (e.g., Google Chrome), mobile benchmarks, and emerging big data

applications. To evaluate compressibility on real machines, I have developed a toolset that

enables measuring compressibility of cache and memory contents for any running application.

Through my extensive analysis, I show that two of‎ the‎ eight‎ myths‎ are‎ “Busted!,”‎ two‎ are‎

“Plausible,”‎and‎the‎rest‎are‎“Confirmed!”.

This chapter is organized as follows. I discuss the eight popular myths on compression in

Section 2. I explain our infrastructure, tools, and workloads in Section 3. I then test and analyze

the myths in Section 4. Finally, Section 5 concludes the chapter.

6.2 Myths about Compression

Several proposals have been exploiting compression to improve cache and memory

utilization. Many of these studies rely on workload properties that have only been demonstrated

to hold for small, CPU-centric benchmarks and very short runtimes using simulators. In this

work, we treat these workload properties as myths that must be tested. Table ‎6-1 lists these

myths, and we describe them in detail below:

Myth 1: Several proposals show that many workloads are compressible ‎[20]‎[21]‎[23].

Many applications must benefit from compression to justify hardware-based compression

98

mechanisms. To quantify this myth (M1) at least half the workloads are compressible to half (i.e.

compression‎ratio‎≥‎2).‎This‎is‎a‎statement‎of‎overall‎compression‎effectiveness.‎If‎this‎turns‎out‎

to be false, it would mean that compression might not be of general use.

Myth 2: Compression effectiveness could also change depending on where in the memory

hierarchy it is applied. Most previous work only focuses on one level of the memory hierarchy,

and ignores the possible drawbacks or benefits at other levels. Mahapatra et al. ‎[98]‎[99] states

that (M2) caches are more compressible than memory. They show that compressibility is lower

at higher levels of the memory hierarchy, achieving the best compressibility at L1 caches. We

evaluate the credentials of this myth under different design options. This would give designers

insights on where they can get the highest benefits from compression: caches or main memory?

Myths 3 and 4: The conventional belief is that compressibility depends on quality of data

being compressed. For a given compression algorithm, data type is usually an indicator of

compressibility. (M3) Floating-point data and (M4) instructions are mostly uncompressible

using general-purpose compression mechanisms ‎[42]. We use different compression algorithms

to test these myths.

Myth 5: Although compressibility changes per memory region or page, (M5) neighboring

blocks have similar compressibility ‎[61]. We do extensive analysis to find out if this myth holds,

and if so, under what circumstances.

Myth 6: In addition to quality of data, quantity or granularity of data matters too.

Conventional belief is that (M6) compressibility improves when compressing larger chunks of

memory ‎[98]‎[99]‎[21]. Usually a lot of effort is needed to compress larger granularity of data

99

(e.g., compressing a 4096B page versus compressing a 64B block). Thus, we examine whether

these efforts and overheads worth the possible higher compressibility.

Myth 7: Compression algorithm is a key player in compressed caches and memory. Myth

M7 arises from conventional wisdoms that more complex algorithms improve compressibility

‎[19]‎[20]‎[21]. Using our framework, we analyze if this myth holds, and if so to what extent.

Myth 8: Finally, for a given compression algorithm, compaction mechanism (i.e., how to

pack compressed blocks) plays an important role to get the benefits of compression ‎[20]‎[21]‎[23].

As storing blocks at byte granularity is not practical, several previous works use different sub-

blocking mechanisms. They store compressed blocks as multiple small sub-blocks to reduce

internal fragmentation. In M8, we check whether sub-blocking could reduce internal

fragmentation especially for real applications.

6.3 Infrastructure

In this section, we describe the infrastructure, tools, and workloads that we use to test these

myths. We have two tools, one to study compressibility of data in main memory and one to study

compressibility of data placed in the caches. Both our tools measure compressibility in real

systems for any running application. We use representative real applications and benchmarks,

and use rigorous methodology for measurements.

100

6.3.1 Platforms

Servers: In this work, we evaluate compressibility of three servers in production use in the

Computer Sciences Department of UW-Madison: a webserver, a fileserver, and a Postgres

database server. All these servers run RedHat Enterprise Linux 6.5. The Fileserver and the

Postgres server run on a machine with 2 Intel Xeon cores, while the webserver run on a 4-core

Intel Xeon machine.

Desktop machine: In addition to servers, we evaluate several real desktop applications

and benchmarks. We run those on a desktop machine with Ubuntu 13.10. The machine has 4

Intel Corei5-2500K cores.

6.3.2 Tools

In this section, we present our toolsets to study compressibility in main memory and

caches on real machines. Unlike simulators, our tools are fast. They enable us to measure

compressibility of actively used production servers for long period of time (e.g., 24 hours). Such

study would take over a year on a simulator like gem5. In addition, using these tools, we can

study any running application, eliminating hassles of benchmarking.

6.3.2.1 Memory Compression Tool

We have developed a tool to study the compressibility of blocks in main memory for a

running application. The basic idea is to take snapshots from the physical memory of a running

application periodically. To do so, our tool uses ptrace to connect to the process(es) of a running

application. Through the ptrace interface, our tool reads the pages of each process present in the

physical memory and measures their compressibility.

101

Our tool takes the following steps to calculate memory compressibility of an application. A

running application on Linux relates to one parent process and maybe multiple spawned

processes. In case there is more than one process (e.g., for servers and multi-threaded

applications), we repeat the next steps for each process. Our tool also handles synonyms. It does

not re-count compressibility of a physical page in case more than one virtual page maps to it. The

page size is 4096B, and the block size is 64B (i.e., typical cache block size), unless otherwise

stated.

Step 1: For a running process with a given process id (i.e., pid), our tool finds its virtual

memory‎ regions‎ by‎ accessing‎ "/proc/pid/maps”.‎ For‎ each‎ virtual‎ memory‎ region,‎ this‎ file‎

includes the start and the end addresses along with descriptions of the region (e.g., heap or

stack).

Step 2: For each page in a given virtual memory region (found in step 1), we then access

"/proc/pid/pagemap" to find whether the page is present in the physical memory, and if so, to get

its physical address.

Step 3: For the physical pages found in step 2, we then read their contents through ptrace

interface, and calculate their compressibility. We repeat step 2 and step 3 for all pages in each

region.

For an application, we repeat this procedure (step1-3) periodically. For short running

benchmarks, we take samples every few seconds. For long running servers, we take a snapshot

every half an hour. For real desktop applications, we repeat the experiment every few minutes.

102

6.3.2.2 Cache Compression Tool

Unlike memory, there is no direct way to scan cache contents in a real machine for a

specific running application. To find the compressibility of cached data in a real system, we

build on BadgerTrap ‎[100], a tool that enables instrumentation of x86-64 TLB misses.

BadgerTrap allows tracing data TLB misses in a Linux machine for a running application. It does

so by converting hardware-assisted page walks to page faults handled by a special software-

assisted TLB handler. Our basic approach is to use this tool to get a random sample of data

memory blocks accessed by CPUs for a running application.

To analyze the compression ratio of data blocks randomly accessed by CPUs, we

periodically flush TLBs in the Linux timer interrupt handler. We then analyze the access that

causes the first TLB miss. Although data blocks could bypass the caches, modern processors

store most accessed blocks in on-chip caches. Thus, measuring compressibility of randomly

accessed data blocks could represent the compressibility of data blocks randomly accessed at L1

data caches.

Using BadgerTrap, we can get samples of accesses to data blocks but not instruction

blocks. As instructions are read-only, their compressibility in main memory is the same as their

compressibility in caches. Also, as this tool involves modifying Linux kernel, we use it on our

desktop machine to measure cache compressibility of real desktop applications and benchmarks.

It is not feasible for us to use it on our production servers.

103

6.3.3 Applications

Since compression is a candidate in many platforms including servers, desktops, and

mobiles, we consider a suite of workloads that span these. Table ‎6-2 summarizes our

applications, and we describe them in detail below:

Servers: We analyze three servers providing production service: a webserver, a fileserver,

and a Postgres database server. These servers are running all the time to service our department.

For these servers, we analyze them for 24 hours. These servers usually have multiple processes

running simultaneously.

Desktop Applications: We use five representative desktop applications running on our

desktop machine for about an hour. We use Google Chrome while streaming a one-hour long

movie on YouTube, Firefox while browsing a Wikipedia page with text and pictures

(http://en.wikipedia.org/wiki/United_States), gedit text editor while editing a large text file, Open

Office Writer while editing a version of this chapter, and Open Office Calc while editing an

excel file.

Gaming: We run three games supported on Ubuntu: Battle for Wesnoth (Wesnoth),

Extreme Tux Racer (Tracer), and Pingus. We play each game for about an hour on the desktop

platform explained in Section 3.1.

Desktop Benchmarks: We use SPEC CPU2006 suite with reference input sets. We use

benchmarks from both floating-point (SPEC-CFP) and integer (SPEC-CINT) categories.

http://en.wikipedia.org/wiki/United_States

104

Mobile Client: We use CoreMark ‎[103] that is a widely used benchmark for evaluating

mobile systems. We also use BBench ‎[105],‎“a‎web-page rendering benchmark comprising 11 of

the‎most‎popular‎sites‎on‎the‎internet‎today”.

Big Data: We use graph-analytics and memcached from Cloudsuite ‎[102], and Graph500

‎[101] as a representative of emerging big data applications. Memcached (or Data Serving)

Table ‎6-2: Applications summary.

Domain Application

Servers

(24 hours)

An AFS Fileserver.

A Webserver. It‎is‎in‎charge‎of‎“www.cs.wisc.edu”‎webpage.

A Postgres database server for Linux backup metadata.

Desktop Applications

(1 hour)

youtube: Google Chrome while streaming a video on Youtube.

wiki: FireFox while browsing a Wikipedia page.

gedit while editing a large text file.

openWrt: Open Office Write while editing a version of this chapter.

openCalc: Open Office Calc while editing an excel file.

Gaming

(1 hour)

Extreme tux racer (Tracer)

Pingus

Battle for Wesnoth (Wesnoth)

Desktop Benchmarks

(to completion)

SPEC CINT: astar, bzip2, gcc, gobmk, h264, hmmer, libquantum, mcf, omnetpp,

perlbench, sjeng.

SPEC CFP: lbm, milc, namd, povray, soplex, sphinx.

Mobile Client

(to completion)

Coremark ‎[103] for ten million iterations.

BBench ‎[105].

Big Data

(to completion)

Graph500 ‎[101].

Memcached ‎[102].

Graph-analytics ‎[102].

105

simulate the behavior of a Twitter caching server. Graph analytics runs a machine learning and

data mining software. We run them with default parameters ‎[104]. Graph500 generates a large

graph, compresses it into sparse structures, and then does parallel breadth-first search. We use it

with scaling factor of 24 (8GB memory footprint).

6.4 Compression Algorithms

In this work, we study four representative compression algorithms. The first three (C-

PACK+Z ‎[18], FPC+Z ‎[20], and BDI ‎[19]) have practical hardware implementations, and are

suitable for hardware-based cache/memory compression. We also study a more ideal case using

the gzip UNIX utility. For all these algorithms, we compress 64-byte blocks unless otherwise

mentioned. We use C-PACK+Z in most experiments as a representative of hardware-based

algorithms, as it is shown to have a good compressibility with low overheads compared to other

algorithms ‎[21].

C-PACK+Z: Cache Packer (C-PACK) ‎[18] is a lossless compression algorithm that is

designed specifically for hardware-based cache compression. C-Pack compresses a data-block at

a 4-byte word granularity. It detects and compresses frequently appearing words (such as sign-

extended words or zero words) to fewer bits. In addition, it also uses a small dictionary to

compress other frequently appearing patterns. The dictionary has 16 entries, each storing a 4-

byte word. The dictionary is built and updated per data block. C-PACK checks whether each

word of the input block would match a dictionary entry (even partially). If so, C-PACK then

stores the index to that entry in the output compressed code. Otherwise, C-PACK inserts the

106

word in the dictionary. C-PACK takes 16 cycles to compress a 64-byte data block, and 9 cycles

to decompress at 3.2GHz ‎[21]. In this work, we use a modified version of C-PACK

(C-PACK+Z) that also detects zero blocks ‎[21].

FPC+Z: Frequent Pattern Compression (FPC) is a significance-based compression

algorithm ‎[20]. It exploits the fact that many values are small (e.g., small integers) and do not

require the full space allocated for them. FPC compresses data blocks on a word-by-word basis

by storing common word patterns (such as sign-extended words or repeated bytes) in a

compressed format accompanied with an appropriate prefix. Compared to dictionary-based

approaches, FPC has lower decompression latency. FPC decompresses a 64-byte line in five

cycles, assuming 12 FO4 gate delays per cycle. We also augment FPC to detect zero blocks

(FPC+Z).

BDI: Base-Delta-Immediate (BDI) compression algorithm ‎[19] is another low-overhead

algorithm optimized for cache/memory compression. It is based on the observation that in a

cache/memory block, many words have small differences in their values. BDI encodes a block as

one or more base-values and an array of differences from the base-values or simply zero. In this

work, we use a version of BDI that is optimized for capacity (i.e., high compression ratio). It

uses two base values, and takes 2-3 cycles to decompress a block.

gzip: To estimate the potential of compression with a complex algorithm, we use gzip.

gzip is based on the DEFLATE algorithm, which is a combination of LZ77 and Huffman coding.

We run gzip with its highest compressibility level (i.e., gzip -9). This algorithm is too complex

for hardware-based compressed caches or memory. However, gzip can give us an approximate

107

bound on compressibility of our applications when compressing large chunks of memory (e.g., a

page). However, gzip is not a real bound for all data types including floating point as it is not

optimized for those.

6.5 MythBusters: Testing Myths on Compression

In this section, we evaluate the strength of the myths on compression. Our basic strategy is

to address each myth in the context of our applications. In several cases we present additional

analysis in which we vary the base configuration (presented in Section 3) to determine separate

findings for the myth in question.

6.5.1 Myth 1: Many Workloads Are Highly Compressible

Several studies have shown that many workloads (mostly benchmarks) are highly

compressible using basic general-purpose algorithms ‎[19]‎[21]. We quantify this myth as at least

50%‎of‎workloads‎ have‎ compression‎ ratio‎ ≥‎ 2.‎ In‎ this‎ section,‎we‎ evaluate‎ this‎myth‎ for‎ our‎

applications with a hardware-based data-independent compression algorithm.

Figure ‎6-1 shows the compression ratio of our applications in main memory. We evaluate

compression ratio (i.e., original block size / compressed block size) of our applications using C-

PACK+Z algorithm. As discussed in section 3.2, we use our memory compression tool and

periodically calculate the compression ratio of 64-byte blocks of a running application present in

main memory. We report the average compression ratio over all the snapshots taken throughout

the application runtime.

108

On average we observe the compression ratio of 2.3 across all applications. Our real

applications and servers have the average compression ratio of 2.6 with the highest compression

ratio of 18 for the file server (due to a large number of zero blocks) and the lowest compression

ratio of 1.5 for gedit text editor. The average compression ratio of our benchmarks is 2.1. Among

our benchmarks, milc has the lowest compression ratio (1.1), and bzip2 has the highest

compression ratio (3.8).

To better understand these results we show the distribution of compressed block sizes in

Figure ‎6-2. We show the cumulative distribution for all applications in skinny gray lines, while

we highlight some representative applications using wider colored lines. Overall, on average

18% of blocks are zero, 16% of blocks are uncompressible (64B), and the rest of the blocks are

compressible to 1B to 63B. In some real applications, like Tracer and Fileserver, and

benchmarks, like bzip2, zero blocks and highly compressed blocks are dominant in memory

resulting in high compression ratios. On the other hand, for low compressible applications, such

1.0

2.0

3.0

4.0

5.0

1 2 3 4 5 6 7 8 9 10 1112 13 141516 171819 20212223 242526 27282930 313233

C
o

m
p

re
ss

io
n

 R
at

io
 in

 M
e

m
o

ry

Applications Ranked by Compression Ratio

benchmarks real applications 18

Figure ‎6-1: Compression ratio of our applications in memory with C-PACK+Z.

109

as coremark and milc, many blocks are uncompressible or poorly compressible (i.e., they have

large compressed block sizes). The rest of applications, such as our webserver and wiki

(browsing a wikipedia page on FireFox), have more uniform distributions.

Although our results suggest that many applications can benefit from general-purpose

hardware compression, we have to be aware of the worst cases too. The bad news is that 12 of

our applications have compressibility < 2‎ and‎ even‎ six‎ have‎ compression‎ ratio‎ ≤‎ 1.5.‎ These‎

applications, including coremark, SPEC CFP benchmarks, and gedit, might still benefit from

special-purpose compression algorithms, such as those optimized for floating-point data

‎[15]‎[16]‎[106].

Myth 1: [Confirmed!] 64% of our applications have compression ratio ≥ 2. This holds for

both the benchmarks and real applications.

0%

20%

40%

60%

80%

100%

0 16 32 48 64

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

Compressed Block Size

bzip2 coremark tracer milc

wiki fileserver webserver AVG

Figure ‎6-2: Cumulative distribution of compressed block sizes in main memory.

110

6.5.2 Myth 2: Cache Data Are More Compressible than Memory Data

Several proposals have exploited compression at different levels of the memory hierarchy.

Most of them do not differentiate the impacts of compression in main memory versus caches.

Mahapatra et al. ‎[98]‎[99] show that data in L1 caches are more compressible than data in main

memory using the same compression algorithms for their studied applications.

To test this myth, we use our memory compression and cache compression tools with the

C-PACK+Z algorithm. We measure the average compression ratio of 64B blocks in main

memory and compare it with the average compressibility of 64B data blocks accessed by CPUs.

As we discussed in Section 3.2, the compressibility of data blocks randomly accessed by CPUs is

an indicator of the compressibility of data blocks randomly accessed at L1 data caches. Since our

Figure ‎6-3: Data block compression: cache vs.

memory.

1

2

3

4

5

1 2 3 4 5

C
o

m
p

re
ss

io
n

 R
at

io
 in

 M
e

m
o

ry

Compression Ratio of Cache Accesses

benchmarks real applications

bzip2
gcc

lbm

youtube openWrt

5.5

111

cache compression tool could only analyze data blocks (not instructions), we evaluate

compressibility of only data blocks in main memory (i.e., blocks in stack and heap regions). For

our benchmarks and real applications except servers, Figure ‎6-3 shows the average compression

ratio of data blocks accessed by CPUs (on the X axis) versus the compression ratio of data

blocks in main memory (on the Y axis).

Unlike Mahapatra et al. ‎[98]‎[99], we found that for all but one application (lbm) cache data

are not more compressible than memory data. Majority of our real applications and benchmarks

have similar compressibility in main memory and L1 data caches. Out of 30 applications, for 18

applications, the compression ratio of memory data blocks is similar to the compression ratio of

L1 data blocks (i.e., less than 0.5 different). For the rest of applications (except lbm),

compression ratio is considerably higher in memory than L1 caches. For example, bzip2 has the

compression ratio of 3.8 in memory, while the compression ratio of its cached blocks is 1.3.

Similarly, youtube has the compression ratios of 5.5 in memory and 1.9 in L1 caches.

Figure ‎6-4: Percent of zero data blocks: memory vs. caches.

0%

10%

20%

30%

40%

as
ta

r

b
zi

p
2

gc
c

go
b

m

h
2

64

h
m

m

lib
q

m
cf

o
m

n
p

p
er

l

sj
en

g

lb
m

m
ilc

n
am

d

p
o

vr

so
p

l

sp
h

i

w
ik

i

yo
u

t

o
p

en
W

rt

o
p

en
C

al
c

ge
d

it

Tr
ac

er

P
in

gu
s

W
e

sn
o

th

gr
p

5
0

0

m
e

m
c

gr
ap

h

co
re

m
ar

k

b
b

en
ch

Fi
le

se
r

P
o

st
gr

e
s

W
e

b
se

r

SPEC CINT SPEC CFP DESKTOP GAMING BIG DATA MOBILE SERVERS

%
 o

f
ZE

R
O

 D
at

a
B

lo
ck

s main memory accessed by CPUs

112

In general, for many applications the memory content is more compressible than cache

content mainly due to larger percent of zero blocks in memory. Figure ‎6-4 shows the percent of

data blocks that are zero in memory versus those accessed by CPUs. For some of our real

applications, a significant number of data blocks are zero in memory. For example, for openWrt,

Fileserver, Postgres server, and Tracer, 36%, 40%, 22% and 29% of blocks in stack and heap

regions are zero respectively. This results in high compression ratios for these applications in

memory. Similarly for some of our benchmarks, such as bzip2, gcc, and h264, the number of

zero blocks is significant in memory as oppose to the caches.

Most zero blocks in memory are due to zero padding at the end of pages and zero pages.

Thus, most of these zero blocks are never read by the CPUs or placed in caches, resulting in a

low number of zero blocks (less than 5%) and lower compression ratio at caches. To check this,

1

2

3

4

5

1 2 3 4 5

C
o

m
p

re
ss

io
n

 R
at

io
 o

f
 N

O
N

-Z
ER

O
 D

at
a

B
lo

ck
s

in
 M

e
m

o
ry

Compression Ratio of Cache Accesses

benchmarks real applications

gcc

lbm

Figure ‎6-5 NON-ZERO block compression: cache vs. memory.

113

in Figure ‎6-5, we compare the compression ratio of non-zero data blocks in main memory

against the compression ratio of all blocks (including zeros) in caches. When we exclude zero

data blocks, we observe more similar compression ratio in main memory and L1 caches.

Here, we compare compressibility of memory data versus cache data using the same

configurations (i.e., C-PACK+Z algorithm at 64B block granularity). However, as we will

discuss later, we can use even more complex compression techniques to compress larger chunks

of data in main memory to further improve its compressibility.

Myth 2: [Busted!] For almost all of our applications, the compression ratio in memory is

either similar or better than the compression ratio in the L1 data caches.

Finding 2.1: Higher compressibility in main memory is mainly due to the abundance of

zero blocks in memory.

Figure ‎6-6: Compression ratio of SPEC CFP benchmark.

povray

povray

povray

povray

soplex

soplex

soplex

soplex

1.0

1.5

2.0

2.5

3.0

C-PACK+Z BDI FPC+Z GZIP

C
o

m
p

re
ss

io
n

 R
at

io
 in

 M
e

m
o

ry geomean

114

6.5.3 Myth 3: Floating-Point Data Is Mostly Uncompressible

Although there are several compression algorithms proposed for floating point

applications, floating point data is considered mostly uncompressible using general-purpose

compression algorithms ‎[42]. In this section, we analyze compressibility of the selected

benchmarks from SPEC CFP (listed in Table ‎6-2).

Figure ‎6-6 shows the compression ratio of SPEC CFP benchmarks in memory using

different algorithms. For all these algorithms, on average the compression ratio is less than 1.5

with the highest compression ratio for soplex and povray. To better understand these results,

Figure ‎6-7 shows the percent of integer blocks in data regions (i.e., stack and heap) in memory

on the X axis, and overall memory compression ratio using C-PACK+Z on the Y axis. Similar to

Kant et al. ‎[42], we classify blocks as integer if the 8MSBs are 0x00 or 0xFF in each 32-bit

word. In this way, we detect small integer values, which are most common. C-PACK+Z, similar

Figure ‎6-7: Percent of integer blocks in data regions of memory vs. compression ratio of

SPEC CFP using C-PACK+Z.

1.0

1.5

2.0

2.5

3.0

0% 20% 40% 60% 80% 100%

C
o

m
p

re
ss

io
n

 R
at

io

% of integer data in data regions

lbm milc namd povray soplex sphinx

115

to other basic algorithms, is mostly optimized for small integer values. Thus, in Figure ‎6-7, the

higher the percentage of integer blocks, the higher the compression ratio is. In other words,

integer data is more compressible than non-integer data. Among these benchmarks, povray and

soplex have the highest percent of integer values, resulting in their higher compression ratio. On

the other hand, lbm and milc have mostly non-integer values, and so the lowest compression

ratios. In general, the higher the percentage of non-integer blocks (including floating-point data),

the lower the compression ratio is.

There are several proposals to improve compression for floating-point data. Mahapatra et

al. ‎[98]‎[99] state that floating-point benchmarks of SPEC CPU2000 have lower entropy, and so

potentially higher compressibility than integer benchmarks. Burtscher et al. ‎[16]‎[106] also

propose specialized compression algorithms that exploit the similarities among a sequence of

floating-point values. Although these techniques achieve high compressibility for floating-point

data, they might not be viable for on-line hardware cache/memory compression due to their

complexity and overheads. Since our focus is on more general compression algorithms, we do

not evaluate these techniques here.

Myth 3: [Confirmed!] floating-point data have low compression ratio with general-

purpose algorithms.

6.5.4 Myth 4: Instructions Are Mostly Uncompressible

Existing general-purpose compression algorithms usually achieve good compressibility for

data blocks with repeated bit patterns; however, instruction blocks have more complicated

coding. In addition, one 64-byte instruction block can include multiple different instructions

116

(e.g., X86 instructions can have variable length) with low resemblance. Thus, instruction blocks

are mostly considered as uncompressible using general-purpose compression algorithms ‎[42]. To

evaluate this myth for our applications, we analyze compressibility of instruction blocks (i.e.,

blocks in instruction/binary region) in main memory.

Figure ‎6-8 shows the average compression ratio of 64-byte instruction blocks in memory

using different compression algorithms. In general, all our studied algorithms perform similarly

and poorly for instruction blocks of our applications. Overall, the compression ratio of

instruction blocks is on average 1.13, and up to 1.6 for gedit, Wiki, povray and soplex using C-

PACK+Z.

Figure ‎6-9 shows the cumulative distribution of compressed block sizes in

instruction/binary regions. Most applications have similar distributions, shown as skinny gray

lines. We highlight a few representative applications. Zero blocks exist in instruction regions due

to zero padding. There are on average 5% (up to 50% for openCalc) zero blocks in these regions.

Note that, we do not count zero blocks in Figure ‎6-8 when we calculate the average compression

Figure ‎6-8: Compression ratio of instruction blocks.

1.0

1.5

2.0

2.5

3.0

C-PACK+Z BDI FPC+Z GZIP

C
o

m
p

re
ss

io
n

 R
at

io
 o

f
In

st
ru

ct
io

n
 B

lo
ck

s
benchmarks real applications

117

ratio of instruction blocks. Ignoring zero blocks, on average over 70% of instruction blocks are

uncompressible (i.e., compressed block size of 64B) or poorly compressible (i.e., compressed

block‎size‎≥‎48B).

Although instruction blocks are mostly uncompressible using general algorithms, there are

several specialized techniques to improve compressibility of instructions. These techniques

usually find frequently used instruction sequences in instruction stream, replacing those with

small code-words ‎[1]‎[4]‎[107]. These techniques are usually applied after compilation and code

generation. Mahapatra et al. ‎[98]‎[99] also show that instruction caches have low entropy and so

high potentials for compression. Compressing instruction caches could be useful to reduce cache

miss rate in case of large instruction footprints. However, since instructions account for a small

fraction (i.e., few pages) of memory footprint for most applications, compressing instructions

have low impacts on overall memory utilization of many applications.

Figure ‎6-9: Cumulative distribution of compressed block sizes in instruction memory regions.

0%

20%

40%

60%

80%

100%

0 8 16 24 32 40 48 56 64

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

Compressed Instruction Block Size

gobmk gedit openCalc pingus AVG

118

Myth 4: [Confirmed!] On average, over 70% of instruction blocks are uncompressible or

poorly compressible.

6.5.5 Myth 5: Neighboring Blocks Have Similar Compressibility

Neighboring blocks tend to have similar characteristics including access rate, hit or miss

patterns ‎[108]. Previous work ‎[61] also shows that blocks of a page have similar compressibility

(i.e., compression locality). Pekhimenko et al. ‎[61] assume‎ that‎ “all‎ cache‎ lines‎within‎ a‎ page‎

should be compressed‎to‎the‎same‎size”.‎They‎propose‎Linearly‎Compressed‎Pages‎(LCP)‎that‎

uses a fixed size for compressed blocks within a given page of main memory to simplify

lookups. In SCC ‎[23], we also exploit compression locality within small regions (4 or 8

neighboring blocks) in the L3 cache. In this way, as we discussed in the previous section, SCC

simplifies cache lookups by compressing and fitting the neighboring blocks in one 64-byte data

block if possible. These techniques ‎[61]‎[23] would benefit applications that have high

compression locality. Otherwise, they might lower compression benefits due to internal

fragmentation. In this section, we explore whether compression locality holds for our

applications, and if so to what extent.

Figure ‎6-10 shows the cumulative distribution of unique compressed block sizes within a

4KB page. We use C-PACK+Z to compress each block to 0 to 8 8-byte sub-blocks. For each

page, we then find the distribution of blocks ranked from the most common size to the least

common size. The most common size (1-MCS) changes per page. For example, for Wiki, the

most common size is zero in one page, and 32B in another. For each application, we then report

the overall distribution in Figure ‎6-10.

119

Figure ‎6-10 also shows the OVERALL-AVG, the cumulative distribution (most common

to least common) of compressed block sizes across all pages of all workloads. This curve shows

that the most common compressed block size over all workloads, 64 bytes, accounts for 22% of

all blocks and the top three most common sizes, 64, 0, and 32 bytes, account for 55% of all

blocks. In contrast, PAGE-AVG averages the frequency of the most common size within a page

across all pages and all workloads (where different pages may have different most common

sizes). If compressed block sizes were randomly distributed across pages, we would expect the

per-page distribution be similar to the overall average distribution. Instead, PAGE-AVG shows

that the most common block size within a page accounts for 53% of the blocks, while the top

three most common sizes account for 82% of the blocks. These results clearly show that pages

exhibit compression locality, with the most common block size within a page occurring more

than twice as often as the most common block size overall. We observed similar results using

other compression algorithms, e.g., BDI, and other sub-block sizes.

Figure ‎6-10: Cumulative distribution of compressed block sizes within a page in main memory. Sizes are ordered

from the most common size (1-MCS) to the least common size (LCS) for each individual application on the X axis.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

C
u

m
u

la
ti

ve
 C

o
m

p
re

ss
e

d
 B

lo
ck

Si

ze
 D

is
tr

ib
u

ti
o

n
bzip2 gedit hammer webserver

fileserver pingus PAGE-AVG OVERALL-AVG

1-MCS 2-MC 3-MC 4-MC 5-MC 6-MC 7-MC 8-MC LCS

120

The most common compressed block size changes per application. For many of our

applications, either zero or 64 bytes is the most common block size. 64B blocks (i.e.,

uncompressible blocks) are most common for gedit, hammer and milc, while zero blocks are

most common in bzip2, Postgres server, Fileserver, and Tracer.

Applications exhibit different levels of compression locality. Figure ‎6-11 shows the overall

and per-page distributions of compressed block sizes for two representative workloads.

Webserver exhibits compression locality similar to the overall average: the most common block

size (32B) accounts for 27% of blocks overall (Webserver-overall), while the most common size

within a page accounts for 48% of blocks (Webserver-per-page). This locality holds even for the

second and the third most common block sizes, similar to the average across all workloads. In

contrast, gedit exhibits no compression locality, with the per-page distribution (gedit-per-page)

essentially identical to its overall distribution of block sizes (gedit-overall).

Even though some applications have low compression locality within pages, they can have

better locality in smaller memory regions. Figure ‎6-12 shows the cumulative distribution of

Figure ‎6-11: Cumulative distribution of compressed block sizes within a page in main memory (per-

page) versus overall memory footprint for two representative applications.

0%

25%

50%

75%

100%

C
u

m
u

la
ti

ve
 B

lo
ck

 S
iz

e

D
is

tr
ib

u
ti

o
n

Webserver-per-page Webserver-overall gedit-per-page gedit-overall

1-MCS 2-MC 3-MC 4-MC 5-MC 6-MC 7-MC 8-MC LCS

121

compressed block sizes for gedit at different memory region sizes. Although gedit has low

compression locality at page granularity, it has high locality at small regions. For example, in a

small 8-block region, the most common size would account for 80% of the blocks. This means

on average 6 blocks of 8 blocks have the same compressed block size. This could be due to

similar compressibility of elements in data structures.

Myth 5: [Plausible!] On average, the most common block size accounts for 53% of blocks

within a page. However, the distribution has a heavy tail and even 3 different block sizes only

account for 82% of the blocks in a page.

Finding 5.1: Compression locality is higher in smaller memory regions.

6.5.6 Myth 6: Bigger Blocks Are More Compressible

Conventional belief is that larger blocks are more compressible ‎[98]‎[99]‎[21]. In general

more redundancy is present within larger blocks, but more effort is also needed to compress

them. In this section, we study the impact of block granularity on compression ratio. We analyze

the trade-offs to see whether the efforts worth the potential benefits of compressing larger

Figure ‎6-12: Cumulative distribution of compressed block sizes for gedit within regions with different sizes.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

B
lo

ck
 S

iz
e

 D
is

tr
ib

u
ti

o
n

4-block region 8-block region 16-block region 64-block region

1-MCS 2-MC 3-MC 4-MC 5-MC 6-MC 7-MC 8-MC LCS

122

blocks.

Figure ‎6-13 shows the compression ratio of our applications in main memory using C-

PACK+Z algorithm. We change block size from the small regular size (64B) to the page size

(4096B). For C-PACK+Z, we use the default parameters described in Section 3.4. Compression

ratio increases as we increase block size. Among our applications, servers, desktop applications,

and SPEC CINT gain higher compressibility than SPEC CFP and mobile benchmarks at larger

block granularities.

Figure ‎6-14 shows the average compression ratio of our servers with different compression

algorithms at different block granularities. Compression sensitivity to block size differs per

algorithm. While compressibility improves at larger block sizes with C-PACK+Z, larger block

sizes do not impact compressibility with FPC+Z, and even can hurt efficiency of BDI. FPC+Z

compresses each word in a block separately, so it is not sensitive to block size. The efficiency of

BDI reduces at page granularity as it would be hard to find a small number of base values that

1

2

3

4

5

64B 128B 256B 4096B

C
o

m
p

re
ss

io
n

 R
at

io

Block Size

SPEC CINT SPEC CFP DESKTOP GAMING

SERVER MOBILE BIG DATA

Figure ‎6-13: Compression with different block

sizes.

123

are good for all words in a page. On the other hand, gzip is highly sensitive to block size. When

applied at page granularity, gzip can provide on average 4.5x, and up to 12x (for Fileserver)

higher compression ratio for servers.

Figure ‎6-13 and Figure ‎6-14 emphasize on the importance of picking the right compression

algorithm at specific design points. While using larger blocks improve compression ratio, the

benefits come at higher costs. Using larger blocks might negate the benefits from compression

by increasing cache pollution, reducing cache efficiency, and incurring energy overheads ‎[109].

Alternatively, as we showed in Chapter 4, DCC ‎[21] dynamically detect neighboring blocks and

co-compact them to get some of the compression benefits of larger blocks at lower overheads.

Myth 6: [Plausible!] On average, compression ratio improves for block sizes larger than

64B. Overall, compressibility is not a direct function of block size. Compression sensitivity to

block size depends on many factors including compression algorithm and data being

compressed.

Finding 6.1: Compression sensitivity to block size depends more on the compression

algorithm than the applications.

Figure ‎6-14: Compression ratio of servers in main memory.

1

2

3

4

5

6

7

64B 128B 256B 4096B

C
o

m
p

re
ss

io
n

 R
at

io

Block Size

C-PACK+Z FPC+Z BDI GZIP

124

6.5.7 Myth 7: More Complex Compression Algorithms Improve Compressibility

Compression algorithm is a key player in compressed caches and memory. In general, the

conventional wisdom says more complex algorithms improve compressibility ‎[19]‎[20]‎[21]. In

this section, we study if this myth holds using different algorithms.

Figure ‎6-15 summarizes the compression ratio of different algorithms in main memory.

We use 64B blocks with BDI, FPC+Z, and C-PACK+Z. Regarding complexity, we can order

these algorithms as: BDI (the simplest), FPC+Z, C-PACK+Z, and gzip (the most complex). BDI

has the simplest design, and so the lowest decompression latency. gzip uses the most complex

technique, useful for software mechanisms. Despite the high complexity of gzip, it does not

perform nearly as well as other algorithms for small block sizes. C-PACK+Z gains the highest

compression ratio since it is especially designed to exploit replications in small cache/memory

blocks. FPC+Z and BDI perform similarly on average despite more complexity of FPC+Z. At

page granularity, gzip performs the best as it is optimized for compressing large amount of data.

Complexity is not necessarily an indicator of effectiveness of an algorithm. The key is to

Figure ‎6-15: Memory compression with different algorithms.

1

2

3

4

5

6

7

B
D

I

FP
C

+Z

C
-P

A
C

K
+Z

G
ZI

P
-6

4
B

G
ZI

P
-P

ag
e

C
o

m
p

re
ss

io
n

 R
at

io

SPEC CINT
SPEC CFP
Desktop
GAMING
SERVER
MOBILE
BIG DATA
geomean

125

find the algorithm that is tailored for the data being compressed at a particular level of the

memory hierarchy. Besides compression ratio, there are different parameters to evaluate the

success of a compression algorithm in the memory hierarchy, including

compression/decompression latency, design complexity, and area and power overheads. For

example, although C-PACK+Z gains higher compression ratio than BDI, its higher

decompression latency might negate its benefits if applied at L1 caches. However, at higher

levels of the memory hierarchy (i.e., L3 or memory), most applications can tolerate its

decompression latency ‎[21]‎[22].

For a given compression algorithm, the next question is whether increasing its complexity

would improve its effectiveness. For example, increasing dictionary size in a dictionary-based

algorithm might improve its effectiveness ‎[18]. Here, we study this myth for C-PACK+Z.

Figure ‎6-16 shows the effect of dictionary size on the compression ratio of our applications

Figure ‎6-16: Sensitivity of compression ratio to dictionary size.

1

2

3

4

5

8
-e

n
tr

y

1
6

-e
n

tr
y

3
2

-e
n

tr
y

8
-e

n
tr

y

1
6

-e
n

tr
y

3
2

-e
n

tr
y

8
-e

n
tr

y

1
6

-e
n

tr
y

6
4

-e
n

tr
y

8
-e

n
tr

y

1
6

-e
n

tr
y

1
0

2
4

-e
n

tr
y

64B 128B 256B 4096B

C
o

m
p

re
ss

io
n

 R
at

io

SPEC CINT SPEC CFP DESKTOP GAMING

SERVER MOBILE BIG DATA

126

using C-PACK+Z at different block granularities. At each block granularity, we measure

compression ratio with the default-size dictionary (16-entry), the half-size dictionary (8-entry),

and the full-size dictionary. For example, when compressing a 128B block, which has 32 4-byte

words, we measure the compression ratio with 8-entry, 16-entry and 32-entry dictionary sizes. A

32-entry dictionary can hold all words of a 128-byte block in case no word is repeated.

There are trade-offs in changing the dictionary size. While a larger dictionary can detect

more repeated values, it would increase overheads. For example, with a 64-entry dictionary, C-

PACK+Z stores 6 bits (the index to the matched entry) per matched word in the output code.

While with an 8-entry dictionary it stores only 3 bits per word. This increase of metadata in the

output code would negate the benefits of larger dictionary for majority of our applications even

with large block sizes.

Myth 7: [Busted!] Algorithm complexity is not always an indicator of better

compressibility.

Finding 7.1: Overall, increasing the dictionary size does not improve compressibility. It

can even hurt effectiveness of the algorithm.

6.5.8 Myth 8: Sub-blocking Eliminates Most Internal Fragmentation

Managing variable-size compressed blocks complicates compressed cache/memory

designs. Storing compressed blocks at byte granularity has huge overheads on cache metadata

‎[21]. An alternative is to compress blocks into variable number of small sub-blocks to eliminate

internal fragmentation while allowing variable-size compressed blocks ‎[20]‎[21]‎[22]‎[23].

127

Figure ‎6-17 shows the average compressed block size of our applications when using

different sub-block sizes. The higher the compressed block size is, the lower the effective

capacity would be. Using 32-byte sub-blocks (i.e., compressing a block to half if possible) would

increase the average compressed size by 33% and up to 2 times (for libquantum). This means

roughly on average 33% increase in internal fragmentation. Using small sub-block sizes, we can

gain some of the benefits of byte-granularity with significantly lower overheads. For example, in

Figure ‎6-17, 8-byte or 16-byte sub-blocks perform better than 32-byte sub-blocks (i.e., lower

compressed block sizes), and get most benefits of 1-byte sub-blocks. Using 8-block sub-blocks

would increase the average compressed size by only 7% compared to 1-byte sub-blocks,

significantly lowering internal fragmentation compared to 32-byte sub-blocks.

Myth 8: [Confirmed!] Compressing blocks to small sub-blocks reduce internal

fragmentation.

Figure ‎6-17: Average compressed block size using C-PACK+Z with different sub-block sizes.

0

16

32

48

64

SPEC CINT SPEC CFP DESKTOP GAMING SERVERS BIG DATA MOBILE

C
o

m
p

re
ss

e
d

 B
lo

ck
 S

iz
e 1-byte sub-block 8-byte sub-block 16-byte sub-block 32-byte sub-block

128

6.6 Conclusions

In this chapter, I take a holistic approach toward compression in the memory hierarchy. I

explore 8 popular myths arise from conventional wisdoms and past experiences on compression,

including a broad range of different design options (e.g., compression algorithm). I evaluate

them using real-world workloads (such as production servers) and refine them into overall 12

findings about compression effectiveness. Through extensive analysis, I show that two of the

eight‎ myths‎ are‎ “Busted!,”‎ two‎ are‎ “Plausible,”‎ and‎ the‎ rest‎ are‎ “Confirmed!”.‎ The‎ analysis‎

provides insights into compression in the memory hierarchy.

129

Chapter 7

Conclusions

In modern processors, last level caches (LLCs) mitigate the limited bandwidth and high

latency of off-chip main memory. LLCs also play an increasingly important role in reducing

memory system energy as they can filter out energy-expensive memory accesses. Increasing the

LLC size can improve system performance and energy by reducing memory accesses, but at the

cost of high area and power overheads. In this dissertation, I explored using compression to

effectively improve the LLC capacity and ultimately system performance and energy

consumption.

Cache compression is a promising technique for expanding effective cache capacity with

little area overhead. Compressed caches can achieve the benefits of larger caches using the area

and power of smaller caches by fitting more cache blocks in the same cache space. Ideally, a

compressed cache design must balance three frequently-conflicting goals: i) tightly compacting

variable-size compressed blocks, ii) keeping tag and other metadata overheads low, and iii)

allowing fast lookups. Previous compressed cache designs achieved at most two of these three

goals, limiting the potential benefits of compression. In addition, most previous proposals

targeted improving system performance even at high power and energy overheads.

In this dissertation, I made several contributions that address concerns on different aspects

of cache compression. I presented two novel compressed cache designs: Decoupled Compressed

130

Cache (DCC) ‎[21]‎[22] and Skewed Compressed Cache (SCC) ‎[23]. DCC and SCC are both

optimized for energy, eliminating the sources of energy inefficiencies in previous designs, while

tightly packing variable size compressed blocks. They exploit spatial locality to reduce tag

overheads by tracking super-blocks. Compared to conventional uncompressed caches, DCC and

SCC improve the cache miss rate by increasing the effective capacity and reducing conflicts.

Compared to DCC, SCC further lowers area overhead and design complexity.

Despite years of research on compressed caches, the industry has not yet adopted the use of

cache compression. In this dissertation, in addition to presenting novel techniques to improve

compression effectiveness, I showed that our designs can be implemented with limited changes

to existing designs. Another main concern is that since most proposals on compressed caching

are on non-existing hardware, architects evaluate those using detailed simulators with small

benchmarks. So, whether cache compression would benefit real applications running on real

machines was an open question. In this dissertation, I addressed this question by analyzing the

compressibility of several real applications, including production servers of the Computer

Sciences Department of UW-Madison. I showed that compression could in fact be beneficial to

many real applications.

7.1 Directions for Future Work

While in this dissertation, I re-visited compressed caching for improving system

performance and energy, I believe there are several opportunities for future research on

compression in the memory hierarchy. Here, I outline few possible areas of research:

131

7.1.1 Adaptive Selective Compression

Although compression improves the performance and system energy of some applications,

it might not help or it might even hurt the performance or energy of some others. In this thesis, I

focused on compressing the LLC. At lower levels of the cache hierarchy (e.g., the L2 cache), at

which sensitivity to cache latency is higher, more applications might get hurt from compression.

Even for a specific application, different phases of one application may also show different

levels of compressibility and cache sensitivity. Therefore, dynamically balancing the benefits of

compression with its overheads is important. Here, I briefly explain how we can achieve this

balance.

Adaptive Compression: Several techniques can be used to adaptively control

compression. Alameldeen and Wood ‎[57] used stack depth information of the cache replacement

algorithm to determine whether or not to compress a block. By dynamically monitoring

workloads’‎behavior‎and‎disabling‎compression‎when‎not‎effective,‎they‎balanced‎the‎benefits‎of‎

compression for cache sensitive workloads, while avoiding performance degradation for others.

Another possible technique for determining whether to compress a block or not is to use

sampling mechanisms ‎[79]. We can reserve a group of cache sets to compress their blocks all the

time, and have another group that we never compress. By tracking and comparing the miss rates

of these two groups, we can enable compression when it results in a lower number of misses.

These techniques can be used with SCC and DCC. In addition, since SCC and DCC track blocks

at multiple granularities, we could also leverage spatial locality, and the fact that many

contiguous blocks have similar compressibility allows for better prediction of which blocks to

compress or not.

132

Selective Compression: In addition to dynamically controlling compression, we can be

selective with regard to which specific blocks to compress or not. Not all blocks brought to the

cache are similarly sensitive to latency. Instruction blocks are usually on the critical path, and

any extra delay on their access time might hurt performance. Some loads are also critical and

need to complete early to prevent processor stalls (i.e., critical), while others could tolerate a

longer latency (i.e., non-critical). The criticality of a load mostly depends on the chain of

instructions dependent on that load. If most instructions following that load depend on it, the

processor may stall if that load takes a long time. Previous work presented hardware-based

techniques to classify the criticality of loads ‎[80]. My hypothesis is that by considering the

criticality of data stored in the caches, and compressing non-critical ones, we could balance the

benefits of compression (i.e., lower miss rate) versus its overheads (i.e., decompression latency),

especially at lower levels of the cache hierarchy (e.g., L2).

7.1.2 Exploiting High Tag-Reach and Coarse-Granularity

In large caches, accessing the data array incurs much higher energy and latency overheads

than the tag array. Thus, using the available data space efficiently is critical for improving energy

costs. I define Tag-Reach as the ratio of the maximum number of cache blocks mapped by the

tag array over the maximum number of uncompressed blocks held in the data array. Regular

caches have tag-reach of one. A compressed cache must have a tag-reach greater than one, so

that it can fit more blocks in the cache. Both DCC and SCC provide high tag-reach by tracking

super-blocks. They can track up to 4x (using 4-block super-blocks), and 8x (using 8-block super-

blocks) blocks. With compression, DCC and SCC hold on average about twice as many blocks

as a conventional cache, using on average 50% and 25% of available tags, respectively.

133

However, on average 50% of available tags in DCC and 75% of tags in SCC are not employed.

Therefore, there is plenty of space left for improvement. Here, I explain some potential

techniques.

 Exploiting extra tags for tracking non-reusable blocks in the LLC: Inclusion

has been widely used in commercial processors to simplify the LLC coherence and reduce on-

chip traffic. On the other hand, inclusion can reduce locality due to replication. For instance,

some cache blocks are being accessed once at the LLC and possibly multiple times at lower

cache levels (i.e., streaming access patterns) ‎[110]‎[113]. Storing these blocks at the LLC reduces

the LLC effective associativity, and thus locality. DCC and SCC can be extended to leverage

these properties. Using their high tag-reach, I can store these blocks as data-less at the LLC,

storing only their tags, and so releasing data space to fit more data blocks at the LLC.

 Global cache space management: Another possible way to leverage the high

tag-reach of SCC and DCC is for better cache hierarchy space management. The memory

requirements of threads or applications running on different cores of a multicore processor

usually vary ‎[111]‎[112]. For example, some threads are usually more critical and affect system

performance and energy the most. I can leverage this variation for better cache management. In

addition to sharing the LLC, SCC and DCC can enable better aggregate cache space

management across the cache hierarchy. They can enable cores to even share their private cache

space if necessary. For larger private caches, which are common in commercial systems, some

threads or applications can trade a portion of their private caches with more critical threads

running on other cores. I can leverage extra tags at the LLC for implementing this feature. For

these blocks, I can store their tags at the LLC while keeping the whole cache blocks (tag+data) in

134

another‎core’s‎private‎cache‎space.‎Later,‎on‎a‎new‎request,‎the‎block‎can‎be‎transferred‎to‎the‎

requester’s‎private‎cache.‎In‎this‎way,‎I‎potentially‎expand‎the‎LLC‎shared‎capacity‎by‎stealing‎

space‎from‎different‎cores’‎private‎caches.‎Thus,‎I‎can‎replace some of the off-chip accesses with

cheaper on-chip accesses.

 Interaction with prefetching: The extra tags provided by our designs could also

be used to further improve cache utilization through techniques orthogonal to compression, such

as prefetching. In this thesis, I did not study the interaction between prefetching and compression

in our designs. Similar to previous work ‎[57], I can use the extra tags to better predict useful and

harmful prefetches. In addition, I predict that prefetching, especially stream prefetching, could

further improve the benefits of DCC and SCC, as there would be more neighboring blocks in the

cache, and so more populated super-blocks.

7.1.3 Parallel Lookup with SCC

In this dissertation, I focused on compressing the LLC. To reduce power consumption,

current LLC designs use sequential tag-data access, checking the tag array first before accessing

the data array. Typical compressed caches build on this technique, checking whether a block is

compressed and where it is located in the data array first. Unlike LLCs, the lower-level caches

(L1 or L2) use a parallel tag-data access model reading both the tag array and the data array

simultaneously. In this way, they keep access latency low at the cost of higher power

consumption as both the tag array and the data array would be accessed even on cache misses.

Unlike VSC ‎[57] and even our proposal DCC, which cannot support parallel tag-data access,

SCC can also support parallel tag/data array access. Not only does SCC allow fast lookups,

135

which are suitable for lower-level caches, but it also can save power on cache accesses, thanks to

its special direct tag-data mapping.

Since SCC eliminates any extra metadata or level of indirection to locate a compressed

block, it supports fast low-power parallel access. Given a block address, in each cache way, SCC

knows its compressed size and exact location within a set. Thus, when reading the tag array and

the data array in parallel, instead of reading out the whole 64B blocks, SCC will read out less

(e.g., 32B if compressed to half). In this way, compared to a regular parallel cache, SCC can

significantly reduce cache dynamic energy, which is considerable at L1/L2. For example, in a 4-

way cache associative cache, SCC reads 120 bytes (64B from way #1 (uncompressed) + 32B

from way #2 + 16B from way #3 + 8B from way #4), reducing cache dynamic energy by 53%.

This gain is not possible by typical compressed caches or DCC as they do not know the block

size before checking the tag array.

136

References

[1] C. Lefurgy, P. Bird, I. Chen, T. Mudge. Improving code density using compression

techniques. Proceedings of the 30th annual ACM/IEEE international symposium on

Microarchitecture, p.194-203, December 01-03, 1997, Research Triangle Park, North

Carolina, USA.

[2] Yuan-Long Jeang, Jen-Wei Hsieh, Yong-Zong Lin. An Efficient Instruction

Compression/Decompression System Based on Field Partitioning. 2005 IEEE International

Midwest Symposium on Circuits and Systems, Aug. 7-10, 2005.

[3] Subash Chandar, Mahesh Mehendale, R. Govindarajan. Area and Power Reduction of

Embedded DSP Systems using Instruction Compression and Re-configurable Encoding.

Journal of VLSI Signal Processing Systems, v.44 n.3, p.245-267, September 2006.

[4] Chen, P. Bird, and T. Mudge. The impact of instruction compression on I-cache

performance. Tech. Rep. CSE-TR-330-97, EECS Department, University of Michigan, 1997.

[5] L. Benini, A. Macii, E. Macii, and M. Poncino. Selective instruction compression for

memory energy reduction in embedded systems. Proceedings IEEE International

Symposium Low-Power Electronics and Design, pp.206 -211 1999.

[6] Keith D. Cooper, Nathaniel McIntosh. Enhanced code compression for embedded RISC

processors. Proceedings of the ACM SIGPLAN 1999 conference on Programming language

design and implementation, p.139-149, May 01-04, 1999, Atlanta, Georgia, USA.

http://dl.acm.org/citation.cfm?id=1164528&CFID=462152564&CFTOKEN=66653129
http://dl.acm.org/citation.cfm?id=1164528&CFID=462152564&CFTOKEN=66653129
http://dl.acm.org/citation.cfm?id=1164528&CFID=462152564&CFTOKEN=66653129
http://dl.acm.org/citation.cfm?id=301655&CFID=462152564&CFTOKEN=66653129
http://dl.acm.org/citation.cfm?id=301655&CFID=462152564&CFTOKEN=66653129
http://dl.acm.org/citation.cfm?id=301655&CFID=462152564&CFTOKEN=66653129

137

[7] Andrew Wolfe and Alex Chanin. Executing compressed programs on an embedded RISC

architecture. In Proceedings of the 25th annual international symposium on

Microarchitecture (MICRO 25). 1992.

[8] S.Y. Larin, and T.M. Conte. Compiler-driven cached code compression schemes for

embedded ILP processors. Proceedings. 32nd Annual International Symposium on

Microarchitecture, vol., no., pp.82,92, 1999.

[9] H. Lekatsas and W. Wolf. SAMC: a code compression algorithm for embedded processors.

Trans. Comp.-Aided Des. Integ. Cir. Sys. 18, 12 (November 2006), 1689-1701.

[10] Martin Thuresson, Per Stenström. Evaluation of extended dictionary-based static code

compression schemes. Conf. Computing Frontiers 2005: 77-86.

[11] Martin Thuresson, Magnus Själander, Per Stenstrom. A Flexible Code Compression

Scheme Using Partitioned Look-Up Tables. Proceeding HiPEAC '09 Proceedings of the 4th

International Conference on High Performance Embedded Architectures and Compilers,

2009.

[12] Martin Isenburg, Peter Lindstrom, Jack Snoeyink. Lossless Compression of Floating-

Point Geometry. Proceedings of CAD'3D, May 2004.

[13] Martin Isenburg, Peter Lindstrom, Jack Snoeyink. Lossless Compression of Predicted

Floating-Point Geometry. Computer-Aided Design, Volume 37, Issue 8, pages 869-877, July

2005.

http://www.informatik.uni-trier.de/~ley/pers/hd/s/Stenstr=ouml=m:Per.html
http://www.informatik.uni-trier.de/~ley/db/conf/cf/cf2005.html#ThuressonS05
http://link.springer.com/search?facet-author=%22Martin+Thuresson%22
http://link.springer.com/search?facet-author=%22Magnus+Sj%C3%A4lander%22
http://link.springer.com/search?facet-author=%22Per+Stenstrom%22

138

[14] Peter Lindstrom, Martin Isenburg. Fast and Efficient Compression of Floating-Point

Data. IEEE Transactions on Visualization and Computer Graphics, Proceedings of

Visualization 2006, 12(5), pages 1245-1250, September-October 2006.

[15] P. Ratanaworabhan, J. Ke and M. Burtscher. Fast Lossless Compression of Scientific

Floating-Point Data. Proc. Data Compression Conf. (DCC ',06), pp. 133-142, Mar. 2006.

[16] M. Burtscher, P. Ratanaworabhan. FPC: A High-Speed Compressor for Double-Precision

Floating-Point Data. IEEE Transactions on Computers, vol.58, no.1, pp.18, 31, Jan. 2009.

[17] Andrew Beers, Maneesh Agrawala, Navin Chaddha. Rendering from Compressed

Textures. Computer Graphics, Proc. SIGGRAPH: 373–37, 1996.

[18] Xi Chen, Lei Yang, Robert P. Dick, Li Shang, Haris Lekatsas. C-pack: a high-

performance microprocessor cache compression algorithm, IEEE Transactions on VLSI

Systems, 2010.

[19] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons, Michael A.

Kozuch, and Todd C. Mowry. 2012. Base-delta-immediate compression: practical data

compression for on-chip caches. In Proceedings of the 21st international conference on

Parallel architectures and compilation techniques (PACT '12). ACM, New York, NY, USA,

377-388.

[20] A. Alameldeen and D. Wood. Adaptive Cache Compression for High-Performance

Processors. In Proceedings of the 31st Annual International Symposium on Computer

Architecture, 2004.

139

[21] S. Sardashti and D. Wood. Decoupled Compressed Cache: Exploiting Spatial Locality for

Energy-Optimized Compressed Caching. Annual IEEE/ACM International Symposium on

Microarchitecture, 2013.

[22] S. Sardashti and D. Wood. Decoupled Compressed Cache: Exploiting Spatial Locality

for Energy Optimization. IEEE Micro Top Picks from the 2013 Computer Architecture

Conferences.

[23] S. Sardashti, A. Seznec, and D. Wood. Skewed Compressed Caches. In the 47th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-47), 2014.

[24] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes.

Proc. Inst. Radio Engineers, 40(9):1098–1101, September 1952.

[25] Jeffrey Scott Vitter. Design and Analysis of Dynamic Huffman Codes. Journal of the

ACM, 34(4):825–845, October 1987.

[26] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic Coding for Data

Compression. Communications of the ACM, 30(6):520–540, June 1987.

[27] Jacob Ziv and Abraham Lempel. A Universal Algorithm for Sequential Data

Compression. IEEE Transactions on Information Theory, 23(3):337–343, May 1977.

[28] Jacob Ziv and Abraham Lempel. Compression of Individual Sequences Via Variable-

Rate Coding. IEEE Transactions on Information Theory, 24(5):530 –536, September 1978.

[29] Debra A. Lelewer and Daniel S. Hirschberg. Data Compression. ACM Computing

Surveys, 19(3):261–296, September 1987.

140

[30] R. Brett Tremaine, T. Basil Smith, Mike Wazlowski, David Har, Kwok-Ken Mak, and

Sujith Arramreddy. Pinnacle: IBM MXT in a Memory Controller Chip. IEEE Micro,

21(2):56–68, March/April 2001.

[31] R.B. Tremaine, P.A. Franaszek, J.T. Robinson, C.O. Schulz, T.B. Smith, M.E.

Wazlowski, and P.M. Bland. IBM Memory Expansion Technology (MXT). IBM Journal of

Research and Development, 45(2):271–285, March 2001.

[32] Peter Franaszek, John Robinson, and Joy Thomas. Parallel Compression with

Cooperative Dictionary Construction. In Proceedings of the Data Compression Conference,

DCC’96,‎pages‎200–209, March 1996.

[33] Lynn M. Stauffer and Daniel S. Hirschberg. Parallel Text Compression. Technical Report

TR91-44, REVISED, University of California, Irvine, 1993.

[34] Jonghyun Lee, MarianneWinslett, Xiaosong Ma, and Shengke Yu. Enhancing Data

Migration Performance via Parallel Data Compression. In Proceedings of the 16th

International Parallel and Distributed Processing Symposium (IPDPS), pages 47–54, April

2002.

[35] P.A. Franaszek, P. Heidelberger, D.E. Poff, R.A. Saccone, and J.T. Robinson. Algorithms

and Data Structures for Compressed-Memory Machines. IBM Journal of Research and

Development, 45(2):245–258, March 2001.

[36] P.A. Franaszek and J.T. Robinson. On Internal Organization in Compressed Random-

Access Memories. IBM Journal of Research and Development, 45(2):259–270, March 2001.

141

[37] J. Dusser, T. Piquet, and A. Seznec. Zero-content augmented cache. In Proceedings of the

23rd international conference on Supercomputing, 2009.

[38] Jun Yang and Rajiv Gupta. Frequent Value Locality and its Applications. ACM

Transactions on Embedded Computing Systems, 1(1):79–105, November 2002.

[39] Jun Yang, Youtao Zhang, and Rajiv Gupta. Frequent Value Compression in Data Caches.

In Proceedings of the 33rd Annual IEEE/ACM International Symposium on

Microarchitecture, pages 258–265, December 2000.

[40] Jun Yang and Rajiv Gupta. Energy Efficient Frequent Value Data Cache Design. In

Proceedings of the 35th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 197–207, November 2002.

[41] Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent Value Locality and Value-centric

Data Cache Design. In Proceedings of the Ninth International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 150–159, November

2000.

[42] Krishna Kant and Ravi Iyer. Compressibility Characteristics of Address/Data transfers in

Commercial Workloads. In Proceedings of the Fifth Workshop on Computer Architecture

Evaluation Using Commercial Workloads, pages 59–67, February 2002.

[43] Matthew Farrens and Arvin Park. Dynamic Base Register Caching: A Technique for

Reducing Address Bus Width. In Proceedings of the 18th Annual International Symposium

on Computer Architecture, pages 128–137, May 1991.

142

[44] Daniel Citron and Larry Rudolph. Creating a Wider Bus Using Caching Techniques. In

Proceedings of the First IEEE Symposium on High-Performance Computer Architecture,

pages 90–99, February 1995.

[45] Nam Sung Kim, Todd Austin, and Trevor Mudge. Low-Energy Data Cache Using Sign

Compression and Cache Line Bisection. In Second Annual Workshop on Memory

Performance Issues (WMPI), in conjunction with ISCA-29, 2002.

[46] Angelos Arelakis, Per Stenstrom. SC2: A statistical compression cache scheme. In

Proceedings of the 41st Annual International Symposium on Computer Architecture, 2014.

[47] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. Design and Evaluation of a Selective

Compressed Memory System. In Proceedings of Internationl Conference on Computer

Design (ICCD’99), pages 184–191, October 1999.

[48] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. An On-chip Cache Compression

Technique to Reduce Decompression Overhead and Design Complexity. Journal of Systems

Architecture: the EUROMICRO Journal, 46(15):1365–1382, December 2000.

[49] Erik G. Hallnor and Steven K. Reinhardt. A Fully Associative Software-Managed Cache

Design. In Proceedings of the 27th Annual International Symposium on Computer

Architecture, 2000.

[50] E. Hallnor, S. Reinhardt. A Unified Compressed Memory Hierarchy. In Proceedings of

the 11th International Symposium on High-Performance Computer Architecture, 2005.

[51] Julien Dusser, Thomas Piquet, André Seznec. Zero-content augmented caches. In

Proceedings of the 23rd international conference on Supercomputing, 2009.

143

[52] Luis Villa, Michael Zhang, and Krste Asanovic. Dynamic zero compression for cache

energy reduction. In Proceedings of the 33rd annual ACM/IEEE international symposium on

Microarchitecture, 2000.

[53] Soontae Kim, Jesung Kim, Jongmin Lee, Seokin Hong. Residue Cache: A Low-Energy

Low-Area L2 Cache Architecture via Compression and Partial Hits. In Proceedings of the

44th Annual IEEE/ACM International Symposium on Microarchitecture, 2011.

[54] Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P. Gibbons, Michael

A. Kozuch, and Todd C. Mowry. Exploiting Compressed Block Size as an Indicator of

Future Reuse. Proceedings of the 21st International Symposium on High-Performance

Computer Architecture (HPCA), Bay Area, CA, February 2015.

[55] Seungcheol Baek, Hyung Gyu Lee, Chrysostomos Nicopoulos, Junghee Lee, and

Jongman Kim. ECM: Effective Capacity Maximizer for High-Performance Compressed

Caching. In Proceedings of IEEE Symposium on High-Performance Computer Architecture,

2013.

[56] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High performance cache

replacement using re-reference interval prediction (rrip). In Proceedings of the 37th annual

international symposium on Computer architecture,‎ISCA‎’10,‎pages‎60–71, New York, NY,

USA, 2010. ACM.

[57] A. R. Alameldeen and D. A. Wood. Interactions between compression and prefetching in

chip multiprocessors, Proc. Int. Symp. High-Performance Computer Architecture, pp.228 -

239 2007.

144

[58] Bulent Abali, Hubertus Franke, Xiaowei Shen, Dan E. Poff, and T. Basil Smith.

Performance of Hardware Compressed Main Memory. In Proceedings of the 7th IEEE

Symposium on High-Performance Computer Architecture, 2001.

[59] M. Ekman, P. Stenstrom. A robust main-memory compression scheme. SIGARCH

Computer Architecture News, 2005.

[60] Julien Dusser, Andre Seznec. Decoupled Zero-Compressed Memory. In Proceedings of

the 6th International Conference on High Performance and Embedded Architectures and

Compilers, 2011.

[61] Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu, Phillip

B. Gibbons, Michael A. Kozuch, Todd C. Mowry. Linearly Compressed Pages: A Low

Complexity, Low-Latency Main Memory Compression Framework. Annual IEEE/ACM

International Symposium on Microarchitecture, 2013.

[62] Morten Kjelso, Mark Gooch, and Simon Jones. Design and Performance of a Main

Memory Hardware Data Compressor. In Proceedings of the 22nd EUROMICRO Conference,

1996.

[63] Jose Luis Nunez and Simon Jones. Gbit/s Lossless Data Compression Hardware. IEEE

Transactions on VLSI Systems, 11(3):499–510, June 2003.

[64] Youtao Zhang and Rajiv Gupta. Data Compression Transformations for Dynamically

Allocated Data Structures. In Proceedings of the International Conference on Compiler

Construction (CC), pages 24–28, April 2002.

145

[65] Ali Shafiee, Meysam Taassori, Rajeev Balasubramonian, and Al Davis. MemZip:

Exploring Unconventional Benefits from Memory Compression. HPCA, 2014.

[66] Fred Douglis. The Compression Cache: Using On-line Compression to Extend Physical

Memory. In Proceedings of 1993 Winter USENIX Conference, pages 519–529, January 1993.

[67] R. S. de Castro, A. P. do Lago, and D. Da Silva. Adaptive Compressed Caching: Design

and Implementation. In SBAC-PAD, 2003.

[68] S. Roy, R. Kumar, and M. Prvulovic. Improving system performance with compressed

Memory. In IPDPS ’01: Proceedings of the 15th International Parallel & Distributed

Processing Symposium, page 66, Washington, DC, USA, 2001. IEEE Computer Society.

[69] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for compressed caching in

virtual memory systems. In ATEC ’99: Proceedings of the annual conference on USENIX

Annual Technical Conference, pages 101–116, Berkeley, CA, USA, 1999. USENIX

Association.

[70] Apple OS X Mavericks

http://www.apple.com/media/us/osx/2013/docs/OSX_Mavericks_Core_Technology_Overvie

w.pdf.

[71] R. Dennard, F. Gaensslen, H. Yu, V. Rideovt, E. Bassous, A. Leblanc. Design of Ion-

Implanted MOSFET's with Very Small Physical Dimensions. IEEE Journal of Solid-State

Circuits, 1974.

http://www.apple.com/media/us/osx/2013/docs/OSX_Mavericks_Core_Technology_Overview.pdf
http://www.apple.com/media/us/osx/2013/docs/OSX_Mavericks_Core_Technology_Overview.pdf

146

[72] S. Keckler, S. Life After Dennard and How I Learned to Love the Picojoule. In

Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,

2011.

[73] A. Hartstein, V. Srinivasan, T. R. Puzak, P. G. Emma. On the Nature of Cache Miss

Behavior:‎Is‎It‎√2?‎J.‎Instruction-Level Parallelism, 2008.

[74] Intel Core i7 Processors http://www.intel.com/products/processor/corei7/

[75] Andre Seznec. Decoupled sectored caches: Conciliating low tag implementation cost and

low miss ratio. International Symposium on Computer Architecture, 1994.

[76] Avinash Sodani. Race to Exascale: Challenges and Opportunities. Intl. Symp.

Microarchitecture, 12/2011.

[77] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics, pages

114–117, Apr. 1965.

[78] PG&E Data Center Best Practices Guide.

[79] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely Jr., and Joel S.

Emer. Adaptive insertion policies for high performance caching. In 34th International

Symposium on Computer Architecture (ISCA 2007), June 9-13, 2007, San Diego, California,

USA. ACM, 2007.

[80] S. T. Srinivasan, R. D. Ju, A. R. Lebeck, and C. Wilkerson. Locality vs. Criticality. In

Proc. ISCA-28, pp. 132-143, 2001.

[81] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,

Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’s‎

http://www.pge.com/includes/docs/pdfs/mybusiness/energysavingsrebates/incentivesbyindustry/DataCenters_BestPractices.pdf

147

General Execution-driven Multiprocessor Simulator (GEMS) Toolset. Computer

Architecture News, 2005.

[82] J. Liptay. Structural Aspects of the System/360 Model85 Part II: The Cache. IBM

Systems Journal, 1968.

[83] J. Rothman and A. Smith The Pool of Subsectors Cache Design. International

Conference on Supercomputing, 1999.

[84] D. Yoon, M. Jeong, Mattan Erez. Adaptive granularity memory systems: A tradeoff

between‎storage‎efficiency‎and‎ throughput. In Proceeding of the 38th Annual International

Symposium on Computer Architecture, 2011.

[85] D. Weiss, M. Dreesen, M. Ciraula, C. Henrion, C. Helt, R. Freese, T. Miles, A. Karegar,

R. Schreiber, B. Schneller, J. Wuu. An 8MB Level-3 Cache in 32nm SOI with Column-

Select Aliasing. Solid-State Circuits Conference Digest of Technical Papers, 2011.

[86] ITRS. International technology roadmap for semiconductors, 2010 update, 2011. URL

http://www.itrs.net

[87] CACTI: http://www.hpl.hp.com/research/cacti/

[88] Calculating memory system power for DDR3. Technical Report TN-41-01. Micron

Technology, 2007.

[89] Alaa R. Alameldeen, Milo M. K. Martin, Carl J. Mauer, Kevin E. Moore, Min Xu, Mark

D. Hill, David A. Wood, Daniel J. Sorin. Simulating a $2M Commercial Server on a $2K

PC. IEEE Computer, 2003.

148

[90] A. Alameldeen, D. Wood. Variability in Architectural Simulations of Multi-threaded

Workloads. In Proceedings of the Ninth IEEE Symposium on High-Performance Computer

Architecture, 2003.

[91] Christian Bienia and Kai Li. PARSEC 2.0: A New Benchmark Suite for Chip-

Multiprocessors. In Workshop on Modeling, Benchmarking and Simulation, 2009.

[92] Vishal Aslot, M. Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B. Jones, and

Bodo Parady. SPEComp: A New Benchmark Suite for Measuring Parallel Computer

Performance. In Workshop on OpenMP Applications and Tools, 2001.

[93] A. Seznec. A case for two-way skewed-associative caches. In Proc. of the 20th annual

Intl. Symp. on Computer Architecture, 1993.

[94] A. Seznec. Concurrent Support of Multiple Page Sizes on a Skewed Associative TLB.

IEEE Transactions on Computers, 2004.

[95] A. Seznec, F. Bodin. Skewed-associative caches. Proceedings of PARLE' 93, Munich,

June 1993, also available as INRIA Research Report 1655.

[96] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu, J. Hestness, D.

Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. Hill, D. Wood.

The gem5 simulator. ACM SIGARCH Computer Architecture News, 2011.

[97] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0: Faster and More Flexible

Program Analysis. In Proceedings of the Work. on Modeling, Benchmarking and Simulation,

2005.

149

[98] N.R. Mahapatra, J. Liu, K. Sundaresan, S. Dangeti, and B.V. Venkatrao. A limit study on

the potential of compression for improving memory system performance, power

consumption, and cost. J. Instruction-Level Parallelism, vol. 7, pp.1 -37 2005.

[99] N.R. Mahapatra, J. Liu, K. Sundaresan, S. Dangeti, and B.V. Venkatrao. The Potential of

Compression to Improve Memory System Performance, Power Consumption, and Cost. In

Proceedings of IEEE Performance, Computing and Communications Conference, Phoenix,

AZ, USA, April 2003.

[100] J. Gandhi, A. Basu, M. Hill, and M. Swift. BadgerTrap: A Tool to Instrument x86-64

TLB Misses. SIGARCH Computer Architecture News (CAN), 2014.

[101] graph500 --The Graph500 List: http://www.graph500.org.

[102] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A.

Popescu, A. Ailamaki, and B. Falsafi. Clearing the Clouds: A Study of Emerging Scale-out

Workloads on Modern Hardware. In the 17th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), March 2012.

[103] Coremark -- www.coremark.org

[104] Cloudsuite -- http://parsa.epfl.ch/cloudsuite/cloudsuite.html

[105] A. Gutierrez, R. Dreslinski, T. Wenisch, T. Mudge, A. Saidi, C. Emmons, and N. Paver.

Full-system analysis and characterization of interactive smartphone applications. In IISWC

'11.

[106] M. Burtscher and P. Ratanaworabhan. High throughput compression of double-precision

floating-point data. In DCC. 2007.

http://www.graph500.org/
http://parsa.epfl.ch/cloudsuite/cloudsuite.html

150

[107] Y. Jin and R. Chen. Instruction cache compression for embedded systems. Berkley

Wireless Research Center, Technical Report, 2000.

[108] C. Wu, A. Jaleel, W. Hasenplaugh , M. Martonosi , S. Steely, J. Emer. SHiP: signature-

based hit predictor for high performance caching. Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture, 2011.

[109] D. Yoon, M. Jeong, M. Erez. Adaptive granularity memory systems: A tradeoff between

storage‎ efficiency‎ and‎ throughput. In Proceeding of the 38th Annual International

Symposium on Computer Architecture, 2011.

[110] Arkaprava Basu, Derek R. Hower, Mark D. Hill, Michael M. Swift. Freshcache:

Statically and dynamically exploiting dataless ways. In ICCD, 2013.

[111] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. In ISCA-33,

2006.

[112] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip multiprocessors. ICS-21,

2007.

[113] Jorge Albericio, Pablo Ibáñez, Víctor Viñals, José M. Llabería. The reuse cache:

downsizing the shared last-level cache. In Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture. ACM, 2013, pp. 310–321.

[114] Vijay Sathish, Michael J. Schulte, Nam Sung Kim, Lossless and lossy memory I/O link

compression for improving performance of GPGPU workloads, Proceedings of the 21st

international conference on Parallel architectures and compilation techniques, 2012.

[115] Arka Basu, Revisiting Virtual Memory, PhD dissertation, 2013.

